1
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178:106173. [PMID: 35278625 DOI: 10.1016/j.phrs.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Emerging evidence indicates that HSP70 represents a key mechanism in the pathophysiology of β-cell dysfunction, insulin resistance, and various diabetic complications, including micro- and macro-vascular alterations, as well as impaired hemostasis. Hyperglycemia, a hallmark of both types of diabetes, increases the circulating levels of HSP70 (eHSP70), but there is still divergence about whether diabetes up- or down-regulates the intracellular fraction of this protein (iHSP70). Here, we consider that iHSP70 levels reduce in diabetic arterial structures and that the vascular system is in direct contact with all other systems in the body suggesting that a systemic response might also be happening for iHSP70, which is characterized by decreased levels of HSP70 in the vasculature. Furthermore, although many pathways have been proposed to explain HSP70's functions in diabetes, and organs/tissues/cells-specific variations occur, the membrane-bound receptor of the innate immune system, Toll-like receptor 4, and its downstream signal transduction pathways appear to be a constant, not only when we explore the actions of eHSP70, but also when we assess the contributions of iHSP70. In this review, we focus on discussing the multiple roles of HSP70 across organs/tissues/cells affected by hyperglycemia to further explore the possibility of targeting this protein with pharmacological and non-pharmacological approaches in the context of diabetes.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Valentina Ochoa Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Swasti Rastogi
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
3
|
Gurkan G, Erdogan MA, Yigitturk G, Erbas O. The Restorative Effect of Gallic Acid on the Experimental Sciatic Nerve Damage Model. J Korean Neurosurg Soc 2021; 64:873-881. [PMID: 34376039 PMCID: PMC8590909 DOI: 10.3340/jkns.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Peripheral nerve injuries occur mostly as a result of mechanical trauma. Due to the microvascular deterioration in peripheral nerve damage, it becomes challenging to remove free oxygen radicals. Gallic acid is a powerful antioxidant with anti-inflammatory effects and a free radical scavenger. The purpose of the study is to show that gallic acid contributes to the restorative effect in mechanical nerve damage, considering its antioxidant and anti-inflammatory effects.
Methods Thirty male Sprague Dawley albino mature rats were included in the study. Ten of them constituted the control group, 10 out of 20 rats for which sciatic nerve damage was caused, constituted the saline group, and 10 formed the gallic acid group. Post-treatment motor functions, histological, immunohistochemical, and biochemical parameters of the rats were evaluated.
Results Compared to the surgery+saline group, lower compound muscle action potential (CMAP) latency, higher CMAP amplitude, and higher inclined plane test values were found in the surgery+gallic acid group. Similarly, a higher nerve growth factor (NGF) percentage, a higher number of axons, and a lower percentage of fibrosis scores were observed in the surgery+gallic acid group. Finally, lower tissue malondialdehyde (MDA) and higher heat shock protein-70 (HSP-70) values were determined in the surgery+gallic acid group.
Conclusion Gallic acid positively affects peripheral nerve injury healing due to its anti-inflammatory and antioxidant effects. It has been thought that gallic acid can be used as a supportive treatment in peripheral nerve damage.
Collapse
Affiliation(s)
- Gokhan Gurkan
- Department of Neurosurgery, Katip Celebi University Atatürk Training and Research Hospital, Izmir, Turkey
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Katip Celebi University, Izmir, Turkey
| | - Gurkan Yigitturk
- Department of Histology, Faculty of Medicine, Sitki Kocman University, Mugla, Turkey
| | - Oytun Erbas
- Department of Physiology, Istanbul Bilim University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Hergesheimer R, Lanznaster D, Vourc’h P, Andres C, Bakkouche S, Beltran S, Blasco H, Corcia P, Couratier P. Advances in disease-modifying pharmacotherapies for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother 2020; 21:1103-1110. [DOI: 10.1080/14656566.2020.1746270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- R Hergesheimer
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
| | - D Lanznaster
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
| | - P Vourc’h
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
- CHU De Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| | - Cr Andres
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
- CHU De Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| | - Se Bakkouche
- CHU de Tours, Service de Neurologie, Tours, France
| | - S Beltran
- CHU de Tours, Service de Neurologie, Tours, France
| | - H Blasco
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
- CHU De Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| | - P Corcia
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
- CHU de Tours, Service de Neurologie, Tours, France
| | - P Couratier
- CHU Limoges, Service de Neurologie, Centre Expert ALS, Limoges, France
| |
Collapse
|
5
|
Dukay B, Csoboz B, Tóth ME. Heat-Shock Proteins in Neuroinflammation. Front Pharmacol 2019; 10:920. [PMID: 31507418 PMCID: PMC6718606 DOI: 10.3389/fphar.2019.00920] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The heat-shock response, one of the main pro-survival mechanisms of a living organism, has evolved as the biochemical response of cells to cope with heat stress. The most well-characterized aspect of the heat-shock response is the accumulation of a conserved set of proteins termed heat-shock proteins (HSPs). HSPs are key players in protein homeostasis acting as chaperones by aiding the folding and assembly of nascent proteins and protecting against protein aggregation. HSPs have been associated with neurological diseases in the context of their chaperone activity, as they were found to suppress the aggregation of misfolded toxic proteins. In recent times, HSPs have proven to have functions apart from the classical molecular chaperoning in that they play a role in a wider scale of neurological disorders by modulating neuronal survival, inflammation, and disease-specific signaling processes. HSPs are gaining importance based on their ability to fine-tune inflammation and act as immune modulators in various bodily fluids. However, their effect on neuroinflammation processes is not yet fully understood. In this review, we summarize the role of neuroinflammation in acute and chronic pathological conditions affecting the brain. Moreover, we seek to explore the existing literature on HSP-mediated inflammatory function within the central nervous system and compare the function of these proteins when they are localized intracellularly compared to being present in the extracellular milieu.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
6
|
Benatar M, Wuu J, Andersen PM, Atassi N, David W, Cudkowicz M, Schoenfeld D. Randomized, double-blind, placebo-controlled trial of arimoclomol in rapidly progressive SOD1 ALS. Neurology 2018; 90:e565-e574. [PMID: 29367439 PMCID: PMC5818014 DOI: 10.1212/wnl.0000000000004960] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023] Open
Abstract
Objective To examine the safety and tolerability as well as the preliminary efficacy of arimoclomol, a heat shock protein co-inducer that promotes nascent protein folding, in patients with rapidly progressive SOD1 amyotrophic lateral sclerosis (ALS). Methods This was a double-blind, placebo-controlled trial in which patients with rapidly progressive SOD1-mutant ALS were randomized 1:1 to receive arimoclomol 200 mg tid or matching placebo for up to 12 months. Study procedures were performed using a mix of in-person and remote assessments. Primary outcome was safety and tolerability. Secondary outcome was efficacy, with survival as the principal measure. Additional efficacy measures were the rates of decline of the Revised ALS Functional Rating Scale (ALSFRS-R) and percent predicted forced expiratory volume in 6 seconds (FEV6), and the Combined Assessment of Function and Survival (CAFS). Results Thirty-eight participants were randomized. Thirty-six (19 placebo, 17 arimoclomol) were included in the prespecified intent-to-treat analysis. Apart from respiratory function, groups were generally well-balanced at baseline. Adverse events occurred infrequently, and were usually mild and deemed unlikely or not related to study drug. Adjusting for riluzole and baseline ALSFRS-R, survival favored arimoclomol with a hazard ratio of 0.77 (95% confidence interval [CI] 0.32–1.80). ALSFRS-R and FEV6 declined more slowly in the arimoclomol group, with treatment differences of 0.5 point/month (95% CI −0.63 to 1.63) and 1.24 percent predicted/month (95% CI −2.77 to 5.25), respectively, and the CAFS similarly favored arimoclomol. Conclusions This study provides Class II evidence that arimoclomol is safe and well-tolerated at a dosage of 200 mg tid for up to 12 months. Although not powered for therapeutic effect, the consistency of results across the range of prespecified efficacy outcome measures suggests a possible therapeutic benefit of arimoclomol. Clinicaltrials.gov identifier NCT00706147. Classification of evidence This study provides Class II evidence that arimoclomol is safe and well-tolerated at a dosage of 200 mg tid for up to 12 months. The study lacked the precision to conclude, or to exclude, an important therapeutic benefit of arimoclomol.
