1
|
Barrière G, Pelloquin-Mvogo Z, Boulain M, Khsime I, Bharatiya R, Riquier MA, Morin D, Allain AE, Chagraoui A, Juvin L, De Deurwaerdere P. Widespread and Heterologous Effects of L-DOPA on Monoaminergic Tissue Metabolism in Newborn Rats Expressing Air-Stepping. Int J Mol Sci 2025; 26:2298. [PMID: 40076918 PMCID: PMC11901079 DOI: 10.3390/ijms26052298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
L-DOPA triggers a dose-dependent increase in locomotor activity in newborn rats suspended in the air (air-stepping). Here, we report the effects of L-DOPA injection on the tissue level of monoamines and metabolites in different regions of the central nervous system (CNS) of postnatal day 5 pups. We also established correlations between some of our neurochemical measurements and basic locomotor parameters. L-DOPA (25-100 mg/kg) enhanced its tissue levels in the spinal cord, cortex, striatum, and brainstem regions. It induced a strong increase in the levels of the L-DOPA, dopamine, and their metabolites but had low effects on noradrenaline and serotonin across CNS regions. Of note, we also detected the tyramine derivative octopamine in the spinal cord. The inter-regional pattern of correlations between monoamine content showed an almost full metabolic connectivity for dopamine only when all L-DOPA conditions were pooled, and it revealed restricted connectivity for noradrenaline and serotonin in the spinal cord and the mesencephalic locomotor region. Locomotor parameters (quadrupedal locomotion and step numbers) correlated with the levels of L-DOPA and DA in restricted CNS regions at variance with noradrenaline and serotonin. Altogether, our data extend the idea that the neurochemical effect of L-DOPA is widespread and heterogeneous in the CNS, with prominent biochemical changes notably present in the spinal cord and M1 cortex, to the newborn rat.
Collapse
Affiliation(s)
- Grégory Barrière
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| | - Zora Pelloquin-Mvogo
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| | - Marie Boulain
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| | - Inès Khsime
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| | - Rahul Bharatiya
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| | - Marie-Anne Riquier
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| | - Didier Morin
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| | - Anne-Emilie Allain
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| | - Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Institut National de la Santé et de la Recherche Médicale U1239, University of Rouen Normandy, 76000 Rouen, France;
- Department of Medical Biochemistry, Centre Hospitalo-Universitaire de Rouen, 76000 Rouen, France
| | - Laurent Juvin
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| | - Philippe De Deurwaerdere
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR5287, Centre National de la Recherche Scientifique, Bordeaux Neurocampus Department, University of Bordeaux, 33000 Bordeaux, France; (G.B.); (Z.P.-M.); (M.B.); (I.K.); (R.B.); (M.-A.R.); (D.M.); (A.-E.A.); (L.J.)
| |
Collapse
|
2
|
Mistretta OC, Wood RL, English AW, Alvarez FJ. Air-stepping in the neonatal mouse: a powerful tool for analyzing early stages of rhythmic limb movement development. J Neurophysiol 2024; 131:321-337. [PMID: 38198656 PMCID: PMC11305634 DOI: 10.1152/jn.00227.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
There is a lack of experimental methods in genetically tractable mouse models to analyze the developmental period at which newborns mature weight-bearing locomotion. To overcome this deficit, we introduce methods to study l-3,4-dihydroxyphenylalanine (l-DOPA)-induced air-stepping in mice at postnatal day (P)7 and P10. Air-stepping is a stereotypic rhythmic behavior that resembles mouse walking overground locomotion but without constraints imposed by weight bearing, postural adjustments, or sensory feedback. We propose that air-stepping represents the functional organization of early spinal circuits coordinating limb movements. After subcutaneous injection of l-DOPA (0.5 mg/g), we recorded air-stepping movements in all four limbs and electromyographic (EMG) activity from ankle flexor (tibialis anterior, TA) and extensor (lateral gastrocnemius, LG) muscles. Using DeepLabCut pose estimation, we analyzed rhythmicity and limb coordination. We demonstrate steady rhythmic stepping of similar duration from P7 to P10 but with some fine-tuning of interlimb coordination with age. Hindlimb joints undergo a greater range of flexion at older ages, indicating maturation of flexion-extension cycles as the animal starts to walk. EMG recordings of TA and LG show alternation but with more focused activation particularly in the LG from P7 to P10. We discuss similarities to neonatal rat l-DOPA-induced air-stepping and infant assisted walking. We conclude that limb coordination and muscle activations recorded with this method represent basic spinal cord circuitry for limb control in neonates and pave the way for future investigations on the development of rhythmic limb control in genetic or disease models with correctly or erroneously developing motor circuitry.NEW & NOTEWORTHY We present novel methods to study neonatal air-stepping in newborn mice. These methods allow analyses at the onset of limb coordination during the period in which altricial species like rats, mice, and humans "learn" to walk. The methods will be useful to test a large variety of mutations that serve as models of motor disease in newborns or that are used to probe for specific circuit mechanisms that generate coordinated limb motor output.
