1
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
2
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
3
|
Mogensen EH, Poulsen ET, Thøgersen IB, Yamamoto K, Brüel A, Enghild JJ. The low-density lipoprotein receptor-related protein 1 (LRP1) interactome in the human cornea. Exp Eye Res 2022; 219:109081. [PMID: 35461874 DOI: 10.1016/j.exer.2022.109081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Accepted: 04/17/2022] [Indexed: 12/25/2022]
Abstract
The human cornea is responsible for approximately 70% of the eye's optical power and, together with the lens, constitutes the only transparent tissue in the human body. Low-density lipoprotein receptor-related protein 1 (LRP1), a large, multitalented endocytic receptor, is expressed throughout the human cornea, yet its role in the cornea remains unknown. More than 30 years ago, LRP1 was purified by exploiting its affinity for the activated form of the protease inhibitor alpha-2-macroblulin (A2M), and the original purification protocol is generally referred to in studies involving full-length LRP1. Here, we provide a novel and simplified LRP1 purification protocol based on LRP1's affinity for receptor-related protein (RAP) that produces significantly higher yields of authentic LRP1. Purified LRP1 was used to map its unknown interactome in the human cornea. Corneal proteins extracted under physiologically relevant conditions were subjected to LRP1 affinity pull-down, and LRP1 ligand candidates were identified by LC-MS/MS. A total of 28 LRP1 ligand candidates were found, including 22 novel ligands. The LRP1 corneal interactome suggests a novel role for LRP1 as a regulator of the corneal immune response, structure, and ultimately corneal transparency.
Collapse
Affiliation(s)
- Emilie Hage Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
He Q, Yu F, Cong M, Ji Y, Zhang Q, Ding F. Comparative Proteomic Analysis of Differentially Expressed Proteins between Injured Sensory and Motor Nerves after Peripheral Nerve Transection. J Proteome Res 2020; 20:1488-1508. [PMID: 33284006 DOI: 10.1021/acs.jproteome.0c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peripheral nerve repair and functional recovery depend on the rate of nerve regeneration and the quality of target reinnervation. It is important to fully understand the cellular and molecular basis underlying the specificity of peripheral nerve regeneration, which means achieving corresponding correct pathfinding and accurate target reinnervation for regrowing motor and sensory axons. In this study, a quantitative proteomic technique, based on isobaric tags for relative and absolute quantitation (iTRAQ), was used to profile the protein expression pattern between single motor and sensory nerves at 14 days after peripheral nerve transection. Among a total of 1259 proteins identified, 176 proteins showed the differential expressions between injured motor and sensory nerves. Quantitative RT-PCR and western blot analysis were applied to validate the proteomic data on representative differentially expressed proteins. Functional categorization indicated that differentially expressed proteins were linked to a diverse array of molecular functions, including axonogenesis, response to axon injury, tissue remodeling, axon ensheathment, cell proliferation and adhesion, vesicle-mediated transport, response to oxidative stress, internal signal cascade, and macromolecular complex assembly, which might play an essential role in peripheral motor and sensory nerve regeneration. Overall, we hope that the proteomic database obtained in this study could serve as a solid foundation for the comprehensive investigation of differentially expressed proteins between injured motor and sensory nerves and for the mechanism elucidation of the specificity of peripheral nerve regeneration. Data are available via ProteomeXchange with identifier PXD022097.
Collapse
Affiliation(s)
- Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Fanhui Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| |
Collapse
|
5
|
Mittal K, Mani RJ, Katare DP. Type 3 Diabetes: Cross Talk between Differentially Regulated Proteins of Type 2 Diabetes Mellitus and Alzheimer's Disease. Sci Rep 2016; 6:25589. [PMID: 27151376 PMCID: PMC4858691 DOI: 10.1038/srep25589] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/15/2016] [Indexed: 12/31/2022] Open
Abstract
Type 3 Diabetes (T3D) is a neuroendocrine disorder that represents the progression of Type 2 Diabetes Mellitus (T2DM) to Alzheimer’s disease (AD). T3D contributes in the increase of the total load of Alzheimer’s patients worldwide. The protein network based strategies were used for the analysis of protein interactions and hypothesis was derived describing the possible routes of communications among proteins. The hypothesis provides the insight on the probable mechanism of the disease progression for T3D. The current study also suggests that insulin degrading enzyme (IDE) could be the major player which holds the capacity to shift T2DM to T3D by altering metabolic pathways like regulation of beta-cell development, negative regulation of PI3K/AKT pathways and amyloid beta degradation.