Collapse
Affiliation(s)
- Michael Benatar
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA.
| | - Joanne Wuu
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - Peter M Andersen
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - Nazem Atassi
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - William David
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - Merit Cudkowicz
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| | - David Schoenfeld
- From the Department of Neurology (M.B., J.W.), University of Miami, FL; Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden; Department of Neurology (N.A., W.D., M.C.), Massachusetts General Hospital (D.S.), Harvard Medical School; and Department of Biostatistics (D.S.), Harvard Chan School of Public Health, Boston, MA
| |
Collapse
|
7
|
Kirkegaard T, Gray J, Priestman DA, Wallom KL, Atkins J, Olsen OD, Klein A, Drndarski S, Petersen NHT, Ingemann L, Smith DA, Morris L, Bornæs C, Jørgensen SH, Williams I, Hinsby A, Arenz C, Begley D, Jäättelä M, Platt FM. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med 2017; 8:355ra118. [PMID: 27605553 DOI: 10.1126/scitranslmed.aad9823] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla(-/-)), Sandhoff disease (Hexb(-/-)), and Niemann-Pick disease type C (Npc1(-/-)) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb(-/-) and Npc1(-/-) mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein-based therapies merit clinical evaluation for treating LSDs.
Collapse
Affiliation(s)
| | - James Gray
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Jennifer Atkins
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Ole Dines Olsen
- Orphazyme ApS, Copenhagen, Denmark. Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Alexander Klein
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Ian Williams
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | - Christoph Arenz
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Begley
- Institute of Pharmaceutical Science, King's College London, London, U.K
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, U.K
| |
Collapse
|
8
|
Ousman SS, Frederick A, Lim EMF. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury. Front Neurosci 2017; 11:79. [PMID: 28270745 PMCID: PMC5318438 DOI: 10.3389/fnins.2017.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.
Collapse
Affiliation(s)
- Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Ariana Frederick
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Erin-Mai F Lim
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
9
|
Ahmed M, Machado PM, Miller A, Spicer C, Herbelin L, He J, Noel J, Wang Y, McVey AL, Pasnoor M, Gallagher P, Statland J, Lu CH, Kalmar B, Brady S, Sethi H, Samandouras G, Parton M, Holton JL, Weston A, Collinson L, Taylor JP, Schiavo G, Hanna MG, Barohn RJ, Dimachkie MM, Greensmith L. Targeting protein homeostasis in sporadic inclusion body myositis. Sci Transl Med 2016; 8:331ra41. [PMID: 27009270 PMCID: PMC5043094 DOI: 10.1126/scitranslmed.aad4583] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 11/02/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is the commonest severe myopathy in patients more than 50 years of age. Previous therapeutic trials have targeted the inflammatory features of sIBM but all have failed. Because protein dyshomeostasis may also play a role in sIBM, we tested the effects of targeting this feature of the disease. Using rat myoblast cultures, we found that up-regulation of the heat shock response with arimoclomol reduced key pathological markers of sIBM in vitro. Furthermore, in mutant valosin-containing protein (VCP) mice, which develop an inclusion body myopathy, treatment with arimoclomol ameliorated disease pathology and improved muscle function. We therefore evaluated arimoclomol in an investigator-led, randomized, double-blind, placebo-controlled, proof-of-concept trial in sIBM patients and showed that arimoclomol was safe and well tolerated. Although arimoclomol improved some IBM-like pathology in the mutant VCP mouse, we did not see statistically significant evidence of efficacy in the proof-of-concept patient trial.
Collapse
Affiliation(s)
- Mhoriam Ahmed
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Pedro M Machado
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Adrian Miller
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Charlotte Spicer
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Laura Herbelin
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Jianghua He
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Janelle Noel
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yunxia Wang
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - April L McVey
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Philip Gallagher
- Department of Health, Sport, and Exercise Science, The University of Kansas, Lawrence, KS 66045-7567, USA
| | - Jeffrey Statland
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Ching-Hua Lu
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Bernadett Kalmar
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stefen Brady
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Huma Sethi
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, UCL Hospitals, Queen Square, London WC1N 3BG, UK
| | - George Samandouras
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, UCL Hospitals, Queen Square, London WC1N 3BG, UK
| | - Matt Parton
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Janice L Holton
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Anne Weston
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Lucy Collinson
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - J Paul Taylor
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Giampietro Schiavo
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael G Hanna
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA.