Collapse
Affiliation(s)
- Olivia C Mistretta
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Ryan L Wood
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Arthur W English
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Francisco J Alvarez
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Amantadine enhances nigrostriatal and mesolimbic dopamine function in the rat brain in relation to motor and exploratory activity. Pharmacol Biochem Behav 2019; 179:156-170. [DOI: 10.1016/j.pbb.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 01/01/2023]
|
4
|
Sun SY, Baker LL, Bradley NS. Ankle muscle tenotomy does not alter ankle flexor muscle recruitment bias during locomotor-related repetitive limb movement in late-stage chick embryos. Dev Psychobiol 2018; 60:150-164. [PMID: 29193030 PMCID: PMC9969836 DOI: 10.1002/dev.21594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/07/2017] [Indexed: 11/11/2022]
Abstract
In ovo, late-stage chick embryos repetitively step spontaneously, a locomotor-related behavior also identified as repetitive limb movement (RLM). During RLMs, there is a flexor bias in recruitment and drive of leg muscle activity. The flexor biased activity occurs as embryos assume an extremely flexed posture in a spatially restrictive environment 2-3 days before hatching. We hypothesized that muscle afferent feedback under normal mechanical constraint is a significant input to the flexor bias observed during RLMs on embryonic day (E) 20. To test this hypothesis, muscle afference was altered either by performing a tenotomy of ankle muscles or removing the shell wall restricting leg movement at E20. Results indicated that neither ankle muscle tenotomy nor unilateral release of limb constraint by shell removal altered parameters indicative of flexor bias. We conclude that ankle muscle afference is not essential to ankle flexor bias characteristic of RLMs under normal postural conditions at E20.
Collapse
Affiliation(s)
- Soo Yeon Sun
- Division of Biokinesiology and Physical Therapy, Ostrow School of Dentistry; University of Southern California; Los Angeles California
| | - Lucinda L. Baker
- Division of Biokinesiology and Physical Therapy, Ostrow School of Dentistry; University of Southern California; Los Angeles California
| | - Nina S. Bradley
- Division of Biokinesiology and Physical Therapy, Ostrow School of Dentistry; University of Southern California; Los Angeles California
| |
Collapse
|
5
|
Sun SY, Bradley NS. Differences in flexor and extensor activity during locomotor-related leg movements in chick embryos. Dev Psychobiol 2017; 59:357-366. [PMID: 28323348 PMCID: PMC9969848 DOI: 10.1002/dev.21500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 11/08/2022]
Abstract
Prior to hatching, chick embryos spontaneously produce repetitive limb movements (RLMs), a developmental precursor to walking. During RLMs, flexor and extensor muscles are alternately active as during stance and swing phases of gait. However, previous studies of RLMs observed that flexor muscles were rhythmically active for many cycles, whereas extensors often failed to be recruited. Thus, we asked if flexor muscles are preferentially recruited during RLMs in chick embryos 1 day before hatching and onset of walking. Using a within-subject design, we compared EMG burst parameters for flexor and extensor muscles acting at the hip or ankle. Findings indicated that flexor burst count exceeded extensor count. Also, flexor muscles were consistently recruited at the lowest levels of neural drive. We conclude that there is a bias favoring flexor muscle recruitment and drive during spontaneously produced RLMs. Potential neural mechanisms and developmental implications of our findings are discussed.