Collapse
Affiliation(s)
- Khyati Mittal
- Proteomic &Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Ruchi Jakhmola Mani
- Proteomic &Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Deepshikha Pande Katare
- Proteomic &Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
6
|
HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci 2015; 35:1921-38. [PMID: 25653352 DOI: 10.1523/jneurosci.3207-14.2015] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antiretroviral therapy has increased the life span of HIV+ individuals; however, HIV-associated neurocognitive disorder (HAND) occurrence is increasing in aging HIV patients. Previous studies suggest HIV infection alters autophagy function in the aging CNS and HIV-1 proteins affect autophagy in monocyte-derived cells. Despite these findings, the mechanisms leading to dysregulated autophagy in the CNS remain unclear. Here we sought to determine how HIV Tat dysregulates autophagy in neurons. Tat caused a dose-dependent decrease in autophagosome markers, microtubule-associated protein-1 light chain β II (LC3II), and sequestosome 1(SQSTM1), in a membrane-enriched fraction, suggesting Tat increases autophagic degradation. Bafilomycin A1 increased autophagosome number, LC3II, and SQSTM1 accumulation; Tat cotreatment diminished this effect. Tat had no effect when 3-methyladenine or knockdown of beclin 1 blocked early stages of autophagy. Tat increased numbers of LC3 puncta and resulted in the formation of abnormal autophagosomes in vitro. Likewise, in vivo studies in GFAP-Tat tg mice showed increased autophagosome accumulation in neurons, altered LC3II levels, and neurodegeneration. These effects were reversed by rapamycin treatment. Tat colocalized with autophagosome and lysosomal markers and enhanced the colocalization of autophagosome with lysosome markers. Furthermore, co-IP studies showed that Tat interacts with lysosomal-associated membrane protein 2A (LAMP2A) in vitro and in vivo, and LAMP2A overexpression reduces Tat-induced neurotoxicity. Hence, Tat protein may induce autophagosome and lysosome fusion through interaction with LAMP2A leading to abnormal neuronal autophagy function and dysregulated degradation of critical intracellular components. Therapies targeting Tat-mediated autophagy alterations may decrease neurodegeneration in aging patients with HAND.
Collapse
|
7
|
Qosa H, Abuasal BS, Romero IA, Weksler B, Couraud PO, Keller JN, Kaddoumi A. Differences in amyloid-β clearance across mouse and human blood-brain barrier models: kinetic analysis and mechanistic modeling. Neuropharmacology 2014; 79:668-78. [PMID: 24467845 DOI: 10.1016/j.neuropharm.2014.01.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/09/2013] [Accepted: 01/13/2014] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) has a characteristic hallmark of amyloid-β (Aβ) accumulation in the brain. This accumulation of Aβ has been related to its faulty cerebral clearance. Indeed, preclinical studies that used mice to investigate Aβ clearance showed that efflux across blood-brain barrier (BBB) and brain degradation mediate efficient Aβ clearance. However, the contribution of each process to Aβ clearance remains unclear. Moreover, it is still uncertain how species differences between mouse and human could affect Aβ clearance. Here, a modified form of the brain efflux index method was used to estimate the contribution of BBB and brain degradation to Aβ clearance from the brain of wild type mice. We estimated that 62% of intracerebrally injected (125)I-Aβ40 is cleared across BBB while 38% is cleared by brain degradation. Furthermore, in vitro and in silico studies were performed to compare Aβ clearance between mouse and human BBB models. Kinetic studies for Aβ40 disposition in bEnd3 and hCMEC/D3 cells, representative in vitro mouse and human BBB models, respectively, demonstrated 30-fold higher rate of (125)I-Aβ40 uptake and 15-fold higher rate of degradation by bEnd3 compared to hCMEC/D3 cells. Expression studies showed both cells to express different levels of P-glycoprotein and RAGE, while LRP1 levels were comparable. Finally, we established a mechanistic model, which could successfully predict cellular levels of (125)I-Aβ40 and the rate of each process. Established mechanistic model suggested significantly higher rates of Aβ uptake and degradation in bEnd3 cells as rationale for the observed differences in (125)I-Aβ40 disposition between mouse and human BBB models. In conclusion, current study demonstrates the important role of BBB in the clearance of Aβ from the brain. Moreover, it provides insight into the differences between mouse and human BBB with regards to Aβ clearance and offer, for the first time, a mathematical model that describes Aβ clearance across BBB.
Collapse
Affiliation(s)
- Hisham Qosa
- Department of Basic Pharmaceutical Science, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bilal S Abuasal
- Department of Basic Pharmaceutical Science, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | | | | | | | - Jeffrey N Keller
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Science, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| |
Collapse
|
8
|
Ruzali WAW, Kehoe PG, Love S. LRP1 expression in cerebral cortex, choroid plexus and meningeal blood vessels: relationship to cerebral amyloid angiopathy and APOE status. Neurosci Lett 2012; 525:123-8. [PMID: 22967844 DOI: 10.1016/j.neulet.2012.07.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/20/2023]
Abstract
APOE genotype is a risk factor for Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The risk and severity of CAA increase with possession of APOE ε4, whereas APOE ε2 increases the risk of vessel rupture. Uptake of Aβ by cerebrovascular smooth muscle cells (CVSMCs) is mediated by low-density lipoprotein receptor-related protein-1 (LRP1). To determine whether APOE influences CAA by altering LRP1 expression, particularly by CVSMCs, we analysed APOE genotype, CAA severity, and LRP1 levels in post-mortem cerebral cortex, choroid plexus and meningeal vessels. LRP1 mRNA and protein were not related to CAA severity and presence. LRP1 mRNA was increased in meningeal vessels, but not cortex or choroid plexus, in AD and in association with APOE ε4, and was decreased in association with APOE ε3. In brains with CAA, APOE ε2 was associated with decreased LRP1 protein in meningeal vessels, and ε3 with increased LRP1 in choroid plexus. These findings suggest that APOE may influence the severity of CAA through altered expression of LRP1.