| | - Linda Greensmith
- Medical Research Council (MRC) Centre for Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London WC1N 3BG, UK. Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
10
|
Shabbir A, Bianchetti E, Cargonja R, Petrovic A, Mladinic M, Pilipović K, Nistri A. Role of HSP70 in motoneuron survival after excitotoxic stress in a rat spinal cord injury modelin vitro. Eur J Neurosci 2015; 42:3054-65. [DOI: 10.1111/ejn.13108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Ayisha Shabbir
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| | - Elena Bianchetti
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| | - Renato Cargonja
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Antonela Petrovic
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Miranda Mladinic
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Kristina Pilipović
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| | - Andrea Nistri
- Neuroscience Department; Scuola Internazionale Superiore di Studi Avanzati (SISSA); Via Bonomea 265 34136 Trieste Italy
| |
Collapse
|
11
|
Li X, Liu H, Fischhaber PL, Tang TS. Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog Neurobiol 2015; 132:34-58. [PMID: 26123252 DOI: 10.1016/j.pneurobio.2015.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Machado-Joseph disease (MJD, also known as spinocerebellar ataxia type 3, SCA3), an autosomal dominant neurological disorder, is caused by an abnormal expanded polyglutamine (polyQ) repeat in the ataxin-3 protein. The length of the expanded polyQ stretch correlates positively with the severity of the disease and inversely with the age at onset. To date, we cannot fully explain the mechanism underlying neurobiological abnormalities of this disease. Yet, accumulating reports have demonstrated the functions of ataxin-3 protein in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, all of which suggest a role of ataxin-3 in the clearance of misfolded proteins. Notably, the SCA3 pathogenic form of ataxin-3 (ataxin-3(exp)) impairs the misfolded protein clearance via mechanisms that are either dependent or independent of its deubiquitinase (DUB) activity, resulting in the accumulation of misfolded proteins and the progressive loss of neurons in SCA3. Some drugs, which have been used as activators/inducers in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, have been demonstrated to be efficacious in the relief of neurodegeneration diseases like Huntington's disease (HD), Parkinson's (PD), Alzheimer's (AD) as well as SCA3 in animal models and clinical trials, putting misfolded protein clearance on the list of potential therapeutic targets. Here, we undertake a comprehensive review of the progress in understanding the physiological functions of ataxin-3 in misfolded protein clearance and how the polyQ expansion impairs misfolded protein clearance. We then detail the preclinical studies targeting the elimination of misfolded proteins for SCA3 treatment. We close with future considerations for translating these pre-clinical results into therapies for SCA3 patients.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paula L Fischhaber
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Li YQ, Tang Y, Fu R, Meng QH, Zhou X, Ling ZM, Cheng X, Tian SW, Wang GJ, Liu XG, Zhou LH. Efficient labeling in vitro with non-ionic gadolinium magnetic resonance imaging contrast agent and fluorescent transfection agent in bone marrow stromal cells of neonatal rats. Mol Med Rep 2015; 12:913-20. [PMID: 25816076 PMCID: PMC4438951 DOI: 10.3892/mmr.2015.3532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/26/2015] [Indexed: 12/15/2022] Open
Abstract
Although studies have been undertaken on gadolinium labeling-based molecular imaging in magnetic resonance imaging (MRI), the use of non-ionic gadolinium in the tracking of stem cells remains uncommon. To investigate the efficiency in tracking of stem cells with non-ionic gadolinium as an MRI contrast agent, a rhodamine-conjugated fluorescent reagent was used to label bone marrow stromal cells (BMSCs) of neonatal rats in vitro, and MRI scanning was undertaken. The fluorescent-conjugated cell uptake reagents were able to deliver gadodiamide into BMSCs, and cell uptake was verified using flow cytometry. In addition, the labeled stem cells with paramagnetic contrast medium remained detectable by an MRI monitor for a minimum of 28 days. The present study suggested that this method can be applied efficiently and safely for the labeling and tracking of bone marrow stromal cells in neonatal rats.
Collapse
Affiliation(s)
- Ying-Qin Li
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ying Tang
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Rao Fu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qiu-Hua Meng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ze-Min Ling
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao Cheng
- Department of Encephalopathy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Su-Wei Tian
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat‑sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Guo-Jie Wang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat‑sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Xue-Guo Liu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat‑sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Li-Hua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
13
|
Kemp SWP, Szynkaruk M, Stanoulis KN, Wood MD, Liu EH, Willand MP, Morlock L, Naidoo J, Williams NS, Ready JM, Mangano TJ, Beggs S, Salter MW, Gordon T, Pieper AA, Borschel GH. Pharmacologic rescue of motor and sensory function by the neuroprotective compound P7C3 following neonatal nerve injury. Neuroscience 2014; 284:202-216. [PMID: 25313000 DOI: 10.1016/j.neuroscience.2014.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022]
Abstract
Nerve injuries cause pain, paralysis and numbness that can lead to major disability, and newborns often sustain nerve injuries during delivery that result in lifelong impairment. Without a pharmacologic agent to enhance functional recovery from these injuries, clinicians rely solely on surgery and rehabilitation to treat patients. Unfortunately, patient outcomes remain poor despite application of the most advanced microsurgical and rehabilitative techniques. We hypothesized that the detrimental effects of traumatic neonatal nerve injury could be mitigated with pharmacologic neuroprotection, and tested whether the novel neuroprotective agent P7C3 would block peripheral neuron cell death and enhance functional recovery in a rat neonatal nerve injury model. Administration of P7C3 after sciatic nerve crush injury doubled motor and sensory neuron survival, and also promoted axon regeneration in a dose-dependent manner. Treatment with P7C3 also enhanced behavioral and muscle functional recovery, and reversed pathological mobilization of spinal microglia after injury. Our findings suggest that the P7C3 family of neuroprotective compounds may provide a basis for the development of a new neuroprotective drug to enhance recovery following peripheral nerve injury.
Collapse
Affiliation(s)
- S W P Kemp
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada.
| | - M Szynkaruk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - K N Stanoulis
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - M D Wood
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - E H Liu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - M P Willand
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - L Morlock
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - J Naidoo
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - N S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - J M Ready
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - T J Mangano
- Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - S Beggs
- The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - M W Salter
- The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - T Gordon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - A A Pieper
- Departments of Psychiatry, Neurology and Veterans Affairs, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - G H Borschel
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada; University of Toronto, Department of Surgery and Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada.
