1
|
Lu QY, Guo L, Zhang QY, Yang FM, Zhou ST, Sun QY. Luteolin Alleviates the TNF- α-Induced Inflammatory Response of Human Microvascular Endothelial Cells via the Akt/MAPK/NF- κB Pathway. Mediators Inflamm 2024; 2024:6393872. [PMID: 39698583 PMCID: PMC11655144 DOI: 10.1155/mi/6393872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Endothelial dysfunction and pathological alterations are pivotal in the pathogenesis of cardiovascular disease. To date, effective interventions for these endothelial changes are lacking. Tumor necrosis factor-alpha (TNF-α) is known to significantly contribute to these alterations. It has been reported the potential of luteolin to mitigate TNF-α-induced inflammation, yet its specific mechanisms and targets still remain to be elucidated. This study aims to investigate the effects and mechanisms of luteolin on TNF-α-induced inflammatory injury in human microvascular endothelial cells, thereby advancing the understanding of luteolin's medicinal properties. Our findings demonstrate that luteolin notably inhibits TNF-α-induced phosphorylation of Akt, mitogen activated protein kinase (MAPK), and the nuclear factor-kappaB (NF-κB) p65. It significantly reduces the transcriptional activity of NF-κB p65 and AP-1 and decreases the expression of mRNA and proteins related to adhesion molecules and inflammatory mediators. Additionally, luteolin inhibited the reduction in STAT3 phosphorylation. In conclusion, luteolin effectively suppresses TNF-α-induced inflammatory injury in endothelial cells via the Akt/MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Qing-Yu Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Institute of Pharmacology and Bioactivity, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Li Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Institute of Pharmacology and Bioactivity, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Qi-Yun Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Institute of Pharmacology and Bioactivity, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Fu-Mei Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Institute of Pharmacology and Bioactivity, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Shu-Ting Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Institute of Pharmacology and Bioactivity, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Institute of Pharmacology and Bioactivity, Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
2
|
Wang X, Wu L, Luo D, He L, Wang H, Peng B. Mechanism of action of Salvia miltiorrhiza on avascular necrosis of the femoral head determined by integrated network pharmacology and molecular dynamics simulation. Sci Rep 2024; 14:28479. [PMID: 39558045 PMCID: PMC11574184 DOI: 10.1038/s41598-024-79532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Avascular necrosis of the femoral head (ANFH) is a progressive, multifactorial, and challenging clinical condition that often leads to hip dysfunction and deterioration. The pathogenesis of ANFH is complex, and there is no foolproof treatment strategy. Although some pharmacologic and surgical treatments have been shown to improve ANFH, the associated side effects and poor prognosis are of concern. Therefore, there is an urgent need to explore therapeutic interventions with superior efficacy and safety to improve the quality of life of patients with ANFH. Salvia miltiorrhiza (SM), a traditional Chinese medicine with a long history, is widely used for the treatment of cardiovascular and musculoskeletal diseases due to its multiple pharmacological activities. However, the molecular mechanism of SM for the treatment of ANFH is still unclear. Therefore, this study aimed to explore the potential targets and mechanisms of SM for the treatment of ANFH using network pharmacology and molecular modeling techniques. By searching multiple databases, we screened 52 compounds and 42 common targets involved in ANFH therapy and identified dan-shexinkum d, cryptotanshinone, tanshinone iia, and dihydrotanshinlactone as key compounds. Based on the protein-protein interaction (PPI) network, TP53, AKT1, EGFR, STAT3, BCL2, IL6, and TNF were identified as core targets. Subsequent enrichment analysis revealed that these targets were mainly enriched in the AGE-RAGE, IL-17, and TNF pathways, which were mainly associated with inflammatory responses, apoptosis, and oxidative stress. In addition, molecular docking and 100 nanoseconds molecular dynamics (MD) simulations showed that the bioactive compounds of SM had excellent affinity and binding strength to the core targets. Among them, dan-shexinkum d possessed the lowest binding free energy (-215.874 kcal/mol and - 140.277 kcal/mol, respectively) for AKT1 and EGFR. These results demonstrated the multi-component, multi-target, and multi-pathway intervention mechanism of SM in the treatment of ANFH, which provided theoretical basis and clues for further experimental validation and development of anti-ANFH drugs.
Collapse
Affiliation(s)
- Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Lijiao Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Dan Luo
- Basic Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Langyu He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Hao Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Bo Peng
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.
| |
Collapse
|
3
|
Nair JJ, van Staden J. Anti-inflammatory Principles of the Plant Family Amaryllidaceae. PLANTA MEDICA 2024; 90:900-937. [PMID: 39029914 DOI: 10.1055/a-2369-8104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
There is considerable interest in the utilisation of plants against inflammation. Over 50 species of the plant family Amaryllidaceae are known for such usage in traditional medicine. This review was undertaken to identify the chemical principles responsible for these anti-inflammatory effects. It describes the findings from in vitro, in vivo and in silico studies, as well as the probes made on the mechanisms of action. The literature search returned over 600 hits, of which around 130 were chosen for their relevance to the text. Over 140 compounds have thus far been screened for anti-inflammatory effects. These were mostly isoquinoline alkaloids but also included other classes of secondary metabolites such as chromones, flavonoids and triterpenoids. In vitro studies were carried out in mononuclear cells such as lymphocytes, monocytes, neutrophils and macrophages, against which no serious side effects were observed. The constituents were also effective against inflammation induced by physical and chemical stimuli in a variety of murine test subjects. Chief among the compounds were the isoquinoline alkaloids lycorine and narciclasine, which displayed potent effects against pain, swelling, asthma and arthritis, amongst others. From a mechanistic perspective, several of the compounds were shown to mediate in inflammatory pathways, notably via the modulation of both pro-inflammatory (such as NF-κB, TNF-α and IL-1) and anti-inflammatory (such as IL-10 and TGF-β) factors. Useful insights also emerged from active-site docking studies of some of the compounds. The Amaryllidaceae affords a rich and diverse platform for the discovery of potential anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jerald J Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
4
|
Fließer E, Jandl K, Lins T, Birnhuber A, Valzano F, Kolb D, Foris V, Heinemann A, Olschewski H, Evermann M, Hoetzenecker K, Kreuter M, Voelkel NF, Marsh LM, Wygrecka M, Kwapiszewska G. Lung Fibrosis Is Linked to Increased Endothelial Cell Activation and Dysfunctional Vascular Barrier Integrity. Am J Respir Cell Mol Biol 2024; 71:318-331. [PMID: 38843440 DOI: 10.1165/rcmb.2024-0046oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 08/31/2024] Open
Abstract
Pulmonary fibrosis (PF) can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analyzed using transmission electron microscopy, immunohistochemistry, and single-cell RNA sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells (ECs) in fibrotic lungs compared with donors. A more intense CD31 and von Willebrand Factor (vWF) and patchy vascular endothelial (VE)-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin, and VEGFR-2 (vascular endothelial growth factor receptor-2) and activation marker vWF gene expression was increased in different endothelial subpopulations (e.g., arterial, venous, general capillary, aerocytes) in PF. This was associated with a heightened sensitivity of fibrotic ECs to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in ECs from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, whereas VE-Cadherin, Thrombomodulin, and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of patients with PF 6 months after the initial diagnosis. Our data demonstrate highly abnormal ECs in PF. The vascular compartment is characterized by hyperactivation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Reestablishing EC homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology and
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis
- Gottfried Schatz Research Center, Cell Biology, Histology, and Embryology, and
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Matthias Evermann
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center, Mainz, Germany
- Department of Pulmonary, Critical Care, and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Norbert F Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, the Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany; and
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
5
|
Mohammadinasr M, Montazersaheb S, Ayromlou H, Hosseini V, Molavi O, Hejazi MS. Exosome Content-Mediated Signaling Pathways in Multiple Sclerosis. Mol Neurobiol 2024; 61:5404-5417. [PMID: 38191693 DOI: 10.1007/s12035-023-03862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Exosomes are small extracellular vesicles with a complex lipid-bilayer surface and 30-150 nm diameter. These vesicles play a critical role in intercellular signaling networks during physiopathological processes through data trafficking and cell reprogramming. It has been demonstrated that exosomes are involved in a variety of central nervous system (CNS) disorders such as multiple sclerosis (MS). Exosome mediators' cell-to-cell communication is possibly by delivering their contents such as proteins, RNAs (coding and non-coding), DNAs (mitochondrial and genomic), and transposable elements to the target cells. Exosomal microRNAs (miRNAs) differ in their expression patterns in MS disease, thereby providing novel diagnostic and prognostic biomarkers and therapeutic options for better treatment of MS disease. Furthermore, these microvesicles are non-immunogenic and non-toxic therapeutic tools for transferring miRNAs across the blood-brain barrier (BBB). Collectively, exosomes could be used as novel drug delivery devices for the treatment of MS patients. This review summarized research regarding the exosomes from serum, plasma, PBMC, and other cells in MS patients and experimental models. We also provide a critical view of exosome content-mediated signaling pathways in MS, including TNF-α, TGF-β, NF-κB, and Wnt pathways. The use of exosomes as a therapeutic potential in MS has also been discussed.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Nair JJ, van Staden J. Anti-inflammatory effects of the plant family Amaryllidaceae. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117943. [PMID: 38387683 DOI: 10.1016/j.jep.2024.117943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Members of the plant family Amaryllidaceae are widely recorded in traditional systems of medicine. Their usage for inflammatory conditions is most prominent, with substantive evidence emerging from several locations around the world. AIM OF THE STUDY This survey was undertaken to identify such plant taxa, highlight the countries from which they originate and afford details of the ailments against which they are utilized. The undertaking also sought to establish the in vitro and in vivo activities of Amaryllidaceae plant extracts in inflammation-based assays. Furthermore, it set out to unravel the molecular mechanisms used to explain these effects. MATERIALS AND METHODS Over six-hundred articles were identified in searches carried out on SciFinder, Scopus, ScienceDirect, PubMed and Google Scholar. These were condensed to around 170 that formulated the basis of the text. The keyword engaged was 'Amaryllidaceae' in conjunction with 'inflammation' or 'anti-inflammatory', as well as the names of individual genera combined with the latter two. RESULTS Fifty-one species from thirty-five countries were identified for their uses against inflammation. Twenty-four of such conditions were discernible, of which their applicability in wound healing and pain management was most conspicuous. The utilization of all plant parts was apparent, preparations of which were used primarily via topical application. Extracts of seventy-three species (from twenty-three genera) were examined in nearly thirty inflammation-based assays where their activities in vitro and in vivo were shown to be significant. They were effective in vivo against pain and swelling as well as wound healing, without detriment towards test subjects. The in vitro studies were carried out mainly in mononuclear cells such as macrophages, leukocytes, lymphocytes and neutrophils against which their cytotoxic effects were seen to be minimal. The modes of operation were shown to involve modulation of both pro-inflammatory (such as NF-κB, TNF-α, IL-6, IFN-γ, COX and NO) and anti-inflammatory (such as IL-10) factors. CONCLUSIONS The Amaryllidaceae is showcased as a platform highly conducive towards studies in the inflammation arena. Potent activities in instances were observed via in vitro and in vivo models of study, bolstered by the significant amounts of information emerging from traditional forms of medicine. It is conceivable that the family may yield future anti-inflammatory chemotherapeutics, particularly those related to its alkaloid principles.