Collapse
Affiliation(s)
- Wan Adriyani W Ruzali
- Dementia Research Group, Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, BS16 1LE, UK
| | | | | |
Collapse
|
9
|
Klucken J, Poehler AM, Ebrahimi-Fakhari D, Schneider J, Nuber S, Rockenstein E, Schlötzer-Schrehardt U, Hyman BT, McLean PJ, Masliah E, Winkler J. Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway. Autophagy 2012; 8:754-66. [PMID: 22647715 DOI: 10.4161/auto.19371] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Synucleinopathies like Parkinson disease and dementia with Lewy bodies (DLB) are characterized by α-synuclein aggregates within neurons (Lewy bodies) and their processes (Lewy neurites). Whereas α-synuclein has been genetically linked to the disease process, the pathological relevance of α-synuclein aggregates is still debated. Impaired degradation is considered to result in aggregation of α-synuclein. In addition to the ubiquitin-proteasome degradation, the autophagy-lysosomal pathway (ALP) is involved in intracellular degradation processes for α-synuclein. Here, we asked if modulation of ALP affects α-synuclein aggregation and toxicity. We have identified an induction of the ALP markers LAMP-2A and LC3-II in human brain tissue from DLB patients, in a transgenic mouse model of synucleinopathy, and in a cell culture model for α-synuclein aggregation. ALP inhibition using bafilomycin A 1 (BafA1) significantly potentiates toxicity of aggregated α-synuclein species in transgenic mice and in cell culture. Surprisingly, increased toxicity is paralleled by reduced aggregation in both in vivo and in vitro models. The dichotomy of effects on aggregating and nonaggregating species of α-synuclein was specifically sensitive to BafA1 and could not be reproduced by other ALP inhibitors. The present study expands on the accumulating evidence regarding the function of ALP for α-synuclein degradation by isolating an aggregation specific, BafA1-sensitive, ALP-related pathway. Our data also suggest that protein aggregation may represent a detoxifying event rather than being causal for cellular toxicity.
Collapse
Affiliation(s)
- Jochen Klucken
- Department of Molecular Neurology, University Hospital, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc Natl Acad Sci U S A 2010; 107:16970-5. [PMID: 20837543 DOI: 10.1073/pnas.1011751107] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The full complement of molecular pathways contributing to the pathogenesis of Parkinson disease (PD) remains unknown. Here we address this issue by taking a broad approach, beginning by using functional MRI to identify brainstem regions differentially affected and resistant to the disease. Relying on these imaging findings, we then profiled gene expression levels from postmortem brainstem regions, identifying a disease-related decrease in the expression of the catabolic polyamine enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1). Next, a range of studies were completed to support the pathogenicity of this finding. First, to test for a causal link between polyamines and α-synuclein toxicity, we investigated a yeast model expressing α-synuclein. Polyamines were found to enhance the toxicity of α-synuclein, and an unbiased genome-wide screen for modifiers of α-synuclein toxicity identified Tpo4, a member of a family of proteins responsible for polyamine transport. Second, to test for a causal link between SAT1 activity and PD histopathology, we investigated a mouse model expressing α-synuclein. DENSPM (N1, N11-diethylnorspermine), a polyamine analog that increases SAT1 activity, was found to reduce PD histopathology, whereas Berenil (diminazene aceturate), a pharmacological agent that reduces SAT1 activity, worsened the histopathology. Third, to test for a genetic link, we sequenced the SAT1 gene and a rare but unique disease-associated variant was identified. Taken together, the findings from human patients, yeast, and a mouse model implicate the polyamine pathway in PD pathogenesis.
Collapse
|
11
|
Sonn K, Pankratova S, Korshunova I, Zharkovsky A, Bock E, Berezin V, Kiryushko D. A metallothionein mimetic peptide protects neurons against kainic acid-induced excitotoxicity. J Neurosci Res 2010; 88:1074-82. [PMID: 19937811 DOI: 10.1002/jnr.22281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metallothioneins I and II (MTI/II) are metal-binding proteins overexpressed in response to brain injury. Recently, we have designed a peptide, termed EmtinB, which is modeled after the beta-domain of MT-II and mimics the biological effects of MTI/II in vitro. Here, we demonstrate the neuroprotective effect of EmtinB in the in vitro and in vivo models of kainic acid (KA)-induced neurotoxicity. We show that EmtinB passes the blood-brain barrier and is detectable in plasma for up to 24 hr. Treatment with EmtinB significantly attenuates seizures in C57BL/6J mice exposed to moderate (20 mg/kg) and high (30 mg/kg) KA doses and tends to decrease mortality induced by the high KA dose. Histopathological evaluation of hippocampal (CA3 and CA1) and cortical areas of mice treated with 20 mg/kg KA shows that EmtinB treatment reduces KA-induced neurodegeneration in the CA1 region. These findings establish EmtinB as a promising target for therapeutic development.
