1
|
Lomas C, Dubey RC, Perez-Alvarez G, Lopez Hernandez Y, Atmar A, Arias AY, Vashist A, Aggarwal S, Manickam P, Lakshmana MK, Vashist A. Recent advances in nanotherapeutics for HIV-associated neurocognitive disorders and substance use disorders. Nanomedicine (Lond) 2025; 20:603-619. [PMID: 39963928 PMCID: PMC11902879 DOI: 10.1080/17435889.2025.2461984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Substance use disorders (SUD) and HIV-associated neurocognitive disorders (HAND) work synergistically as a significant cause of cognitive decline in adults and adolescents globally. Current therapies continue to be limited due to difficulties crossing the blood-brain barrier (BBB) leading to limited precision and effectiveness, neurotoxicity, and lack of co-treatment options for both HAND and SUD. Nanoparticle-based therapeutics have several advantages over conventional therapies including more precise targeting, the ability to cross the BBB, and high biocompatibility which decreases toxicity and optimizes sustainability. These advantages extend to other neurological disorders such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). This review summarizes recent advances in nanotechnology for application to HAND, SUD, and co-treatment, as well as other neurological disorders. This review also highlights the potential challenges these therapies face in clinical translation and long-term safety.
Collapse
Affiliation(s)
- Christia Lomas
- Department of Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Ravi Chandra Dubey
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Gabriela Perez-Alvarez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Yesenia Lopez Hernandez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Aorzala Atmar
- Department of Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Adriana Yndart Arias
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Atul Vashist
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
- Centre of Excellence in Nanosensors and Nanomedicine, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | | | - Arti Vashist
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Turan Ç, Şenormancı G, Neşelioğlu S, Budak Y, Erel Ö, Şenormancı Ö. Oxidative Stress and Inflammatory Biomarkers in People with Methamphetamine Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:572-582. [PMID: 37424424 PMCID: PMC10335902 DOI: 10.9758/cpn.22.1047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 07/11/2023]
Abstract
Objective This study aimed to investigate the blood serum levels of biomarkers specifying oxidative stress status and systemic inflammation between people using methamphetamine (METH) and the control group (CG). Serum thiol/disulfide balance and ischemia-modified albumin levels were studied to determine oxidative stress, and serum interleukin-6 (IL-6) levels and complete blood count (CBC) were to assess inflammation. Methods Fifty patients with METH use disorder (MUD) and 36 CG participants were included in the study. Two tubes of venous blood samples were taken to measure oxidative stress, serum thiol/disulfide balance, ischemia-modified albumin, and IL-6 levels between groups. The correlation of parameters measuring oxidative stress and inflammation between groups with sociodemographic data was investigated. Results In this study, serum total thiol, free thiol levels, disulfide/native thiol percentage ratios, and serum ischemia- modified albumin levels of the patients were statistically significantly higher than the healthy controls. No difference was observed between the groups in serum disulfide levels and serum IL-6 levels. Considering the regression analysis, only the duration of substance use was a statistically significant factor in explaining serum IL-6 levels. The parameters showing inflammation in the CBC were significantly higher in the patients than in the CG. Conclusion CBC can be used to evaluate systemic inflammation in patients with MUD. Parameters measuring thiol/disulfide homeostasis and ischemia-modified albumin can be, also, used to assess oxidative stress.
Collapse
Affiliation(s)
- Çetin Turan
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Güliz Şenormancı
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Salim Neşelioğlu
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Yasemin Budak
- Department of Biochemistry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Özcan Erel
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Ömer Şenormancı
- Department of Clinical Psychology, University of Beykent, Istanbul, Turkey
| |
Collapse
|
3
|
Basova LV, Vien W, Bortell N, Najera JA, Marcondes MCG. Methamphetamine signals transcription of IL1β and TNFα in a reactive oxygen species-dependent manner and interacts with HIV-1 Tat to decrease antioxidant defense mechanisms. Front Cell Neurosci 2022; 16:911060. [PMID: 36060276 PMCID: PMC9434488 DOI: 10.3389/fncel.2022.911060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (Meth) abuse is a common HIV co-morbidity that is linked to aggravated Central Nervous System (CNS) inflammation, which accentuates HIV- associated neurological disorders, triggered both directly or indirectly by the drug. We used the well-established human innate immune macrophage cell line system (THP1) to demonstrate that Reactive Oxygen Species (ROS) immediately induced by Meth play a role in the increased transcription of inflammatory genes, in interaction with HIV-1 Tat peptide. Meth and Tat, alone and together, affect early events of transcriptional activity, as indicated by changes in RNA polymerase (RNAPol) recruitment patterns throughout the genome, via ROS-dependent and -independent mechanisms. IL1β (IL1β) and TNF α (TNFα), two genes with defining roles in the inflammatory