Collapse
Affiliation(s)
- Jerald J Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
7
|
Deng Z, Aguirre-Flores M, Kim HKW, Ren Y. Obesity impairs revascularization and bone healing in a mouse model of osteonecrosis. J Orthop Res 2024; 42:811-820. [PMID: 37975620 DOI: 10.1002/jor.25728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating bone disease that is caused by a disruption of blood supply leading to necrotic cell death. Clinically, it was found that obesity has a high prevalence with ONFH. However, it remains unclear how obesity may directly affect tissue regeneration and bone healing in osteonecrosis (ON). The purpose of this study is to investigate the effects of obesity and weight loss (WL) on ON healing. In this study, we induced obesity and WL in an established surgery-induced ON mouse model via feeding a high-fat diet (HFD) and altering the diet respectively. All mice received a surgical induction of ON of distal femoral epiphysis at the age of 12 weeks. HFD was switched to normal diet (ND) after ON surgery to induce WL. Mouse body weight was recorded weekly. Mouse body composition was scanned by DEXA (Dual-energy X-ray absorptiometry) right after sacrifice at the age of 16 weeks. The distal femoral bone samples were fixed and embedded for histology such as H&E, immunohistochemistry, and TRAP staining. In this study, we found that HFD-induced obesity impaired revascularization and bone remodeling showing decreased vessel areas and reduced osteoblast and osteoclast numbers. WL could rescue obesity-induced bone healing defects. Our study is the first to test the direct effects of obesity and WL on ON bone healing. We believe our work may provide new concepts for osteonecrosis treatment in obese patients.
Collapse
Affiliation(s)
- Zhuo Deng
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
| | | | - Harry K W Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yinshi Ren
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Moreau KL, Clayton ZS, DuBose LE, Rosenberry R, Seals DR. Effects of regular exercise on vascular function with aging: Does sex matter? Am J Physiol Heart Circ Physiol 2024; 326:H123-H137. [PMID: 37921669 PMCID: PMC11208002 DOI: 10.1152/ajpheart.00392.2023] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Vascular aging, featuring endothelial dysfunction and large elastic artery stiffening, is a major risk factor for the development of age-associated cardiovascular diseases (CVDs). Vascular aging is largely mediated by an excessive production of reactive oxygen species (ROS) and increased inflammation leading to reduced bioavailability of the vasodilatory molecule nitric oxide and remodeling of the arterial wall. Other cellular mechanisms (i.e., mitochondrial dysfunction, impaired stress response, deregulated nutrient sensing, cellular senescence), termed "hallmarks" or "pillars" of aging, may also contribute to vascular aging. Gonadal aging, which largely impacts women but also impacts some men, modulates the vascular aging process. Regular physical activity, including both aerobic and resistance exercise, is a first-line strategy for reducing CVD risk with aging. Although exercise is an effective intervention to counter vascular aging, there is considerable variation in the vascular response to exercise training with aging. Aerobic exercise improves large elastic artery stiffening in both middle-aged/older men and women and enhances endothelial function in middle-aged/older men by reducing oxidative stress and inflammation and preserving nitric oxide bioavailability; however, similar aerobic exercise training improvements are not consistently observed in estrogen-deficient postmenopausal women. Sex differences in adaptations to exercise may be related to gonadal aging and declines in estrogen in women that influence cellular-molecular mechanisms, disconnecting favorable signaling in the vasculature induced by exercise training. The present review will summarize the current state of knowledge on vascular adaptations to regular aerobic and resistance exercise with aging, the underlying mechanisms involved, and the moderating role of biological sex.
Collapse
Affiliation(s)
- Kerrie L Moreau
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ryan Rosenberry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
9
|
Huang Y, Li Y, Zhang K, Xu J, Li P, Yan X, Sun K. Expression and diagnostic value of PIWI-interacting RNA by serum in acute myocardial infarction. J Cardiol 2023; 82:441-447. [PMID: 37422074 DOI: 10.1016/j.jjcc.2023.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVE To detect the expression level of PIWI-interacting RNA in the serum of patients with acute myocardial infarction, and to explore the role of PIWI-interacting RNA in acute myocardial infarction. METHODS RNA was extracted from the serum of acute myocardial infarction patients and healthy subjects, and high-throughput sequencing of PIWI-interacting RNAs was performed to screen differentially expressed PIWI-interacting RNAs. Quantitative polymerase chain reaction was used to detect the expression of four differentially expressed PIWI-interacting RNAs in 52 patients with acute myocardial infarction and 30 healthy people. Receiver operating characteristic (ROC) curve was further used to analyze the correlation between differentially expressed PIWI-interacting RNAs and the occurrence of acute myocardial infarction. Kyoto Encyclopedia of Genes and Genomes analysis was used to analyze the role of PIWI-interacting RNA in the occurrence of acute myocardial infarction. RESULTS RNA sequencing and bioinformatics analysis revealed that most piRNAs were upregulated in AMI patients, with 195 upregulated and 13 downregulated. Among them, piR-hsa-9010, piR-hsa-28646, and piR-hsa-23619 were significantly up-regulated in the serum of patients with acute myocardial infarction, but their expression in the acute heart failure group and coronary heart disease group was not significantly different from that in the healthy group. ROC curve analysis showed that piR-hsa-9010, piR-hsa-28646, and piR-hsa-23619 had high diagnostic values in acute myocardial infarction. In vitro, there was no significant difference in the expression of piR-hsa-9010 among THP-1, HUVEC, and AC16, while the expression of piR-hsa-28646 and piR-hsa-23619 in HUVEC was significantly higher than that in THP-1 and AC16. Pathway analysis showed that piR-hsa-23619 was mainly involved in TNF signaling pathway, and piR-hsa-28646 was mainly involved in Wnt signaling pathway. CONCLUSION piR-hsa-9010, piR-hsa-28646, and piR-hsa-23619 were significantly up-regulated in the serum of patients with acute myocardial infarction. It can be used as a new biomarker for the diagnosis of acute myocardial infarction, which may be a therapeutic target for acute myocardial infarction.
Collapse
Affiliation(s)
- Ying Huang
- Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Kaiyu Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Jingyi Xu
- Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ping Li
- Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Xinxin Yan
- Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China.
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China.
| |
Collapse
|
10
|
Aldokhayyil M, Gomez DH, Cook MD, Kavazis AN, Roberts MD, Geetha T, Brown MD. Influence of Race and High Laminar Shear Stress on TNFR1 Signaling in Endothelial Cells. Int J Mol Sci 2023; 24:14723. [PMID: 37834170 PMCID: PMC10572906 DOI: 10.3390/ijms241914723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Tumor necrosis factor (TNF) binding to endothelial TNF receptor-I (TNFR-I) facilitates monocyte recruitment and chronic inflammation, leading to the development of atherosclerosis. In vitro data show a heightened inflammatory response and atherogenic potential in endothelial cells (ECs) from African American (AA) donors. High laminar shear stress (HSS) can mitigate some aspects of racial differences in endothelial function at the cellular level. We examined possible racial differences in TNF-induced monocyte adhesion and TNFR1 signaling complex expression/activity, along with the effects of HSS. Tohoku Hospital Pediatrics-1 (THP-1) monocytes were used in a co-culture system with human umbilical vein ECs (HUVECs) from Caucasian American (CA) and AA donors to examine racial differences in monocyte adhesion. An in vitro exercise mimetic model was applied to investigate the potential modulatory effect of HSS. THP-1 adherence to ECs and TNF-induced nuclear factor kappa B (NF-κB) DNA binding were elevated in AA ECs compared to CA ECs, but not significantly. We report no significant racial differences in the expression of the TNFR-I signaling complex. Application of HSS significantly increased the expression and shedding of TNFR-I and the expression of TRAF3, and decreased the expression of TRAF5 in both groups. Our data does not support TNF-induced NF-κB activation as a potential mediator of racial disparity in this model. Other pathways and associated factors activated by the TNFR1 signaling complex are recommended targets for future research.
Collapse
Affiliation(s)
- Maitha Aldokhayyil
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Dulce H. Gomez
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Marc D. Cook
- Department of Kinesiology, North Carolina Agriculture and Technology State University, Greensboro, NC 27411, USA
| | | | | | - Thangiah Geetha
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
11
|
Boutagy NE, Fowler JW, Grabinska KA, Cardone R, Sun Q, Vazquez KR, Whalen MB, Zhu X, Chakraborty R, Martin KA, Simons M, Romanoski CE, Kibbey RG, Sessa WC. TNFα increases the degradation of pyruvate dehydrogenase kinase 4 by the Lon protease to support proinflammatory genes. Proc Natl Acad Sci U S A 2023; 120:e2218150120. [PMID: 37695914 PMCID: PMC10515159 DOI: 10.1073/pnas.2218150120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
The endothelium is a major target of the proinflammatory cytokine, tumor necrosis factor alpha (TNFα). Exposure of endothelial cells (EC) to proinflammatory stimuli leads to an increase in mitochondrial metabolism; however, the function and regulation of elevated mitochondrial metabolism in EC in response to proinflammatory cytokines remain unclear. Studies using high-resolution metabolomics and 13C-glucose and 13C-glutamine labeling flux techniques showed that pyruvate dehydrogenase activity (PDH) and oxidative tricarboxylic acid cycle (TCA) flux are elevated in human umbilical vein ECs in response to overnight (16 h) treatment with TNFα (10 ng/mL). Mechanistic studies indicated that TNFα mediated these metabolic changes via mitochondrial-specific protein degradation of pyruvate dehydrogenase kinase 4 (PDK4, inhibitor of PDH) by the Lon protease via an NF-κB-dependent mechanism. Using RNA sequencing following siRNA-mediated knockdown of the catalytically active subunit of PDH, PDHE1α (PDHA1 gene), we show that PDH flux controls the transcription of approximately one-third of the genes that are up-regulated by TNFα stimulation. Notably, TNFα-induced PDH flux regulates a unique signature of proinflammatory mediators (cytokines and chemokines) but not inducible adhesion molecules. Metabolomics and ChIP sequencing for acetylated modification on lysine 27 of histone 3 (H3K27ac) showed that TNFα-induced PDH flux promotes histone acetylation of specific gene loci via citrate accumulation and ATP-citrate lyase-mediated generation of acetyl CoA. Together, these results uncover a mechanism by which TNFα signaling increases oxidative TCA flux of glucose to support TNFα-induced gene transcription through extramitochondrial acetyl CoA generation and histone acetylation.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | - Joseph W Fowler
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | - Kariona A Grabinska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | - Rebecca Cardone
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Qiushi Sun
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Kyla R Vazquez
- Department of Cellular & Molecular Medicine, Bioscience Research Laboratories, University of Arizona, College of Medicine, Tucson, AZ 85724
| | - Michael B Whalen
- Department of Cellular & Molecular Medicine, Bioscience Research Laboratories, University of Arizona, College of Medicine, Tucson, AZ 85724
| | - Xiaolong Zhu
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Raja Chakraborty
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Kathleen A Martin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Michael Simons
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Casey E Romanoski
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
12
|
Primke TF, Ingelfinger R, Elewa MAF, Macinkovic I, Weigert A, Fabritius MP, Reichel CA, Ullrich A, Kazmaier U, Burgers LD, Fürst R. The Microtubule-Targeting Agent Pretubulysin Impairs the Inflammatory Response in Endothelial Cells by a JNK-Dependent Deregulation of the Histone Acetyltransferase Brd4. Cells 2023; 12:2112. [PMID: 37626922 PMCID: PMC10453553 DOI: 10.3390/cells12162112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The anti-inflammatory effects of depolymerizing microtubule-targeting agents on leukocytes are known for a long time, but the potential involvement of the vascular endothelium and the underlying mechanistic basis is still largely unclear. Using the recently synthesized depolymerizing microtubule-targeting agent pretubulysin, we investigated the anti-inflammatory potential of pretubulysin and other microtubule-targeting agents with respect to the TNF-induced leukocyte adhesion cascade in endothelial cells, to improve our understanding of the underlying biomolecular background. We found that treatment with pretubulysin reduces inflammation in vivo and in vitro via inhibition of the TNF-induced adhesion of leukocytes to the vascular endothelium by down-regulation of the pro-inflammatory cell adhesion molecules ICAM-1 and VCAM-1 in a JNK-dependent manner. The underlying mechanism includes JNK-induced deregulation and degradation of the histone acetyltransferase Bromodomain-containing protein 4. This study shows that depolymerizing microtubule-targeting agents, in addition to their established effects on leukocytes, also significantly decrease the inflammatory activation of vascular endothelial cells. These effects are not based on altered pro-inflammatory signaling cascades, but require deregulation of the capability of cells to enter constructive transcription for some genes, setting a baseline for further research on the prominent anti-inflammatory effects of depolymerizing microtubule-targeting agents.
