1
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Zhou Z, Lin Z, Wang M, Wang L, Ji Y, Yang J, Yang Y, Zhu G, Liu T. Identification and verification of PTPN3 as a novel biomarker in predicting cancer prognosis, immunity, and immunotherapeutic efficacy. Eur J Med Res 2024; 29:12. [PMID: 38173048 PMCID: PMC10762909 DOI: 10.1186/s40001-023-01587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The importance of protein tyrosine phosphatase non-receptor type 3 (PTPN3) in controlling multifaceted tumor cell behaviors throughout cancer development has received widespread attention. Nevertheless, little is known about the biological roles of PTPN3 in drug sensitivity, immunotherapeutic effectiveness, tumor immune microenvironment, and cancer prognosis. METHODS The Cancer Genome Atlas (TCGA) database's RNAseq data were used to examine the expression of PTPN3 in 33 different cancer types. In addition, immunohistochemistry (IHC) was performed to validate the expression of PTPN3 across various cancer types within our clinical cohorts. The features of PTPN3 alterations were demonstrated throughout the cBioPortal database. This study focused on examining the prognostic and clinicopathological importance of PTPN3 through the acquisition of clinical data from the TCGA database. The investigation of PTPN3's probable role in the tumor immune microenvironment was demonstrated by the application of CIBERSORT, ESTIMATE algorithms, and the TISIDB database. Using Spearman's rank correlation coefficient, the relationships between PTPN3 expression and tumor mutation burden (TMB) and microsatellite instability (MSI) were evaluated. To further investigate the putative biological activities and downstream pathways of PTPN3 in various cancers in humans, Gene Set Enrichment Analysis (GSEA) was carried out. In addition, an examination was conducted to explore the associations between PTPN3 and the effectiveness of PD-1/PD-L1 inhibitors, utilizing data extracted from the GEO database. RESULTS PTPN3 was abnormally expressed in multiple cancer types and was also strictly associated with the prognosis of cancer patients. IHC was used to investigate and confirm the various expression levels of PTPN3 in various malignancies, including breast cancer, lung cancer, sarcoma, and kidney renal clear cell carcinoma in our clinical cohorts. There is a high correlation between the levels of PTPN3 expression in different cancers and infiltrating immune cells, including mast cells, B cells, regulatory T cells, CD8 + T cells, macrophages, and dendritic cells. Infiltrating immune cells, such as regulatory T cells, CD8 + T cells, macrophages, B cells, dendritic cells, and mast cells, are strongly correlated with PTPN3 expression levels in various tumors. The expression of PTPN3 exhibited a substantial correlation with many immune-related biomolecules and the expression of TMB and MSI in multiple types of cancer. In addition, PTPN3 has demonstrated promise in predicting the therapeutic benefits of PD-1/PD-L1 inhibitors and the susceptibility to anti-cancer medications in the treatment of clinical cancer. CONCLUSIONS Our findings highlight the importance of PTPN3 as a prognostic biomarker and predictor of immunotherapy success in various forms of cancer. Furthermore, PTPN3 appears to have an important role in modifying the tumor immune microenvironment, highlighting its potential as a promising biomarker for prognosis prediction, immunotherapeutic efficacy evaluation, and identification of immune-related characteristics in diverse cancer types.
Collapse
Affiliation(s)
- Ziting Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Mingrui Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Lifan Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuqiao Ji
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yaocheng Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Guanghui Zhu
- Department of Pediatric Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Changsha, 410007, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, 421001, Hunan, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Zhao R, Chen S, Cui W, Xie C, Zhang A, Yang L, Dong H. PTPN1 is a prognostic biomarker related to cancer immunity and drug sensitivity: from pan-cancer analysis to validation in breast cancer. Front Immunol 2023; 14:1232047. [PMID: 37936713 PMCID: PMC10626546 DOI: 10.3389/fimmu.2023.1232047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Background Protein tyrosine phosphatase non-receptor type 1 (PTPN1), a member of the protein tyrosine phosphatase superfamily, has been identified as an oncogene and therapeutic target in various cancers. However, its precise role in determining the prognosis of human cancer and immunological responses remains elusive. This study investigated the relationship between PTPN1 expression and clinical outcomes, immune infiltration, and drug sensitivity in human cancers, which will improve understanding regarding its prognostic value and immunological role in pan-cancer. Methods The PTPN1 expression profile was obtained from The Cancer Genome Atlas and Cancer Cell Line Encyclopedia databases. Kaplan-Meier, univariate Cox regression, and time-dependent receiver operating characteristic curve analyses were utilized to clarify the relationship between PTPN1 expression and the prognosis of pan-cancer patients. The relationships between PTPN1 expression and the presence of tumor-infiltrated immune cells were analyzed using Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data and Tumor Immune Estimation Resource. The cell counting kit-8 (CCK-8) assay was performed to examine the effects of PTPN1 level on the sensitivity of breast cancer cells to paclitaxel. Immunohistochemistry and immunoblotting were used to investigate the relationship between PTPN1 expression, immune cell infiltration, and immune checkpoint gene expression in human breast cancer tissues and a mouse xenograft model. Results The pan-cancer analysis revealed that PTPN1 was frequently up-regulated in various cancers. High PTPN1 expression was associated with poor prognosis in most cancers. Furthermore, PTPN1 expression correlated highly with the presence of tumor-infiltrating immune cells and the expression of immune checkpoint pathway marker genes in different cancers. Furthermore, PTPN1 significantly predicted the prognosis for patients undergoing immunotherapy. The results of the CCK-8 viability assay revealed that PTPN1 knockdown increased the sensitivity of MDA-MB-231 and MCF-7 cells to paclitaxel. Finally, our results demonstrated that PTPN1 was associated with immune infiltration and immune checkpoint gene expression in breast cancer. Conclusion PTPN1 was overexpressed in multiple cancer types and correlated with the clinical outcome and tumor immunity, suggesting it could be a valuable potential prognostic and immunological biomarker for pan-cancer.