Collapse
Affiliation(s)
- Katrin Sonn
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
12
|
Vargas T, Bullido MJ, Martinez-Garcia A, Antequera D, Clarimon J, Rosich-Estrago M, Martin-Requero A, Mateo I, Rodriguez-Rodriguez E, Vilella-Cuadrada E, Frank A, Lleo A, Molina-Porcel L, Blesa R, Combarros O, Gomez-Isla T, Bermejo-Pareja F, Valdivieso F, Carro E. A megalin polymorphism associated with promoter activity and Alzheimer's disease risk. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:895-902. [PMID: 20052685 DOI: 10.1002/ajmg.b.31056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Elevated cerebral levels of amyloid beta-protein (Abeta) occur in Alzheimer's disease (AD), yet only a few patients show evidence of increased Abeta production. This observation suggests that many, perhaps most, cases of AD are caused by faulty clearance of Abeta. Megalin, which plays an important role in mediating Abeta clearance, is an attractive candidate gene for genetic association with AD. To investigate this hypothesis, we analyzed the megalin gene in a population of 2,183 subjects. Genetic analysis indicated that the rs3755166 (G/A) polymorphism located in the megalin promoter associated with risk for AD, dependently of apolipoprotein E genotype. The rs3755166 AA genotype frequency was significantly greater in AD patients than in control subjects. Furthermore, the luciferase reporter assay indicated that the rs3755166 A variant has 20% less transcriptional activity than the rs3755166 G variant. This study provides strong evidence that this megalin polymorphism confers a greater risk for AD, and supports a biological role for megalin in the neurodegenerative processes involved in AD.
Collapse
Affiliation(s)
- Teo Vargas
- Neuroscience Laboratory, Research Center, Hospital 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 2010; 5:e9313. [PMID: 20174468 PMCID: PMC2824828 DOI: 10.1371/journal.pone.0009313] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/28/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Lewy body disease is a heterogeneous group of neurodegenerative disorders characterized by alpha-synuclein accumulation that includes dementia with Lewy bodies (DLB) and Parkinson's Disease (PD). Recent evidence suggests that impairment of lysosomal pathways (i.e. autophagy) involved in alpha-synuclein clearance might play an important role. For this reason, we sought to examine the expression levels of members of the autophagy pathway in brains of patients with DLB and Alzheimer's Disease (AD) and in alpha-synuclein transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS By immunoblot analysis, compared to controls and AD, in DLB cases levels of mTor were elevated and Atg7 were reduced. Levels of other components of the autophagy pathway such as Atg5, Atg10, Atg12 and Beclin-1 were not different in DLB compared to controls. In DLB brains, mTor was more abundant in neurons displaying alpha-synuclein accumulation. These neurons also showed abnormal expression of lysosomal markers such as LC3, and ultrastructural analysis revealed the presence of abundant and abnormal autophagosomes. Similar alterations were observed in the brains of alpha-synuclein transgenic mice. Intra-cerebral infusion of rapamycin, an inhibitor of mTor, or injection of a lentiviral vector expressing Atg7 resulted in reduced accumulation of alpha-synuclein in transgenic mice and amelioration of associated neurodegenerative alterations. CONCLUSIONS/SIGNIFICANCE This study supports the notion that defects in the autophagy pathway and more specifically in mTor and Atg7 are associated with neurodegeneration in DLB cases and alpha-synuclein transgenic models and supports the possibility that modulators of the autophagy pathway might have potential therapeutic effects.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Paula Desplats
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Christina Patrick
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Amy Paulino
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Lawrence Hansen
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Eliezer Masliah
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
14
|
Kosacka J, Gericke M, Nowicki M, Kacza J, Borlak J, Spanel-Borowski K. Apolipoproteins D and E3 exert neurotrophic and synaptogenic effects in dorsal root ganglion cell cultures. Neuroscience 2009; 162:282-91. [PMID: 19414061 DOI: 10.1016/j.neuroscience.2009.04.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/27/2009] [Accepted: 04/29/2009] [Indexed: 11/17/2022]
Abstract
Co-cultures of 3T3-L1 adipocytes with neurons from the rat dorsal root ganglia (DRG) showed enhanced neuritogenesis and synaptogenesis. Microarray analysis for upregulated genes in adipocyte/DRG co-cultures currently points to apolipoproteins D and E (ApoD, ApoE) as influential proteins. We therefore tested adipocyte-secreted cholesterol and the carrier proteins ApoD and ApoE3. Cholesterol, ApoD, and ApoE3 each increased neurite outgrowth and upregulated the expression of presynaptic synaptophysin and synaptotagmin, as well as the postsynaptic density protein 95. The neurotrophic effects of ApoD and ApoE3 were associated with an increased expression of the low-density lipoprotein receptor and apolipoprotein E receptor 2. Simultaneous treatment with receptor-associated protein, an apolipoprotein receptor antagonist, inhibited the neurotrophic function of both apolipoproteins. The application of ApoD, ApoE3, and cholesterol to DRG cell cultures corresponded with increased expression of the chemokine stromal cell-derived factor 1 and its receptor CXC chemokine receptor 4 (CXCR4). Surprisingly, the inhibition of CXCR4 by the antagonistic drug AMD3100 decreased the apolipoprotein/cholesterol dependent neurotrophic effects. We thus assume that apolipoprotein-induced neuritogenesis in DRG cells interferes with CXCR4 signaling, and that adipocyte-derived apolipoproteins might be helpful in nerve repair.