response, were both activated in a ROS-dependent manner. We found that this effect occurred via the activation of the activator protein 1 (AP-1) comprising cFOS and cJUN transcription factors and regulated by the SRC kinase. HIV-1 Tat, which was also able to induce the production of ROS, did not further impact the effects of ROS in the context of Meth, but promoted gene activity independently from ROS, via additional transcription factors. For instance, HIV-1 Tat increased NFkB activation and activated gene clusters regulated by Tata box binding peptide, ING4 and IRF2. Importantly, HIV-1 Tat decreased the expression of anti-oxidant genes, where its suppression of the detoxifying machinery may contribute to the aggravation of oxidative stress induced by ROS in the context of Meth. Our results provide evidence of effects of Meth via ROS and interactions with HIV Tat that promote the transcription of inflammatory genes such as IL1β and TNFα.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA, United States
- The Scripps Research Institute, La Jolla, CA, United States
| | - Whitney Vien
- The Scripps Research Institute, La Jolla, CA, United States
- University of California San Diego, La Jolla, CA, United States
| | - Nikki Bortell
- The Scripps Research Institute, La Jolla, CA, United States
| | | | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, United States
- The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Maria Cecilia Garibaldi Marcondes,
| |
Collapse
|
4
|
Monick AJ, Joyce MR, Chugh N, Creighton JA, Morgan OP, Strain EC, Marvel CL. Characterization of basal ganglia volume changes in the context of HIV and polysubstance use. Sci Rep 2022; 12:4357. [PMID: 35288604 PMCID: PMC8921181 DOI: 10.1038/s41598-022-08364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
HIV and psychoactive substances can impact the integrity of the basal ganglia (BG), a neural substrate of cognition, motor control, and reward-seeking behaviors. This study assessed BG gray matter (GM) volume as a function of polysubstance (stimulant and opioid) use and HIV status. We hypothesized that comorbid polysubstance use and HIV seropositivity would alter BG GM volume differently than would polysubstance use or HIV status alone. We collected structural MRI scans, substance use history, and HIV diagnoses. Participants who had HIV (HIV +), a history of polysubstance dependence (POLY +), both, or neither completed assessments for cognition, motor function, and risk-taking behaviors (N = 93). All three clinical groups showed a left-lateralized pattern of GM reduction in the BG relative to controls. However, in the HIV + /POLY + group, stimulant use was associated with increased GM volume within the globus pallidus and putamen. This surpassed the effects from opioid use, as indicated by decreased GM volume throughout the BG in the HIV-/POLY + group. Motor learning was impaired in all three clinical groups, and in the HIV + /POLY + group, motor learning was associated with increased caudate and putamen GM volume. We also observed associations between BG GM volume and risk-taking behaviors in the HIV + /POLY- and HIV-/POLY + groups. The effects of substance use on the BG differed as a function of substance type used, HIV seropositivity, and BG subregion. Although BG volume decreased in association with HIV and opioid use, stimulants can, inversely, lead to BG volume increases within the context of HIV.
Collapse
Affiliation(s)
- Andrew J Monick
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michelle R Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Natasha Chugh
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Jason A Creighton
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Owen P Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Eric C Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Wallace DR. HIV-associated neurotoxicity and cognitive decline: Therapeutic implications. Pharmacol Ther 2021; 234:108047. [PMID: 34848202 DOI: 10.1016/j.pharmthera.2021.108047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
As our understanding of changes to the neurological system has improved, it has become clear that patients who have contracted human immunodeficiency virus type 1 (HIV-1) can potentially suffer from a cascade of neurological issues, including neuropathy, dementia, and declining cognitive function. The progression from mild to severe symptoms tends to affect motor function, followed by cognitive changes. Central nervous system deficits that are observed as the disease progresses have been reported as most severe in later-stage HIV infection. Examining the full spectrum of neuronal damage, generalized cortical atrophy is a common hallmark, resulting in the death of multiple classes of neurons. With antiretroviral therapy (ART), we can partially control disease progression, slowing the onset of the most severe symptoms such as, reducing viral load in the brain, and developing HIV-associated dementia (HAD). HAD is a severe and debilitating outcome from HIV-related neuropathologies. HIV neurotoxicity can be direct (action directly on the neuron) or indirect (actions off-site that affect normal neuronal function). There are two critical HIV-associated proteins, Tat and gp120, which bear responsibility for many of the neuropathologies associated with HAD and HIV-associated neurocognitive disorder (HAND). A cascade of systems is involved in HIV-related neurotoxicity, and determining a critical point where therapeutic strategies can be employed is of the utmost importance. This review will provide an overview of the existing hypotheses on HIV-neurotoxicity and the potential for the development of therapeutics to aid in the treatment of HIV-related nervous system dysfunction.
