1
|
Wu YF, Chang NW, Chu LA, Liu HY, Zhou YX, Pai YL, Yu YS, Kuan CH, Wu YC, Lin SJ, Tan HY. Single-Cell Transcriptomics Reveals Cellular Heterogeneity and Complex Cell-Cell Communication Networks in the Mouse Cornea. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 37792336 PMCID: PMC10565710 DOI: 10.1167/iovs.64.13.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/30/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose To generate a single-cell RNA-sequencing (scRNA-seq) map and construct cell-cell communication networks of mouse corneas. Methods C57BL/6 mouse corneas were dissociated to single cells and subjected to scRNA-seq. Cell populations were clustered and annotated for bioinformatic analysis using the R package "Seurat." Differential expression patterns were validated and spatially mapped with whole-mount immunofluorescence staining. Global intercellular signaling networks were constructed using CellChat. Results Unbiased clustering of scRNA-seq transcriptomes of 14,732 cells from 40 corneas revealed 17 cell clusters of six major cell types: nine epithelial cell, three keratocyte, two corneal endothelial cell, and one each of immune cell, vascular endothelial cell, and fibroblast clusters. The nine epithelial cell subtypes included quiescent limbal stem cells, transit-amplifying cells, and differentiated cells from corneas and two minor conjunctival epithelial clusters. CellChat analysis provided an atlas of the complex intercellular signaling communications among all cell types. Conclusions We constructed a complete single-cell transcriptomic map and the complex signaling cross-talk among all cell types of the cornea, which can be used as a foundation atlas for further research on the cornea. This study also deepens the understanding of the cellular heterogeneity and heterotypic cell-cell interaction within corneas.
Collapse
Affiliation(s)
- Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Nai-Wen Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yu Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Xian Zhou
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yun-Lin Pai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Sheng Yu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsiang Kuan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ching Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsin-Yuan Tan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Frikeche J, Maiti G, Chakravarti S. Small leucine-rich repeat proteoglycans in corneal inflammation and wound healing. Exp Eye Res 2016; 151:142-9. [PMID: 27569372 DOI: 10.1016/j.exer.2016.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
The small leucine rich repeat proteoglycans are major components of the cornea. Lumican, keratocan, decorin, biglycan and osteoglycin are present throughout the adult corneal stroma, and fibromodulin in the peripheral limbal area. In the cornea literature these proteoglycan have been reviewed as structural, collagen fibril-regulating proteins of the cornea. However, these proteoglycans are members of the leucine-rich-repeat superfamily, and share structural similarities with pathogen recognition toll-like receptors. Emerging studies are showing that these have a range of interactions with cell surface receptors, chemokines, growth factors and pathogen associated molecular patterns and are able to regulate host immune response, inflammation and wound healing. This review discusses what is known about their innate immune-related role directly in the cornea, and studies outside the field that find interesting links with innate immune and wound healing responses that are likely to be relevant to the ocular surface. In addition, the review discusses phenotypes of mice with targeted deletion of proteoglycan genes and genetic variants associated with human pathologies.
Collapse
Affiliation(s)
- Jihane Frikeche
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| | - George Maiti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, USA; Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, USA.