Collapse
Affiliation(s)
- Tobias F. Primke
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany; (T.F.P.); (R.I.); (L.D.B.)
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Rebecca Ingelfinger
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany; (T.F.P.); (R.I.); (L.D.B.)
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Mohammed A. F. Elewa
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60596 Frankfurt, Germany; (M.A.F.E.); (I.M.); (A.W.)
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Igor Macinkovic
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60596 Frankfurt, Germany; (M.A.F.E.); (I.M.); (A.W.)
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60596 Frankfurt, Germany; (M.A.F.E.); (I.M.); (A.W.)
| | - Matthias P. Fabritius
- Department of Otorhinolaryngology, Walter Brendel Centre of Experimental Medicine, University Hospital, 81377 Munich, Germany; (M.P.F.); (C.A.R.)
- Department of Radiology, University Hospital, University of Munich, 81377 Munich, Germany
| | - Christoph A. Reichel
- Department of Otorhinolaryngology, Walter Brendel Centre of Experimental Medicine, University Hospital, 81377 Munich, Germany; (M.P.F.); (C.A.R.)
| | - Angelika Ullrich
- Institute of Organic Chemistry, Saarland University, 66123 Saarbrücken, Germany; (A.U.); (U.K.)
| | - Uli Kazmaier
- Institute of Organic Chemistry, Saarland University, 66123 Saarbrücken, Germany; (A.U.); (U.K.)
| | - Luisa D. Burgers
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany; (T.F.P.); (R.I.); (L.D.B.)
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt, Germany; (T.F.P.); (R.I.); (L.D.B.)
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Goethe University Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
13
|
Xue C, Zhang X, Ge H, Tang Q, Jeon J, Zhao F, Wang Y, Zhu MX, Cao Z. Total flavone of flowers of Abelmoschus manihot (L.) Medic inhibits the expression of adhesion molecules in primary mesenteric arterial endothelial cells and ameliorates dextran sodium sulphate-induced ulcerative colitis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154713. [PMID: 36857970 DOI: 10.1016/j.phymed.2023.154713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Flowers of Abelmoschus manihot (L.) medic (AM) is a traditional Chinese medicine used to treat chronic nephritis, nephrotic syndrome, diabetic nephropathy, and colonic inflammation. PURPOSE This study aimed to explore the influence of the total flavone of AM flowers (TFA) on acute ulcerative colitis (UC) and the potential underlying mechanism. METHODS Efficacy of TFA (30, 60, 120 mg/kg) on UC was evaluated in a dextran sodium sulphate (DSS)-induced colonic inflammatory mouse model by analyzing disease activity index (DAI), histopathological score, colon length, and cytokine expression. Expression levels of critical adhesion molecules and nuclear factor kappa B (NF-κB) were examined by qRT-PCR, Western blotting, or immunofluorescence labeling. Myeloperoxidase activity was examined using ELISA. In vitro THP-1 adhesion assay was used to evaluate monocyte adhesion. RESULTS TFA significantly reduced DAI score, prevented colon shortening, and ameliorated histological injuries of colons in DSS-treated mice. TFA inhibited the expression of cytokines (IL-1β and TNF-α) and adhesion molecules (ICAM-1, VCAM-1, and MAdCAM-1) in colon tissues of DSS mice. In vitro studies on mesenteric arterial endothelial cells (MAECs) showed that TFA attenuated TNF-α-induced upregulation of ICAM-1, VCAM-1, and MAdCAM-1, as well as THP-1 cell adhesion to MAECs. TFA also suppressed the phosphorylation and nuclear translocation of NF-κB in MAECs. CONCLUSION TFA efficaciously ameliorates UC possibly by inhibiting monocyte adhesion through blocking TNF-α-induced NF-κB activation, which in turn suppresses the upregulation of adhesive molecules in colon endothelial cells. Inhibiting the expression of adhesion molecule in MAECs may represent a useful strategy for therapeutic development to treat UC, with TFA being a safe and efficacious therapeutic agent.
Collapse
Affiliation(s)
- Chu Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Haitao Ge
- Research Institute of Huanghui, Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Nanjing, Jiangsu, China
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jaepyo Jeon
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yujing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
14
|
Song M, Wang Y, Annex BH, Popel AS. Experiment-based Computational Model Predicts that IL-6 Trans-Signaling Plays a Dominant Role in IL-6 mediated signaling in Endothelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526721. [PMID: 36778489 PMCID: PMC9915676 DOI: 10.1101/2023.02.03.526721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory cytokine mediated responses are important in the development of many diseases that are associated with angiogenesis. Targeting angiogenesis as a prominent strategy has shown limited effects in many contexts such as peripheral arterial disease (PAD) and cancer. One potential reason for the unsuccessful outcome is the mutual dependent role between inflammation and angiogenesis. Inflammation-based therapies primarily target inflammatory cytokines such as interleukin-6 (IL-6) in T cells, macrophages, cancer cells, muscle cells, and there is a limited understanding of how these cytokines act on endothelial cells. Thus, we focus on one of the major inflammatory cytokines, IL-6, mediated intracellular signaling in endothelial cells by developing a detailed computational model. Our model quantitatively characterized the effects of IL-6 classic and trans-signaling in activating the signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and mitogen-activated protein kinase (MAPK) signaling to phosphorylate STAT3, extracellular regulated kinase (ERK) and Akt, respectively. We applied the trained and validated experiment-based computational model to characterize the dynamics of phosphorylated STAT3 (pSTAT3), Akt (pAkt), and extracellular regulated kinase (pERK) in response to IL-6 classic and/or trans-signaling. The model predicts that IL-6 classic and trans-signaling induced responses are IL-6 and soluble IL-6 receptor (sIL-6R) dose-dependent. Also, IL-6 trans-signaling induces stronger downstream signaling and plays a dominant role in the overall effects from IL-6. In addition, both IL-6 and sIL-6R levels regulate signaling strength. Moreover, our model identifies the influential species and kinetic parameters that specifically modulate the pSTAT3, pAkt, and pERK responses, which represent potential targets for inflammatory cytokine mediated signaling and angiogenesis-based therapies. Overall, the model predicts the effects of IL-6 classic and/or trans-signaling stimulation quantitatively and provides a framework for analyzing and integrating experimental data. More broadly, this model can be utilized to identify targets that influence inflammatory cytokine mediated signaling in endothelial cells and to study the effects of angiogenesis- and inflammation-based therapies.
Collapse
Affiliation(s)
- Min Song
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 21205
| | - Youli Wang
- Department of Medicine, Augusta University Medical College of Georgia, Augusta, Georgia, USA 30912
| | - Brian H. Annex
- Department of Medicine, Augusta University Medical College of Georgia, Augusta, Georgia, USA 30912
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 21205
| |
Collapse
|
15
|
Peyronnel C, Totoson P, Martin H, Demougeot C. Relevance of circulating markers of endothelial activation for cardiovascular risk assessment in rheumatoid arthritis: a narrative review. Life Sci 2023; 314:121264. [PMID: 36470540 DOI: 10.1016/j.lfs.2022.121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is associated with excessive cardiovascular mortality secondary to premature atherosclerosis, in which endothelial activation (EA) plays a central role. EA is characterized by loss of vascular integrity, expression of leucocyte adhesion molecules, transition from antithrombotic to prothrombotic phenotype, cytokines production, shedding of membrane microparticles and recruitment of endothelial progenitor cells. As EA is an early event in atherogenesis, circulating markers of EA are putative markers of vascular pathology and cardiovascular (CV) risk. After a presentation of biology of EA, the present review analyzed the available data regarding changes in EA markers in RA in link with the vascular pathology and CV events, discussed their relevance as biomarkers of CV risk and proposed future directions.
Collapse
Affiliation(s)
- Célian Peyronnel
- PEPITE EA 4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Perle Totoson
- PEPITE EA 4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Hélène Martin
- PEPITE EA 4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Céline Demougeot
- PEPITE EA 4267, Université de Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
16
|
Differential angiogenesis of bone and muscle endothelium in aging and inflammatory processes. Commun Biol 2023; 6:126. [PMID: 36721025 PMCID: PMC9889796 DOI: 10.1038/s42003-023-04515-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Different tissues have different endothelial features, however, the implications of this heterogeneity in pathological responses are not clear yet. "Inflamm-aging" has been hypothesized as a possible trigger of diseases, including osteoarthritis (OA) and sarcopenia, often present in the same patient. To highlight a possible contribution of organ-specific endothelial cells (ECs), we compare ECs derived from bone and skeletal muscle of the same OA patients. OA bone ECs show a pro-inflammatory signature and higher angiogenic sprouting as compared to muscle ECs, in control conditions and stimulated with TNFα. Furthermore, growth of muscle but not bone ECs decreases with increasing patient age and systemic inflammation. Overall, our data demonstrate that inflammatory conditions in OA patients differently affect bone and muscle ECs, suggesting that inflammatory processes increase angiogenesis in subchondral bone while associated systemic low-grade inflammation impairs angiogenesis in muscle, possibly highlighting a vascular trigger linking OA and sarcopenia.
Collapse
|
17
|
Nair JJ, van Staden J. Chemical Principles of Boophone, Nerine, Crossyne, Clivia, Cryptostephanus, Haemanthus and Scadoxus of the South African Amaryllidaceae and Their Biological Properties. PLANTA MEDICA 2023; 89:99-115. [PMID: 34921374 DOI: 10.1055/a-1724-6244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Amaryllidaceae features prominently amongst bulbous flowering plant families. Accommodating about a third of its species, South Africa affords a sound basis for Amaryllidaceae plant research. Boophone, Nerine, Crossyne, Clivia, Cryptostephanus, Haemanthus and Scadoxus have been well-represented in such endeavors. The account herein summarizes the studies undertaken between 2013 - 2020 on these genera in regards to their chemical and biological characteristics. A total of 136 compounds comprising 63 alkaloids and 73 non-alkaloid entities were described during this period from eighteen members of the title genera. The alkaloids were reflective of the structural diversity found in eight isoquinoline alkaloid groups of the Amaryllidaceae. Of these, the crinane (29 compounds), lycorane and homolycorine (11 compounds each) groups were the most-represented. The non-alkaloid substances were embracive of the same number of unrelated groups including, acids, phenolics, flavonoids and triterpenoids. A wide variety of assays were engaged to ascertain the biological activities of the isolated compounds, notably in regards to cancer and motorneuron-related diseases. There were also attempts made to determine the antimicrobial, anti-inflammatory and antioxidant effects of some of the substances. New information has also emerged on the herbicidal, insecticidal and plant growth regulatory effects of selected alkaloid principles. Coupled to the biological screening measures were in instances probes made to establish the molecular basis to some of the activities, particularly in relation to cancer and Parkinson's disease.