Collapse
Affiliation(s)
- David R Wallace
- Oklahoma State University Center for Health Sciences, School of Biomedical Science, 1111 West 17(th) Street, Tulsa, OK 74107-1898, USA.
| |
Collapse
|
7
|
In vivo proton magnetic resonance spectroscopy detection of metabolite abnormalities in aged Tat-transgenic mouse brain. GeroScience 2021; 43:1851-1862. [PMID: 33818687 DOI: 10.1007/s11357-021-00354-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Most individuals living with HIV in the USA are over 45 years old and are vulnerable to the combined effects of HIV and aging. Antiretroviral therapies reduce HIV morbidity and mortality but do not prevent HIV trans-activator of transcription (Tat) protein expression or development of HIV-associated neurocognitive disorder (HAND), which may be caused by Tat. Tat-transgenic (Tat-tg) mice are used to study Tat's effects, typically after transgene induction with doxycycline. However, uninduced Tat-tg mice experience transgene leak and model aspects of HAND when aged, including neuroinflammation. We used in vivo 9.4-tesla proton magnetic resonance spectroscopy to compare neurochemistry in aged versus young female and male uninduced Tat-tg mice. Aged Tat-tg mice demonstrated measurable tat mRNA brain expression and had lower medial prefrontal cortex (MPFC) GABA, glutamate, and taurine levels and lower striatal GABA and taurine levels. Females had lower MPFC glutathione and taurine and lower striatal taurine levels. Brain testosterone levels were negatively correlated with age in aged males but not females. Aged mice had cortical abnormalities not previously reported in aged wild-type mice including lower MPFC GABA and taurine levels. As glutathione and taurine levels reflect inflammation and oxidative stress, our data suggest that Tat may exacerbate these processes in aged Tat-tg mice. However, additional studies in controls not expressing Tat are needed to confirm this point and to deconvolve individual effects of age and Tat expression. Sex steroid hormone supplements, which counter climacteric effects, increase taurine levels, and reduce inflammation and oxidative stress, could attenuate some of the brain abnormalities we identified in aged Tat-tg mice.
Collapse
|
8
|
Huang J, Zhang R, Wang S, Zhang D, Leung CK, Yang G, Li Y, Liu L, Xu Y, Lin S, Wang C, Zeng X, Li J. Methamphetamine and HIV-Tat Protein Synergistically Induce Oxidative Stress and Blood-Brain Barrier Damage via Transient Receptor Potential Melastatin 2 Channel. Front Pharmacol 2021; 12:619436. [PMID: 33815104 PMCID: PMC8010131 DOI: 10.3389/fphar.2021.619436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Synergistic impairment of the blood-brain barrier (BBB) induced by methamphetamine (METH) and HIV-Tat protein increases the risk of HIV-associated neurocognitive disorders (HAND) in HIV-positive METH abusers. Studies have shown that oxidative stress plays a vital role in METH- and HIV-Tat-induced damage to the BBB but have not clarified the mechanism. This study uses the human brain microvascular endothelial cell line hCMEC/D3 and tree shrews to investigate whether the transient receptor potential melastatin 2 (TRPM2) channel, a cellular effector of the oxidative stress, might regulate synergistic damage to the BBB caused by METH and HIV-Tat. We showed that METH and HIV-Tat damaged the BBB in vitro, producing abnormal cell morphology, increased apoptosis, reduced protein expression of the tight junctions (TJ) including Junctional adhesion molecule A (JAMA) and Occludin, and a junctional associated protein Zonula occludens 1 (ZO1), and increased the flux of sodium fluorescein (NaF) across the hCMEC/D3 cells monolayer. METH and HIV-Tat co-induced the oxidative stress response, reducing catalase (CAT), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) activity, as well as increased reactive oxygen species (ROS) and malonaldehyde (MDA) level. Pretreatment with n-acetylcysteine amide (NACA) alleviated the oxidative stress response and BBB damage characterized by improving cell morphology, viability, apoptosis levels, TJ protein expression levels, and NaF flux. METH and HIV-Tat co-induced the activation and high protein expression of the TRPM2 channel, however, early intervention using 8-Bromoadenosine-5′-O-diphosphoribose (8-Br-ADPR), an inhibitor of TPRM2 channel, or TRPM2 gene knockdown attenuated the BBB damage. Oxidative stress inhibition reduced the activation and high protein expression of the TRPM2 channel in the in vitro model, which in turn reduced the oxidative stress response. Further, 8-Br-ADPR attenuated the effects of METH and HIV-Tat on the BBB in tree shrews—namely, down-regulated TJ protein expression and increased BBB permeability to Evans blue (EB) and NaF. In summary, the TRPM2 channel can regulate METH- and HIV-Tat-induced oxidative stress and BBB injury, giving the channel potential for developing drug interventions to reduce BBB injury and neuropsychiatric symptoms in HIV-infected METH abusers.