| |
Collapse
|
3
|
Dupuis LE, Berger MG, Feldman S, Doucette L, Fowlkes V, Chakravarti S, Thibaudeau S, Alcala NE, Bradshaw AD, Kern CB. Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly. J Mol Cell Cardiol 2015; 84:70-80. [PMID: 25886697 PMCID: PMC4468017 DOI: 10.1016/j.yjmcc.2015.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 01/19/2023]
Abstract
The ability of the heart to adapt to increased stress is dependent on the modification of its extracellular matrix (ECM) architecture that is established during postnatal development as cardiomyocytes differentiate, a process that is poorly understood. We hypothesized that the small leucine-rich proteoglycan (SLRP) lumican (LUM), which binds collagen and facilitates collagen assembly in other tissues, may play a critical role in establishing the postnatal murine myocardial ECM. Although previous studies suggest that LUM deficient mice (lum(-/-)) exhibit skin anomalies consistent with Ehlers-Danlos syndrome, lum(-/-) hearts have not been evaluated. These studies show that LUM was immunolocalized to non-cardiomyocytes of the cardiac ventricles and its expression increased throughout development. Lumican deficiency resulted in significant (50%) perinatal death and further examination of the lum(-/-) neonatal hearts revealed an increase in myocardial tissue without a significant increase in cell proliferation. However cardiomyocytes from surviving postnatal day 0 (P0), 1 month (1 mo) and adult (4 mo) lum(-/-) hearts were significantly larger than their wild type (WT) littermates. Immunohistochemistry revealed that the increased cardiomyocyte size in the lum(-/-) hearts correlated with alteration of the cardiomyocyte pericellular ECM components collagenα1(I) and the class I SLRP decorin (DCN). Western blot analysis demonstrated that the ratio of glycosaminoglycan (GAG) decorated DCN to core DCN was reduced in P0 and 1 mo lum(-/-) hearts. There was also a reduction in the β and γ forms of collagenα1(I) in lum(-/-) hearts. While the total insoluble collagen content was significantly reduced, the fibril size was increased in lum(-/-) hearts, indicating that LUM may play a role in collagen fiber stability and lateral fibril assembly. These results suggest that LUM controls cardiomyocyte growth by regulating the pericellular ECM and also indicates that LUM may coordinate multiple factors of collagen assembly in the murine heart. Further investigation into the role of LUM may yield novel therapeutic targets and/or biomarkers for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Loren E Dupuis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Matthew G Berger
- Honors College, College of Charleston, Charleston, SC 29401, United States
| | - Samuel Feldman
- Honors College, College of Charleston, Charleston, SC 29401, United States
| | - Lorna Doucette
- Honors College, College of Charleston, Charleston, SC 29401, United States
| | - Vennece Fowlkes
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Sarah Thibaudeau
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Nicolas E Alcala
- Honors College, College of Charleston, Charleston, SC 29401, United States
| | - Amy D Bradshaw
- Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Christine B Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
4
|
Xi X, McMillan DH, Lehmann GM, Sime PJ, Libby RT, Huxlin KR, Feldon SE, Phipps RP. Ocular fibroblast diversity: implications for inflammation and ocular wound healing. Invest Ophthalmol Vis Sci 2011; 52:4859-65. [PMID: 21571679 DOI: 10.1167/iovs.10-7066] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Various ocular and orbital tissues differ in their manifestations of inflammation, although the reasons for this are unclear. Such differences may be due to behaviors exhibited by resident cell types, including fibroblasts. Fibroblasts mediate immune function and produce inflammatory mediators. Chronic stimulation of ocular fibroblasts can lead to prolonged inflammation and, in turn, to impaired vision and blindness. Interleukin (IL)-1β, which is produced by various cells during inflammation, is a potent activator of fibroblasts and inducer of the expression of inflammatory mediators. The hypothesis for this study was that that human fibroblasts derived from distinct ocular tissues differ in their responses to IL-1β and that variations in the IL-1 signaling pathway account for these differences. METHODS Human fibroblasts were isolated from the lacrimal gland, cornea, and Tenon's capsule and treated with IL-1β in vitro. Cytokine and prostaglandin (PG)E(2) production were measured by ELISA and EIA. Cyclooxygenase (Cox)-2 expression was detected by Western blot. Components of the IL-1 signaling pathway were detected by flow cytometry, ELISA, Western blot, and immunofluorescence. RESULTS Cytokine and PGE(2) production and Cox-2 expression were greatest in corneal fibroblasts. VEGF production was greatest in Tenon's capsule fibroblasts. Variations in IL-1 receptor and receptor antagonist expression, IκBα degradation and p65 nuclear translocation, however, did not account for these differences, but overexpression of the NF-κB member RelB dampened Cox-2 expression in all three fibroblast types. CONCLUSIONS The results highlight the inherent differences between ocular fibroblast strains and provide crucial insight into novel, tissue-specific treatments for ocular inflammation and disease, such as RelB overexpression.