| |
Collapse
|
14
|
Goyal NA, Mozaffar T. Experimental trials in amyotrophic lateral sclerosis: a review of recently completed, ongoing and planned trials using existing and novel drugs. Expert Opin Investig Drugs 2014; 23:1541-51. [DOI: 10.1517/13543784.2014.933807] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Parfitt DA, Aguila M, McCulley CH, Bevilacqua D, Mendes HF, Athanasiou D, Novoselov SS, Kanuga N, Munro PM, Coffey PJ, Kalmar B, Greensmith L, Cheetham ME. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death Dis 2014; 5:e1236. [PMID: 24853414 PMCID: PMC4047904 DOI: 10.1038/cddis.2014.214] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023]
Abstract
Retinitis pigmentosa (RP) is a group of inherited diseases that cause blindness due to the progressive death of rod and cone photoreceptors in the retina. There are currently no effective treatments for RP. Inherited mutations in rhodopsin, the light-sensing protein of rod photoreceptor cells, are the most common cause of autosomal-dominant RP. The majority of mutations in rhodopsin, including the common P23H substitution, lead to protein misfolding, which is a feature in many neurodegenerative disorders. Previous studies have shown that upregulating molecular chaperone expression can delay disease progression in models of neurodegeneration. Here, we have explored the potential of the heat-shock protein co-inducer arimoclomol to ameliorate rhodopsin RP. In a cell model of P23H rod opsin RP, arimoclomol reduced P23H rod opsin aggregation and improved viability of mutant rhodopsin-expressing cells. In P23H rhodopsin transgenic rat models, pharmacological potentiation of the stress response with arimoclomol improved electroretinogram responses and prolonged photoreceptor survival, as assessed by measuring outer nuclear layer thickness in the retina. Furthermore, treated animal retinae showed improved photoreceptor outer segment structure and reduced rhodopsin aggregation compared with vehicle-treated controls. The heat-shock response (HSR) was activated in P23H retinae, and this was enhanced with arimoclomol treatment. Furthermore, the unfolded protein response (UPR), which is induced in P23H transgenic rats, was also enhanced in the retinae of arimoclomol-treated animals, suggesting that arimoclomol can potentiate the UPR as well as the HSR. These data suggest that pharmacological enhancement of cellular stress responses may be a potential treatment for rhodopsin RP and that arimoclomol could benefit diseases where ER stress is a factor.
Collapse
Affiliation(s)
- D A Parfitt
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - M Aguila
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - C H McCulley
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Bevilacqua
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - H F Mendes
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Athanasiou
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - S S Novoselov
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - N Kanuga
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - P M Munro
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - P J Coffey
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - B Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - L Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - M E Cheetham
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
16
|
The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. Pharmacol Ther 2014; 141:40-54. [DOI: 10.1016/j.pharmthera.2013.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
|
17
|
Ohlsson M, Nieto JH, Christe KL, Havton LA. Long-term effects of a lumbosacral ventral root avulsion injury on axotomized motor neurons and avulsed ventral roots in a non-human primate model of cauda equina injury. Neuroscience 2013; 250:129-39. [PMID: 23830908 DOI: 10.1016/j.neuroscience.2013.06.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 12/27/2022]
Abstract
Here, we have translated from the rat to the non-human primate a unilateral lumbosacral injury as a model for cauda equina injury. In this morphological study, we have investigated retrograde effects of a unilateral L6-S2 ventral root avulsion (VRA) injury as well as the long-term effects of Wallerian degeneration on avulsed ventral roots at 6-10 months post-operatively in four adult male rhesus monkeys. Immunohistochemistry for choline acetyl transferase and glial fibrillary acidic protein demonstrated a significant loss of the majority of the axotomized motoneurons in the affected L6-S2 segments and signs of an associated astrocytic glial response within the ventral horn of the L6 and S1 spinal cord segments. Quantitative analysis of the avulsed ventral roots showed that they exhibited normal size and were populated by a normal number of myelinated axons. However, the myelinated axons in the avulsed ventral roots were markedly smaller in caliber compared to the fibers of the intact contralateral ventral roots, which served as controls. Ultrastructural studies confirmed the presence of small myelinated axons and a population of unmyelinated axons within the avulsed roots. In addition, collagen fibers were readily identified within the endoneurium of the avulsed roots. In summary, a lumbosacral VRA injury resulted in retrograde motoneuron loss and astrocytic glial activation in the ventral horn. Surprisingly, the Wallerian degeneration of motor axons in the avulsed ventral roots was followed by a repopulation of the avulsed roots by small myelinated and unmyelinated fibers. We speculate that the small axons may represent sprouting or axonal regeneration by primary afferents or autonomic fibers.
Collapse
Affiliation(s)
- M Ohlsson
- Department of Clinical Neuroscience, Division of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Anesthesiology & Perioperative Care, University of California at Irvine, Irvine, CA, USA
| | | | | | | |
Collapse
|
18
|
Barbizan R, Castro MV, Rodrigues AC, Barraviera B, Ferreira RS, Oliveira ALR. Motor recovery and synaptic preservation after ventral root avulsion and repair with a fibrin sealant derived from snake venom. PLoS One 2013; 8:e63260. [PMID: 23667596 PMCID: PMC3646764 DOI: 10.1371/journal.pone.0063260] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/01/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation. METHODOLOGY/PRINCIPAL FINDINGS Female Lewis rats (7 weeks old) were subjected to VRA and root replantation. The animals were divided into two groups: 1) avulsion only and 2) replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera). Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group. CONCLUSIONS/SIGNIFICANCE In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the astroglial reaction and increased mRNA levels to neurotrophins and anti-inflammatory cytokines that may in turn, contribute to improving recovery of motor function.
Collapse
Affiliation(s)
- Roberta Barbizan
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Anatomy, Campinas, Brazil
| | - Mateus V. Castro
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Anatomy, Campinas, Brazil
| | | | | | | | - Alexandre L. R. Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Anatomy, Campinas, Brazil
| |
Collapse
|
19
|
Hwang CS, Liu GT, Chang MDT, Liao IL, Chang HT. Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis. Neurobiol Dis 2013; 58:13-8. [PMID: 23639787 DOI: 10.1016/j.nbd.2013.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/20/2013] [Accepted: 04/09/2013] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complicate and progressive onset devastating neurodegenerative disease. Its pathogenic mechanisms remain unclear and there is no specific test for diagnosis. For years, researchers have been vigorously searching for biomarkers associated with ALS to assist clinical diagnosis and monitor disease progression. Some specific inflammatory processes in the central nervous system have been reported to participate in the pathogenesis of ALS. As high mobility group box 1 (HMGB1) is elevated in spinal cord tissues of patients with ALS, we hypothesized, therefore, that serum autoantibody against HMGB1 (HMGB1 autoAb) might represent an effective biomarker for ALS. Patients with ALS, Alzheimer's disease, Parkinson's disease, and healthy age-matched control subjects were recruited for this study. ALS group consisted of 61 subjects, the other groups each consisted of forty subjects. We generated a polyclonal antibody against HMGB1 and developed an ELISA-based methodology for screening serum samples of these subjects. All samples were coded for masked comparison. For statistic analyses, two-tailed Student's t-test, ANOVA, Bonferroni multiple comparison test, Spearman correlation, and receiver operating characteristic curve were applied. We discovered that the level of HMGB1 autoAb significantly increased in patients with ALS as compared with that of patients with Alzheimer's disease, Parkinson's disease, and healthy control subjects. The differences between all groups were robust even at the early stages of ALS progression. More importantly, higher HMGB1 autoAb level was found in more severe disease status with significant correlation. Our study demonstrates that serum HMGB1 autoAb may serve as a biomarker for the diagnosis of ALS and can be used to monitor disease progression.