Collapse
Affiliation(s)
- J Kosacka
- Institute of Anatomy, University of Leipzig, Liebigstrabetae 13, D-04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Bandaru VV, Troncoso J, Wheeler D, Pletnikova O, Wang J, Conant K, Haughey NJ. ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer's but not normal brain. Neurobiol Aging 2009; 30:591-9. [PMID: 17888544 PMCID: PMC2758772 DOI: 10.1016/j.neurobiolaging.2007.07.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/17/2007] [Accepted: 07/25/2007] [Indexed: 11/18/2022]
Abstract
The epsilon 4 allele of ApoE is associated with an earlier onset and faster progression of Alzheimer's disease in patients with the familial form of this neurodegenerative condition. Although ApoE4 has been repeatedly associated with altered sphingomyelin and cholesterol levels in tissue culture and rodent models, there has not been a direct quantification of sphingomyelin or sterol levels in the brains of patients with different forms of ApoE. We measured the sphingolipid and sterol content of human brain tissues and found no evidence of perturbed sterol or sphingolipid biochemistry in the brains of individuals expressing ApoE4 who did not have a preexisting neurodegenerative condition. Nevertheless, ApoE4 was associated with gross abnormalities in the sterol and sphingolipid content of numerous brain regions in patients with Alzheimer's disease. The findings suggest that ApoE4 may not by itself alter sterol or sphingolipid metabolism in the brain under normal conditions, but that other neuropathologic changes of Alzheimer's are required to unmask the effect of ApoE4, and to perturb sterol and sphingolipid biochemistry.
Collapse
Affiliation(s)
- Veera V.R. Bandaru
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore MD 21287
| | - Juan Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore MD 21287
- Department of Pathology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore MD 21287
| | - David Wheeler
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore MD 21287
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore MD 21287
| | - Jessica Wang
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore MD 21287
| | - Kathy Conant
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore MD 21287
| | - Norman J. Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore MD 21287
| |
Collapse
|
16
|
Rose JB, Crews L, Rockenstein E, Adame A, Mante M, Hersh LB, Gage FH, Spencer B, Potkar R, Marr RA, Masliah E. Neuropeptide Y fragments derived from neprilysin processing are neuroprotective in a transgenic model of Alzheimer's disease. J Neurosci 2009; 29:1115-25. [PMID: 19176820 PMCID: PMC2768399 DOI: 10.1523/jneurosci.4220-08.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/05/2008] [Accepted: 12/08/2008] [Indexed: 11/21/2022] Open
Abstract
The endopeptidase neprilysin (NEP) is a major amyloid-beta (Abeta) degrading enzyme and has been implicated in the pathogenesis of Alzheimer's disease. Because NEP cleaves substrates other than Abeta, we investigated the potential role of NEP-mediated processing of neuropeptides in the mechanisms of neuroprotection in vivo. Overexpression of NEP at low levels in transgenic (tg) mice affected primarily the levels of neuropeptide Y (NPY) compared with other neuropeptides. Ex vivo and in vivo studies in tg mice and in mice that received lentiviral vector injections showed that NEP cleaved NPY into C-terminal fragments (CTFs), whereas silencing NEP reduced NPY processing. Immunoblot and mass spectrometry analysis showed that NPY 21-36 and 31-36 were the most abundant fragments generated by NEP activity in vivo. Infusion of these NPY CTFs into the brains of APP (amyloid precursor protein) tg mice ameliorated the neurodegenerative pathology in this model. Moreover, the amidated NPY CTFs protected human neuronal cultures from the neurotoxic effects of Abeta. This study supports the possibility that the NPY CTFs generated during NEP-mediated proteolysis might exert neuroprotective effects in vivo. This function of NEP represents a unique example of a proteolytic enzyme with dual action, namely, degradation of Abeta as well as processing of NPY.