Collapse
Affiliation(s)
- Xia Xi
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
El-Bakry AM. Comparative study of the corneal epithelium in some reptiles inhabiting different environments. ACTA ZOOL-STOCKHOLM 2010. [DOI: 10.1111/j.1463-6395.2009.00444.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Wu F, Lee S, Schumacher M, Jun A, Chakravarti S. Differential gene expression patterns of the developing and adult mouse cornea compared to the lens and tendon. Exp Eye Res 2008; 87:214-25. [PMID: 18582462 PMCID: PMC3043597 DOI: 10.1016/j.exer.2008.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/02/2008] [Indexed: 11/28/2022]
Abstract
The cornea continues to mature after birth to develop a fully functional, refractive and protective barrier tissue. Here we investigated the complex biological events underlying this process by profiling global genome-wide gene expression patterns of the immature postnatal day 10 and 7-week old adult mouse cornea. The lens and tendon were included in the study to increase the specificity of genes identified as upregulated in the corneal samples. Notable similarities in gene expression between the cornea and the tendon were in the mesenchymal extracellular matrix collagen (types I, III, V, VI) and proteoglycan (lumican, decorin and biglycan) genes. Expression similarities in the cornea and lens were limited to certain epithelial genes and the crystallins. Approximately 76 genes were over expressed in the cornea samples that showed basal expression levels in the lens and tendon. Thirty-two of these were novel with no known functions in the cornea. These include genes with a potential role in protection against oxidative stress (Dhcr24, Cdo1, Akr1b7, Prdx6), inflammation (Ltb4dh, Wdr1), ion transport (Pdzk1ip1, Slc12a2, Slc25a17) and transcription (Zfp36l3, Pdzk1ip1). Direct comparison of the cornea of two ages showed selective upregulation of 50 and 12 genes in the P10 and adult cornea, respectively. Of the upregulated P10 genes several encode extracellular matrix collagens and proteoglycans that are stable components of the adult cornea and their high transcriptional activity at P10 indicate a period of actie corneal growth and matrix deposition in the young cornea. Much less is known about the genes selectively over expressed in the adult cornea; some relate to immune response and innervations (Npy), and possibly to electron transport (Cyp24a1, Cyp2f2) and others of yet unknown functions in the cornea (Rgs10, Psmb8, Xlr4). This study detected expression of genes with known functions in the cornea, providing additional validation of the microarray experiments. Importantly, it identified several novel genes whose functions have not been investigated in the cornea.
Collapse
Affiliation(s)
- Feng Wu
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Seakwoo Lee
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - Albert Jun
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
7
|
Yeh LK, Liu CY, Chien CL, Converse RL, Kao WWY, Chen MS, Hu FR, Hsieh FJ, Wang IJ. Molecular analysis and characterization of zebrafish keratocan (zKera) gene. J Biol Chem 2007; 283:506-517. [PMID: 17965408 DOI: 10.1074/jbc.m707656200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corneal small leucine-rich proteoglycans play a pivotal role in maintaining corneal transparency and function. In this study, we isolated and characterized the zebrafish (Danio rerio) keratocan (zKera) gene. The human keratocan sequence was used to search zebrafish homologues. The zKera full-length genomic DNA and cDNA were generated via PCR of zebrafish genomic DNA and reverse transcription-PCR of total zebrafish eye RNA, respectively. The zKera spanning 3.5 kilobase pairs consists of two exons and one intron and a TATA-less promoter. The zKera encodes 341 amino acids with 59% identity to its human counterpart and 57% identity to that of mouse keratocan. Like mouse and chick keratocan, zKera mRNA is selectively expressed in the adult cornea; however, during embryonic development, zKera mRNA is expressed in both the brain and the cornea. Interestingly, it is expressed mainly in corneal epithelium but also in the stroma. A pseudogene was proved by introducing a zKera promoter-driven enhanced green fluorescence protein reporter gene into fertilized zebrafish eggs. Using morpholino-antisense against zKera to knock down zKera resulted in a lethal phenotype due to massive caspase-dependent apoptosis, which was noted by a significant increase of active caspase-3 and caspase-8 in the developing forebrain area, including the eyes. This is different from mouse, for which keratocan-deficient mice are viable. Taken together, our data indicate that mammalian keratocan is conserved in zebrafish in terms of gene structure, expression pattern, and promoter function.