Collapse
Affiliation(s)
- Jerald J Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Scottsville, South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Scottsville, South Africa
| |
Collapse
|
18
|
da Silva MC, dos Santos VM, da Silva MVB, Prazeres TCMM, Cartágenes MDSS, Calzerra NTM, de Queiroz TM. Involvement of shedding induced by ADAM17 on the nitric oxide pathway in hypertension. Front Mol Biosci 2022; 9:1032177. [PMID: 36310604 PMCID: PMC9614329 DOI: 10.3389/fmolb.2022.1032177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022] Open
Abstract
A Disintegrin and Metalloprotease 17 (ADAM17), also called tumor necrosis factor-ɑ (TNF-ɑ) convertase (TACE), is a well-known protease involved in the sheddase of growth factors, chemokines and cytokines. ADAM17 is also enrolled in hypertension, especially by shedding of angiotensin converting enzyme type 2 (ACE2) leading to impairment of angiotensin 1–7 [Ang-(1–7)] production and injury in vasodilation, induction of renal damage and cardiac hypertrophy. Activation of Mas receptor (MasR) by binding of Ang-(1–7) induces an increase in the nitric oxide (NO) gaseous molecule, which is an essential factor of vascular homeostasis and blood pressure control. On the other hand, TNF-ɑ has demonstrated to stimulate a decrease in nitric oxide bioavailability, triggering a disrupt in endothelium-dependent vasorelaxation. In spite of the previous studies, little knowledge is available about the involvement of the metalloprotease 17 and the NO pathways. Here we will provide an overview of the role of ADAM17 and Its mechanisms implicated with the NO formation.
Collapse
Affiliation(s)
- Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Vanessa Maria dos Santos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Matheus Vinícius B. da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | | | | | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
- *Correspondence: Thyago Moreira de Queiroz,
| |
Collapse
|
19
|
Network-Based Pharmacology and Bioinformatics Study on the Mechanism of Action of Gujiansan in the Treatment of Steroid-Induced Avascular Necrosis of the Femoral Head. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8080679. [PMID: 35915795 PMCID: PMC9338865 DOI: 10.1155/2022/8080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
Objective To investigate the main pharmacological basis and mechanism of action of Gujiansan in the treatment of steroid-induced avascular necrosis of the femoral head (SANFH). Methods The active constituents and targets of Gujiansan were screened by using TCMSP and other databases, and relevant disease targets were obtained by analyzing the microarray of SANFH in the GEO database. The intersection of the two was taken to obtain the potential targets of Gujiansan for the treatment of SANFH, and key active constituents were screened with the “active constituent-target” network constructed by the Cytoscape software; then, the STRING database was used to construct the protein interaction network to screen the key targets. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of key targets were performed by the DAVID database, and the relationship between the “key active constituent-key target-key signaling pathway” was explored. Finally, the molecular docking between key active constituents and key targets was verified. In addition, qPCR detection technology was used to evaluate the preventive and therapeutic effects of key active constituents of Gujiansan in a rat osteoblast model of SANFH to verify the possible mechanism of the effect of Gujiansan in the treatment of SANFH. Results (1) 106 active constituents and 55 targets were obtained for the treatment of SANFH. (2) Quercetin, luteolin, kaempferol, cryptotanshinone, and naringenin were the key active constituents for the treatment of SANFH. (3) IL1B, STAT3, CAT, PTGS2, and MAPK3 were the key targets for the treatment of SANFH. (4) IL1B, STAT3, CAT, PTGS2, MAPK3, and HMOX1 are key targets in the protein interaction network. (5) DAVID enrichment analysis mainly covers the regulation of DNA-binding transcription factor activity, positive regulation of cytokine production, and response to oxidative stress and other biological processes, involving IL-17, AGE-RAGE, C-type lectin receptor, and other signaling pathways. (6) Gujiansan is a multitarget and multisignaling pathway for the treatment of SANFH. (7) Good binding activity exists between key active constituents and key targets. Conclusion This study analyzes the potential mechanism of action of Gujiansan in the treatment of SANFH with network pharmacology, which can provide a reference for the further study of its pharmacological basis and targets.
Collapse
|
20
|
Nair JJ, van Staden J. Insights to the tribe Haemantheae of the South African Amaryllidaceae. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115177. [PMID: 35263631 DOI: 10.1016/j.jep.2022.115177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The family Amaryllidaceae has been documented in traditional systems of medicine around the globe. Its member tribe Haemantheae occurs chiefly in South Africa, where around twenty of its species are identifiable with a wide variety of functions in such practices. AIM OF THE STUDY This account details work published from 2013 to 2020 on the tribe Haemantheae involving Clivia, Cryptostephanus, Haemanthus, Scadoxus and Gethyllis. Focus is maintained on the traditional medicinal aspects, pharmacological activities and identification of the active principles. Significant effort is also made to outline the molecular basis to some of these effects. MATERIALS AND METHODS The major search engine platforms including, SciFinder, Scopus, ScienceDirect, PubMed and Google Scholar were utilized at the literature consolidation stage. Keywords engaged in the process included 'Amaryllidaceae' and 'Haemantheae' as well as individual genera and specie names. RESULTS Twenty-four species of the five genera were encountered over the designated time frame. New traditional medicinal information has emerged on nine of these species, where usage ranged from the treatment of wounds and infections, circulatory and gastrointestinal issues to AIDS and TB. Significant amounts of new data also appeared in relation to the antimicrobial, anti-inflammatory, antioxidant, anticholinesterase, antidepressive and cytotoxic effects of these plants. Potent activities were observed in some instances, as they were in regards to the anti-inflammatory effects of some Gethyllis species in their cyclooxygenase-inhibitory effects. The entities behind these activities, with few exceptions, were shown to be isoquinoline alkaloids which are known to dominate the chemistry of the Amaryllidaceae. Interesting observations were also made for the mechanisms behind some of the effects, notably in the inflammatory and motorneuron disease arenas. CONCLUSIONS The tribe Haemantheae has proved to be a rich and diverse platform for studies of the Amaryllidaceae in the key areas of traditional medicine, pharmacology and phytochemistry. Indigenous knowledge has played a significant role in guiding the biological evaluations, while identification of the active principles has been bolstered by the exceedingly rich alkaloid diversity of the Amaryllidaceae. As such, Haemantheae should continue to feature prominently in drug discovery efforts targeted at the family.
Collapse
Affiliation(s)
- Jerald J Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
21
|
Wohner N, Sebastian S, Muczynski V, Huskens D, de Laat B, de Groot PG, Lenting PJ. Osteoprotegerin modulates platelet adhesion to von Willebrand factor during release from endothelial cells. J Thromb Haemost 2022; 20:755-766. [PMID: 34816579 DOI: 10.1111/jth.15598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelet-binding Von Willebrand Factor (VWF) strings assemble upon stimulated secretion from endothelial cells. OBJECTIVES To investigate the efficiency of platelet binding to multi-molecular VWF bundles secreted from endothelial cells and to investigate the role of osteoprotegerin, a protein located in Weibel-Palade bodies that interacts with the VWF platelet binding domain. METHODS The nanobody VWF/AU-a11 that specifically binds to VWF in its active platelet-binding conformation was used to investigate the conformation of VWF. RESULTS Upon stimulated secretion from endothelial cells, VWF strings were only partially covered with platelets, while a VWD-type 2B mutation or ristocetin enhanced platelet binding by 2-3-fold. Osteoprotegrin, reduces platelet adhesion to VWF by 40% ± 18% in perfusion assays. siRNA-mediated down-regulation of endothelial osteoprotegerin expression resulted in a 1.8-fold increase in platelet adhesion to VWF strings. Upon viral infection, there is a concordant rise in VWF and osteoprotegerin plasma levels. Unexpectedly, no such increase was observed in plasma of desmopressin-treated hemophilia A-patients. In a mouse model, osteoprotegerin expression was low in liver endothelial cells of vehicle-treated mice, and concanavalin A-treatment increased VWF and osteoprotegerin expression 4- and 40-fold, respectively. This increase was translated in a 30-fold increased osteoprotegerin/VWF ratio in plasma. CONCLUSIONS Release of VWF from endothelial cells opens the platelet-binding site, irrespective of the presence of flow. However, not all available platelet-binding sites are being occupied, suggesting some extent of regulation. Part of this regulation involves endothelial proteins that are co-secreted with VWF, like osteoprotegerin. This regulatory mechanism may be of more relevance under inflammatory conditions.
Collapse
Affiliation(s)
- Nikolett Wohner
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixed de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Silvie Sebastian
- Department of Clinical Chemistry and Haematology, Utrecht Medical Centre, Utrecht, The Netherlands
| | - Vincent Muczynski
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixed de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Dana Huskens
- Synapse Research Institute, Maastricht, The Netherlands
| | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands
- CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Philip G de Groot
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixed de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Synapse Research Institute, Maastricht, The Netherlands
| | - Peter J Lenting
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixed de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
22
|
Protective Effects of Alternanthera sessilis Ethanolic Extract against TNF-α or H2O2-Induced Endothelial Activation in Human Aortic Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8738435. [PMID: 35251216 PMCID: PMC8894009 DOI: 10.1155/2022/8738435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/02/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Activation of the endothelium has been shown to contribute to the early stage of vascular diseases such as atherosclerosis and hypertension. In endothelial activation, excess reactive oxygen species (ROS) production and increased expression of cell adhesion molecules cause an increase in vascular permeability. Alternanthera sessilis (L.) R. Br. is an edible traditional herbal plant, which has previously been shown to possess antioxidant and anti-inflammatory effects. However, the effect of A. sessilis on the activation of human aortic endothelial cells (HAECs) remains unknown. This study aimed to investigate the effects of A. sessilis on endothelial permeability, vascular cell adhesion-1 (VCAM-1) expression, production of ROS and hydrogen peroxide (H2O2), and superoxide dismutase (SOD) and catalase (CAT) activities. The viability of HAECs was first determined using the MTT viability assay. The effect of A. sessilis on endothelial permeability was examined using the FITC-dextran permeability assay. Besides, enzyme-linked immunosorbent assay (ELISA) was done to assess soluble VCAM-1 (sVCAM-1) expression. The production of ROS and H2O2 was studied using 2′,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA) and Amplex Red fluorescent dyes, respectively. SOD and CAT activities were also measured using commercial kits. Our results showed that 25–200 μg/mL of A. sessilis ethanolic extract did not cause significant death in HAECs. A. sessilis at 200 μg/mL significantly inhibited TNF-α-induced hyperpermeability of HAECs. However, A. sessilis did not reduce increased VCAM-1 expression induced by TNF-α. A. sessilis also significantly reduced TNF-α-induced increased ROS production, but not H2O2 production. Furthermore, 100 μM of H2O2 decreased both SOD and CAT activities in HAECs at 2 h. A. sessilis ethanolic extract dramatically increased both reduced SOD and CAT activities caused by H2O2. The liquid chromatography-mass spectrometry (LC-MS) analysis of A. sessilis ethanolic extract demonstrated the presence of arachidonic acid, azadirachtin, astaxanthin, flavanole base + 3O, 2Prenyl, and vicenin 2, while the gas chromatography-mass spectrometry (GC-MS) analysis showed that the extract contains 1,3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one, 3-deoxy-d-mannoic lactone, 4-pyrrolidinobenzaldehyde, and n-hexadecanoic acid. In conclusion, our findings suggest that A. sessilis ethanolic extract protects against endothelial hyperpermeability and oxidative stress elicited by pro-inflammatory or prooxidant stimulus. This study reveals a therapeutic potential of A. sessilis in preventing endothelial activation, which is a key event in early atherosclerosis.