Collapse
Affiliation(s)
- Soo Yeon Sun
- Division of Biokinesiology and Physical Therapy; University of Southern California; Los Angeles California
| | - Nina S. Bradley
- Division of Biokinesiology and Physical Therapy; University of Southern California; Los Angeles California
| |
Collapse
|
6
|
Bursian AV. Catecholaminergic regulation of autorhythmical viscero- and somatomotor activity in early rat ontogenesis. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Nikolaus S, Larisch R, Vosberg H, Beu M, Wirrwar A, Antke C, Kley K, Silva MADS, Huston JP, Müller HW. Pharmacological challenge and synaptic response - assessing dopaminergic function in the rat striatum with small animal single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Rev Neurosci 2011; 22:625-45. [PMID: 22103308 DOI: 10.1515/rns.2011.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Disturbances of dopaminergic neurotransmission may be caused by changes in concentrations of synaptic dopamine (DA) and/or availabilities of pre- and post-synaptic transporter and receptor binding sites. We present a series of experiments which focus on the regulatory mechanisms of the dopamin(DA)ergic synapse in the rat striatum. In these studies, DA transporter (DAT) and/or D(2) receptor binding were assessed with either small animal single-photon emission computed tomography (SPECT) or positron emission tomography (PET) after pharmacological challenge with haloperidol, L-DOPA and methylphenidate, and after nigrostriatal 6-hydroxydopamine lesion. Investigations of DAT binding were performed with [(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ([(123)I]FP-CIT). D(2) receptor bindingd was assessed with either [(123)I](S)-2-hydroxy-3-iodo-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl)methyl]benzamide ([(123)I]IBZM) or [(18)F]1[3-(4'fluorobenzoyl)propyl]-4-(2-keto-3-methyl-1-benzimidazolinyl)piperidine ([(18)F]FMB). Findings demonstrate that in vivo investigations of transporter and/or receptor binding are feasible with small animal SPECT and PET. Therefore, tracers that are radiolabeled with isotopes of comparatively long half-lives such as (123)I may be employed. Our approach to quantify DAT and/or D(2) receptor binding at baseline and after pharmacological interventions inducing DAT blockade, D(2) receptor blockade, and increases or decreases of endogenous DA concentrations holds promise for the in vivo assessment of synaptic function. This pertains to animal models of diseases associated with pre- or postsynaptic DAergic deficiencies such as Parkinson's disease, Huntington's disease, attention-deficit/hyperactivity disorder, schizophrenia or drug abuse.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. II. Noradrenergic innervation and colocalization with NEα 1a or NEα 2b receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2011; 105:1835-49. [PMID: 21307324 DOI: 10.1152/jn.00342.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) is a strong modulator and/or activator of spinal locomotor networks. Thus noradrenergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the noradrenergic innervation of functionally related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was accomplished by immunohistochemical colocalization of noradrenergic fibers using dopamine-β-hydroxylase or NEα(1A) and NEα(2B) receptors with cells expressing the c-fos gene activity-dependent marker Fos. Experiments were performed on paralyzed, precollicular-postmamillary decerebrate cats, in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. The majority of Fos labeled neurons, especially abundant in laminae VII and VIII throughout the thoraco-lumbar (T13-L7) region of locomotor animals, showed close contacts with multiple noradrenergic boutons. A small percentage (10-40%) of Fos neurons in the T7-L7 segments showed colocalization with NEα(1A) receptors. In contrast, NEα(2B) receptor immunoreactivity was observed in 70-90% of Fos cells, with no obvious rostrocaudal gradient. In comparison with results obtained from our previous study on the same animals, a significantly smaller proportion of Fos labeled neurons were innervated by noradrenergic than serotonergic fibers, with significant differences observed for laminae VII and VIII in some segments. In lamina VII of the lumbar segments, the degree of monoaminergic receptor subtype/Fos colocalization examined statistically generally fell into the following order: NEα(2B) = 5-HT(2A) ≥ 5-HT(7) = 5-HT(1A) > NEα(1A). These results suggest that noradrenergic modulation of locomotion involves NEα(1A)/NEα(2B) receptors on noradrenergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments. Further study of the functional role of these receptors in locomotion is warranted.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