Collapse
Affiliation(s)
- Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Ruilin Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shangwen Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Dongxian Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,CUHK-SDU Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yuanyuan Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Liu Liu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yue Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Shucheng Lin
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Basic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
9
|
Nitrosative Stress Is Associated with Dopaminergic Dysfunction in the HIV-1 Transgenic Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 189:1375-1385. [PMID: 31230667 DOI: 10.1016/j.ajpath.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
Advances in antiretroviral therapy have resulted in significantly decreased HIV-related mortality. HIV-associated neurocognitive disorders, however, continue to be a major problem in infected patients. The neuropathology underlying HIV-associated neurocognitive disorders has not been well characterized, and evidence suggests different contributing mechanisms. One potential mechanism is the induction of oxidative stress. Using the HIV-1 transgenic (Tg) rat model of HIV, we found increased striatal NADPH oxidase-4 and neuronal nitric oxide synthase expression in the adult (7- to 9-month-old) Tg rat compared with control rats but not in the young (1-month-old) Tg rats. This was accompanied by increased 3-nitrotyrosine (3-NT) immunostaining in the adult Tg rats, which worsened significantly in the old Tg rats (18 to 20 months old). There was, however, no concurrent induction of the antioxidant systems because there was no change in the expression of the nuclear factor-erythroid 2-related factor 2 and its downstream targets (thioredoxin and glutathione antioxidant systems). Colocalization of 3-NT staining with neurofilament proteins and evidence of decreased tyrosine hydroxylase and dopamine transporter expression in the old rats support dopaminergic involvement. We conclude that the HIV-1 Tg rat brain shows evidence of nitrosative stress without appropriate oxidation-reduction adaptation, whereas 3-NT modification of striatal neurofilament proteins likely points to the ensuing dopaminergic neuronal loss and dysfunction in the aging HIV-1 Tg rat.
Collapse
|
10
|
Zeng XF, Li Q, Li J, Wong N, Li Z, Huang J, Yang G, Sham PC, Li SB, Lu G. HIV-1 Tat and methamphetamine co-induced oxidative cellular injury is mitigated by N-acetylcysteine amide (NACA) through rectifying mTOR signaling. Toxicol Lett 2018; 299:159-171. [PMID: 30261225 DOI: 10.1016/j.toxlet.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023]
Abstract
Methamphetamine (Meth) is an addictive psychostimulant whose abuse is intimately linked to increased risks for HIV-1 infection. Converging lines of evidence indicate that Meth also aggravates the symptoms of HIV-associated neurocognitive disorders (HAND), though the underlying mechanisms remain poorly understood. By using the lipophilic antioxidant N-acetylcysteine amide (NACA) as an interventional agent, we examined the roles of oxidative stress in autophagy and apoptosis induced by HIV-Tat (the transactivator of transcription), Meth or their combined treatment in human SH-SY5Y neuroblastoma cells and in the rat striatum. Oxidative stress was monitored in terms of the production of intracellular reactive oxygen species (ROS) and antioxidant reserves including glutathione peroxidase (GPx) and Cu,Zn-superoxide dismutase (SOD). NACA significantly reduced the level of ROS and restored GPx and SOD to levels comparable to that of normal control, implying a cytoprotective effect of NACA against oxidative stress elicited by Tat- and/or Meth. Protein expression of mammalian target of rapamycin (mTOR) was measured in SH-SY5Y cells and in the rat striatum to further explore the underlying mechanism of NACA protect against oxidative stress. The results support a beneficial effect of NACA in vivo and in vitro through rectification of the mTOR signaling pathway. Collectively, our study shows that NACA protects against Meth and/or Tat-induced cellular injury in vitro and in the rat striatum in vivo by attenuating oxidative stress, apoptosis and autophagy, at least in part, via modulation of mTOR signaling.
Collapse
Affiliation(s)
- Xiao-Feng Zeng
- School of Forensic Medicine, Xi,an Jiaotong University, Xi'an, Shanxi Province, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qi Li
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Juan Li
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Naikei Wong
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Shenzhen University, Shenzhen 518112, Hong Kong, China
| | - Zhen Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Genmeng Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Center for Genomic Sciences, The University of Hong Kong, Hong Kong, China
| | - Sheng-Bin Li
- School of Forensic Medicine, Xi,an Jiaotong University, Xi'an, Shanxi Province, China.