Collapse
Affiliation(s)
- Chi-Shin Hwang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
20
|
Kalmar B, Edet-Amana E, Greensmith L. Treatment with a coinducer of the heat shock response delays muscle denervation in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2012; 13:378-92. [DOI: 10.3109/17482968.2012.660953] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Kim HJ, Jung JI, Kim Y, Lee JS, Yoon YW, Kim J. Loss of hsp70.1 Decreases Functional Motor Recovery after Spinal Cord Injury in Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:157-61. [PMID: 20631888 DOI: 10.4196/kjpp.2010.14.3.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 01/30/2023]
Abstract
Heat shock proteins (HSPs) are specifically induced by various forms of stress. Hsp70.1, a member of the hsp70 family is known to play an important role in cytoprotection from stressful insults. However, the functional role of Hsp70 in motor function after spinal cord injury (SCI) is still unclear. To study the role of hsp70.1 in motor recovery following SCI, we assessed locomotor function in hsp70.1 knockout (KO) mice and their wild-type (WT) mice via the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, before and after spinal hemisection at T13 level. We also examined lesion size in the spinal cord using Luxol fast blue/cresyl violet staining. One day after injury, KO and WT mice showed no significant difference in the motor function due to complete paralysis following spinal hemisection. However, when it compared to WT mice, KO mice had significantly delayed and decreased functional outcomes from 4 days up to 21 days after SCI. KO mice also showed significantly greater lesion size in the spinal cord than WT mice showed at 21 days after spinal hemisection. These results suggest that Hsp70 has a protective effect against traumatic SCI and the manipulation of the hsp70.1 gene may help improve the recovery of motor function, thereby enhancing neuroprotection after SCI.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Dental Anesthesiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-744, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Lanka V, Wieland S, Barber J, Cudkowicz M. Arimoclomol: a potential therapy under development for ALS. Expert Opin Investig Drugs 2009; 18:1907-18. [DOI: 10.1517/13543780903357486] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Benedetto A, Au C, Aschner M. Manganese-Induced Dopaminergic Neurodegeneration: Insights into Mechanisms and Genetics Shared with Parkinson’s Disease. Chem Rev 2009; 109:4862-84. [DOI: 10.1021/cr800536y] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexandre Benedetto
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Catherine Au
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Michael Aschner
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| |
Collapse
|
24
|
Abstract
BACKGROUND The 90-kDa heat-shock proteins (Hsp90) have rapidly evolved into promising therapeutic targets for the treatment of several diseases, including cancer and neurodegenerative diseases. Hsp90 is a molecular chaperone that aids in the conformational maturation of nascent polypeptides, as well as the rematuration of denatured proteins. DISCUSSION Many of the Hsp90-dependent client proteins are associated with cellular growth and survival and, consequently, inhibition of Hsp90 represents a promising approach for the treatment of cancer. Conversely, stimulation of heat-shock protein levels has potential therapeutic applications for the treatment of neurodegenerative diseases that result from misfolded and aggregated proteins. CONCLUSION Hsp90 modulation exhibits the potential to treat unrelated disease states, from cancer to neurodegenerative diseases, and, thus, to fold or not to fold, becomes a question of great value.
Collapse
Affiliation(s)
- Laura B Peterson
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KA 66045-7563, USA.
| | | |
Collapse
|
25
|
Kalmar B, Greensmith L. Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects. Cell Mol Biol Lett 2009; 14:319-35. [PMID: 19183864 PMCID: PMC6275696 DOI: 10.2478/s11658-009-0002-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 01/05/2009] [Indexed: 01/29/2023] Open
Abstract
Pharmacological up-regulation of heat shock proteins (hsps) rescues motoneurons from cell death in a mouse model of amyotrophic lateral sclerosis. However, the relationship between increased hsp expression and neuronal survival is not straightforward. Here we examined the effects of two pharmacological agents that induce the heat shock response via activation of HSF-1, on stressed primary motoneurons in culture. Although both arimoclomol and celastrol induced the expression of Hsp70, their effects on primary motoneurons in culture were significantly different. Whereas arimoclomol had survival-promoting effects, rescuing motoneurons from staurosporin and H(2)O(2) induced apoptosis, celastrol not only failed to protect stressed motoneurons from apoptosis under same experimental conditions, but was neurotoxic and induced neuronal death. Immunostaining of celastrol-treated cultures for hsp70 and activated caspase-3 revealed that celastrol treatment activates both the heat shock response and the apoptotic cell death cascade. These results indicate that not all agents that activate the heat shock response will necessarily be neuroprotective.
Collapse
Affiliation(s)
- Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
26
|
Ayala GX, Tapia R. HSP70 expression protects against hippocampal neurodegeneration induced by endogenous glutamate in vivo. Neuropharmacology 2008; 55:1383-90. [DOI: 10.1016/j.neuropharm.2008.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/29/2022]
|
27
|
Kalmar B, Novoselov S, Gray A, Cheetham ME, Margulis B, Greensmith L. Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem 2008; 107:339-50. [PMID: 18673445 DOI: 10.1111/j.1471-4159.2008.05595.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motoneuron degeneration, resulting in muscle paralysis and death, typically within 1-5 years of diagnosis. Although the pathogenesis of ALS remains unclear, there is evidence for the involvement of proteasome dysfunction and heat shock proteins in the disease. We have previously shown that treatment with a co-inducer of the heat shock response called arimoclomol is effective in the SOD(G93A) mouse model of ALS, delaying disease progression and extending the lifespan of SOD(G93A) mice (Kieran et al. 2004). However, this previous study only examined the effects arimoclomol when treatment was initiated in pre- or early symptomatic stages of the disease. Clearly, to be of benefit to the majority of ALS patients, any therapy must be effective after symptom onset. In order to establish whether post-symptomatic treatment with arimoclomol is effective, in this study we carried out a systematic assessment of different treatment regimes in SOD(G93A) mice. Treatment with arimoclomol from early (75 days) or late (90 days) symptomatic stages significantly improved muscle function. Treatment from 75 days also significantly increased the lifespan of SOD(G93A) mice, although treatment from 90 days has no significant effect on lifespan. The mechanism of action of arimoclomol involves potentiation of the heat shock response, and treatment with arimoclomol increased Hsp70 expression. Interestingly, this up-regulation in Hsp70 was accompanied by a decrease in the number of ubiquitin-positive aggregates in the spinal cord of treated SOD(G93A) mice, suggesting that arimoclomol directly effects protein aggregation and degradation.