Collapse
Affiliation(s)
- Ruijun Zhao
- Department of Breast Surgery, The Third Hospital of Nanchang, Nanchang, China
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shuanglong Chen
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Weiheng Cui
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Chaoyu Xie
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Aiping Zhang
- Department of Breast Surgery, Suichuan County Maternal and Child Health Care Hospital, Jian, China
| | - Li Yang
- Department of Breast Surgery, Nancheng County Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Xie L, Qi H, Tian W, Bu S, Wu Z, Wang H. High-expressed PTPN1 promotes tumor proliferation signature in human hepatocellular carcinoma. Heliyon 2023; 9:e19895. [PMID: 37810052 PMCID: PMC10559287 DOI: 10.1016/j.heliyon.2023.e19895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent malignant tumor that is associated with substantial morbidity and mortality rates. Despite the progress made in diagnostic technology, the survival rate of HCC patients remains unsatisfactory due to the complex nature and extensive metastasis of the disease. Consequently, the discovery of new molecular targets is of great practical significance for the diagnosis and treatment of HCC. Protein tyrosine phosphatases (PTPs) play a crucial role in cell signal transduction by catalyzing the dephosphorylation of tyrosine residues in proteins. The present study has revealed that the upregulation of protein tyrosine phosphatase non-receptor type 1 (PTPN1) is a characteristic feature of HCC and is associated with a poor prognosis. Additionally, our investigation into the functional roles of PTPN1-regulated genes in HCC has demonstrated that alterations in PTPN1 expression disrupt normal cell cycle progression metabolism. Additionally, the capacity for proliferation and migration of HCC cells was notably diminished subsequent to PTPN1 silencing, resulting in the prevention of cell entry into the S phase from the G1 phase. Our investigation indicates that PTPN1 may facilitate the onset and progression of HCC by disrupting the cell cycle, thereby presenting a promising molecular target for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Liping Xie
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, 100039, Beijing, China
| | - Huimin Qi
- School of Basic Medicine, Weifang Medical University, 261053, Weifang, China
| | - Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, 261053, Weifang, China
| | - Siyuan Bu
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Zhenan Wu
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, 100039, Beijing, China
| | - Hongmei Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
| |
Collapse
|
5
|
Liu Z, Gao H, Zhao Z, Huang M, Wang S, Zhan J. Status of research on natural protein tyrosine phosphatase 1B inhibitors as potential antidiabetic agents: Update. Biomed Pharmacother 2023; 157:113990. [PMID: 36459712 DOI: 10.1016/j.biopha.2022.113990] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a crucial therapeutic target for multiple human diseases comprising type 2 diabetes (T2DM) and obesity because it is a seminal part of a negative regulator in both insulin and leptin signaling pathways. PTP1B inhibitors increase insulin receptor sensitivity and have the ability to cure insulin resistance-related diseases. However, the few PTP1B inhibitors that entered the clinic (Ertiprotafib, ISIS-113715, Trodusquemine, and JTT-551) were discontinued due to side effects or low selectivity. Molecules with broad chemical diversity extracted from natural products have been reported to be potent PTP1B inhibitors with few side effects. This article summarizes the recent PTP1B inhibitors extracted from natural products, clarifying the current research progress, and providing new options for designing new and effective PTP1B inhibitors.
Collapse
Affiliation(s)
- Zhenyang Liu
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| | - Ziyu Zhao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Mengrui Huang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Shengnan Wang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Jiuyu Zhan
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
6
|
Huang KH, Chang CP, Chien LH, Li CF, Tang LY, Chan YY, Wu TF. Uncovering the Inhibitory Molecular Mechanism of Pomegranate Peel to Urinary Bladder Urothelial Carcinoma Using Proteomics Techniques. Life (Basel) 2022; 12:1839. [PMID: 36362994 PMCID: PMC9694692 DOI: 10.3390/life12111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Pomegranate (Punica granatum L.) fruit demonstrates the repressive effectiveness of many tumors. Our previous studies showed that the PEP (pomegranate peel extract) E2 fraction obtained from the ethyl acetate layer of the pomegranate peel's ethanol extract exhibited the highest inhibitory activities to induce Urinary bladder urothelial carcinoma (UBUC) cell apoptosis. The ethyl acetate layer could lower the volume and weight of T24 tumors and initiate apoptosis in nude mice xenografted bladder tumors. In this study, we intended to clarify the inhibitory molecular process of Taiwanese local pomegranate peel to urinary bladder urothelial carcinoma using a proteomics strategy. Gel-based proteomics (two-dimensional gel electrophoresis coupled with tandem mass spectrometry) was used to get an insight into the molecular mechanisms initiated by PEPE2 to evoke bladder cancer cell apoptosis. We found eleven down-regulated and eight up-regulated proteins in PEPE2-treated T24 cells. Our results implied that these PEPE2-dysregulated proteins belong to cell apoptosis, cell proliferation, death receptor signaling, JAK/STAT signaling, the PPAR pathway, the PPARα/RXR α pathway, Rho family GTPase signaling, and RhoGDI signaling. In addition, HSP90 and PTP1B proteins, associated with apoptosis, were de-regulated in xenografted bladder tumors in nude mice fed with an ethyl acetate layer of ethanol extract. The findings above implied that pomegranate might be a potential chemopreventive resource for UBUC carcinogenesis.
Collapse
Affiliation(s)
- Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Lan-Hsiang Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Ling-Yu Tang
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Yi Chan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Ting-Feng Wu
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| |
Collapse
|
7
|
Chen PJ, Zhang YT. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into Its New Implications in Tumorigenesis. Curr Cancer Drug Targets 2022; 22:181-194. [PMID: 35088671 DOI: 10.2174/1568009622666220128113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
In vivo, tyrosine phosphorylation is a reversible and dynamic process governed by the opposing activities of protein tyrosine kinases and phosphatases. Defective or inappropriate operation of these proteins leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases, including cancers. PTP1B, a non-transmembrane phosphatase, is generally considered a negative regulator of the metabolic signaling pathways and a promising drug target for type Ⅱ diabetes and obesity. Recently, PTP1B is also attracting considerable interest due to its important function and therapeutic potential in other diseases. An increasing number of studies have indicated that PTP1B plays a vital role in the initiation and progression of cancers and could be a target for new cancer therapies. Following recent advances in the aspects mentioned above, this review is focused on the major functions of PTP1B in different types of cancer and the underlying mechanisms behind these functions, as well as the potential pharmacological effects of PTP1B inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Pei-Jie Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230012, China
| | - Yun-Tian Zhang
- Hefei Visionnox Technology Co., Lid, Hefei 230012, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
8
|
Recent advances in PTP1B signaling in metabolism and cancer. Biosci Rep 2021; 41:230148. [PMID: 34726241 PMCID: PMC8630396 DOI: 10.1042/bsr20211994] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Protein tyrosine phosphorylation is one of the major post-translational modifications in eukaryotic cells and represents a critical regulatory mechanism of a wide variety of signaling pathways. Aberrant protein tyrosine phosphorylation has been linked to various diseases, including metabolic disorders and cancer. Few years ago, protein tyrosine phosphatases (PTPs) were considered as tumor suppressors, able to block the signals emanating from receptor tyrosine kinases. However, recent evidence demonstrates that misregulation of PTPs activity plays a critical role in cancer development and progression. Here, we will focus on PTP1B, an enzyme that has been linked to the development of type 2 diabetes and obesity through the regulation of insulin and leptin signaling, and with a promoting role in the development of different types of cancer through the activation of several pro-survival signaling pathways. In this review, we discuss the molecular aspects that support the crucial role of PTP1B in different cellular processes underlying diabetes, obesity and cancer progression, and its visualization as a promising therapeutic target.