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
11
|
Effects of HIV-1 Tat and Methamphetamine on Blood-Brain Barrier Integrity and Function In Vitro. Antimicrob Agents Chemother 2017; 61:AAC.01307-17. [PMID: 28893794 DOI: 10.1128/aac.01307-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency (HIV) infection results in neurocognitive deficits in about one half of infected individuals. Despite systemic effectiveness, restricted antiretroviral penetration across the blood-brain barrier (BBB) is a major limitation in fighting central nervous system (CNS)-localized infection. Drug abuse exacerbates HIV-induced cognitive and pathological CNS changes. This study's purpose was to investigate the effects of the HIV-1 protein Tat and methamphetamine on factors affecting drug penetration across an in vitro BBB model. Factors affecting paracellular and transcellular flux in the presence of Tat and methamphetamine were examined. Transendothelial electrical resistance, ZO-1 expression, and lucifer yellow (a paracellular tracer) flux were aspects of paracellular processes that were examined. Additionally, effects on P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP-1) mRNA (via quantitative PCR [qPCR]) and protein (via immunoblotting) expression were measured; Pgp and MRP-1 are drug efflux proteins. Transporter function was examined after exposure of Tat with or without methamphetamine using the P-gp substrate rhodamine 123 and also using the dual P-gp/MRP-1 substrate and protease inhibitor atazanavir. Tat and methamphetamine elicit complex changes affecting transcellular and paracellular transport processes. Neither Tat nor methamphetamine significantly altered P-gp expression. However, Tat plus methamphetamine exposure significantly increased rhodamine 123 accumulation within brain endothelial cells, suggesting that treatment inhibited or impaired P-gp function. Intracellular accumulation of atazanavir was not significantly altered after Tat or methamphetamine exposure. Atazanavir accumulation was, however, significantly increased by simultaneous inhibition of P-gp and MRP. Collectively, our investigations indicate that Tat and methamphetamine alter aspects of BBB integrity without affecting net flux of paracellular compounds. Tat and methamphetamine may also affect several aspects of transcellular transport.
Collapse
|
12
|
Keutmann MK, Gonzalez R, Maki PM, Rubin LH, Vassileva J, Martin EM. Sex differences in HIV effects on visual memory among substance-dependent individuals. J Clin Exp Neuropsychol 2017; 39:574-586. [PMID: 27841082 PMCID: PMC5395326 DOI: 10.1080/13803395.2016.1250869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HIV's effects on episodic memory have not been compared systematically between male and female substance-dependent individuals. We administered the Brief Visuospatial Memory Test-Revised (BVMT-R) to 280 substance-dependent HIV+ and HIV- men and women. Groups were comparable on demographic, substance use, and comorbid characteristics. There were no significant main effects of sex or HIV serostatus on BVMT-R performance, but HIV+ women performed significantly more poorly on delayed recall. This effect was most prominent among cocaine-dependent HIV+ women. Our findings are consistent with recent speculation that memory impairment may be more common among HIV+ women, particularly those with a history of cocaine dependence.
Collapse
Affiliation(s)
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Pauline M. Maki
- Department of Psychiatry, University of Illinois, Chicago, IL, USA
| | - Leah H. Rubin
- Department of Psychiatry, University of Illinois, Chicago, IL, USA
| | - Jasmin Vassileva
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Eileen M. Martin
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
13
|
Liu J, Xu E, Tu G, Liu H, Luo J, Xiong H. Methamphetamine potentiates HIV-1gp120-induced microglial neurotoxic activity by enhancing microglial outward K + current. Mol Cell Neurosci 2017; 82:167-175. [PMID: 28552341 DOI: 10.1016/j.mcn.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 01/22/2023] Open
Abstract
Methamphetamine (Meth) abuse not only increases the risk of human immunodeficiency virus-1 (HIV-1) infection, but exacerbates HIV-1-associated neurocognitive disorders (HAND) as well. The mechanisms underlying the co-morbid effect are not fully understood. Meth and HIV-1 each alone interacts with microglia and microglia express voltage-gated potassium (KV) channel KV1.3. To understand whether KV1.3 functions an intersecting point for Meth and HIV-1, we studied the augment effect of Meth on HIV-1 glycoprotein 120 (gp120)-induced neurotoxic activity in cultured rat microglial cells. While Meth and gp120 each alone at low (subtoxic) concentrations failed to trigger microglial neurotoxic activity, Meth potentiated gp120-induced microglial neurotoxicity when applied in combination. Meth enhances gp120 effect on microglia by enhancing microglial KV1.3 protein expression and KV1.3 current, leading to an increase of neurotoxin production and resultant neuronal injury. Pretreatment of microglia with a specific KV1.3 antagonist 5-(4-Phenoxybutoxy)psoralen (PAP) or a broad spectrum KV channel blocker 4-aminopyridine (4-AP) significantly attenuated Meth/gp120-treated microglial production of neurotoxins and resultant neuronal injury, indicating an involvement of KV1.3 in Meth/gp120-induced microglial neurotoxic activity. Meth/gp120 activated caspase-3 and increased caspase-3/7 activity in microglia and inhibition of caspase-3 by its specific inhibitor significantly decreased microglial production of TNF-α and iNOS and attenuated microglia-associated neurotoxic activity. Moreover, blockage of KV1.3 by specific blockers attenuated Meth/gp120 enhancement of caspase-3/7 activity. Taking together, these results suggest an involvement of microglial KV1.3 in the mediation of Meth/gp120 co-morbid effect on microglial neurotoxic activity via caspase-3 signaling.