9
|
Markin SN, Klishko AN, Shevtsova NA, Lemay MA, Prilutsky BI, Rybak IA. Afferent control of locomotor CPG: insights from a simple neuromechanical model. Ann N Y Acad Sci 2010; 1198:21-34. [PMID: 20536917 PMCID: PMC5323435 DOI: 10.1111/j.1749-6632.2010.05435.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A simple neuromechanical model has been developed that describes a spinal central pattern generator (CPG) controlling the locomotor movement of a single-joint limb via activation of two antagonist (flexor and extensor) muscles. The limb performs rhythmic movements under control of the muscular, gravitational and ground reaction forces. Muscle afferents provide length-dependent (types Ia and II) and force-dependent (type Ib from the extensor) feedback to the CPG. We show that afferent feedback adjusts CPG operation to the kinematics and dynamics of the limb providing stable "locomotion." Increasing the supraspinal drive to the CPG increases locomotion speed by reducing the duration of stance phase. We show that such asymmetric, extensor-dominated control of locomotor speed (with relatively constant swing duration) is provided by afferent feedback independent of the asymmetric rhythmic pattern generated by the CPG alone (in "fictive locomotion" conditions). Finally, we demonstrate the possibility of reestablishing stable locomotion after removal of the supraspinal drive (associated with spinal cord injury) by increasing the weights of afferent inputs to the CPG, which is thought to occur following locomotor training.
Collapse
Affiliation(s)
- Sergey N. Markin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Alexander N. Klishko
- Center for Human Movement Studies, School of Applied Physiology, Georgia Institute of Technology, Atlanta, Georgia
| | - Natalia A. Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Michel A. Lemay
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Boris I. Prilutsky
- Center for Human Movement Studies, School of Applied Physiology, Georgia Institute of Technology, Atlanta, Georgia
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Juvin L, Simmers J, Morin D. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators. J Physiol 2007; 583:115-28. [PMID: 17569737 PMCID: PMC2277226 DOI: 10.1113/jphysiol.2007.133413] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The temporal properties of limb motoneuron bursting underlying quadrupedal locomotion were investigated in isolated spinal cord preparations (without or with brainstem attached) taken from 0 to 4-day-old rats. When activated either with differing combinations of N-methyl-D,L-aspartate, serotonin and dopamine, or by electrical stimulation of the brainstem, the spinal cord generated episodes of fictive locomotion with a constant phase relationship between cervical and lumbar ventral root bursts. Alternation occurred between ipsi- and contra-lateral flexor and extensor motor root bursts, and the cervical and lumbar locomotor networks were always active in a diagonal coordination pattern that corresponded to fictive walking. However, unlike typical locomotion in adult animals in which extensor motoneuron bursts vary more with cycle period than flexor bursts, in the isolated neonatal cord, an increase in fictive locomotor speed was associated with a decrease in the durations of both extensor and flexor bursts, at cervical and lumbar levels. To determine whether this symmetry in flexor/extensor phase durations derived from the absence of sensory feedback that is normally provided from the limbs during intact animal locomotion, EMG recordings were made from hindlimb-attached spinal cords during drug-induced locomotor-like movements. Under these conditions, the duration of extensor muscle bursts increased with cycle period, while flexor burst durations now tended to remain constant. Moreover, after a complete dorsal rhizotomy, this extensor dominant pattern was replaced by flexor and extensor muscle bursts of similar duration. In vivo and in vitro experiments were also conducted on older postnatal (P10-12) rats at an age when body-supported adult-like locomotion occurs. Here again, characteristic extensor-dominated burst patterns observed during intact treadmill locomotion were replaced by symmetrical patterns during fictive locomotion expressed by the chemically activated isolated spinal cord, further indicating that sensory inputs are normally responsible for imposing extensor biasing on otherwise symmetrically alternating extensor/flexor oscillators.