Collapse
|
23
|
Cadé M, Muñoz-Garcia J, Babuty A, Paré L, Cochonneau D, Fekir K, Chatelais M, Heymann MF, Lokajczyk A, Boisson-Vidal C, Heymann D. FVIII regulates the molecular profile of endothelial cells: functional impact on the blood barrier and macrophage behavior. Cell Mol Life Sci 2022; 79:145. [PMID: 35190870 PMCID: PMC11072670 DOI: 10.1007/s00018-022-04178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Hemophilia A is an inherited X-linked recessive bleeding disorder caused by deficient activity of blood coagulation factor VIII (FVIII). In addition, hemophilia patients show associated diseases including osteopenia, altered inflammation and vascular fragility which may represent the consequence of recurrent bleeding or may be related to the direct FVIII deficiency. Nowadays, recombinant FVIII is proposed to treat hemophilia patients with no circulating FVIII inhibitor. Initially described as a coenzyme to factor IXa for initiating thrombin generation, there is emerging evidence that FVIII is involved in multiple biological systems, including bone, vascular and immune systems. The present study investigated: (i) the functional activities of recombinant human FVIII (rFVIII) on endothelial cells, and (ii) the impact of rFVIII activities on the functional interactions of human monocytes and endothelial cells. We then investigated whether rFVIII had a direct effect on the adhesion of monocytes to the endothelium under physiological flow conditions. We observed that direct biological activities for rFVIII in endothelial cells were characterized by: (i) a decrease in endothelial cell adhesion to the underlying extracellular matrix; (ii) regulation of the transcriptomic and protein profiles of endothelial cells; (iii) an increase in the vascular tubes formed and vascular permeability in vitro; and (iv) an increase in monocyte adhesion activated endothelium and transendothelial migration. By regulating vascular permeability plus leukocyte adhesion and transendothelial migration, the present work highlights new biological functions for FVIII.
Collapse
Affiliation(s)
- Marie Cadé
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Antoine Babuty
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Department of Hemostasis, CHU de Nantes, Nantes, France
| | - Louis Paré
- Université de Paris, CNRS, Institut Jacques Monod, UMR 7592, Paris, France
| | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Marie-Françoise Heymann
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France.
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France.
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| |
Collapse
|
24
|
Bazban-Shotorbani S, Gavins F, Kant K, Dufva M, Kamaly N. A Biomicrofluidic Screening Platform for Dysfunctional Endothelium‐Targeted Nanoparticles and Therapeutics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Salime Bazban-Shotorbani
- Department of Health Technology DTU Health Tech Technical University of Denmark Lyngby 2800 Kgs. Denmark
- Department of Chemistry Molecular Sciences Research Hub (MSRH) Imperial College London London W12 0BZ UK
| | - Felicity Gavins
- Department of Life Sciences Centre for Inflammation Research and Translational Medicine (CIRTM) Brunel University London London UB8 3PH UK
| | - Krishna Kant
- Department of Physical Chemistry Biomedical Research Center of Galicia (CINBIO) University of Vigo Vigo 36310 Spain
| | - Martin Dufva
- Department of Health Technology DTU Health Tech Technical University of Denmark Lyngby 2800 Kgs. Denmark
| | - Nazila Kamaly
- Department of Chemistry Molecular Sciences Research Hub (MSRH) Imperial College London London W12 0BZ UK
| |
Collapse
|
25
|
Ataxin-10 Inhibits TNF- α-Induced Endothelial Inflammation via Suppressing Interferon Regulatory Factor-1. Mediators Inflamm 2021; 2021:7042148. [PMID: 34858081 PMCID: PMC8632433 DOI: 10.1155/2021/7042148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023] Open
Abstract
Endothelial inflammation is a crucial event in the initiation of atherosclerosis. Here, we identify Ataxin-10 protein as a novel negative modulator of endothelial activation by suppressing IRF-1 transcription activity. The protein level of Ataxin-10 is relatively higher in human vascular endothelial cells, which can be significantly suppressed by TNF-α in both HUVECs and HLMECs. Overexpression of Ataxin-10 markedly inhibited the mRNA expressions of VCAM-1 and several cytokines including MCP-1, CXCL-1, CCL-5, and TNF-α; thus, it can also suppress monocyte adhesion to endothelial cells. Accordingly, Ataxin-10 silencing promoted endothelial inflammation. However, Ataxin-10 did not affect the MAPK/NF-κB signaling pathway stimulated by TNF-α in HUVECs. Using the yeast two-hybrid assay, we found that Ataxin-10 can directly bind to interferon regulatory factor-1 (IRF-1). Upon TNF-α stimulation, Ataxin-10 promoted the cytoplasmic localization of IRF-1, which inhibited the transcription of VCAM-1. Moreover, knockdown of IRF-1 can eliminate the effect of Ataxin-10 on the expression of VCAM-1 in HUVECs induced by TNF-α. Taken together, these results indicate that Ataxin-10 inhibits endothelial cell activation and may serve as a promising therapeutic target for some vascular inflammatory-related diseases such as atherosclerosis.
Collapse
|
26
|
Tkáčová Z, Bhide K, Mochnáčová E, Petroušková P, Hruškovicová J, Kulkarni A, Bhide M. Comprehensive Mapping of the Cell Response to Borrelia bavariensis in the Brain Microvascular Endothelial Cells in vitro Using RNA-Seq. Front Microbiol 2021; 12:760627. [PMID: 34819924 PMCID: PMC8606740 DOI: 10.3389/fmicb.2021.760627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
Borrelia bavariensis can invade the central nervous system (CNS) by crossing the blood-brain barrier (BBB). It is predicted that B. bavariensis evokes numerous signaling cascades in the human brain microvascular endothelial cells (hBMECs) and exploits them to traverse across the BBB. The complete picture of signaling events in hBMECs induced by B. bavariensis remains uncovered. Using RNA sequencing, we mapped 11,398 genes and identified 295 differentially expressed genes (DEGs, 251 upregulated genes and 44 downregulated genes) in B. bavariensis challenged hBMECs. The results obtained from RNA-seq were validated with qPCR. Gene ontology analysis revealed the participation of DEGs in a number of biological processes like cell communication, organization of the extracellular matrix, vesicle-mediated transport, cell response triggered by pattern recognition receptors, antigen processing via MHC class I, cellular stress, metabolism, signal transduction, etc. The expression of several non-protein coding genes was also evoked. In this manuscript, we discuss in detail the correlation between several signaling cascades elicited and the translocation of BBB by B. bavariensis. The data revealed here may contribute to a better understanding of the mechanisms employed by B. bavariensis to cross the BBB.
Collapse
Affiliation(s)
- Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Evelina Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Jana Hruškovicová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
27
|
Lin H, Wu X, Yang Y, Wang Z, Huang W, Wang LF, Liu QW, Guan XH, Deng KY, Li TS, Qian Y, Xin HB. Nicaraven inhibits TNFα-induced endothelial activation and inflammation through suppression of NF-κB signaling pathway. Can J Physiol Pharmacol 2021; 99:803-811. [PMID: 33356884 DOI: 10.1139/cjpp-2020-0558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation-induced activation and dysfunction of endothelial cells play an important role in the pathology of multiple vascular diseases. Nicaraven, a potent hydroxyl radical scavenger, has recently been found to have anti-inflammatory roles; however, the mechanism of its action is not fully understood. Here we investigated the effects of Nicaraven on tumor necrosis factor α (TNFα) - induced inflammatory response in human umbilical vein endothelial cells and we explore the underlying mechanisms related to the nuclear factor-κB (NF-κB) signaling pathway. Our results showed that Nicaraven significantly reduced the reactive oxygen species production after TNFα stimulation. Nicaraven suppressed TNFα-induced mRNA expression of multiple adhesion molecules and pro-inflammatory cytokines, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, MCP-1, TNFα, interleukin-1β (IL-1β), IL-6, and IL-8. In addition, Nicaraven inhibited monocyte adhesion and reduced the protein levels of VCAM-1 and ICAM-1. Mechanistically, Nicaraven prevented TNFα-induced activation of NF-κB signaling pathway by suppressing the phosphorylation of NF-κB p65, IκBα, and IκB kinase (IKK)α/β, stabilizing IκBα, and inhibiting the translocation of p65 from cytosol to nucleus. Finally, we showed that Nicaraven improved the functions of endothelial cells, seen as the upregulation of endothelial nitric oxide synthase and increased nitric oxide levels. Our findings indicated that Nicaraven effectively inhibits TNFα-induced endothelial activation and inflammatory response at least partly through inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuehan Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ziwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Weilu Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Quan-Wen Liu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
28
|
Zhang J, Boska M, Zheng Y, Liu J, Fox HS, Xiong H. Minocycline attenuation of rat corpus callosum abnormality mediated by low-dose lipopolysaccharide-induced microglia activation. J Neuroinflammation 2021; 18:100. [PMID: 33902641 PMCID: PMC8077939 DOI: 10.1186/s12974-021-02142-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Microglia are resident innate immune cells in the brain, and activation of these myeloid cells results in secretion of a variety of pro-inflammatory molecules, leading to the development of neurodegenerative disorders. Lipopolysaccharide (LPS) is a widely used experimental stimulant in microglia activation. We have previously shown that LPS produced microglia activation and evoked detectable functional abnormalities in rat corpus callosum (CC) in vitro. Here, we further validated the effects of low-dose LPS-induced microglia activation and resultant white matter abnormality in the CC in an animal model and examined its attenuation by an anti-inflammatory agent minocycline. Methods Twenty-four SD rats were divided randomly into three groups and intra-peritoneally injected daily with saline, LPS, and LPS + minocycline, respectively. All animals were subject to MRI tests 6 days post-injection. The animals were then sacrificed to harvest the CC tissues for electrophysiology, western blotting, and immunocytochemistry. One-way ANOVA with Tukey’s post-test of all pair of columns was employed statistical analyses. Results Systemic administration of LPS produced microglial activation in the CC as illustrated by Iba-1 immunofluorescent staining. We observed that a large number of Iba-1-positive microglial cells were hyper-ramified with hypertrophic somata or even amoeba like in the LPS-treated animals, and such changes were significantly reduced by co-administration of minocycline. Electrophysiological recordings of axonal compound action potential (CAP) in the brain slices contained the CC revealed an impairment on the CC functionality as detected by a reduction in CAP magnitude. Such an impairment was supported by a reduction of fast axonal transportation evidenced by β-amyloid precursor protein accumulation. These alterations were attenuated by minocycline, demonstrating minocycline reduction of microglia-mediated interruption of white matter integrity and function in the CC. Conclusions Systemic administration of LPS produced microglia activation in the CC and resultant functional abnormalities that were attenuated by an anti-inflammatory agent minocycline.