Collapse
Affiliation(s)
- Jianuo Liu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States.
| | - Enquan Xu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Guihua Tu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Han Liu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Jiangtao Luo
- Department of Biostatistics, College of Public Health, University Nebraska Medical Center, Omaha, NE 68198-4375, United States
| | - Huangui Xiong
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States.
| |
Collapse
|
14
|
Gonçalves J, Leitão RA, Higuera-Matas A, Assis MA, Coria SM, Fontes-Ribeiro C, Ambrosio E, Silva AP. Extended-access methamphetamine self-administration elicits neuroinflammatory response along with blood-brain barrier breakdown. Brain Behav Immun 2017; 62:306-317. [PMID: 28237710 DOI: 10.1016/j.bbi.2017.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/14/2017] [Accepted: 02/19/2017] [Indexed: 12/18/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug that can lead to neurological and psychiatric abnormalities. Several studies have explored the central impact of METH use, but the mechanism(s) underlying blood-brain barrier (BBB) dysfunction and associated neuroinflammatory processes after chronic METH consumption are still unclear. Important findings in the field are mainly based on in vitro approaches and animal studies using an acute METH paradigm, and not much is known about the neurovascular alterations under a chronic drug use. Thus, the present study aimed to fill this crucial gap by exploring the effect of METH-self administration on BBB function and neuroinflammatory responses. Herein, we observed an increase of BBB permeability characterized by Evans blue and albumin extravasation in the rat hippocampus and striatum triggered by extended-access METH self-administration followed by forced abstinence. Also, there was a clear structural alteration of blood vessels showed by the down-regulation of collagen IV staining, which is an important protein of the endothelial basement membrane, together with a decrease of intercellular junction protein levels, namely claudin-5, occludin and vascular endothelial-cadherin. Additionally, we observed an up-regulation of vascular cell and intercellular adhesion molecule, concomitant with the presence of T cell antigen CD4 and tissue macrophage marker CD169 in the brain parenchyma. Rats trained to self-administer METH also presented a neuroinflammatory profile characterized by microglial activation, astrogliosis and increased pro-inflammatory mediators, namely tumor necrosis factor-alpha, interleukine-1 beta, and matrix metalloproteinase-9. Overall, our data provide new insights into METH abuse consequences, with a special focus on neurovascular dysfunction and neuroinflammatory response, which may help to find novel approaches to prevent or diminish brain dysfunction triggered by this overwhelming illicit drug.
Collapse
Affiliation(s)
- Joana Gonçalves
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal.
| | - Ricardo A Leitão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | | | | | - Santiago M Coria
- Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| | - Carlos Fontes-Ribeiro
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| | - Ana Paula Silva
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells. Brain Res 2016; 1646:182-192. [DOI: 10.1016/j.brainres.2016.05.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
|
16
|
Jumnongprakhon P, Govitrapong P, Tocharus C, Tocharus J. WITHDRAWN: Melatonin improves methamphetamine-induced blood brain barrier impairment through NADPH oxidase-2 in primary rat brain microvascular endothelium cells. Brain Res 2016; 1646:393-401. [PMID: 27297493 DOI: 10.1016/j.brainres.2016.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/10/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in 〈BRES, 1646 (2016) 182-192〉, 10.1016/j.brainres.2016.05.049. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pichaya Jumnongprakhon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Biosciences, Mahidol University, Bangkok, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
17
|
Castellano P, Nwagbo C, Martinez LR, Eugenin EA. Methamphetamine compromises gap junctional communication in astrocytes and neurons. J Neurochem 2016; 137:561-75. [PMID: 26953131 DOI: 10.1111/jnc.13603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher sensitivity of neurons and astrocytes to apoptosis in response to HIV infection.
Collapse
Affiliation(s)
- Paul Castellano
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Chisom Nwagbo
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Luis R Martinez
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
18
|
Norman LR, Basso M. An Update of the Review of Neuropsychological Consequences of HIV and Substance Abuse: A Literature Review and Implications for Treatment and Future Research. ACTA ACUST UNITED AC 2016; 8:50-71. [PMID: 25751583 DOI: 10.2174/1874473708666150309124820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/14/2022]
Abstract
Neuropyschological dysfunction, ranging from mild cerebral indicators to dementia has been a consistent part of the medical picture of HIV/AIDS. However, advances in medical supervision, particularly as a result of antiretroviral (ARV) treatment, have resulted in some mitigation of the neuropsychological effects of HIV and necessitate re-evaluation of the pattern and nature of HIV-related cognitive or mental deficits. The associated enhancements in morbidity and mortality that have occurred as a result of ARV medication have led to a need for interventions and programs that maintain behaviors that are healthy and stop the resurgence of the risk of HIV transmission. Risk factors such as mental illness and substance use that may have contributed to the initial infection with HIV still need consideration. These risk factors may also increase neuropsychological dysfunction and impact observance of prevention for treatment and recommendations. Explicitly, a better comprehension of the role of substance use on the progression of HIV-related mental decline can enlighten management and evaluation of persons living with HIV with concurrent disorders of substance use. This review provides a summary of the neurophyschology of substance use and HIV and the existing research that has looked at the effects of both substance use and HIV disease on neurophyscological function and suggestions for future research and treatment.