Collapse
Affiliation(s)
- Laurent Juvin
- Université Bordeaux 1, UMR CNRS 5227, Laboratoire Mouvement-Adaptation-Cognition bâtiment 2A, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | |
Collapse
|
11
|
Sanusi J, Sławińska U, Navarrete R, Vrbová G. Effect of precocious locomotor activity on the development of motoneurones and motor units of slow and fast muscles in rat. Behav Brain Res 2007; 178:1-9. [PMID: 17182117 DOI: 10.1016/j.bbr.2006.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/23/2006] [Accepted: 11/24/2006] [Indexed: 11/16/2022]
Abstract
We have investigated the effect of precociously increasing locomotor activity during early postnatal development by daily treatment with the monoaminergic precursor L-DOPA on the survival of motoneurones supplying the slow soleus (SOL) muscle and the fast, tibialis anterior (TA) and extensor digitorum longus (EDL) muscles as well as the contractile and histochemical properties of these muscles. L-DOPA treatment resulted in a significant loss of motoneurones to the slow SOL muscle, but not to the fast TA and EDL muscles. Moreover, motoneurones to fast muscles also die as when exposed to increased activity in early life, if their axons are repeatedly injured. The loss of normal soleus motoneurones was accompanied by an increase in force of the remaining motor units and sprouting of the surviving axons suggesting a remodelling of motor unit organisation. The time to peak contraction of both SOL and EDL muscles from L-DOPA treated rats was prolonged at 8 weeks of age. At 4 weeks the soleus muscles of the L-DOPA treated animal developed more tension than the saline treated one. This difference between the two groups did not persist and by 8 weeks of age the muscle weight and tetanic tension from either group were not significantly different from control animals. The present study shows that early transient, precocious locomotor activity induced by L-DOPA is damaging to normal soleus but not to normal EDL/TA motoneurones.
Collapse
Affiliation(s)
- J Sanusi
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
12
|
Majczyński H, Cabaj A, Sławińska U, Górska T. Intrathecal administration of yohimbine impairs locomotion in intact rats. Behav Brain Res 2006; 175:315-22. [PMID: 17010450 DOI: 10.1016/j.bbr.2006.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
The effects of upper lumbar level intrathecal injection of yohimbine, an alpha2-noradrenergic antagonist, on overground locomotion in intact rats was studied. This treatment caused dose-dependent impairment of hindlimb locomotor movement, which varied from transient hindlimb paralysis at a dose of 200 microg/20 microl to transient trunk instability at 50 microg/20 microl. Repetitive (every 48 h) injections of yohimbine at high (200 microg/20 microl) and medium (100 microg/20 microl) doses caused tachyphylaxis, which usually led to a lack of reaction to the third injection. This phenomenon was not observed after repetitive injections of the low (50 microg/20 microl) dose of the drug. These results show that the noradrenergic system is involved in the control of locomotion, since intrathecal administration of a specific antagonist affects this activity in intact rats.
Collapse
Affiliation(s)
- Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteura Str., 02-093 Warsaw, Poland.
| | | | | | | |
Collapse
|
13
|
Juvin L, Simmers J, Morin D. Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 2006; 25:6025-35. [PMID: 15976092 PMCID: PMC6724791 DOI: 10.1523/jneurosci.0696-05.2005] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soon after birth, freely moving quadrupeds can express locomotor activity with coordinated forelimb and hindlimb movements. To investigate the neural mechanisms underlying this coordination, we used an isolated spinal cord preparation from neonatal rats. Under bath-applied 5-HT, N-methyl-d,l-aspartate (NMA), and dopamine (DA), the isolated cord generates fictive locomotion in which homolateral cervicolumbar extensor motor bursts occur in phase opposition, as does bursting in homologous (left-right) extensor motoneurons. This coordination corresponded to a walking gait monitored with EMG recordings in the freely behaving animal. Functional decoupling of the cervical and lumbar generators in vitro by sucrose blockade at the thoracic cord level revealed independent rhythmogenic capabilities with similar cycle frequencies in the two locomotor regions. When the cord was partitioned at different thoracic levels and 5-HT/NMA/DA was applied to the more caudal compartment, the ability of the lumbar generators to drive their cervical counterparts increased with the proportion of chemically exposed thoracic segments. Blockade of synaptic inhibition at the lumbar level caused synchronous bilateral lumbar rhythmicity that, surprisingly, also was able to impose bilaterally synchronous bursting at the unblocked cervical level. Furthermore, after a midsagittal section from spinal segments C1 to T7, and during additional blockade of cervical synaptic inhibition, the cord exposed to 5-HT/NMA/DA continued to produce a coordinated fictive walking pattern similar to that observed in control. Thus, in the newborn rat, a caudorostral propriospinal excitability gradient appears to mediate interlimb coordination, which relies more on asymmetric axial connectivity (both excitatory and inhibitory) between the lumbar and cervical generators than on differences in their inherent rhythmogenic capacities.