Collapse
Affiliation(s)
- Jingdong Zhang
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Present Address: Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Michael Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ya Zheng
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Present address: Department of Rehabilitation Medicine, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065, China
| | - Jianuo Liu
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Huangui Xiong
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
29
|
Herold J, Kalucka J. Angiogenesis in Adipose Tissue: The Interplay Between Adipose and Endothelial Cells. Front Physiol 2021; 11:624903. [PMID: 33633579 PMCID: PMC7900516 DOI: 10.3389/fphys.2020.624903] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a worldwide health problem, and as its prevalence increases, so does the burden of obesity-associated co-morbidities like type 2 diabetes or cardiovascular diseases (CVDs). Adipose tissue (AT) is an endocrine organ embedded in a dense vascular network. AT regulates the production of hormones, angiogenic factors, and cytokines. During the development of obesity, AT expands through the increase in fat cell size (hypertrophy) and/or fat cell number (hyperplasia). The plasticity and expansion of AT is related to its angiogenic capacities. Angiogenesis is a tightly orchestrated process, which involves endothelial cell (EC) proliferation, migration, invasion, and new tube formation. The expansion of AT is accelerated by hypoxia, inflammation, and structural remodeling of blood vessels. The paracrine signaling regulates the functional link between ECs and adipocytes. Adipocytes can secrete both pro-angiogenic molecules, e.g., tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), or vascular endothelial growth factor (VEGF), and anti-angiogenic factors, e.g., serpins. If the pro-angiogenic molecules dominate, the angiogenesis is dysregulated and the endothelium becomes dysfunctional. However, if anti-angiogenic molecules are overexpressed relative to the angiogenic regulators, the angiogenesis is repressed, and AT becomes hypoxic. Furthermore, in the presence of chronic nutritional excess, endothelium loses its primary function and contributes to the inflammation and fibrosis of AT, which increases the risk for CVDs. This review discusses the current understanding of ECs function in AT, the cross-talk between adipose and ECs, and how obesity can lead to its dysfunction. Understanding the interplay of angiogenesis with AT can be an approach to therapy obesity and obesity-related diseases such as CVDs.
Collapse
Affiliation(s)
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Herrera-Zelada N, Zuñiga-Cuevas U, Ramirez-Reyes A, Lavandero S, Riquelme JA. Targeting the Endothelium to Achieve Cardioprotection. Front Pharmacol 2021; 12:636134. [PMID: 33603675 PMCID: PMC7884828 DOI: 10.3389/fphar.2021.636134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Despite considerable improvements in the treatment of myocardial infarction, it is still a highly prevalent disease worldwide. Novel therapeutic strategies to limit infarct size are required to protect myocardial function and thus, avoid heart failure progression. Cardioprotection is a research topic with significant achievements in the context of basic science. However, translation of the beneficial effects of protective approaches from bench to bedside has proven difficult. Therefore, there is still an unmet need to study new avenues leading to protecting the myocardium against infarction. In line with this, the endothelium is an essential component of the cardiovascular system with multiple therapeutic targets with cardioprotective potential. Endothelial cells are the most abundant non-myocyte cell type in the heart and are key players in cardiovascular physiology and pathophysiology. These cells can regulate vascular tone, angiogenesis, hemostasis, and inflammation. Accordingly, endothelial dysfunction plays a fundamental role in cardiovascular diseases, which may ultimately lead to myocardial infarction. The endothelium is of paramount importance to protect the myocardium from ischemia/reperfusion injury via conditioning strategies or cardioprotective drugs. This review will provide updated information on the most promising therapeutic agents and protective approaches targeting endothelial cells in the context of myocardial infarction.
Collapse
Affiliation(s)
- Nicolas Herrera-Zelada
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ursula Zuñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andres Ramirez-Reyes
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jaime A. Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
31
|
Lee HJ, Cho HE, Park HJ. Germinated black soybean fermented with Lactobacillus pentosus SC65 alleviates DNFB-induced delayed-type hypersensitivity in C57BL/6N mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113236. [PMID: 32750462 DOI: 10.1016/j.jep.2020.113236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhynchosia nulubilis (black soybean) has many applications in oriental medicine. It is traditionally used to treat disease related with high blood pressure, diabetes, inflammation, and osteoporosis. Furthermore, fermented soybean foods have traditionally been used for immunity enhancement in East Asia. However, the anti-inflammatory effects of germinated R. nulubilis (GR) against delayed-type hypersensitivity (DTH) are not fully understood. AIM OF STUDY This study aimed to investigate the anti-inflammatory effects of germinated Rhynchosia nulubilis (GR) fermented with the lactic acid bacterium Lactobacillus pentosus SC65 (GR-SC65) isolated from pickled burdock. MATERIALS AND METHODS We investigated the effects of GR-SC65 (300 mg/kg/day) on ear thickness and immune cell infiltration in DNFB-induced DTH in mice. We used dexamethasone (3 mg/kg) as a reference drug. Changes in infiltration of CD4+ and CD8+ T cells and NK cells were examined by immunohistochemistry. In addition, we investigated cytokine and chemokine production related to DTH using reverse transcription-polymerase chain reaction. We also investigated DTH-related cytokine production using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. RESULTS Two lactic acid bacterial strains (Lactobacillus pentosus SC65 and Pediococcus pentosaceus ON81A) were selected for fermenting GR due to their high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity. The total polyphenol contents (TPCs) in GR-SC65 and GR-ON81A were higher than that in unfermented GR (∗∗∗P < 0.001 vs. GR). Content of daidzein, glycitein, and genistein, the deglycosylated form of isoflavonoids, was higher in GR-SC65 than in unfermented GR. The ethanol extracts of GR-SC65 exerted a stronger anti-inflammatory activity than GR by inhibiting pro-inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in LPS-induced RAW264.7 macrophages. GR-SC65 reduced 1-fluoro-2,4-dinitrofluorobenzene (DNFB)-induced ear swelling and hyperplasia as well as vascular permeability. Fewer infiltrated CD4+ and CD8+ T cells were observed in the ear tissue of the GR-SC65-treated mice than those of the unfermented GR-treated mice. Furthermore, fewer infiltrated NK cells were observed in the GR-SC65 treated mice, than in the GR-treated mice. GR-SC65 significantly diminished the levels of CCL5 and COX-2 mRNAs and increased the level of IL-10 mRNA. CONCLUSIONS These data suggest that GR-SC65 can be used as a health supplement or a prophylactic against delayed-type hypersensitive inflammatory disease.
Collapse
Affiliation(s)
- Hye-Ji Lee
- Department of Food Science and Biotechnology, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Ha-Eun Cho
- Department of Food Science and Biotechnology, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea.
| |
Collapse
|
32
|
Nader D, Curley GF, Kerrigan SW. A new perspective in sepsis treatment: could RGD-dependent integrins be novel targets? Drug Discov Today 2020; 25:2317-2325. [PMID: 33035665 PMCID: PMC7537604 DOI: 10.1016/j.drudis.2020.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Sepsis is a life-threatening condition caused by the response of the body to an infection, and has recently been regarded as a global health priority because of the lack of effective treatments available. Vascular endothelial cells have a crucial role in sepsis and are believed to be a major target of pathogens during the early stages of infection. Accumulating evidence suggests that common sepsis pathogens, including bacteria, fungi, and viruses, all contain a critical integrin recognition motif, Arg-Gly-Asp (RGD), in their major cell wall-exposed proteins that might act as ligands to crosslink to vascular endothelial cells, triggering systemic dysregulation resulting in sepsis. In this review, we discuss the potential of anti-integrin therapy in the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Steven W Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| |
Collapse
|
33
|
Klein J, Tran W, Lai P, Al-Mahrouki A, Giles A, Czarnota GJ. Effect of Treatment Sequencing on the Tumor Response to Combined Treatment With Ultrasound-Stimulated Microbubbles and Radiotherapy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:2415-2425. [PMID: 32525248 DOI: 10.1002/jum.15363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES To investigate whether timing and sequencing of ultrasound-stimulated microbubbles (USMBs) and external beam radiotherapy (XRT) affect the treatment response in a preclinical prostate cancer model. METHODS Prostate cancer xenografts were treated with ultrasound-stimulated lipid microspheres before and after 8-Gy XRT. Treatments were separated by 0, 3, 6, 12, and 24 hours, with 5 tumors per group. Tumor effects were evaluated by microvessel density (measured by CD31 staining), cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling and hematoxylin-eosin staining), and hypoxia (carbonic anhydrase 9 staining). RESULTS Administering USMBs 6 hours before XRT showed the maximum treatment effect using all 3 assays. At this time, the mean cell death index ± SD was 36% ± 10%, compared with 19% ± 4% for no separation between USMB treatment and XRT; the microvessel density was 9 ± 3 counts per field (19 ± 5 without separation); and the percentage of hypoxic cells was 10% ± 5% (21% ± 4%). The observed treatment effect was greater with USMBs before XRT than when administering XRT first, but these differences were not statistically significant. CONCLUSIONS The maximum tumor effect was observed with USMBs delivered 6 hours before XRT. The sequencing of treatment did not have a significant effect on the tumor response.
Collapse
Affiliation(s)
- Jonathan Klein
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - William Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Department of Radiotherapy and Oncology, Sheffield Hallam University, Sheffield, UK
- Department of Electrical Engineering and Computer Sciences, York University, Toronto, Ontario, Canada
| | - Priscilla Lai
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Azza Al-Mahrouki
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Anoja Giles
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Sawada J, Perrot CY, Chen L, Fournier-Goss AE, Oyer J, Copik A, Komatsu M. High Endothelial Venules Accelerate Naive T Cell Recruitment by Tumor Necrosis Factor-Mediated R-Ras Upregulation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:396-414. [PMID: 33159887 DOI: 10.1016/j.ajpath.2020.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023]
Abstract
Recruitment of naive T cells to lymph nodes is essential for the development of adaptive immunity. Upon pathogen infection, lymph nodes promptly increase the influx of naive T cells from the circulation in order to screen and prime the T cells. The precise contribution of the lymph node vasculature to the regulation of this process remains unclear. Here we show a role for the Ras GTPase, R-Ras, in the functional adaptation of high endothelial venules to increase naive T cell trafficking to the lymph nodes. R-Ras is transiently up-regulated in the endothelium of high endothelial venules by the inflammatory cytokine tumor necrosis factor (TNF) within 24 hours of pathogen inoculation. TNF induces R-Ras upregulation in endothelial cells via JNK and p38 mitogen-activated protein kinase but not NF-κB. Studies of T cell trafficking found that the loss of function of endothelial R-Ras impairs the rapid acceleration of naive T cell recruitment to the lymph nodes upon inflammation. This defect diminished the ability of naive OT-1 T cells to develop antitumor activity against ovalbumin-expressing melanoma. Proteomic analyses suggest that endothelial R-Ras facilitates TNF-dependent transendothelial migration (diapedesis) of naive T cells by modulating molecular assembly the at T cell-endothelial cell interface. These findings give new mechanistic insights into the functional adaptation of high endothelial venules to accelerate naive T cell recruitment to the lymph nodes.
Collapse
Affiliation(s)
- Junko Sawada
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida
| | - Carole Y Perrot
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida
| | - Linyuan Chen
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida
| | - Ashley E Fournier-Goss
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida
| | - Jeremiah Oyer
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, St. Petersburg, Florida; Burnett School of Biomedical Sciences, University of Central Florida, Orlando Florida
| | - Alicja Copik
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando Florida
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida; Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla California.
| |
Collapse
|
35
|
Whitmore HAB, Amarnani D, O'Hare M, Delgado-Tirado S, Gonzalez-Buendia L, An M, Pedron J, Bushweller JH, Arboleda-Velasquez JF, Kim LA. TNF-α signaling regulates RUNX1 function in endothelial cells. FASEB J 2020; 35:e21155. [PMID: 33135824 PMCID: PMC7821222 DOI: 10.1096/fj.202001668r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Runt‐related transcription factor 1 (RUNX1) acts as a mediator of aberrant retinal angiogenesis and has been implicated in the progression of proliferative diabetic retinopathy (PDR). Patients with PDR, retinopathy of prematurity (ROP), and wet age‐related macular degeneration (wet AMD) have been found to have elevated levels of Tumor Necrosis Factor‐alpha (TNF‐α) in the eye. In fibrovascular membranes (FVMs) taken from patients with PDR RUNX1 expression was increased in the vasculature, while in human retinal microvascular endothelial cells (HRMECs), TNF‐α stimulation causes increased RUNX1 expression, which can be modulated by RUNX1 inhibitors. Using TNF‐α pathway inhibitors, we determined that in HRMECs, TNF‐α‐induced RUNX1 expression occurs via JNK activation, while NF‐κB and p38/MAPK inhibition did not affect RUNX1 expression. JNK inhibitors were also effective at stopping high d‐glucose‐stimulated RUNX1 expression. We further linked JNK to RUNX1 through Activator Protein 1 (AP‐1) and investigated the JNK‐AP‐1‐RUNX1 regulatory feedback loop, which can be modulated by VEGF. Additionally, stimulation with TNF‐α and d‐glucose had an additive effect on RUNX1 expression, which was downregulated by VEGF modulation. These data suggest that the downregulation of RUNX1 in conjunction with anti‐VEGF agents may be important in future treatments for the management of diseases of pathologic ocular angiogenesis.