Collapse
Affiliation(s)
- Lisa R Norman
- Public Health Program, Ponce School of Medicine, Ponce, PR 00732, USA.
| | | |
Collapse
|
19
|
Maubert ME, Pirrone V, Rivera NT, Wigdahl B, Nonnemacher MR. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease. Front Microbiol 2016; 6:1512. [PMID: 26793168 PMCID: PMC4707230 DOI: 10.3389/fmicb.2015.01512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/15/2015] [Indexed: 02/02/2023] Open
Abstract
In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART), CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND). A number of HIV-1 proteins (Tat, gp120, Nef, Vpr) have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients.
Collapse
Affiliation(s)
- Monique E Maubert
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Nina T Rivera
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| |
Collapse
|
20
|
The danger-associated molecular pattern HMGB1 mediates the neuroinflammatory effects of methamphetamine. Brain Behav Immun 2016; 51:99-108. [PMID: 26254235 PMCID: PMC5652313 DOI: 10.1016/j.bbi.2015.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Methamphetamine (METH) induces neuroinflammatory effects, which may contribute to the neurotoxicity of METH. However, the mechanism by which METH induces neuroinflammation has yet to be clarified. A considerable body of evidence suggests that METH induces cellular damage and distress, particularly in dopaminergic neurons. Damaged neurons release danger-associated molecular patterns (DAMPs) such as high mobility group box-1 (HMGB1), which induces pro-inflammatory effects. Therefore, we explored the notion here that METH induces neuroinflammation indirectly through the release of HMGB1 from damaged neurons. Adult male Sprague-Dawley rats were injected IP with METH (10mg/kg) or vehicle (0.9% saline). Neuroinflammatory effects of METH were measured in nucleus accumbens (NAcc), ventral tegmental area (VTA) and prefrontal cortex (PFC) at 2h, 4h and 6h after injection. To assess whether METH directly induces pro-inflammatory effects in microglia, whole brain or striatal microglia were isolated using a Percoll density gradient and exposed to METH (0, 0.1, 1, 10, 100, or 1000μM) for 24h and pro-inflammatory cytokines measured. The effect of METH on HMGB1 and IL-1β in striatal tissue was then measured. To determine the role of HMGB1 in the neuroinflammatory effects of METH, animals were injected intra-cisterna magna with the HMGB1 antagonist box A (10μg) or vehicle (sterile water). 24h post-injection, animals were injected IP with METH (10mg/kg) or vehicle (0.9% saline) and 4h later neuroinflammatory effects measured in NAcc, VTA, and PFC. METH induced robust pro-inflammatory effects in NAcc, VTA, and PFC as a function of time and pro-inflammatory analyte measured. In particular, METH induced profound effects on IL-1β in NAcc (2h) and PFC (2h and 4h). Exposure of microglia to METH in vitro failed to induce a pro-inflammatory response, but rather induced significant cell death as well as a decrease in IL-1β. METH treatment increased HMGB1 in parallel with IL-1β in striatum. Pre-treatment with the HMGB1 antagonist box A blocked the neuroinflammatory effects (IL-1β) of METH in NAcc, VTA and PFC. The present results suggest that HMGB1 mediates, in part, the neuroinflammatory effects of METH and thus may alert CNS innate immune cells to the toxic effects of METH.
Collapse
|
21
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
22
|
Mediouni S, Marcondes MCG, Miller C, McLaughlin JP, Valente ST. The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders. Front Microbiol 2015; 6:1164. [PMID: 26557111 PMCID: PMC4615951 DOI: 10.3389/fmicb.2015.01164] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Antiretroviral therapy has dramatically improved the lives of human immunodeficiency virus 1 (HIV-1) infected individuals. Nonetheless, HIV-associated neurocognitive disorders (HAND), which range from undetectable neurocognitive impairments to severe dementia, still affect approximately 50% of the infected population, hampering their quality of life. The persistence of HAND is promoted by several factors, including longer life expectancies, the residual levels of virus in the central nervous system (CNS) and the continued presence of HIV-1 regulatory proteins such as the transactivator of transcription (Tat) in the brain. Tat is a secreted viral protein that crosses the blood–brain barrier into the CNS, where it has the ability to directly act on neurons and non-neuronal cells alike. These actions result in the release of soluble factors involved in inflammation, oxidative stress and excitotoxicity, ultimately resulting in neuronal damage. The percentage of methamphetamine (MA) abusers is high among the HIV-1-positive population compared to the general population. On the other hand, MA abuse is correlated with increased viral replication, enhanced Tat-mediated neurotoxicity and neurocognitive impairments. Although several strategies have been investigated to reduce HAND and MA use, no clinically approved treatment is currently available. Here, we review the latest findings of the effects of Tat and MA in HAND and discuss a few promising potential therapeutic developments.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| | | | - Courtney Miller
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA ; Department of Neuroscience, The Scripps Research Institute , Jupiter, FL, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida , Gainesville, FL, USA
| | - Susana T Valente
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| |
Collapse
|
23
|
Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain. Sci Rep 2015; 5:14356. [PMID: 26463126 PMCID: PMC4604469 DOI: 10.1038/srep14356] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/24/2015] [Indexed: 01/03/2023] Open
Abstract
Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum.