Collapse
|
9
|
Zhang J, Wu N, Shi D. The Involvement of the Mammalian Target of Rapamycin, Protein Tyrosine Phosphatase 1b and Dipeptidase 4 Signaling Pathways in Cancer and Diabetes: A Narrative Review. Mini Rev Med Chem 2021; 21:803-815. [PMID: 33185160 DOI: 10.2174/1389557520666201113110406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR), protein tyrosine phosphatase 1b (PTP1B) and dipeptidase 4 (DPP4) signaling pathways regulate eukaryotic cell proliferation and metabolism. Previous researches described different transduction mechanisms in the progression of cancer and diabetes. METHODOLOGY We reviewed recent advances in the signal transduction pathways of mTOR, PTP1B and DPP4 regulation and determined the crosstalk and common pathway in diabetes and cancer. RESULTS We showed that according to numerous past studies, the proteins participate in the signaling networks for both diseases. CONCLUSION There are common pathways and specific proteins involved in diabetes and cancer. This article demonstrates and explains the potential mechanisms of association and future prospects for targeting these proteins in pharmacological studies.
Collapse
Affiliation(s)
- Jiajia Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
10
|
Xu X, Tao Y, Niu Y, Wang Z, Zhang C, Yu Y, Ma L. miR-125a-5p inhibits tumorigenesis in hepatocellular carcinoma. Aging (Albany NY) 2019; 11:7639-7662. [PMID: 31527306 PMCID: PMC6781988 DOI: 10.18632/aging.102276] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/07/2019] [Indexed: 04/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers world-wide. miR-125a-5p is a tumor suppressor in HCC and other cancers, but its mechanisms of action during HCC tumorigenesis remain largely unknown. In this study, we found that miR-125a-5p expression was significantly lower in HCC tissues and cell lines than matched normal tissues and liver cells. miR-125a-5p overexpression inhibited HCC cell proliferation and induced apoptosis in vitro and in vivo, while miR-125a-5p knockdown had the opposite effects. In addition, PTPN1 and MAP3K11 were identified as targets of miR-125a-5p. Knocking down PTPN1 and MAP3K11 activated the JNK MAPK signaling pathway to suppress HCC cell proliferation and induce apoptosis. Our findings suggest that miR-125a-5p may be a useful therapeutic target for treatment of HCC patients.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yongjie Niu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Zhixian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Congcong Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lifang Ma
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
11
|
Huang S, Liu L, Xiang Y, Wang F, Yu L, Zhou F, Cui S, Tian F, Fan Z, Geng C, Cao X, Yang Z, Wang X, Liang H, Wang S, Jiang H, Duan X, Wang H, Li G, Wang Q, Zhang J, Jin F, Tang J, Li L, Zhu S, Zuo W, Ye C, Zhou W, Yin G, Ma Z, Yu Z. Association of PTPN1 polymorphisms with breast cancer risk: A case-control study in Chinese females. J Cell Biochem 2019; 120:12039-12050. [PMID: 30805963 DOI: 10.1002/jcb.28490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Breast cancer (BC) risk, development, and prognosis were closely related to obesity, diabetes mellitus, and metabolic syndrome. Protein tyrosine phosphatase, non-receptor type 1 (PTPN1) located on chromosome 20q13, could negatively regulate insulin and leptin signaling. In this study, we determined the association of PTPN1 polymorphisms with BC risk. METHODS We analyzed the distribution of 11 selected PTPN1 single nucleotide polymorphisms in Chinese female patients with BC (n = 953) and healthy controls (n = 963) based on a multicenter case-control study. The association of PTPN1 genotypes and haplotypes frequencies with BC risk were determined by logistic regression analysis. Analyses were further stratified by body mass index (BMI), waist-hip rate (WHR), diabetes mellitus history, and fasting plasma glucose level. The eQTL (expression Quantitative Trait Loci) analysis for PTPN1 was conducted by GTEx database. RESULTS There were significant differences between BC cases and control groups in menopausal status, number of births, and BMI. Four single nucleotide polymorphisms (SNPs; rs3215684, rs3787345, rs718049, and rs718050) decreased overall BC risk, and other seven SNPs showed no significant association with BC risk. In multivariate analysis, BMI and rs3215684 DT + DD genotype were identified as independent risk factors for BC, and mutated genotypes of rs3215684 were correlated with increased PTPN1 expression. There are no haplotypes showed different frequencies between cases and controls. In the stratified analysis, rs2206656 showed a significant association with decreased BC risk in the subgroup of BMI ≤ 24 kg/m 2 , while rs3215684 and rs718049 showed lower BC risk in the subgroup of WHR > 0.85. Seven SNPs showed lower BC risk in the subgroup with diabetes mellitus history and/or fasting plasma glucose level ≥ 7 mM, while rs754118 decreased BC risk in the subgroup of fasting plasma glucose level < 7 mM. CONCLUSION Our findings suggest that PTPN1 SNPs associated with BC susceptibility in Chinese females, which also suggested a novel mechanism between obesity, diabetes mellitus, and BC risk.
Collapse
Affiliation(s)
- Shuya Huang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong, People's Republic of China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong, People's Republic of China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong, People's Republic of China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong, People's Republic of China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shude Cui
- Department of Breast Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fuguo Tian
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Cuizhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xuchen Cao
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, People's Republic of China
| | - Xiang Wang
- Department of Breast Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hong Liang
- Department of General Surgery, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Shu Wang
- Department of Breast Disease Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Hongchuan Jiang
- Department of General Surgery, Beijing Chaoyang Hospital, Beijing, People's Republic of China
| | - Xuening Duan
- Department of Breast Disease Center, Peking University First Hospital, Beijing, People's Republic of China
| | - Haibo Wang
- Department of Breast Center, Qingdao University Affiliated Hospital, Qingdao, Shandong, People's Republic of China
| | - Guolou Li
- Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China
| | - Qitang Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Qingdao Medical College, Qingdao Central Hospital, Qingdao, Shandong, People's Republic of China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, People's Republic of China
| | - Liang Li
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, Shandong, People's Republic of China
| | - Shiguang Zhu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, People's Republic of China
| | - Wenshu Zuo
- Department of Breast Cancer Center, Shandong Cancer Hospital, Jinan, Shandong, People's Republic of China
| | - Chunmiao Ye
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Gengshen Yin
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
12
|
Liu Y, Li Z, Xu Z, Jin X, Gong Y, Xia X, Yao Y, Xu Z, Zhou Y, Xu H, Li S, Peng Y, Wu X, Dai L. Proteomic Maps of Human Gastrointestinal Stromal Tumor Subgroups. Mol Cell Proteomics 2019; 18:923-935. [PMID: 30804049 PMCID: PMC6495251 DOI: 10.1074/mcp.ra119.001361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is a common sarcoma of gastrointestinal tract (GIT) with high metastatic and recurrence rates, but the proteomic features are still less understood. Here we performed systematic quantitative proteome profiling of GIST from 13 patients classified into very low/low, intermediate and high risk subgroups. An extended cohort of GIST (n = 131) was used for immunohistochemical validation of proteins of interest. In total, 9177 proteins were quantified, covering 55.9% of the GIT transcriptome from The Human Protein Altas. Out of the 9177 quantified proteins, 4930 proteins were observed in all 13 cases with 517 upregulated and 187 downregulated proteins in tumorous tissues independent of risk stage. Pathway analysis showed that the downregulated proteins were mostly enriched in metabolic pathway, whereas the upregulated proteins mainly belonged to spliceosome pathway. In addition, 131 proteins showed differentially expressed patterns among GIST subgroups with statistical significance. The 13 GIST cases were classified into 3 subgroups perfectly based on the expression of these proteins. The intensive comparison of molecular phenotypes and possible functions of quantified oncoproteins, tumor suppressors, phosphatases and kinases between GIST subgroups was carried out. Immunohistochemical analysis of the phosphatase PTPN1 (n = 117) revealed that the GIST patients with high PTPN1 expression had low chances of developing metastasis. Collectively, this work provides valuable information for understanding the inherent biology and evolution of GIST.