Collapse
Affiliation(s)
| | - Leslie Crews
- Pathology, University of California, San Diego, La Jolla, California 92093
| | | | | | | | - Louis B. Hersh
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky 40563-0298
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, and
| | | | | | - Robert A. Marr
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Eliezer Masliah
- Departments of Neurosciences and
- Pathology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
17
|
Receptor-associated protein (RAP) plays a central role in modulating Abeta deposition in APP/PS1 transgenic mice. PLoS One 2008; 3:e3159. [PMID: 18776935 PMCID: PMC2522286 DOI: 10.1371/journal.pone.0003159] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/05/2008] [Indexed: 11/20/2022] Open
Abstract
Background Receptor associated protein (RAP) functions in the endoplasmic reticulum (ER) to assist in the maturation of several membrane receptor proteins, including low density lipoprotein receptor-related protein (LRP) and lipoprotein receptor 11 (SorLA/LR11). Previous studies in cell and mouse model systems have demonstrated that these proteins play roles in the metabolism of the amyloid precursor protein (APP), including processes involved in the generation, catabolism and deposition of β-amyloid (Aβ) peptides. Methodology/Principal Findings Mice transgenic for mutant APPswe and mutant presenilin 1 (PS1dE9) were mated to mice with homozygous deletion of RAP. Unexpectedly, mice that were homozygous null for RAP and transgenic for APPswe/PS1dE9 showed high post-natal mortality, necessitating a shift in focus to examine the levels of amyloid deposition in APPswe/PS1dE9 that were hemizygous null for RAP. Immunoblot analysis confirmed 50% reductions in the levels of RAP with modest reductions in the levels of proteins dependent upon RAP for maturation [LRP trend towards a 20% reduction ; SorLA/LR11 statistically significant 15% reduction (p<0.05)]. Changes in the levels of these proteins in the brains of [APPswe/PS1dE9](+/−)/RAP(+/−) mice correlated with 30–40% increases in amyloid deposition by 9 months of age. Conclusions/Significance Partial reductions in the ER chaperone RAP enhance amyloid deposition in the APPswe/PS1dE9 model of Alzheimer amyloidosis. Partial reductions in RAP also affect the maturation of LRP and SorLA/LR11, which are each involved in several different aspects of APP processing and Aβ catabolism. Together, these findings suggest a central role for RAP in Alzheimer amyloidogenesis.
Collapse
|
18
|
Apolipoprotein E receptors and amyloid expression are modulated in an apolipoprotein E-dependent fashion in response to hippocampal deafferentation in rodent. Neuroscience 2007; 150:58-63. [PMID: 17935896 DOI: 10.1016/j.neuroscience.2007.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/18/2007] [Accepted: 07/09/2007] [Indexed: 11/23/2022]
Abstract
The entorhinal cortex lesion paradigm is a widely accepted and efficient method to provoke reactive synaptogenesis and terminal remodeling in the adult CNS. This approach has been used successfully to contrast the profile of reactivity from various proteins associated with Alzheimer's disease pathophysiology in wild-type and apolipoprotein E (apoE)-deficient (APOE ko) mice. Results indicate that the production of the beta-amyloid 1-40 peptide (A beta 40) is increased in response to neuronal injury, with a timing that is different between wild-type and APOE ko animals. Moreover, we report that baseline levels of the A beta 40 peptide are significantly higher in the APOE ko mice. The expression of the apolipoprotein E receptor type 2 (apoER2) is also modulated by the deafferentation process in the hippocampus, but only in APOE ko mice. These results provide novel insights as to the molecular mechanisms responsible for the poor plastic response reported in apoE4-expressing and apoE deficient mice in response to hippocampal injury.
Collapse
|
19
|
Takamoto K, Kawada M, Ikeda D, Yoshida M. Apolipoprotein E3 (apoE3) safeguards pig proximal tubular LLC-PK1 cells against reduction in SGLT1 activity induced by gentamicin C. Biochim Biophys Acta Gen Subj 2005; 1722:247-53. [PMID: 15777622 DOI: 10.1016/j.bbagen.2004.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2004] [Revised: 10/27/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
Megalin, a family of endocytic receptors related to the low-density lipoprotein (LDL) receptor, is a major pathway for proximal tubular aminoglycoside accumulation. We previously reported that aminoglycoside antibiotics reduce SGLT1-dependent glucose transport in pig proximal tubular epithelial LLC-PK1 cells in parallel with the order of their nephrotoxicity. In this study, using a model of gentamicin C (GMC)-induced reduction in SGLT1 activity, we examined whether ligands for megalin protect LLC-PK1 cells from the GMC-induced reduction in SGLT1 activity. We employed apolipoprotein E3 (apoE3) and lactoferrin as ligands for megalin. Then the cells were treated with various concentrations of apoE3, lactoferrin and bovine serum albumin with or without 100 microg/ml of GMC, and the SGLT1-dependent methyl alpha-D-glucopyranoside (AMG) uptake and levels of SGLT1 expression were determined. As a result, we demonstrated that the apoE3 significantly protects these cells from GMC-induced reduction in AMG uptake, but neither lactoferrin nor albumin does. In accord with a rise in AMG uptake activity, the mRNA and protein levels of SGLT1 were apparently up-regulated in the presence of apoE3. Furthermore, we found that the uptake of [3H] gentamicin is decreased by apoE3, and that apoE3 showed obvious protection against the GMC-dependent N-acetyl-beta-D-glucosamidase (NAG) release from LLC-PK1 cells. Thus, these results indicate that apoE3 could be a valuable tool for the prevention of aminoglycoside nephrotoxicity.