Collapse
Affiliation(s)
- Hannah A B Whitmore
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dhanesh Amarnani
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Michael O'Hare
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Santiago Delgado-Tirado
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lucia Gonzalez-Buendia
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miranda An
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Julien Pedron
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Leo A Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Liu C, He L, Wang J, Wang Q, Sun C, Li Y, Jia K, Wang J, Xu T, Ming R, Wang Q, Lin N. Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113039. [PMID: 32497675 DOI: 10.1016/j.jep.2020.113039] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zicao is the dried root of Lithospermum erythrorhizon Sieb, et Zucc, Arnebia euchroma (Royle) Johnst, or Arnebia guttata Bunge and commonly used to treat viral infection, inflammation, arthritis and cancer in China.Shikonin (SKN) is a major active chemical component isolated from zicao. Previous research showed that SKN has anti-inflammatory, immunomodulatory and analgesic effects, and inhibits the development of arthritis and the condition of collagen arthritis (CIA) mice; nevertheless, its role in the angiogenesis of rheumatoid arthritis (RA) has not been elucidated. AIM OF THE STUDY The purpose of this study was to investigate the antiangiogenic activity of SKN in CIA rats and various angiogenesis models. MATERIAL AND METHODS The anti-arthritic effect of SKN on CIA rats was tested by arthritis score, arthritis incidence, radiological observation and histopathology evaluation of inflamed joints. Vessel density evaluated with CD31 immunohistochemistry/immunofluorescence in joint synovial membrane tissues of CIA rats, chick chorioallantoic membrane assay, rat aortic ring assay, and the migration, invasion, adhesion and tube formation of human umbilical vein endothelial (HUVEC) cells induced by tumor necrosis factor (TNF)-α were used to measured the antiangiogenenic activity of SKN. Moreover, the effect of SKN on the expression of angiogenic mediators, such as vascular endothelial growth factor (VEGF), VEGFR2, TNF-α, interleukin (IL)-1β, platelet derived growth factor (PDGF) and transforming growth factor (TGF)-β in sera and joint synovia of rats, and in TNF-α-induced MH7A/HUVEC cells were measured by immunohistochemistry, enzyme linked immunosorbent assay, Western blot and/or real-time polymerase chain reaction (PCR). Through the analysis of protein and mRNA levels of phosphoinositide 3-kinase (PI3K), Akt and PTEN, and the autophosphorylation of ERK1/2, JNK and p38 in joint synovia of rats and in TNF-α-induced HUVEC cells, the molecular mechanism of its inhibition was elucidated by using Western blot and/or real-time PCR. RESULTS SKN significantly reduced the arthritis score and arthritis incidence, and inhibited inflammation, pannus formation, cartilage and bone destruction of inflamed joints in CIA rats. Partially, SKN remarkably decreased the immature blood vessels in synovial membrane tissues of inflamed joints from CIA rats. It also suppressed in vivo angiogenesis in chick embryo and VEGF165-induced microvessel sprout formation ex vivo. Meanwhile, SKN inhibited TNF-α-induced migration, invasion, adhesion and tube formation of HUVEC cells. Moreover, SKN significantly decreased the expression of angiogenic activators including VEGF, VEGFR2, TNF-α, IL-1β, PDGF and TGF-β in synovia of CIA rats and/or in MH7A/HUVEC cells. More interestingly, SKN downregulated PI3K and Akt, and simultaneously upregulated PTEN both at protein and mRNA levels in synovia tissues and/or in TNF-α-induced HUVEC cells. It also suppressed the phosphorylation and gene level of TNF-α-induced signaling molecules, as ERK1/2, JNK, and p38 in synovium and/or in TNF-α-induced HUVEC cells. CONCLUSION These findings indicate for the first time that SKN has the anti-angiogenic effect in RA in vivo, ex vivo and in vitro by interrupting the PI3K/AKT and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lianhua He
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Jingxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qianqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Congcong Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yiqun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Kexin Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jinxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ruirui Ming
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
37
|
Tettey CO, Yang I, Shin HM. Smilax china leaf extracts suppress pro-inflammatory adhesion response in human umbilical vein endothelial cells and proliferation of HeLa cells. Arch Physiol Biochem 2020; 126:287-291. [PMID: 30375252 DOI: 10.1080/13813455.2018.1520262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: The objective of this study was to investigate the anti-inflammatory and anticancer effects of the leaves of Smilax china.Methodology: The aqueous extract was examined for its anti-inflammatory effects on tumour necrosis factor (TNF)-α-induced inflammation in HUVECs whereas the aqueous (water), ethyl acetate (EA), butanol (B) and methylene chloride (MC) extracts were examined for their anticancer effect on HeLa cells.Results: The aqueous extract suppressed the (TNF)-α-induced expression of ICAM-1, VCAM-1 and TNF-R1 and attenuated the expression of MCP-1, MMP-9, NF-kB and IFN-γ. The MC extract suppressed the proliferation of HeLa cells at all doses employed (50, 150, and 300 µg/ml). The EA extract demonstrated appreciable anti-proliferative effect whereas the BuOH extract demonstrated mild anti-proliferative activity. The aqueous extract did not show any significant anti-proliferative effect. None of the extracts were toxic to the normal cells (HUVECs).Conclusion: Smilax china leaf extracts possess significant anti-inflammatory and anticancer effects.
Collapse
Affiliation(s)
- Clement O Tettey
- Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Injun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
- Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan, South Korea
| |
Collapse
|
38
|
Zhang S, Yin Y, Li C, Zhao Y, Wang Q, Zhang X. PAK4 suppresses TNF-induced release of endothelial microparticles in HUVECs cells. Aging (Albany NY) 2020; 12:12740-12749. [PMID: 32657762 PMCID: PMC7377857 DOI: 10.18632/aging.103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/07/2020] [Indexed: 11/25/2022]
Abstract
Tumor necrosis factor-α (TNF) is a pro-inflammatory cytokine upregulated in many inflammatory diseases, and a potent inducer of endothelial cell-derived microparticle (EMP) formation. In this study, we identified the protein kinase PAK4 as a key regulator of the TNF-induced EMP release from human umbilical vein endothelial cells (HUVECs). TNF induces dose- and time-dependent EMP release and downregulation of PAK4 and upstream cdc42 in HUVECs. PAK4 suppression or inhibition of its kinase activity increases TNF-induced EMP release and apoptosis in HUVECs, while PAK4 overexpression reduces EMP release and apoptosis in TNF-stimulated cells. Collectively, these data indicate that PAK4 suppresses TNF-induced EMP generation occurring during apoptosis, and suggest that modulation of PAK4 activity may represent a novel approach to suppress the TNF-induced EMP levels in pro-inflammatory disorders and other pathological conditions.
Collapse
Affiliation(s)
- Shouqin Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| | - Yingjie Yin
- Department of Critical Care Medicine, The Affiliated Hospital of Medical School of Ningbo, Jiangbei District, Ningbo, Zhejiang Province, China
| | - Congye Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| | - Yi Zhao
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| | - Qixing Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| | - Xiangyu Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| |
Collapse
|
39
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
40
|
Probst CK, Montesi SB, Medoff BD, Shea BS, Knipe RS. Vascular permeability in the fibrotic lung. Eur Respir J 2020; 56:13993003.00100-2019. [PMID: 32265308 PMCID: PMC9977144 DOI: 10.1183/13993003.00100-2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is thought to result from aberrant tissue repair processes in response to chronic or repetitive lung injury. The origin and nature of the injury, as well as its cellular and molecular targets, are likely heterogeneous, which complicates accurate pre-clinical modelling of the disease and makes therapeutic targeting a challenge. Efforts are underway to identify central pathways in fibrogenesis which may allow targeting of aberrant repair processes regardless of the initial injury stimulus. Dysregulated endothelial permeability and vascular leak have long been studied for their role in acute lung injury and repair. Evidence that these processes are of importance to the pathogenesis of fibrotic lung disease is growing. Endothelial permeability is increased in non-fibrosing lung diseases, but it resolves in a self-limited fashion in conditions such as bacterial pneumonia and acute respiratory distress syndrome. In progressive fibrosing diseases such as IPF, permeability appears to persist, however, and may also predict mortality. In this hypothesis-generating review, we summarise available data on the role of endothelial permeability in IPF and focus on the deleterious consequences of sustained endothelial hyperpermeability in response to and during pulmonary inflammation and fibrosis. We propose that persistent permeability and vascular leak in the lung have the potential to establish and amplify the pro-fibrotic environment. Therapeutic interventions aimed at recognising and "plugging" the leak may therefore be of significant benefit for preventing the transition from lung injury to fibrosis and should be areas for future research.
Collapse
Affiliation(s)
- Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Barry S. Shea
- Division of Pulmonary and Critical Care Medicine, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
41
|
Mitochondrial Transfer as a Therapeutic Strategy Against Ischemic Stroke. Transl Stroke Res 2020; 11:1214-1228. [PMID: 32592024 DOI: 10.1007/s12975-020-00828-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Stroke is a debilitating disease that remains the second leading cause of death and disability worldwide. Despite accumulating knowledge of the disease pathology, treatments for stroke are limited, and clinical translation of the neuroprotective agents has not been a complete success. Accumulating evidence links mitochondrial dysfunction to brain impairments after stroke. Recent studies have implicated the important roles of healthy mitochondria in neuroprotection and neural recovery following ischemic stroke. New and convincing studies have shown that mitochondrial transfer to the damaged cells can help revive cells energetic in the recipient cells. Hence, mitochondrial transplantation has shown to replace impaired or dysfunctional mitochondria with exogenous healthy mitochondria after ischemic stroke. We highlight the potential of mitochondrial transfer by stem cells as a therapeutic strategy for the treatment of ischemic stroke. This review captures the recent advances in the mitochondrial transfer as a novel and promising treatment for ischemic stroke.
Collapse
|
42
|
Gehrke N, Schattenberg JM. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020; 158:1929-1947.e6. [PMID: 32068022 DOI: 10.1053/j.gastro.2020.02.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.
Collapse
Affiliation(s)
- Nadine Gehrke
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany.