Collapse
Affiliation(s)
- Yu Liu
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhigui Li
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhiqiang Xu
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xiuxiu Jin
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yanqiu Gong
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xuyang Xia
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yuqin Yao
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhaofen Xu
- §Department of Pathology, The Second People's Hospital of Neijiang City, Sichuan province, Neijiang 641000, China
| | - Yong Zhou
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Heng Xu
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Shuangqing Li
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yong Peng
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xiaoting Wu
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;.
| | - Lunzhi Dai
- From the ‡Department of General Practice and Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;.
| |
Collapse
|
13
|
Sun F, Yu M, Yu J, Liu Z, Zhou X, Liu Y, Ge X, Gao H, Li M, Jiang X, Liu S, Chen X, Guan W. miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis 2018; 9:522. [PMID: 29743567 PMCID: PMC5943282 DOI: 10.1038/s41419-018-0611-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors and peritoneal metastasis is the primary cause for advanced GC's mortality. Protein-tyrosine phosphatase 1B (PTP1B) functions as an oncogene and involves in carcinogenesis and cancer dissemination. However, the function and regulation of PTP1B in GC remain poorly understood. In this study, we found that PTP1B was upregulated in GC tissues and overexpression of PTP1B in vitro promoted cell migration and prevented apoptosis. Then, we predicted that PTP1B was a target of miR-338-3p and we revealed an inverse correlation between miR-338-3p levels and PTP1B protein levels in GC tissues. Next, we verified that PTP1B was inhibited by miR-338-3p via direct targeting to its 3'-untranslated regions. Moreover, overexpression of miR-338-3p in vitro attenuated GC cell migration and promoted apoptosis, and these effects could be partially reversed by reintroduction of PTP1B. Finally, we established an orthotopic xenograft model and a peritoneal dissemination model of GC to demonstrate that miR-338-3p restrained tumor growth and dissemination in vivo by targeting PTP1B. Taken together, our results highlight that PTP1B is an oncogene and is negatively regulated by miR-338-3p in GC, which may provide new insights into novel molecular therapeutic targets for GC.
Collapse
Affiliation(s)
- Feng Sun
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Jing Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Zhijian Liu
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Xinyan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Xiaolong Ge
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road, Hangzhou, 310016, China
| | - Haidong Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Mei Li
- Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Song Liu
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
14
|
Garcia-Monclús S, López-Alemany R, Almacellas-Rabaiget O, Herrero-Martín D, Huertas-Martinez J, Lagares-Tena L, Alba-Pavón P, Hontecillas-Prieto L, Mora J, de Álava E, Rello-Varona S, Giangrande PH, Tirado OM. EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma. Int J Cancer 2018; 143:1188-1201. [PMID: 29582409 DOI: 10.1002/ijc.31405] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Ewing sarcoma (ES) is the second most common bone malignancy affecting children and young adults with poor prognosis due to high metastasis incidence. Our group previously described that EphA2, a tyrosine kinase receptor, promotes angiogenesis in Ewing sarcoma (ES) cells via ligand-dependent signaling. Now we wanted to explore EphA2 ligand-independent activity, controlled upon phosphorylation at S897 (p-EphA2S897 ), as it has been linked to metastasis in several malignancies. By reverse genetic engineering we explored the phenotypic changes after EphA2 removal or reintroduction. Gene expression microarray was used to identify key players in EphA2 signaling. Mice were employed to reproduce metastatic processes from orthotopically implanted engineered cells. We established a correlation between ES cells aggressiveness and p-EphA2S897 . Moreover, stable overexpression of EphA2 in low EphA2 expression ES cells enhanced proliferation and migration, but not a non-phosphorylable mutant (S987A). Consistently, silencing of EphA2 reduced tumorigenicity, migration and invasion in vitro, and lung metastasis incidence in experimental and spontaneous metastasis assays in vivo. A gene expression microarray revealed the implication of EphA2 in cell signaling, cellular movement and survival. ADAM19 knockdown by siRNA technology strongly reproduced the negative effects on cell migration observed after EphA2 silencing. Altogether, our results suggest that p-EphA2S897 correlates with aggressiveness in ES, so blocking its function may be a promising treatment.
Collapse
Affiliation(s)
- Silvia Garcia-Monclús
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roser López-Alemany
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Almacellas-Rabaiget
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Herrero-Martín
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Juan Huertas-Martinez
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Lagares-Tena
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Piedad Alba-Pavón
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lourdes Hontecillas-Prieto
- CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain.,Laboratory of Molecular Pathology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Enrique de Álava
- CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain.,Laboratory of Molecular Pathology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Santi Rello-Varona
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Oscar M Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain.,Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
15
|
Liu J, Luan W, Zhang Y, Gu J, Shi Y, Yang Y, Feng Z, Qi F. HDAC6 interacts with PTPN1 to enhance melanoma cells progression. Biochem Biophys Res Commun 2018; 495:2630-2636. [DOI: 10.1016/j.bbrc.2017.12.145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/23/2017] [Indexed: 01/05/2023]
|
16
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
17
|
Elson A. Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol 2017; 96:135-147. [PMID: 28941747 DOI: 10.1016/j.biocel.2017.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphorylation is critical for proper function of cells and organisms. Phosphorylation is regulated by the concerted but generically opposing activities of tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs), which ensure its proper regulation, reversibility, and ability to respond to changing physiological situations. Historically, PTKs have been associated mainly with oncogenic and pro-tumorigenic activities, leading to the generalization that protein dephosphorylation is anti-oncogenic and hence that PTPs are tumor-suppressors. In many cases PTPs do suppress tumorigenesis. However, a growing body of evidence indicates that PTPs act as dominant oncogenes and drive cell transformation in a number of contexts, while in others PTPs support transformation that is driven by other oncogenes. This review summarizes the known transforming and tumor-promoting activities of the classical, tyrosine specific PTPs and highlights their potential as drug targets for cancer therapy.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
18
|
Liao SC, Li JX, Yu L, Sun SR. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer. J Zhejiang Univ Sci B 2017; 18:334-342. [PMID: 28378571 DOI: 10.1631/jzus.b1600184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The protein tyrosine phosphatase 1B (PTP1B) is an important regulator of metabolism. The relationship between PTP1B and tumors is quite complex. The purpose of this study is to explore the expression pattern and role of PTP1B in breast cancer. The expression of PTP1B was detected in 67 samples of breast cancer tissue by Western blot. Cell growth assay, Transwell migration assay, and Scratch motility assay were used to examine the proliferation and migration of MCF-7 with and without PTP1B. The total levels and phosphorylated levels of signal transduction and activator of transcription 3 (STAT3) and the expression of C-C motif chemokine ligand 5 (CCL5) were also examined by Western blot. PTP1B was overexpressed in over 70% of breast cancer tissues, correlating with patients with estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and human epidermal growth factor receptor 2 (HER2)-positive tumors. The data also showed that both tumor size and lymph node metastasis were significantly higher in patients with a higher level of PTP1B. The proliferation and migration of MCF-7 cells were found to be inhibited after knocking down the gene of PTP1B. Our data also showed that PTP1B could up-regulate the dephosphorylated level of STAT3, which could increase the expression of CCL5. These phenomena indicated that PTP1B may play a crucial role in the development of breast cancer.