Collapse
Affiliation(s)
- Lung-Kun Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Ophthalmology, Chang-Gung Memorial Hospital (Linko), Chang-Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chia-Yang Liu
- Department of Ophthalmology, Cincinnati, Ohio 45267-0838
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | - Winston W-Y Kao
- Department of Ophthalmology, Cincinnati, Ohio 45267-0838; Department of Cell Biology, Neuroscience, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0838
| | - Muh-Shy Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Fon-Jou Hsieh
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan.
| |
Collapse
|
8
|
Burns AR, Li Z, Smith CW. Neutrophil migration in the wounded cornea: the role of the keratocyte. Ocul Surf 2007; 3:S173-6. [PMID: 17216113 DOI: 10.1016/s1542-0124(12)70249-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neutrophil migration into the corneal stroma following epithelial injury is an early event in the non-adaptive immune response. Little is known regarding the molecular and cellular mechanisms that regulate neutrophil migration within the injured cornea. In this article, evidence is presented supporting the idea that migrating neutrophils form integrin-dependent adhesive contacts not only with extracellular matrix molecules, but also with interstitial cells known as keratocytes. Since keratocytes express adhesion molecules and secrete leukotactic factors, and because they are joined to one another to form a cellular network, we suggest that the keratocyte network plays a prominent role in neutrophil migration by serving as a source of contact guidance and chemoattraction for migrating neutrophils. The proposed neutrophil interactions with keratocytes constitute the beginning of a new experimental paradigm for understanding leukocyte migration within the injured cornea.
Collapse
Affiliation(s)
- Alan R Burns
- Department of Medicine, DeBakey Heart Center at Baylor College of Medicine and Methodist Hospital, Houston, TX 77030, USA.
| | | | | |
Collapse
|
9
|
Kao WWY, Liu CY. The use of transgenic and knock-out mice in the investigation of ocular surface cell biology. Ocul Surf 2007; 1:5-19. [PMID: 17075625 DOI: 10.1016/s1542-0124(12)70003-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The transgenic and knock-out mice created by transgenesis and gene targeting techniques are very useful for elucidating the pathophysiology of human diseases caused by altered genetic functions. Many of the experimental mouse lines exhibit ocular surface disorders. However, embryonic lethality and congenital defects found in many of the transgenic and knock-out mice preclude their use for studying the consequences of altered genetic functions in adult animals. To circumvent these difficulties, we have established binary inducible mouse models, using the corneal keratocyte-specific keratocan promoter, and the tetracycline-inducible gene expression system (reverse tetracycline transcription activator--rtTA). In these models, the animals function normally until they are fed doxycycline, thus inducing the overexpression of inserted transgenes by keratocytes. We have also developed inserted rtTA and Cre reporter gene constructs to create genetically modified mouse lines that have tissue-specific gene alterations to study acquired conditions, e.g., wound healing and irregular hormone and cytokine signaling that offsets homeostasis in adults. Furthermore, the genes that are ubiquitously expressed in many tissues can be specifically ablated solely in ocular surface tissues to examine their function, since the loss of such a gene in ocular surface tissues will not be life-threatening. It is noteworthy that these altered mouse lines can also be used as models for the development of therapeutic treatment regimens of diseases using gene therapy and stem cell strategies.
Collapse
Affiliation(s)
- Winston W-Y Kao
- Department of Opthalmology, University of Cincinnati, Cincinnati, OH 45267-0527, USA.
| | | |
Collapse
|
10
|
Jun AS, Chakravarti S, Edelhauser HF, Kimos M. Aging changes of mouse corneal endothelium and Descemet's membrane. Exp Eye Res 2006; 83:890-6. [PMID: 16777092 DOI: 10.1016/j.exer.2006.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/20/2006] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to characterize age-associated changes in the corneal endothelium and Descemet's membrane (DM) in C57BL/6 mice, an inbred strain commonly used as a genetic disease model. Corneas from mice aged 2 weeks to 24 months were studied. Light microscopy was used to assess central endothelial cell density, area, and morphology. Transmission electron microscopy was used to assess thickness and ultrastructural features of DM. Central corneal endothelial cell density showed a rapid decline from 5,232+/-892 cells/mm(2) (mean+/-S.D.) at 2 weeks to 2,532+/-112 cells/mm(2) at 16 weeks of age. Thereafter, cell density declined more slowly, reaching 2,004+/-134 cells/mm(2) at 24 months of age. DM thickness showed an approximately linear increase from 1.12+/-0.22 microm (mean+/-S.D.) at 2 weeks to 4.19+/-1.17 microm at 24 months of age. DM in 2 and 6 week age groups was composed entirely of material with an electron dense, periodic banding pattern. Sixteen week, 12 month, and 24 month age groups exhibited an additional, progressively thicker, homogeneous layer lacking periodic banding. The observed age-dependent thickening of DM was predominantly due to accumulation of the posterior, non-banded layer. In C57BL/6 mice, central endothelial cell density declines with age and DM progressively thickens due to accumulation of a posterior, non-banded portion. These age-associated changes are strikingly similar to observations in humans and thus further support the potential usefulness of the mouse model for studying disorders of the corneal endothelium and Descemet's membrane.