Collapse
Affiliation(s)
- Bernadett Kalmar
- Institute of Neurology, University College London, Queen Square, London, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Cudkowicz ME, Shefner JM, Simpson E, Grasso D, Yu H, Zhang H, Shui A, Schoenfeld D, Brown RH, Wieland S, Barber JR. Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle Nerve 2008; 38:837-44. [PMID: 18551622 DOI: 10.1002/mus.21059] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Arimoclomol is an investigational drug for amyotrophic lateral sclerosis (ALS) that amplifies heat shock protein gene expression during cell stress. The objectives of the present study were to assess the safety, tolerability, and pharmacokinetics of arimoclomol in ALS. Eighty-four participants with ALS received arimoclomol at one of three oral doses (25, 50, or 100 mg three times daily) or placebo. The primary outcome measure was safety and tolerability. A subset of 44 participants provided serum and cerebrospinal fluid (CSF) samples for pharmacokinetic analysis. Participants who completed 12 weeks of treatment could enroll in a 6-month open-label study. Arimoclomol at doses up to 300 mg/day was well tolerated and safe. Arimoclomol resulted in dose-linear pharmacologic exposures and the half-life did not change with continued treatment. Arimoclomol CSF levels increased with dose. Arimoclomol was shown to be safe, and it crosses the blood-brain barrier. Serum pharmacokinetic profiles support dosing of three times per day. An efficacy study in ALS is planned.
Collapse
Affiliation(s)
- Merit E Cudkowicz
- Neurology Clinical Trials Unit, Massachusetts General Hospital, 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim SJ, Kim YJ, Park KH. Neuroprotective effect of transpupillary thermotherapy in the optic nerve crush model of the rat. Eye (Lond) 2008; 23:727-33. [DOI: 10.1038/eye.2008.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
30
|
Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE. Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol 2007; 67:1815-29. [PMID: 17701989 DOI: 10.1002/dneu.20559] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to mount a successful stress response in the face of injury is critical to the long-term viability of individual cells and to the organism in general. The stress response, characterized in part by the upregulation of heat shock proteins, is compromised in several neurodegenerative disorders and in some neuronal populations, including motoneurons (MNs). Because astrocytes have a greater capacity than neurons to survive metabolic stress, and because they are intimately associated with the regulation of neuronal function, it is important to understand their stress response, so that we may to better appreciate the impact of stress on neuronal viability during injury or disease. We show that astrocytes subjected to hyperthermia upregulate Hsp/c70 in addition to intracellular signaling components including activated forms of extracellular-signal-regulated kinase (ERK1/2), Akt, and c-jun N-terminal kinase/stress activated protein kinase (JNK/SAPK). Furthermore, astrocytes release increasing amounts of Hsp/c70 into the extracellular environment following stress, an event that is abrogated when signaling through the ERK1/2 and phosphatidylinositol-3 kinase (PI3K) pathways is compromised and enhanced by inhibition of the JNK pathway. Last, we show that the Hsp/c70 is released from astrocytes in exosomes. Together, these data illustrate the diverse regulation of stress-induced Hsp/c70 release in exosomes, and the way in which the balance of activated signal transduction pathways affects this release. These data highlight how stressful insults can alter the microenvironment of an astrocyte, which may ultimately have implications for the survival of neighboring neurons.
Collapse
Affiliation(s)
- Anna R Taylor
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
31
|
SREEDHAR AMERES. Hyperthermia and Pharmacological Intervention of Heat Shock Proteins in Anticancer Treatments. ACTA ACUST UNITED AC 2006. [DOI: 10.3191/thermalmedicine.22.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Abstract
Life presents a continuous series of stresses. Increasing the adaptation capacity of the organism is a long-term survival factor of various organisms and has become an attractive field of intensive therapeutic research. Induction of the heat shock response promotes survival after a wide variety of environmental stresses. Preclinical studies have proven that physiological and pharmacological chaperone inducers and co-inducers are an efficient therapeutic approach in different acute and chronic diseases. In this chapter, we summarize current knowledge of the current state of chaperone modulation and give a comprehensive list of the main drug candidates.
Collapse
Affiliation(s)
- C Soti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
33
|
Ayala GX, Tapia R. LateN-methyl-d-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Eur J Neurosci 2005; 22:3067-76. [PMID: 16367773 DOI: 10.1111/j.1460-9568.2005.04509.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intrahippocampal perfusion of 4-aminopyridine (4-AP) in the rat produces immediate seizures and delayed neuronal death, due to the overactivation of N-methyl-D-aspartate (NMDA) receptors by endogenous glutamate released from nerve endings. With the same time course, 4-AP also induces the expression of the cell stress marker heat shock protein 70 (HSP70) in the contralateral non-damaged hippocampus. We have used this experimental model to study the mechanisms of the delayed neuronal stress and death. The NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801), administered intraperitoneally 30 or 60 but not 120 min after 4-AP perfusion, when animals show intense electroencephalography epileptiform activity, prevented the delayed neurodegeneration whereas the seizures continued for about 3 h as in the control animals. With an identical time window, MK-801 treatment also modified the pattern of HSP70 expression; the protein was expressed in the protected perfused hippocampus but no longer in the undamaged contralateral hippocampus. The possible role of Ca2+ in the delayed cell death and HSP70 expression was also studied by coperfusing the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) with 4-AP. This treatment resulted in protective and HSP70 effects very similar to those of MK-801. These results suggest that the seizures are not linked to neurodegeneration and that NMDA receptors need to be continuously overactivated by endogenous glutamate for at least 60 min in order to induce delayed neuronal stress and death, which are dependent on Ca2+ entry through the NMDA receptor channel.