Collapse
Affiliation(s)
- Shi-Chong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jin-Xin Li
- Department of Teaching Administration, Wuhan University School of Medicine, Wuhan 430071, China
| | - Li Yu
- Intensive Care Unit, the Central Hospital of Wuhan, Wuhan 430014, China
| | - Sheng-Rong Sun
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
19
|
Jiménez-Osorio AS, Monroy A, Alavez S. Curcumin and insulin resistance-Molecular targets and clinical evidences. Biofactors 2016; 42:561-580. [PMID: 27325504 DOI: 10.1002/biof.1302] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the main component of the Indian spice turmeric, has been used in traditional medicine to improve diabetes and its comorbidities. Since the last two decades, scientific research has shown that in addition to its antioxidant properties, curcumin could also work as protein homeostasis regulator and it is able to modulate other intracellular pathways. Curcumin supplementation has been proposed to improve insulin resistance (IR) through the activation of the insulin receptor and its downstream pathways in several experimental models, pointing out that its clinical use may be a good and innocuous strategy to improve IR-related diseases. IR is associated with many diseases and syndromes like carbohydrate intolerance, diabetes, metabolic syndrome, and cardiovascular disease. Therefore, it is imperative to identify safe therapeutic interventions aimed to reduce side effects that could lead the patient to leave the treatment. To date, many clinical trials have been carried out using turmeric and curcumin to improve metabolic syndrome, carbohydrate intolerance, diabetes, and obesity in individuals with IR. Results so far are inconclusive because dose, time of treatment, and type of curcumin can change the study outcome significantly. However, there is some clinical evidence suggesting a beneficial effect of curcumin on IR. In this review, we discuss the factors that could influence curcumin effects in clinical trials aimed to improve IR and related diseases, and the conclusions that can be drawn from results obtained so far. © 2016 BioFactors, 42(6):561-580, 2016.
Collapse
Affiliation(s)
| | - Adriana Monroy
- Oncología y Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga,", México D.F, México
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| |
Collapse
|
20
|
Rivera Franco MM, Leon Rodriguez E, Martinez Benitez B, Villanueva Rodriguez LG, de la Luz Sevilla Gonzalez M, Armengol Alonso A. Association of PTP1B with Outcomes of Breast Cancer Patients Who Underwent Neoadjuvant Chemotherapy. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:177-184. [PMID: 27840578 PMCID: PMC5098408 DOI: 10.4137/bcbcr.s40934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/29/2022]
Abstract
PTP1B is involved in the oncogenesis of breast cancer. In addition, neoadjuvant therapy has been widely used in breast cancer; thus, a measurement to assess survival improvement could be pathological complete response (pCR). Our objective was to associate PTP1B overexpression with outcomes of breast cancer patients who underwent neoadjuvant chemotherapy. Forty-six specimens were included. Diagnostic biopsies were immunostained using anti-PTP1B antibody. Expression was categorized as negative (<5%) and overexpression (≥5%). Patients’ responses were graded according to the Miller–Payne system. Sixty-three percent of patients overexpressed PTP1B. There was no significant association between PTP1B overexpression and pCR (P = 0.2). However, when associated with intrinsic subtypes, overexpression was higher in human epidermal growth factor receptor 2-positive-enriched specimens (P = 0.02). Ten-year progression-free survival showed no differences. Our preliminary results do not show an association between PTP1B over-expression and pCR; however, given the limited sample and heterogeneous treatment in our cohort, this hypothesis cannot be excluded.
Collapse
Affiliation(s)
- Monica M Rivera Franco
- Postgraduate and Research Department, Medical Faculty, National Polytechnic Institute, Mexico City, Mexico
| | - Eucario Leon Rodriguez
- Hematology and Oncology Department, National Institute of Medical Science and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Braulio Martinez Benitez
- Antomical Pathology Deparment, National Institute of Medical Science and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Luisa G Villanueva Rodriguez
- Endocrinology Department, National Institute of Medical Science and Nutrition Salvador Zubiran, Mexico City, Mexico
| | | | - Alejandra Armengol Alonso
- Hematology and Oncology Department, National Institute of Medical Science and Nutrition Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
21
|
Hendriks WJAJ, Böhmer FD. Non-transmembrane PTPs in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:47-113. [DOI: 10.1007/978-1-4939-3649-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Liu H, Wu Y, Zhu S, Liang W, Wang Z, Wang Y, Lv T, Yao Y, Yuan D, Song Y. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett 2015; 359:218-25. [PMID: 25617799 DOI: 10.1016/j.canlet.2015.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 01/22/2023]
Abstract
Previous studies have demonstrated that protein tyrosine phosphatase 1B (PTP1B) can promote tumor progression in breast cancer, colon cancer and prostate cancer. Additionally, PTP1B acts as a tumor suppressor in other cancers, such as esophageal cancer and lymphoma. These findings suggest that PTP1B functions as a double-facet molecule in tumors, and the role of PTP1B in non-small cell lung cancer (NSCLC) is unknown. The present study demonstrates that the expression of PTP1B in NSCLC tissue is significantly higher than its expression in benign lung disease and is associated with the stage and overall survival (OS) of NSCLC patients. In vitro studies have demonstrated that PTP1B promotes the proliferation and metastasis of NSCLC cells by reducing the expression of p-src (Tyr527), which activates src and ERK1/2. This study provides the first exploration of the role of PTP1B in the proliferation and metastasis of NSCLC and subsequently elucidates the role of PTP1B in cancer. Our study uncovered that PTP1B can promote NSCLC proliferation and metastasis by activating src and subsequently ERK1/2 and provides a theoretical basis for future applications of PTP1B inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ying Wu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wenjun Liang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yunfen Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yanwen Yao
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
23
|
Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat Genet 2014; 46:329-35. [PMID: 24531327 DOI: 10.1038/ng.2900] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
Abstract
Classical Hodgkin lymphoma and primary mediastinal B cell lymphoma (PMBCL) are related lymphomas sharing pathological, molecular and clinical characteristics. Here we discovered by whole-genome and whole-transcriptome sequencing recurrent somatic coding-sequence mutations in the PTPN1 gene. Mutations were found in 6 of 30 (20%) Hodgkin lymphoma cases, in 6 of 9 (67%) Hodgkin lymphoma-derived cell lines, in 17 of 77 (22%) PMBCL cases and in 1 of 3 (33%) PMBCL-derived cell lines, consisting of nonsense, missense and frameshift mutations. We demonstrate that PTPN1 mutations lead to reduced phosphatase activity and increased phosphorylation of JAK-STAT pathway members. Moreover, silencing of PTPN1 by RNA interference in Hodgkin lymphoma cell line KM-H2 resulted in hyperphosphorylation and overexpression of downstream oncogenic targets. Our data establish PTPN1 mutations as new drivers in lymphomagenesis.