Collapse
Affiliation(s)
- Albert S Jun
- Wilmer Eye Institute, The Johns Hopkins Medical Institutions, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
11
|
Hayashida Y, Akama TO, Beecher N, Lewis P, Young RD, Meek KM, Kerr B, Hughes CE, Caterson B, Tanigami A, Nakayama J, Fukada MN, Tano Y, Nishida K, Quantock AJ. Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. Proc Natl Acad Sci U S A 2006; 103:13333-8. [PMID: 16938851 PMCID: PMC1569164 DOI: 10.1073/pnas.0605441103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Indexed: 11/18/2022] Open
Abstract
Matrix assembly and homeostasis in collagen-rich tissues are mediated by interactions with proteoglycans (PGs) substituted with sulfated glycosaminoglycans (GAGs). The major GAG in cornea is keratan sulfate (KS), which is N-linked to one of three PG core proteins. To ascertain the importance of the carbohydrate chain sulfation step in KS functionality, we generated a strain of mice with a targeted gene deletion in Chst5, which encodes an N-acetylglucosamine-6-O-sulfotransferase that is integral to the sulfation of KS chains. Corneas of homozygous mutants were significantly thinner than those of WT or heterozygous mice. They lacked high-sulfated KS, but contained the core protein of the major corneal KSPG, lumican. Histochemically stained KSPGs coassociated with fibrillar collagen in WT corneas, but were not identified in the Chst5-null tissue. Conversely, abnormally large chondroitin sulfate/dermatan sulfate PG complexes were abundant throughout the Chst5-deficient cornea, indicating an alteration of controlled PG production in the mutant cornea. The corneal stroma of the Chst5-null mouse exhibited widespread structural alterations in collagen fibrillar architecture, including decreased interfibrillar spacing and a more spatially disorganized collagen array. The enzymatic sulfation of KS GAG chains is thus identified as a key requirement for PG biosynthesis and collagen matrix organization.
Collapse
Affiliation(s)
- Yasutaka Hayashida
- *Department of Ophthalmology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoya O. Akama
- Glycobiology Program, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Nicola Beecher
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Redwood Building, Cathays Park, Cardiff CF10 3NB, United Kingdom
| | - Philip Lewis
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Redwood Building, Cathays Park, Cardiff CF10 3NB, United Kingdom
| | - Robert D. Young
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Redwood Building, Cathays Park, Cardiff CF10 3NB, United Kingdom
| | - Keith M. Meek
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Redwood Building, Cathays Park, Cardiff CF10 3NB, United Kingdom
| | - Briedgeen Kerr
- Connective Tissue Biology Laboratory, School of Biosciences, Cardiff University, Museum Avenue, Cathays Park, Cardiff CF10 3US, United Kingdom
| | - Clare E. Hughes
- Connective Tissue Biology Laboratory, School of Biosciences, Cardiff University, Museum Avenue, Cathays Park, Cardiff CF10 3US, United Kingdom
| | - Bruce Caterson
- Connective Tissue Biology Laboratory, School of Biosciences, Cardiff University, Museum Avenue, Cathays Park, Cardiff CF10 3US, United Kingdom
| | - Akira Tanigami
- Otsuka GEN Research Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima 771-0192, Japan
| | - Jun Nakayama
- Department of Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; and
| | - Michiko N. Fukada
- Glycobiology Program, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Yasuo Tano
- *Department of Ophthalmology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohji Nishida
- **Department of Ophthalmology, Tohoku University Medical School, 1-1 Seiryo-cho, Aobaku, Sendai, Miyagi 980-8574, Japan
| | - Andrew J. Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Redwood Building, Cathays Park, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
12
|
Hopfer U, Fukai N, Hopfer H, Wolf G, Joyce N, Li E, Olsen BR. Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. FASEB J 2006; 19:1232-44. [PMID: 16051690 DOI: 10.1096/fj.04-3019com] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Collagen VIII is localized in subendothelial and subepithelial extracellular matrices. It is a major component of Descemet's membrane, a thick basement membrane under the corneal endothelium, where it forms a hexagonal lattice structure; a similar structure, albeit less extensive, may be formed in other basement membranes. We have examined the function of collagen VIII in mice by targeted inactivation of the genes encoding the two polypeptide subunits, Col8a1 and Col8a2. Analysis of these mice reveals no major structural defects in most organs, but demonstrates that type VIII collagen is required for normal anterior eye development, particularly the formation of a corneal stroma with the appropriate number of fibroblastic cell layers and Descemet's membrane of appropriate thickness. Complete lack of type VIII collagen leads to dysgenesis of the anterior segment of the eye: a globoid, keratoglobus-like protrusion of the anterior chamber with a thin corneal stroma. Descemet's membrane is markedly thinned. The corneal endothelial cells are enlarged and reduced in number, and show a decreased ability to proliferate in response to different growth factors in vitro. An important function of collagen VIII may therefore be to generate a peri- or subcellular matrix environment that permits or stimulates cell proliferation.