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
43
|
Costa MC, Paixão CS, Viana DL, Rocha BDO, Saldanha M, da Mota LMH, Machado PRL, Pagliari C, de Oliveira MDF, Arruda S, Carvalho EM, Carvalho LP. Mononuclear Phagocyte Activation Is Associated With the Immunopathology of Psoriasis. Front Immunol 2020; 11:478. [PMID: 32269570 PMCID: PMC7109249 DOI: 10.3389/fimmu.2020.00478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic, inflammatory disease affecting the skin and joints. The pathogenesis of this disease is associated with genetic, environmental and immunological factors, especially unbalanced T cell activation and improper keratinocyte differentiation. Psoriatic lesion infiltrate is composed of monocytes and T cells, and most studies have focused on the participation of T cells in the pathogenesis of this disease. Here we investigated the contribution of mononuclear phagocytes in the immunopathology observed in psoriatic patients. Significant increases in the levels of TNF, IL-1β, CXCL9, as well as the soluble forms of CD14 and CD163, were observed within the lesions of psoriatic patients compared to skin biopsies obtained from healthy individuals. Moreover, we found an association between the levels of CCL2, a monocyte attractant chemokine, and disease severity. In conclusion, our findings suggest a potential role for mononuclear phagocytes in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Mariana C Costa
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz, Salvador, Brazil.,Ciências Médicas, Universidade de Brasília (UnB), Brasilia, Brazil
| | - Camilla S Paixão
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Débora L Viana
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Bruno de O Rocha
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Maíra Saldanha
- Departamento de Patologia, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Paulo R L Machado
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz, Salvador, Brazil.,Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Carla Pagliari
- Departamento de Patologia, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Maria de Fátima de Oliveira
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Sergio Arruda
- Laboratório Avançado de Saúde Pública (LASP), Instituto Gonçalo Moniz, Salvador, Brazil
| | - Edgar M Carvalho
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz, Salvador, Brazil.,Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
| | - Lucas P Carvalho
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz, Salvador, Brazil.,Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
| |
Collapse
|
44
|
Wik JA, Lundbäck P, la Cour Poulsen L, Haraldsen G, Skålhegg BS, Hol J. 3PO inhibits inflammatory NFκB and stress-activated kinase signaling in primary human endothelial cells independently of its target PFKFB3. PLoS One 2020; 15:e0229395. [PMID: 32130250 PMCID: PMC7055879 DOI: 10.1371/journal.pone.0229395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibition of the key glycolytic activator 6-phosphofructokinase 2/fructose-2,6-bisphosphatase-3 (PFKFB3) by 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) strongly attenuates pathological angiogenesis in cancer and inflammation. In addition to modulating endothelial proliferation and migration, 3PO also dampens proinflammatory activation of endothelial cells and experimental inflammation in vivo, suggesting a potential for 3PO in the treatment of chronic inflammation. The aim of our study was to explore if the anti-inflammatory action of 3PO in human endothelial cells was mediated by inhibition of PFKFB3 and glycolysis and assess if other means of PFKFB3 inhibition reduced inflammatory activation in a similar manner. We found that 3PO caused a rapid and transient reduction in IL-1β- and TNF-induced phosphorylation of both IKKα/β and JNK, thus inhibiting signaling through the NFκB and the stress-activated kinase pathways. However, in contrast to 3PO-treatment, neither shRNA-mediated silencing of PFKFB3 nor treatment with the alternative PFKFB3 inhibitor 7,8-dihydroxy-3-(4-hydroxy-phenyl)-chromen-4-one (YN1) prevented cytokine-induced NFκB signaling and upregulation of the adhesion molecules VCAM-1 and E-selectin, implying off target effects of 3PO. Collectively, our results suggest that the anti-inflammatory action of 3PO in human endothelial cells is not limited to inhibition of PFKFB3 and cellular glycolysis.
Collapse
Affiliation(s)
- Jonas Aakre Wik
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G Jebsen Inflammation Research Centre, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Lundbäck
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G Jebsen Inflammation Research Centre, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars la Cour Poulsen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- K.G Jebsen Inflammation Research Centre, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G Jebsen Inflammation Research Centre, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johanna Hol
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- K.G Jebsen Inflammation Research Centre, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
45
|
Liang Q, Chalamaiah M, Liao W, Ren X, Ma H, Wu J. Zein hydrolysate and its peptides exert anti-inflammatory activity on endothelial cells by preventing TNF-α-induced NF-κB activation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103598] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
46
|
Beldman T, Malinova TS, Desclos E, Grootemaat AE, Misiak ALS, van der Velden S, van Roomen CPAA, Beckers L, van Veen HA, Krawczyk PM, Hoebe RA, Sluimer JC, Neele AE, de Winther MPJ, van der Wel NN, Lutgens E, Mulder WJM, Huveneers S, Kluza E. Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS NANO 2019; 13:13759-13774. [PMID: 31268670 PMCID: PMC6933811 DOI: 10.1021/acsnano.8b08875] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/03/2019] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.
Collapse
Affiliation(s)
- Thijs
J. Beldman
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Tsveta S. Malinova
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Emilie Desclos
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Anita E. Grootemaat
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Aresh L. S. Misiak
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Saskia van der Velden
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Cindy P. A. A. van Roomen
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Linda Beckers
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Henk A. van Veen
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Przemyslaw M. Krawczyk
- Department
of Medical Biology, Amsterdam University
Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Ron A. Hoebe
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Judith C. Sluimer
- Department
of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht 6229 ER, The Netherlands
| | - Annette E. Neele
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Menno P. J. de Winther
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Nicole N. van der Wel
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Esther Lutgens
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Willem J. M. Mulder
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Translational
and Molecular Imaging Institute, Icahn School
of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Stephan Huveneers
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Ewelina Kluza
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
47
|
Kang TY, Bocci F, Jolly MK, Levine H, Onuchic JN, Levchenko A. Pericytes enable effective angiogenesis in the presence of proinflammatory signals. Proc Natl Acad Sci U S A 2019; 116:23551-23561. [PMID: 31685607 PMCID: PMC6876202 DOI: 10.1073/pnas.1913373116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis frequently occurs in the context of acute or persistent inflammation. The complex interplay of proinflammatory and proangiogenic cues is only partially understood. Using an experimental model, permitting exposure of developing blood vessel sprouts to multiple combinations of diverse biochemical stimuli and juxtacrine cell interactions, we present evidence that a proinflammatory cytokine, tumor necrosis factor (TNF), can have both proangiogenic and antiangiogenic effects, depending on the dose and the presence of pericytes. In particular, we find that pericytes can rescue and enhance angiogenesis in the presence of otherwise-inhibitory high TNF doses. This sharp switch from proangiogenic to antiangiogenic effect of TNF observed with an escalating dose of this cytokine, as well as the effect of pericytes, are explained by a mathematical model trained on the biochemical data. Furthermore, this model was predictive of the effects of diverse combinations of proinflammatory and antiinflammatory cues, and variable pericyte coverage. The mechanism supports the effect of TNF and pericytes as modulating signaling networks impinging on Notch signaling and specification of the Tip and Stalk phenotypes. This integrative analysis elucidates the plasticity of the angiogenic morphogenesis in the presence of diverse and potentially conflicting cues, with immediate implications for many physiological and pathological settings.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale Systems Biology Institute, Yale University, New Haven, CT 06520
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Department of Physics, Northeastern University, Boston, MA 02115;
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520;
- Yale Systems Biology Institute, Yale University, New Haven, CT 06520
| |
Collapse
|
48
|
Hsu T, Nguyen-Tran HH, Trojanowska M. Active roles of dysfunctional vascular endothelium in fibrosis and cancer. J Biomed Sci 2019; 26:86. [PMID: 31656195 PMCID: PMC6816223 DOI: 10.1186/s12929-019-0580-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is the underlying pathological condition that results in fibrotic diseases. More recently, many forms of cancer have also been linked to chronic tissue inflammation. While stromal immune cells and myofibroblasts have been recognized as major contributors of cytokines and growth factors that foster the formation of fibrotic tissue, the endothelium has traditionally been regarded as a passive player in the pathogenic process, or even as a barrier since it provides a physical divide between the circulating immune cells and the inflamed tissues. Recent findings, however, have indicated that endothelial cells in fact play a crucial role in the inflammatory response. Endothelial cells can be activated by cytokine signaling and express inflammatory markers, which can sustain or exacerbate the inflammatory process. For example, the activated endothelium can recruit and activate leukocytes, thus perpetuating tissue inflammation, while sustained stimulation of endothelial cells may lead to endothelial-to-mesenchymal transition that contributes to fibrosis. Since chronic inflammation has now been recognized as a significant contributing factor to tumorigenesis, it has also emerged that activation of endothelium also occurs in the tumor microenvironment. This review summarizes recent findings characterizing the molecular and cellular changes in the vascular endothelium that contribute to tissue fibrosis, and potentially to cancer formation.
Collapse
Affiliation(s)
- Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China. .,Center for Chronic Disease Research, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China.
| | - Hieu-Huy Nguyen-Tran
- Department of Biomedical Sciences and Engineering, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| |
Collapse
|
49
|
Mechanism of Action of the Tumor Vessel Targeting Agent NGR-hTNF: Role of Both NGR Peptide and hTNF in Cell Binding and Signaling. Int J Mol Sci 2019; 20:ijms20184511. [PMID: 31547231 PMCID: PMC6769691 DOI: 10.3390/ijms20184511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
NGR-hTNF is a therapeutic agent for a solid tumor that specifically targets angiogenic tumor blood vessels, through the NGR motif. Its activity has been assessed in several clinical studies encompassing tumors of different histological types. The drug’s activity is based on an improved permeabilization of newly formed tumor vasculature, which favors intratumor penetration of chemotherapeutic agents and leukocyte trafficking. This work investigated the binding and the signaling properties of the NGR-hTNF, to elucidate its mechanism of action. The crystal structure of NGR-hTNF and modeling of its interaction with TNFR suggested that the NGR region is available for binding to a specific receptor. Using 2D TR-NOESY experiments, this study confirmed that the NGR-peptides binds to a specific CD13 isoform, whose expression is restricted to tumor vasculature cells, and to some tumor cell lines. The interaction between hTNF or NGR-hTNF with immobilized TNFRs showed similar kinetic parameters, whereas the competition experiments performed on the cells expressing both TNFR and CD13 showed that NGR-hTNF had a higher binding affinity than hTNF. The analysis of the NGR-hTNF-triggered signal transduction events showed a specific impairment in the activation of pro-survival pathways (Ras, Erk and Akt), compared to hTNF. Since a signaling pattern identical to NGR-hTNF was obtained with hTNF and NGR-sequence given as distinct molecules, the inhibition observed on the survival pathways was presumably due to a direct effect of the NGR-CD13 engagement on the TNFR signaling pathway. The reduced activation of the pro survival pathways induced by NGR-hTNF correlated with the increased caspases activation and reduced cell survival. This study demonstrates that the binding of the NGR-motif to CD13 determines not only the homing of NGR-hTNF to tumor vessels, but also the increase in its antiangiogenic activity.
Collapse
|
50
|
Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE. NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. Int J Stroke 2019; 14:574-591. [PMID: 30940045 DOI: 10.1177/1747493019841242] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inflammation is a devastating pathophysiological process during stroke, a devastating disease that is the second most common cause of death worldwide. Activation of the NOD-like receptor protein (NLRP3)-infammasome has been proposed to mediate inflammatory responses during ischemic stroke. Briefly, NLRP3 inflammasome activates caspase-1, which cleaves both pro-IL-1 and pro-IL-18 into their active pro-inflammatory cytokines that are released into the extracellular environment. Several NLRP3 inflammasome inhibitors have been promoted, including small molecules, type I interferon, micro RNAs, nitric oxide, and nuclear factor erythroid-2 related factor 2 (Nrf2), some of which are potentially efficacious clinically. This review will describe the structure and cellular signaling pathways of the NLRP3 inflammasome during ischemic stroke, and current evidence for NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- 1 Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Farzaneh
- 2 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- 3 Immunology Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Nejabatdoust
- 4 Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Sarkaki
- 5 Department of Physiology, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- 5 Department of Physiology, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|