Collapse
|
24
|
Lin JCY, Chou CC, Gao S, Wu SC, Khoo KH, Lin CH. An in Vivo Tagging Method Reveals that Ras Undergoes Sustained Activation upon Transglutaminase-Mediated Protein Serotonylation. Chembiochem 2013; 14:813-7. [DOI: 10.1002/cbic.201300050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 12/17/2022]
|
25
|
Leibowitz MS, Srivastava RM, Andrade Filho PA, Egloff AM, Wang L, Seethala RR, Ferrone S, Ferris RL. SHP2 is overexpressed and inhibits pSTAT1-mediated APM component expression, T-cell attracting chemokine secretion, and CTL recognition in head and neck cancer cells. Clin Cancer Res 2013; 19:798-808. [PMID: 23363816 DOI: 10.1158/1078-0432.ccr-12-1517] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Human leukocyte antigen (HLA) class I antigen processing machinery (APM) component downregulation permits escape of malignant cells from recognition by cytotoxic T lymphocytes (CTL) and correlates with poor prognosis in patients with head and neck cancer (HNC). Activated STAT1 (pSTAT1) is necessary for APM component expression in HNC cells. We investigated whether an overexpressed phosphatase was responsible for basal suppression of pSTAT1 and subsequent APM component-mediated immune escape in HNC cells. EXPERIMENTAL DESIGN Immunohistochemical staining and reverse transcription PCR of paired HNC tumors was performed for the phosphatases src homology domain-containing phosphatase (SHP)-1 and SHP2. Depletion of phosphatase activity in HNC and STAT1(-/-) tumor cells was achieved by siRNA knockdown. HLA class I-restricted, tumor antigen-specific CTL were used in IFN-γ ELISPOT assays against HNC cells. Chemokine secretion was measured after SHP2 depletion in HNC cells. RESULTS SHP2, but not SHP1, was significantly upregulated in HNC tissues. In HNC cells, SHP2 depletion significantly upregulated expression of pSTAT1 and HLA class I APM components. Overexpression of SHP2 in nonmalignant keratinocytes inhibited IFN-γ-mediated STAT1 phosphorylation, and SHP2 depletion in STAT1(-/-) tumor cells did not significantly induce IFN-γ-mediated APM component expression, verifying STAT1 dependence of SHP2 activity. SHP2 depletion induced recognition of HNC cells by HLA class I-restricted CTL and secretion of inflammatory, T-cell attracting chemokines, RANTES and IP10. CONCLUSION These findings suggest for the first time an important role for SHP2 in APM-mediated escape of HNC cells from CTL recognition. Targeting SHP2 could enhance T-cell-based cancer immunotherapy.
Collapse
|
26
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
27
|
Alvira D, Naughton R, Bhatt L, Tedesco S, Landry WD, Cotter TG. Inhibition of protein-tyrosine phosphatase 1B (PTP1B) mediates ubiquitination and degradation of Bcr-Abl protein. J Biol Chem 2011; 286:32313-23. [PMID: 21795709 DOI: 10.1074/jbc.m111.249060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized at the molecular level by the expression of Bcr-Abl, a chimeric protein with deregulated tyrosine kinase activity. The protein-tyrosine phosphatase 1B (PTP1B) is up-regulated in Bcr-Abl-expressing cells, suggesting a regulatory link between the two proteins. To investigate the interplay between these two proteins, we inhibited the activity of PTP1B in Bcr-Abl-expressing TonB.210 cells by either pharmacological or siRNA means and examined the effects of such inhibition on Bcr-Abl expression and function. Herein we describe a novel mechanism by which the phosphatase activity of PTP1B is required for Bcr-Abl protein stability. Inhibition of PTP1B elicits tyrosine phosphorylation of Bcr-Abl that triggers the degradation of Bcr-Abl through ubiquitination via the lysosomal pathway. The degradation of Bcr-Abl consequently inhibits tyrosine phosphorylation of Bcr-Abl substrates and the downstream production of intracellular reactive oxygen species. Furthermore, PTP1B inhibition reduces cell viability and the IC(50) of the Bcr-Abl inhibitor imatinib mesylate. Degradation of Bcr-Abl via PTP1B inhibition is also observed in human CML cell lines K562 and LAMA-84. These results suggest that inhibition of PTP1B may be a useful strategy to explore in the development of novel therapeutic agents for the treatment of CML, particularly because host drugs currently used in CML such as imatinib focus on inhibiting the kinase activity of Bcr-Abl.
Collapse
Affiliation(s)
- Daniel Alvira
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
28
|
PTP1B expression contributes to gastric cancer progression. Med Oncol 2011; 29:948-56. [PMID: 21442314 DOI: 10.1007/s12032-011-9911-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 01/16/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a member of the superfamily of protein tyrosine phosphatases, has been implicated in cancer pathogenesis. However, the role of PTP1B in the development of gastric cancer is unclear. The purpose of this study was to clarify the expression pattern and role of PTP1B in the gastric cancer. The expression of PTP1B in gastric cancer tissues was determined by immunohistochemical staining. Cell growth assay, soft agar colony formation assay, and tumorigenicity assay were used for examining proliferation, colony formation, and in vivo tumorigenesis of gastric cancer cells. The total levels and phosphorylated levels of Akt, extracellular signal-regulated kinase (Erk1/2), focal adhesion kinase (FAK), and Src were examined by western blotting, respectively. PTP1B was overexpressed in gastric cancer tissues (65/80) and correlated with tumor metastasis and tumor-node-metastasis stage. Overexpression of PTP1B promoted the proliferation and in vivo tumorigenesis of MKN45 cells and also increased the phosphorylation levels of Akt, Erk1/2, and FAK and the activity of Src. These results were conformed by knockdown of PTP1B in MKN28 cells. Therefore, our study suggested that PTP1B expression might play an important role in the development of gastric cancer.