Collapse
Affiliation(s)
- Gabriela X Ayala
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, DF, México
| | | |
Collapse
|
34
|
Sõti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005; 146:769-80. [PMID: 16170327 PMCID: PMC1751210 DOI: 10.1038/sj.bjp.0706396] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/03/2005] [Accepted: 08/15/2005] [Indexed: 12/31/2022] Open
Abstract
Chaperones (stress proteins) are essential proteins to help the formation and maintenance of the proper conformation of other proteins and to promote cell survival after a large variety of environmental stresses. Therefore, normal chaperone function is a key factor for endogenous stress adaptation of several tissues. However, altered chaperone function has been associated with the development of several diseases; therefore, modulators of chaperone activities became a new and emerging field of drug development. Inhibition of the 90 kDa heat shock protein (Hsp)90 recently emerged as a very promising tool to combat various forms of cancer. On the other hand, the induction of the 70 kDa Hsp70 has been proved to be an efficient help in the recovery from a large number of diseases, such as, for example, ischemic heart disease, diabetes and neurodegeneration. Development of membrane-interacting drugs to modify specific membrane domains, thereby modulating heat shock response, may be of considerable therapeutic benefit as well. In this review, we give an overview of the therapeutic approaches and list some of the key questions of drug development in this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Csaba Sõti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Enikõ Nagy
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zoltán Giricz
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary
| |
Collapse
|
35
|
Batulan Z, Nalbantoglu J, Durham HD. Nonsteroidal anti-inflammatory drugs differentially affect the heat shock response in cultured spinal cord cells. Cell Stress Chaperones 2005; 10:185-96. [PMID: 16184763 PMCID: PMC1226016 DOI: 10.1379/csc-30r.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to amplify the heat shock response in cell lines by increasing the binding of heat shock transcription factor-1 to heat shock elements within heat shock gene promoters. Because overexpression of the inducible heat shock protein 70 (Hsp70) was neuroprotective in a culture model of motor neuron disease, this study investigated whether NSAIDs induce Hsp70 and confer cytoprotection in motor neurons of dissociated spinal cord cultures exposed to various stresses. Two NSAIDs, sodium salicylate and niflumic acid, lowered the temperature threshold for induction of Hsp70 in glia but failed to do so in motor neurons. At concentrations that increased Hsp70 in heat shocked glial cells, sodium salicylate failed to delay death of motor neurons exposed to hyperthermia, paraquat-mediated oxidative stress, and glutamate excitotoxicity. Neither sodium salicylate nor the cyclooxygenase-2 inhibitor, niflumic acid, protected motor neurons from the toxicity of mutated Cu/Zn-superoxide dismutase (SOD-1) linked to a familial form of the motor neuron disease, amyotrophic lateral sclerosis. Thus, treatment with 2 types of NSAIDs failed to overcome the high threshold for the activation of heat shock response in motor neurons.
Collapse
Affiliation(s)
- Zarah Batulan
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
36
|
Kalmar B, Kieran D, Greensmith L. Molecular chaperones as therapeutic targets in amyotrophic lateral sclerosis. Biochem Soc Trans 2005; 33:551-2. [PMID: 16042542 DOI: 10.1042/bst0330551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurodegenerative diseases are characterized by a number of common hallmarks, such as the presence of intracellular aggregates and activation of the apoptotic cell-death pathway. Intracellular chaperones, responsible for protein integrity and structural repair, may play a crucial role in the progression of a disease. In this paper, we aim to summarize our understanding of the role and potential of a particular family of chaperones, the heat-shock proteins, in neurodegeneration, by focusing our discussion on models of motoneuron death.
Collapse
Affiliation(s)
- B Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
37
|
Tidwell JL, Houenou LJ, Tytell M. Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperones 2005; 9:88-98. [PMID: 15270081 PMCID: PMC1065310 DOI: 10.1379/csc-9r.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The induction of heat shock proteins (Hsps) serves not only as a marker for cellular stress but also as a promoter of cell survival, which is especially important in the nervous system. We examined the regulation of the constitutive and stress-induced 70-kD Hsps (Hsc70 and Hsp70, respectively) after sciatic nerve (SN) axotomy in the neonatal mouse. Additionally, the prevention of axotomy-induced SN cell death by administration of several preparations of exogenous Hsc70 and Hsp70 was tested. Immunohistochemistry and Western blot analyses showed that endogenous levels of Hsc70 and Hsp70 did not increase significantly in lumbar motor neurons or dorsal root ganglion sensory neurons up to 24 hours after axotomy. When a variety of Hsc70 and Hsp70 preparations at doses ranging from 5 to 75 microg were applied to the SN stump after axotomy, the survival of both motor and sensory neurons was significantly improved. Thus, it appears that motor and sensory neurons in the neonatal mouse do not initiate a typical Hsp70 response after traumatic injury and that administration of exogenous Hsc/Hsp70 can remedy that deficit and reduce the subsequent loss of neurons by apoptosis.
Collapse
Affiliation(s)
- J Lille Tidwell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA
| | | | | |
Collapse
|
38
|
Abstract
Developing neurons are programmed to die by an apoptotic pathway unless they are rescued by extrinsic growth factors that generate an anti-apoptotic response. By contrast, adult neurons need to survive for the lifetime of the organism, and their premature death can cause irreversible functional deficits. The default apoptotic pathway is shut down when development is complete, and consequently growth factors are no longer required to prevent death. To protect against accidental apoptotic cell death, anti-apoptotic mechanisms are activated in mature neurons in response to stress. Loss or reduced activity of these intrinsic anti-apoptotic 'brakes' might contribute to or accelerate neurodegeneration, whereas their activation might rescue neurons from injury or genetic abnormalities.