Collapse
Affiliation(s)
- Ulrike Hopfer
- Department of Oral and Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Musselmann K, Alexandrou B, Kane B, Hassell JR. Maintenance of the keratocyte phenotype during cell proliferation stimulated by insulin. J Biol Chem 2005; 280:32634-9. [PMID: 16169858 DOI: 10.1074/jbc.m504724200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratocytes normally express high levels of aldehyde dehydrogenase and keratocan. They proliferate and lose their keratocyte markers when they become fibroblastic during corneal wound healing. Keratocytes cultured in fetal bovine serum also become fibroblastic, proliferate, and lose these markers. In this report, we studied the effects of three serum growth factors, fibroblast growth factor-2, insulin, and platelet-derived growth factor-BB, on keratocyte proliferation and the maintenance of the keratocyte markers in 7-day cultures in cells plated at low (5,000 cells/cm2) and high (20,000 cells/cm2) density in serum-free medium. Keratocyte proliferation was measured by [3H]thymidine incorporation and by DNA content of the cultures. Cytosolic aldehyde dehydrogenase and keratocan accumulated in the medium were quantified by Western blot. The results showed that all the growth factors stimulated proliferation, but insulin stimulated proliferation more consistently. The keratocyte markers aldehyde dehydrogenase and keratocan were maintained after 7 days in culture in all growth factors, but keratocyte cell morphology was only maintained in medium containing insulin. Most of the proteoglycans were degraded in cultures of keratocytes plated at low density and cultured in the absence of growth factors. This degradation was prevented when keratocytes were cultured in the presence of the growth factors or when keratocytes were plated at high density. The results of this study show that insulin can expand keratocytes in vitro, maintain their phenotype, and prevent proteoglycan degradation.
Collapse
Affiliation(s)
- Kurt Musselmann
- Department of Biochemistry and Molecular Biology, University of South Florida College of Medicine and Shriners Hospitals for Children Tampa, Tampa, Florida, 33612, USA
| | | | | | | |
Collapse
|
14
|
Conrad AH, Conrad GW. The keratocan gene is expressed in both ocular and non-ocular tissues during early chick development. Matrix Biol 2003; 22:323-37. [PMID: 12935817 DOI: 10.1016/s0945-053x(03)00039-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Extracellular matrix (ECM) keratan sulfate proteoglycans (KSPGs) are core proteins with sulfated polylactosamine side chains (KS). The KSPG core protein keratocan gene (Kera) is expressed almost exclusively in adult vertebrate cornea, but its embryonic expression is little known. Embryonic chick in situ hybridization reveals Kera mRNA expression in corneal endothelium from embryonic day (E) 4.5, Hamburger-Hamilton (HH) 25, in stromal keratocytes from E6.5, HH30, and in iris distal surface cells from E8, HH34. As highly sulfated, antibody I22-positive KS increases extracellularly from posterior to anterior across the stroma, nerves enter and populate only anterior stroma and epithelium. RT-PCR and in situ hybridization demonstrate that developmentally regulated Kera mRNA expression initiates in midbrain and dorsolateral mesenchyme at E1, HH7, then spreads caudally in hindbrain and cranial and trunk mesenchyme flanking the neural tube through E2, HH20. Cranial expression extends ventrally through the developing head, and concentrates in mesenchyme surrounding eye anterior regions and cranial ganglia, and in subepidermal pharyngeal arch mesenchyme by E3.5, HH22. Kera expression in the trunk at E3.5, HH22 and E4.5, HH25, is strong in dorsolateral subepidermal, sclerotomal and nephrogenic mesenchymes, but absent in neural tube, dorsal root ganglia, nerve outgrowths, notochord, heart and gut. Early limb buds express Kera mRNA throughout their mesenchyme, then in restricted proximal and distal mesenchymes. I22-positive KS appears only in notochord in E3.5, HH22 and E4.5, HH25, embryos. Results suggest the hypothesis that keratocan, or keratocan with minimally sulfated KS chains, may play a role in structuring ECM for early embryonic cell and neuronal migrations.