Collapse
|
29
|
Abstract
Members of the protein tyrosine phosphatase (Ptp) family dephosphorylate target proteins and counter the activities of protein tyrosine kinases that are involved in cellular phosphorylation and signalling. As such, certain PTPs might be tumour suppressors. Indeed, PTPs play an important part in the inhibition or control of growth, but accumulating evidence indicates that some PTPs may exert oncogenic functions. Recent large-scale genetic analyses of various human tumours have highlighted the relevance of PTPs either as putative tumour suppressors or as candidate oncoproteins. Progress in understanding the regulation and function of PTPs has provided insights into which PTPs might be potential therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Sofi G Julien
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
30
|
Suppression of PTP1B in gastric cancer cells in vitro induces a change in the genome-wide expression profile and inhibits gastric cancer cell growth. Cell Biol Int 2010; 34:747-53. [PMID: 20388125 DOI: 10.1042/cbi20090447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PTP1B (protein tyrosine phosphatase 1B) is a member of the superfamily of PTPs (protein tyrosine phosphatases) and has been implicated in cancer pathogenesis. However, the role of PTP1B in gastric cancer is still unknown. Here, we first detected the PTP1B expression in six gastric cancer cell lines and in the immortalized gastric mucosal epithelial cell line GES-1 by RT-PCR and Western blot. Then, we measured the change of the genome-wide expression profile in MKN28 gastric cancer cells transfected with a plasmid expressing PTP1B-specific small interfering RNA by microarray analysis. Our results showed that PTP1B was overexpressed in gastric cancer cells, and inhibition of PTP1B expression dramatically inhibited gastric cancer cell growth in vitro and in vivo. In addition, microarray analysis revealed that inhibition of PTP1B induced changes in the genome-wide expression profile. These changes may be related to cell growth. Taken together, our data suggested that PTP1B may be a candidate oncogene in gastric cancer.
Collapse
|
31
|
Stuible M, Doody KM, Tremblay ML. PTP1B and TC-PTP: regulators of transformation and tumorigenesis. Cancer Metastasis Rev 2008; 27:215-30. [DOI: 10.1007/s10555-008-9115-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Pilecka I, Patrignani C, Pescini R, Curchod ML, Perrin D, Xue Y, Yasenchak J, Clark A, Magnone MC, Zaratin P, Valenzuela D, Rommel C, van Huijsduijnen RH. Protein-tyrosine Phosphatase H1 Controls Growth Hormone Receptor Signaling and Systemic Growth. J Biol Chem 2007; 282:35405-15. [DOI: 10.1074/jbc.m705814200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
33
|
Callero MA, Pérez GM, Vittori DC, Pregi N, Nesse AB. Modulation of protein tyrosine phosphatase 1B by erythropoietin in UT-7 cell line. Cell Physiol Biochem 2007; 20:319-28. [PMID: 17762161 DOI: 10.1159/000107518] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Since the reversible phosphorylation of tyrosyl residues is a critical event in cellular signaling pathways activated by erythropoietin (Epo), attention has been focused on protein tyrosine phosphatases (PTPs) and their coordinated action with protein tyrosine kinases. The prototypic member of the PTP family is PTP1B, a widely expressed non-receptor PTP located both in cytosol and intracellular membranes via its hydrophobic C-terminal targeting sequence. PTP1B has been implicated in the regulation of signaling pathways involving tyrosine phosphorylation induced by growth factors, cytokines, and hormones, such as the downregulation of erythropoietin and insulin receptors. However, little is known about which factor modulates the activity of this enzyme. METHODS The effect of Epo on PTP1B expression was studied in the UT-7 Epo-dependent cell line. PTP1B expression was analyzed under different conditions by Real-Time PCR and Western blot, while PTP1B phosphatase activity was determined by a p-nitrophenylphosphate hydrolysis assay. RESULTS Epo rapidly induced an increased expression of PTP1B which was associated with higher PTP1B tyrosine phosphorylation and phosphatase activity. The action of Epo on PTP1B induction involved Janus Kinase 2 (JAK2) and Phosphatidylinositol-3 kinase (PI3K). CONCLUSION The results allow us to suggest for the first time that, besides modulating Epo/Epo receptor signaling, PTP1B undergoes feedback regulation by Epo.
Collapse
Affiliation(s)
- Mariana A Callero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
34
|
Motiwala T, Jacob ST. Role of protein tyrosine phosphatases in cancer. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:297-329. [PMID: 16891175 PMCID: PMC3077959 DOI: 10.1016/s0079-6603(06)81008-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation and dephosphorylation are complex enzymatic reactions that are performed by the concerted action of protein kinases and phosphatases, respectively. Deregulation of such coordination due to loss or gain of a single component of the process can result in disease conditions that include, but are not limited to, neoplastic transformation, developmental, autoimmune, and metabolic disorders. Unlike many protein tyrosine kinases that function as oncoproteins, protein tyrosine phosphatases (PTPs) could impart positive or negative effect on cell proliferation. Although past studies have suggested a potential role for PTPs in cancer, the molecular mechanisms of the altered activity/level of these enzymes and the pathological manifestations of these modifications in diseases, particularly in cancer, have not been critically analyzed. This chapter is a comprehensive survey of the alterations of PTPs and the implications of the growth, proliferation, and apoptosis phenotypes attributable to the altered function of this family of phosphatases in cancer. Further, the potential applications of different therapeutic approaches to rectify the adverse effects of alterations in expression of the phosphatase genes and of the phosphatase activity in cancer are discussed.
Collapse
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, The Ohio State University, College of Medicine, Columbus, Ohio 43210, USA
| | | |
Collapse
|
35
|
Dubé N, Tremblay ML. Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:108-17. [PMID: 16198645 DOI: 10.1016/j.bbapap.2005.07.030] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 07/23/2005] [Accepted: 07/24/2005] [Indexed: 01/25/2023]
Abstract
As in other fields of biomedical research, the use of gene-targeted mice by homologous recombination in embryonic stem cells has provided important findings on the function of several members of the protein tyrosine phosphatase (PTP) family. For instance, the phenotypic characterization of knockout mice has been critical in understanding the sites of action of the related PTPs protein tyrosine phosphatase 1B (PTP1B) and T-cell-PTP (TC-PTP). By their increased insulin sensitivity and insulin receptor hyperphosphorylation, PTP1B null mice demonstrated a clear function for this enzyme as a negative regulator of insulin signaling. As well, TC-PTP has also been recently involved in insulin signaling in vitro. Importantly, the high identity in their amino acid sequences suggests that they must be examined simultaneously as targets of drug development. Indeed, they possess different as well as overlapping substrates, which suggest complementary and overlapping roles of both TC-PTP and PTP1B. Here, we review the function of PTP1B and TC-PTP in diabetes, obesity, and processes related to cancer.