Collapse
Affiliation(s)
- Laurent Juvin
- Laboratoire de Physiologie et Physiopathologie de la Signalisation Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5543, Equipe Neurophysiologie Adaptative des Systèmes Moteurs, 33076 Bordeaux, France
| | | | | |
Collapse
|
14
|
Grigoriadis N, Albani M, Simeonidou C, Guiba-Tziampiri O. Recovery, innervation profile, and contractile properties of reinnervating fast muscles following postnatal nerve crush and administration of L-Dopa. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:79-87. [PMID: 15464220 DOI: 10.1016/j.devbrainres.2004.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
Muscle and peripheral nerve development is clearly dependent on their interaction during early postnatal life. Furthermore, muscle or peripheral nerve activity plays a crucial role in the maturation of the neuromuscular system. In this study, the possible involvement of spinal catecholamines in fast muscle recovery after nerve crush is investigated. Sciatic nerve crush was performed on the fourth to fifth postnatal day. Following that, L-Dopa was administered daily [150 mg/kg body weight (BW)] i.p., until the 21st day after birth. L-Dopa-treated and control groups were then examined electrophysiologically for the contractile properties of extensor digitorum longus (EDL) muscles. Two experimental groups were included in this study: (i) rats whose sciatic nerve was crushed and were treated with L-Dopa and (ii) rats whose sciatic nerve was crushed and were not treated with L-Dopa. The number of motoneurones for both groups was estimated by HRP retrograde labelling. The results showed that the operated L-Dopa-treated EDL muscles of the rats exhibited limited atrophy, slighter impairment of maximal tetanic tension, lesser resistance to fatigue, and polyneuronal innervation than the controls. The number of motoneurones was the same for the operated muscles in both groups of animals and was within the normal ranges. Our findings suggest that catecholamines of locomotion during the early stages of development may have a beneficial effect on fast muscle recovery following nerve crush. The action of L-Dopa is attributed to noradrenaline, which acts through descending spinal noradrenergic pathways, possibly via a(2)-adrenergic receptors at the spinal level.
Collapse
Affiliation(s)
- Nikolaos Grigoriadis
- Laboratory of Experimental Physiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece.
| | | | | | | |
Collapse
|
15
|
Guertin PA. Synergistic activation of the central pattern generator for locomotion by l-beta-3,4-dihydroxyphenylalanine and quipazine in adult paraplegic mice. Neurosci Lett 2004; 358:71-4. [PMID: 15026151 DOI: 10.1016/j.neulet.2003.12.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 11/24/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
L-beta-3,4-Dihydroxyphenylalanine (L-DOPA) and quipazine, respectively dopamine/noradrenaline precursor and serotonergic (5-HT(2)) receptor agonist, were injected intraperitoneally in low-thoracic spinal mice at 7 days post-spinalization. In mice pre-treated with decarboxylase and monoamine oxydase inhibitors, L-DOPA (30-100 mg/kg) was found not to induce air-stepping. On the other hand, L-DOPA (40 mg/kg) consistently triggered locomotor-like movements if combined with low doses of quipazine (0.4-0.7 mg/kg) or if mice were placed on a motor-driven treadmill running at low speed. However, twitches, spasms, and other non-locomotor movements were also induced, especially on the treadmill. These results suggest that (1) spinal catecholaminergic and serotonergic receptors interact synergistically to generate locomotor-like movements in chronic spinal mice, and that (2) hindlimb afferent inputs associated with the treadmill conditions contribute to the genesis of locomotor-like and non-locomotor movements induced by these drugs.