Collapse
Affiliation(s)
- Abigail H Conrad
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA.
| | | |
Collapse
|
15
|
Jepsen KJ, Wu F, Peragallo JH, Paul J, Roberts L, Ezura Y, Oldberg A, Birk DE, Chakravarti S. A syndrome of joint laxity and impaired tendon integrity in lumican- and fibromodulin-deficient mice. J Biol Chem 2002; 277:35532-40. [PMID: 12089156 DOI: 10.1074/jbc.m205398200] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lumican and fibromodulin regulate the assembly of collagens into higher order fibrils in connective tissues. Here, we show that mice deficient in both of these proteoglycans manifest several clinical features of Ehlers-Danlos syndrome. The Lum(-/-)Fmod(-/-) mice are smaller than their wild type littermates and display gait abnormality, joint laxity, and age-dependent osteoarthritis. Misaligned knee patella, severe knee dysmorphogenesis, and extreme tendon weakness are the likely causes for joint laxity in the double-nulls. Fibromodulin deficiency alone leads to significant reduction in tendon stiffness in the Lum(+/+)Fmod(-/-) mice, with further loss in stiffness in a Lum gene dose-dependent way. At the protein level, we show marked increase of lumican in Fmod(-/-) tendons, which may partially rescue the tendon phenotype in this genotype. These results establish fibromodulin as a key regulator and lumican as a modulator of tendon strength. A disproportionate increase in small diameter immature collagen fibrils and a lack of progression to mature, large diameter fibrils in the Fmod(-/-) background may constitute the underlying cause of tendon weakness and suggest that fibromodulin aids fibril maturation. This study demonstrates that the collagen fibril-modifying proteoglycans, lumican and fibromodulin, are candidate genes and key players in the pathogenesis of certain types of Ehlers-Danlos syndrome and other connective tissue disorders.
Collapse
Affiliation(s)
- Karl J Jepsen
- Department of Orthopedics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Lumican and keratocan are members of the small leucine-rich proteoglycan (SLRP) family, and are the major keratan sulfate (KS) proteoglycans in corneal stroma. Both lumican and keratocan are essential for normal cornea morphogenesis during embryonic development and maintenance of corneal topography in adults. This is attributed to their bi-functional characteristic (protein moiety binding collagen fibrils to regulate collagen fibril diameters, and highly charged glycosaminoglycan (GAG) chains extending out to regulate interfibrillar spacings) that contributes to their regulatory role in extracellular matrix assembly. The absence of lumican leads to formation of cloudy corneas in homozygous knockout mice due to altered collagenous matrix characterized by larger fibril diameters and disorganized fibril spacing. In contrast, keratocan knockout mice exhibit thin but clear cornea with insignificant alteration of stromal collaegenous matrix. Mutations of keratocan cause cornea plana in human, which is often associated with glaucoma. These observations suggest that lumican and keratocan have different roles in regulating formation of stromal extracellular matrix. Experimental evidence indicates that lumican may have additional biological functions, such as modulation of cell migration and epithelium-mesenchyme transition in wound healing and tumorgenesis, besides regulating collagen fibrillogenesis.
Collapse
Affiliation(s)
- Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267-0527, USA.
| | | |
Collapse
|