Collapse
Affiliation(s)
- Kozo Takamoto
- Numazu Bio-Medical Research Institute, Microbial Chemistry Research Center, 18-24 Miyamoto, Numazu-shi, Shizuoka 410-0301, Japan
| | | | | | | |
Collapse
|
20
|
Pan W, Kastin AJ, Zankel TC, van Kerkhof P, Terasaki T, Bu G. Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J Cell Sci 2004; 117:5071-8. [PMID: 15383619 DOI: 10.1242/jcs.01381] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have sought to identify a high-capacity transport system that mediates transcytosis of proteins from the blood to the brain. The 39 kDa receptor-associated protein (RAP) functions as a specialized endoplasmic reticulum chaperone assisting in the folding and trafficking of members of the low-density lipoprotein (LDL) receptor family. RAP efficiently binds to these receptors and antagonizes binding of other ligands. Previous studies have shown that two large members of the LDL receptor family, LDL receptor-related protein 1 (LRP1) and LDL receptor-related protein 2 (LRP2 or megalin), possess the ability to mediate transcytosis of ligands across the brain capillary endothelium. Here, we tested whether blood-borne RAP crosses the blood-brain barrier (BBB) by LRP1- or megalin-mediated transport by studying the pharmacokinetics of [125I]-RAP transport into the brain in intact mice and across cell monolayers in vitro. Our results show that [125I]-RAP is relatively stable in blood for 30 minutes and has a mean influx constant of 0.62±0.08 μl/g-minute from blood to brain. In situ brain perfusion in blood-free buffer shows that transport of [125I]-RAP across the BBB is a saturable process. Capillary depletion of brain homogenates indicates that 70% of [125I]-RAP is localized in the parenchyma rather than in the vasculature of the brain. Results of transport in stably transfected MDCK cells are consistent with the hypothesis that megalin mediates most of the apical-to-basolateral transport across polarized epithelial cells. The inhibition of [125I]-RAP influx by excess RAP and the involvement of megalin indicate the presence of a saturable transport system at the BBB. The higher permeability of RAP compared with that of melanotransferrin and transferrin show that the LRP receptor is a high capacity transport system. These studies suggest that RAP may provide a novel means of protein-based drug delivery to the brain.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge 70808, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV. LRP/Amyloid β-Peptide Interaction Mediates Differential Brain Efflux of Aβ Isoforms. Neuron 2004; 43:333-44. [PMID: 15294142 DOI: 10.1016/j.neuron.2004.07.017] [Citation(s) in RCA: 649] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/23/2004] [Accepted: 07/14/2004] [Indexed: 11/20/2022]
Abstract
LRP (low-density lipoprotein receptor-related protein) is linked to Alzheimer's disease (AD). Here, we report amyloid beta-peptide Abeta40 binds to immobilized LRP clusters II and IV with high affinity (Kd = 0.6-1.2 nM) compared to Abeta42 and mutant Abeta, and LRP-mediated Abeta brain capillary binding, endocytosis, and transcytosis across the mouse blood-brain barrier are substantially reduced by the high beta sheet content in Abeta and deletion of the receptor-associated protein gene. Despite low Abeta production in the brain, transgenic mice expressing low LRP-clearance mutant Abeta develop robust Abeta cerebral accumulations much earlier than Tg-2576 Abeta-overproducing mice. While Abeta does not affect LRP internalization and synthesis, it promotes proteasome-dependent LRP degradation in endothelium at concentrations > 1 microM, consistent with reduced brain capillary LRP levels in Abeta-accumulating transgenic mice, AD, and patients with cerebrovascular beta-amyloidosis. Thus, low-affinity LRP/Abeta interaction and/or Abeta-induced LRP loss at the BBB mediate brain accumulation of neurotoxic Abeta.