Collapse
Affiliation(s)
- Nadia Dubé
- McGill Cancer Centre and Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, room 701, Montreal, QC, Canada H3G 1Y6
| | | |
Collapse
|
36
|
Lieman JH, Worley LA, Harbour JW. Loss of Rb-E2F Repression Results in Caspase-8-mediated Apoptosis through Inactivation of Focal Adhesion Kinase. J Biol Chem 2005; 280:10484-90. [PMID: 15640164 DOI: 10.1074/jbc.m409371200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Molecular hardwiring of the cell cycle to the apoptotic machinery is a critical tumor suppressor mechanism for eliminating hyperproliferative cells. Deregulation of the Rb-E2F repressor complex by genetic deletion or functional inhibition of Rb triggers apoptosis through both the intrinsic (caspase-9 mediated) and extrinsic (caspase-8 mediated) death pathways. Induction of the intrinsic pathway has been studied extensively and involves release of free E2F and direct transcriptional activation of E2F-responsive apoptotic genes such as ARF, APAF1, and CASP9. In contrast, the mechanisms leading to activation of the extrinsic pathway are less well understood. There is growing evidence that Rb-E2F perturbation induces the extrinsic pathway, at least in part, through derepression (as opposed to transactivation) of apoptotic genes. Here, we explore this possibility using cells in which Rb-E2F complexes are displaced from promoters without stimulating E2F transactivation. This derepression of Rb-E2F-regulated genes leads to apoptosis through inactivation of focal adhesion kinase and activation of caspase-8. These findings reveal a new mechanistic link between Rb-E2F and the extrinsic (caspase 8-mediated) apoptotic pathway.
Collapse
Affiliation(s)
- Jonathan H Lieman
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
37
|
Tanuma N, Shima H, Shimada S, Kikuchi K. Reduced tumorigenicity of murine leukemia cells expressing protein-tyrosine phosphatase, PTPepsilon C. Oncogene 2003; 22:1758-62. [PMID: 12660811 DOI: 10.1038/sj.onc.1206267] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, we reported that a cytosolic isoform of protein-tyrosine phosphatase epsilon (PTP epsilon C), when overexpressed, inhibits terminal differentiation and apoptosis of murine M1 myeloblastic leukemia cells induced by interleukin-6. To determine whether these observed effects in vitro correspond to a tumorigenicity of PTP epsilon C-expresser (M1- epsilon C) cells in vivo, parent M1 and M1- epsilon C cells were intravenously inoculated into scid or nude mice, and survival of mice receiving these cell lines was monitored. Unexpectedly, both scid and nude mice inoculated with M1- epsilon C cells showed significantly prolonged survival time than those receiving parent M1 cells. While parent M1 cells inoculated by intravenous injection formed metastatic tumors in the spleen, expression of PTP epsilon C suppressed tumor development in the spleen. The results suggest a suppressive role of PTP epsilon C in tumorigenesis.
Collapse
Affiliation(s)
- Nobuhiro Tanuma
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
38
|
Hooft van Huijsduijnen R, Bombrun A, Swinnen D. Selecting protein tyrosine phosphatases as drug targets. Drug Discov Today 2002; 7:1013-9. [PMID: 12546919 DOI: 10.1016/s1359-6446(02)02438-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein tyrosine phosphatases (PTPs) have emerged as a new and promising class of signaling targets, since the discovery of PTP1B as a major drug target for diabetes and obesity. Blocking individual PTPs results in the activation of specific tyrosine phosphorylation events, but matching PTPs with such pathways and therapeutic indications is a complex undertaking. The history of PTP1B shows that its unusual knockout phenotype and observations with generic and antisense inhibitors in vivo, but not its classical molecular biology, triggered the rapid development of inhibitors that are today being developed for the clinic.
Collapse
Affiliation(s)
- Rob Hooft van Huijsduijnen
- Serono Pharmaceutical Research Institute, 14 Chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland.
| | | | | |
Collapse
|
39
|
Ukkola O, Santaniemi M. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. J Intern Med 2002; 251:467-75. [PMID: 12028501 DOI: 10.1046/j.1365-2796.2002.00992.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Impaired insulin action is important in the pathophysiology of multiple metabolic abnormalities such as obesity and type 2 diabetes. Protein tyrosine phosphatase 1B (PTP1B) is considered a negative regulator of insulin signalling. This is best evidenced by studies on knockout mice showing that lack of PTP1B is associated with increased insulin sensitivity as well as resistance to obesity and in vitro studies whilst studies in animals and humans have given contradictory results. However, several studies support the notion that insulin signalling can be enhanced by the inhibition of PTP1B providing an attractive target for therapy against type 2 diabetes and obesity. In addition, recent genetic studies support the association between PTP1B with insulin resistance. The development of PTP1B inhibitors has already begun although it has become clear that is not easy to find both a selective, safe and effective PTP1B inhibitor. The objective of this paper is to review the current evidence of PTP1B in the pathophysiology of obesity, type 2 diabetes and cancer as well as in the treatment of these disorders.
Collapse
Affiliation(s)
- O Ukkola
- Department of Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
40
|
Sorenson CM, Sheibani N. Altered regulation of SHP-2 and PTP 1B tyrosine phosphatases in cystic kidneys from bcl-2 -/- mice. Am J Physiol Renal Physiol 2002; 282:F442-50. [PMID: 11832424 DOI: 10.1152/ajprenal.00184.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein tyrosine phosphorylation is a dynamic reversible process in which the level of phosphorylation, at any time, is the result of phosphatase and/or kinase activity. This balance is critical for control of growth and differentiation. The role of tyrosine phosphatases during nephrogenesis and in kidney disease requires delineation. Appropriate regulation of focal adhesion proteins such as focal adhesion kinase (FAK) and paxillin are important in cell adhesion, migration, and differentiation. We have previously shown that B cell lymphoma/leukemia-2 (bcl-2) -/- mice develop cystic kidneys and exhibit sustained phosphorylation of FAK and paxillin. We have examined the expression and activity of focal adhesion tyrosine phosphatases [Src homology-2 domain phosphatase (SHP-2), protein tyrosine phosphatase (PTP 1B), and PTP-proline, glutamate, serine, and threonine sequences (PEST)] during normal nephrogenesis and in cystic kidneys from bcl-2 -/- mice. Cystic kidneys from postnatal day 20 bcl-2 -/- mice demonstrate a reduced expression, sixfold decrease in activity, and altered distribution of SHP-2 and PTP 1B. PTP-PEST expression and distribution were similar in both bcl-2 +/+ and bcl-2 -/- mice. The altered regulation of PTP 1B and SHP-2 in kidneys from bcl-2 -/- mice correlates with sustained phosphorylation of FAK and paxillin. Thus renal cyst formation in the bcl-2 -/- mice may be the result of an inability of complete differentiation due to continued activation of growth processes, including activation of FAK and paxillin.
Collapse
Affiliation(s)
- Christine M Sorenson
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792, USA.
| | | |
Collapse
|