Collapse
Affiliation(s)
- Susanna C Benn
- Day Neuromuscular Research Lab, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA
| | | |
Collapse
|
39
|
Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101:227-57. [PMID: 15031001 DOI: 10.1016/j.pharmthera.2003.11.004] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary
| | | |
Collapse
|
40
|
Gold BG, Voda J, Yu X, Gordon H. The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy. Exp Neurol 2004; 187:160-70. [PMID: 15081597 DOI: 10.1016/j.expneurol.2004.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 12/22/2003] [Accepted: 01/09/2004] [Indexed: 02/04/2023]
Abstract
Acrylamide (AC) is a known industrial neurotoxic chemical that has been recently found in carbohydrate-rich foods cooked at high temperatures. Repeated AC administration produces a pronounced neuropathy characterized by flaccid paralysis and ataxia and represents a well-established animal model of progressive axonal loss. AC also elicits prominent morphologic alterations (e.g., eccentrically placed nuclei, infolding of the nuclear membrane, accumulations of dense bodies, and clusters of smooth endoplasmic reticulum (SER) associated with numerous microtubules) in cerebellar Purkinje cells that may contribute to the pronounced ataxia in these animals. Here, we examined the neuroprotective action of FK506 (tacrolimus) in male and female rats given daily intraperitoneal injections of AC (30 mg/kg) for 4 weeks. Daily subcutaneous injections of FK506 (2 mg/kg/day) dramatically reduced the behavioral signs of neuropathy (i.e., paralysis and ataxia), markedly protected against axonal loss (by 82% and 73% in the tibial nerves of male and female rats, respectively), and reduced the pathologic changes in Purkinje cells. In a separate study, subcutaneous injections of FK506 (2 or 10 mg/kg) for 2 weeks markedly increased heat shock protein-70 (Hsp-70) immunostaining in sensory neurons, motor neurons, Purkinje cells, and other regions of the brain (in particular, the amygdala) from nonintoxicated and AC-intoxicated rats compared to controls. In contrast, AC-intoxicated animals not given FK506 demonstrated reduced Hsp-70 staining. Thus, the ability of FK506 to increase Hsp-70 expression may underlie its neuroprotective action. We suggest that compounds capable of eliciting a heat shock response may be useful for the treatment of human neuropathies.
Collapse
Affiliation(s)
- Bruce G Gold
- Center for Research on Occupational and Environmental Toxicology and Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| | | | | | | |
Collapse
|
41
|
|
42
|
Kieran D, Kalmar B, Dick JRT, Riddoch-Contreras J, Burnstock G, Greensmith L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 2004; 10:402-5. [PMID: 15034571 DOI: 10.1038/nm1021] [Citation(s) in RCA: 384] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 03/02/2004] [Indexed: 11/10/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition in which motoneurons of the spinal cord and motor cortex die, resulting in progressive paralysis. This condition has no cure and results in eventual death, usually within 1-5 years of diagnosis. Although the specific etiology of ALS is unknown, 20% of familial cases of the disease carry mutations in the gene encoding Cu/Zn superoxide dismutase-1 (SOD1). Transgenic mice overexpressing human mutant SOD1 have a phenotype and pathology that are very similar to that seen in human ALS patients. Here we show that treatment with arimoclomol, a coinducer of heat shock proteins (HSPs), significantly delays disease progression in mice expressing a SOD1 mutant in which glycine is substituted with alanine at position 93 (SOD1(G93A)). Arimoclomol-treated SOD1(G93A) mice show marked improvement in hind limb muscle function and motoneuron survival in the later stages of the disease, resulting in a 22% increase in lifespan. Pharmacological activation of the heat shock response may therefore be a successful therapeutic approach to treating ALS, and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Dairin Kieran
- The Graham Watts Laboratory, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, University College London, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | |
Collapse
|
43
|
Tidwell JL, Houenou LJ, Tytell M. Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperones 2004. [DOI: 10.1379/1466-1268(2004)009<0088:aohivi>2.0.co;2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Kalmar B, Greensmith L, Malcangio M, McMahon SB, Csermely P, Burnstock G. The effect of treatment with BRX-220, a co-inducer of heat shock proteins, on sensory fibers of the rat following peripheral nerve injury. Exp Neurol 2003; 184:636-47. [PMID: 14769355 DOI: 10.1016/s0014-4886(03)00343-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Revised: 06/10/2003] [Accepted: 07/02/2003] [Indexed: 11/16/2022]
Abstract
In this study, we examined the effect BRX-220, a co-inducer of heat shock proteins, in injury-induced peripheral neuropathy. Following sciatic nerve injury in adult rats and treatment with BRX-220, the following features of the sensory system were studied: (a) expression of calcitonin gene-related peptide (CGRP); (b) binding of isolectin B4 (IB4) in dorsal root ganglia (DRG) and spinal cord; (c) stimulation-evoked release of substance P (SP) in an in vitro spinal cord preparation and (d) nociceptive responses of partially denervated rats. BRX-220 partially reverses axotomy-induced changes in the sensory system. In vehicle-treated rats there is a decrease in IB4 binding and CGRP expression in injured neurones, while in BRX-220-treated rats these markers were better preserved. Thus, 7.0 +/- 0.6% of injured DRG neurones bound IB4 in vehicle-treated rats compared to 14.4 +/- 0.9% in BRX-220-treated animals. Similarly, 4.5 +/- 0.5% of DRG neurones expressed CGRP in the vehicle-treated group, whereas 9.0 +/- 0.3% were positive in the BRX-220-treated group. BRX-220 also partially restored SP release from spinal cord sections to electrical stimulation of primary sensory neurones. Behavioural tests carried out on partially denervated animals showed that BRX-220 treatment did not prevent the emergence of mechanical or thermal hyperalgesia. However, oral treatment for 4 weeks lead to reduced pain-related behaviour suggesting either slowly developing analgesic actions or enhancement of recovery processes. Thus, the morphological improvement seen in sensory neurone markers was accompanied by restored functional activity. Therefore, treatment with BRX-220 promotes restoration of morphological and functional properties in the sensory system following peripheral nerve injury.
Collapse
Affiliation(s)
- B Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London WC1N 3BG, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Hauser MA, Li YJ, Takeuchi S, Walters R, Noureddine M, Maready M, Darden T, Hulette C, Martin E, Hauser E, Xu H, Schmechel D, Stenger JE, Dietrich F, Vance J. Genomic convergence: identifying candidate genes for Parkinson's disease by combining serial analysis of gene expression and genetic linkage. Hum Mol Genet 2003. [DOI: 10.1093/hmg/ddg070] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
46
|
Benn SC, Perrelet D, Kato AC, Scholz J, Decosterd I, Mannion RJ, Bakowska JC, Woolf CJ. Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 2002; 36:45-56. [PMID: 12367505 DOI: 10.1016/s0896-6273(02)00941-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peripheral nerve transection results in the rapid death by apoptosis of neonatal but not adult sensory and motor neurons. We show that this is due to induction and phosphorylation in all adult axotomized neurons of the small heat shock protein Hsp27 and the failure of such induction in most neonatal neurons. In vivo delivery of human Hsp27 but not a nonphosphorylatable mutant prevents neonatal rat motor neurons from nerve injury-induced death, while knockdown in vitro and in vivo of Hsp27 in adult injured sensory neurons results in apoptosis. Hsp27's neuroprotective action is downstream of cytochrome c release from mitochondria and upstream of caspase-3 activation. Transcriptional and posttranslational regulation of Hsp27 is necessary for sensory and motor neuron survival following peripheral nerve injury.
Collapse
Affiliation(s)
- Susanna C Benn
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|