Collapse
Affiliation(s)
- Rashid Deane
- Frank P. Smith Laboratories for Neuroscience and Neurosurgical Research, Department of Neurosurgery, Arthur Kornberg Medical Research Building, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Qiu Z, Hyman BT, Rebeck GW. Apolipoprotein E receptors mediate neurite outgrowth through activation of p44/42 mitogen-activated protein kinase in primary neurons. J Biol Chem 2004; 279:34948-56. [PMID: 15169786 DOI: 10.1074/jbc.m401055200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several ligands of the endocytic low density lipoprotein receptor-related protein (LRP), such as apoE-containing lipoproteins and activated alpha2-macroglobulin (alpha2M*), promote neurite outgrowth, suggesting that LRP may have signaling functions. In this study, we found that the treatment of neurons with alpha2M* significantly increased the individual length (by 71%) and numbers (by 139%) of neurites of primary mouse cortical neurons. These effects were blocked by the LRP antagonist, the receptor-associated protein. We found similar neurite outgrowth with purified apoE3 and a tandem apoE peptide containing only the receptor-binding domain. To investigate the intracellular pathway of the LRP signaling involved in neurite outgrowth, we tested the effects of alpha2M* on the phosphorylation of the mitogen-activated protein (MAP) extracellular signal-regulated kinases 1 and 2 (ERK1/2). We found that 1) phospho-MAP kinase levels were altered within 30 min after treatment with alpha2M*, 2) the MAP kinase inhibitor, PD98059, specifically blocked the alpha2M*-induced neurite outgrowth, 3) manipulating intracellular calcium by BayK or BAPTA altered the neurite outgrowth and associated changes in the phospho-MAP kinase levels, which were blunted by alpha2M*, 4) alpha2M* promoted the phosphorylation of the transcription factor CREB through MAP kinase, and 5) LRP-specific antibodies increased levels of phosphorylated MAP kinase and phosphorylated CREB. The effects of alpha2M*, apoE3, and apoE peptides increased LRP levels in the cortical neurons, whereas LRP receptor-associated protein reduced dendritic LRP expression. These results demonstrate that p44/42 MAP kinase plays an important role in LRP-mediated neurite outgrowth with activation involving the effects on calcium homeostasis and downstream effects involving the activation of gene transcription through CREB.
Collapse
Affiliation(s)
- Zhihua Qiu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
23
|
Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J Neurosci 2002. [PMID: 12417655 DOI: 10.1523/jneurosci.22-21-09298.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP) is an abundant neuronal cell surface receptor that regulates amyloid beta-protein (Abeta) trafficking into the cell. Specifically, LRP binds secreted Abeta complexes and mediates its degradation. Previously, we have shown in vitro that the uptake of Abeta mediated by LRP is protective and that blocking this receptor significantly enhances neurotoxicity. To further characterize the effects of LRP and other lipoprotein receptors on Abeta deposition, an in vivo model of decreased LRP expression, receptor-associated protein (RAP)-deficient (RAP-/-) mice was crossed with human amyloid protein precursor transgenic (hAPP tg) mice, and plaque formation and neurodegeneration were analyzed. We found that, although the age of onset for plaque formation was the same in hAPP tg and hAPP tg/RAP-/- mice, the amount of amyloid deposited doubled in the hAPP tg/RAP-/- background. Moreover, these mice displayed increased neuronal damage and astrogliosis. Together, these results further support the contention that LRP and other lipoprotein receptors might be neuroprotective against Abeta toxicity and that this receptor might play an integral role in Abeta clearance.
Collapse
|
24
|
Abstract
Ramon y Cajal proclaimed in 1928 that "once development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. In the adult centers the nerve paths are something fixed, ended and immutable. Everything must die, nothing may be regenerated. It is for the science of the future to change, if possible, this harsh decree." (Ramon y Cajal, 1928). In large part, despite the extensive knowledge gained since then, the latter directive has not yet been achieved by 'modern' science. Although we know now that Ramon y Cajal's observation on CNS plasticity is largely true (for lower brain and primary cortical structures), there are mechanisms for recovery from CNS injury. These mechanisms, however, may contribute to the vulnerability to neurodegenerative disease. They may also be exploited therapeutically to help alleviate the suffering from neurodegenerative conditions.
Collapse
Affiliation(s)
- Bruce Teter
- Department of Medicine, University of California Los Angeles, California and Veteran's Affairs-Greater Los Angeles Healthcare System, Sepulveda, California 91343, USA
| | | |
Collapse
|
25
|
Li Y, Lu W, Schwartz AL, Bu G. Receptor-associated protein facilitates proper folding and maturation of the low-density lipoprotein receptor and its class 2 mutants. Biochemistry 2002; 41:4921-8. [PMID: 11939787 DOI: 10.1021/bi011894i] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Familial hypercholesterolemia is the consequence of various mutations in the low-density lipoprotein receptor (LDLR). In the current study, we show that a specialized molecular chaperone, the receptor-associated protein (RAP), promotes proper folding and subsequent exocytic trafficking of the wild-type LDLR and several of its class 2 mutants. Co-immunoprecipitation with anti-RAP antibody demonstrates that RAP interacts with the LDLR. Kinetic analyses of LDLR posttranslational folding and maturation in the absence or presence of RAP coexpression show that RAP prevents aggregation and promotes the maturation of the LDLR. Additionally, depletion of Ca(2+) in intact cells impairs LDLR folding, and coexpression of RAP partially corrects this misfolding. Finally, we show that the increased mature cell surface LDLR in the presence of RAP coexpression is functional in its ability to endocytose and degrade (125)I-LDL. Taken together, our results show that the folding, trafficking, and maturation of the LDLR and its class 2 mutants are promoted by RAP.
Collapse
Affiliation(s)
- Yonghe Li
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|