Collapse
Affiliation(s)
- Pierre A Guertin
- Department of Anatomy and Physiology, Laval University, Neuroscience Research Center of Laval University Medical Center, Quebec City, Quebec, G1V4G2, Canada.
| |
Collapse
|
16
|
Abstract
The central pattern generators (CPGs) for locomotion, located in the lumbar spinal cord, are functional at birth in the rat. Their maturation occurs during the last few days preceding birth, a period during which the first projections from the brainstem start to reach the lumbar enlargement of the spinal cord. The goal of the present study was to investigate the effect of suppressing inputs from supraspinal structures on the CPGs, shortly after their formation. The spinal cord was transected at the thoracic level at birth [postnatal day 0 (P0)]. We examined during the first postnatal week the capacity of the CPGs to produce rhythmic motor activity in two complementary experimental conditions. Left and right ankle extensor muscles were recorded in vivo during airstepping, and lumbar ventral roots were recorded in vitro during pharmacologically evoked fictive locomotion. Mechanical stimulation of the tail elicited long-lasting sequences of airstepping in the spinal neonates and only a few steps in sham-operated rats. In vitro experiments made simultaneously on spinal and sham animals confirmed the increased excitability of the CPGs after spinalization. A left-right alternating locomotor pattern was observed at P1-P3. Both types of experiments showed that the pattern was disorganized at P6-P7, and that the left-right alternation was lost. Alternation was restored after the activation of serotonergic 5-HT(2) receptors in vivo. These results suggest that descending pathways, in particular serotonergic projections, control the strength of reciprocal inhibition and therefore shape the locomotor pattern in the neonatal rat.
Collapse
|
17
|
Pastor AM, Mentis GZ, De La Cruz RR, Díaz E, Navarrete R. Increased electrotonic coupling in spinal motoneurons after transient botulinum neurotoxin paralysis in the neonatal rat. J Neurophysiol 2003; 89:793-805. [PMID: 12574457 DOI: 10.1152/jn.00498.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effect of early postnatal blockade of neuromuscular transmission using botulinum neurotoxin (BoNT) type A on motoneuron gap junctional coupling was studied by means of intracellular recordings and biocytin labeling using the in vitro hemisected spinal cord preparation of neonatal rats. The somata of tibialis anterior (TA) motoneurons were retrogradely labeled at birth (P0) by intramuscular injection of fluorescent tracers. Two days later, BoNT was injected unilaterally into the TA muscle. The toxin blocked neuromuscular transmission for the period studied (P4-P7) as shown by tension recordings of the TA muscle. Retrograde horseradish peroxidase tracing in animals reared to adulthood demonstrated no significant cell death or changes in the soma size of BoNT-treated TA motoneurons. Intracellular recordings were carried out in prelabeled control and BoNT-treated TA motoneurons from P4 to P7. Graded stimulation of the ventral root at subthreshold intensities elicited short-latency depolarizing (SLD) potentials that consisted of several discrete components reflecting electrotonic coupling between two or more motoneurons. BoNT treatment produced a significant increase (67%) in the maximum amplitude of the SLD and in the number of SLD components as compared with control (3.1 +/- 1.7 vs. 1.4 +/- 0.7; means +/- SD). The morphological correlates of electrotonic coupling were investigated at the light microscope level by studying the transfer of biocytin to other motoneurons and the putative sites of gap junctional interaction. The dye-coupled neurons clustered around the injected cell with close somato-somatic, dendro-somatic and -dendritic appositions that might represent the sites of electrotonic coupling. The size of the motoneuron cluster was, on average, 2.2 times larger after BoNT treatment. Our findings demonstrate that a short-lasting functional disconnection of motoneurons from their target muscle delays motoneuron maturation by halting the elimination of gap junctional coupling that normally occurs during early postnatal development.
Collapse
Affiliation(s)
- Angel M Pastor
- Departamento de Fisiología y Zoología, Facultad de Biología, 41012-Sevilla, Spain.
| | | | | | | | | |
Collapse
|