Collapse
|
24
|
Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol 2015; 2015:103969. [PMID: 25861156 PMCID: PMC4377385 DOI: 10.1155/2015/103969] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Methamphetamine (METH) is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.
Collapse
|
25
|
Panee J, Pang X, Munsaka S, Berry MJ, Chang L. Independent and co-morbid HIV infection and Meth use disorders on oxidative stress markers in the cerebrospinal fluid and depressive symptoms. J Neuroimmune Pharmacol 2015; 10:111-21. [PMID: 25575491 PMCID: PMC4900457 DOI: 10.1007/s11481-014-9581-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/29/2014] [Indexed: 01/28/2023]
Abstract
Both HIV infection and Methamphetamine (Meth) use disorders are associated with greater depressive symptoms and oxidative stress; whether the two conditions would show additive or interactive effects on the severity of depressive symptoms, and whether this is related to the level of oxidative stress in the CNS is unknown. 123 participants were evaluated, which included 41 HIV-seronegative subjects without substance use disorders (Control), 25 with recent (<6 months) moderate to severe Meth use disorders (Meth), 34 HIV-seropositive subjects without substance use disorders (HIV) and 23 HIV+Meth subjects. Depressive symptoms were assessed with the Center for Epidemiologic Studies-Depression Scale (CES-D), and oxidative stress markers were evaluated with glutathione (GSH), 4-hydroxynonenal (HNE), and activities of gamma-glutamyltransferase (GGT) and glutathione peroxidase (GPx) in the cerebrospinal fluid (CSF). Compared with Controls, HIV subjects had higher levels of HNE (+350%) and GGT (+27%), and lower level of GSH (-34%), while Meth users had higher levels of GPx activity (+23%) and GSH (+30 %). GGT correlated with GPx, and with age, across all subjects (p < 0.0001). CES-D scores correlated with CSF HNE levels only in Control and HIV groups, but not in Meth and HIV+Meth groups. HIV and Meth use had an interactive effects on depressive symptoms, but did not show additive or interactive effects on oxidative stress. The differential relationship between depressive symptoms and oxidative stress response amongst the four groups suggest that depressive symptoms in these groups are mediated through different mechanisms which are not always related to oxidative stress.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 222, Honolulu, HI 96813, USA
| | - Xiaosha Pang
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 222, Honolulu, HI 96813, USA
| | - Sody Munsaka
- Department of Medicine, John A. Burns School of Medicine, The Queen’s Medical Center, 1356 Lusitana Street, 7th floor, Honolulu, HI 96813, USA
| | - Marla J. Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 222, Honolulu, HI 96813, USA
| | - Linda Chang
- Department of Medicine, John A. Burns School of Medicine, The Queen’s Medical Center, 1356 Lusitana Street, 7th floor, Honolulu, HI 96813, USA
| |
Collapse
|
26
|
Salamanca SA, Sorrentino EE, Nosanchuk JD, Martinez LR. Impact of methamphetamine on infection and immunity. Front Neurosci 2015; 8:445. [PMID: 25628526 PMCID: PMC4290678 DOI: 10.3389/fnins.2014.00445] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022] Open
Abstract
The prevalence of methamphetamine (METH) use is estimated at ~35 million people worldwide, with over 10 million users in the United States. METH use elicits a myriad of social consequences and the behavioral impact of the drug is well understood. However, new information has recently emerged detailing the devastating effects of METH on host immunity, increasing the acquisition of diverse pathogens and exacerbating the severity of disease. These outcomes manifest as modifications in protective physical and chemical defenses, pro-inflammatory responses, and the induction of oxidative stress pathways. Through these processes, significant neurotoxicities arise, and, as such, chronic abusers with these conditions are at a higher risk for heightened consequences. METH use also influences the adaptive immune response, permitting the unrestrained development of opportunistic diseases. In this review, we discuss recent literature addressing the impact of METH on infection and immunity, and identify areas ripe for future investigation.
Collapse
Affiliation(s)
- Sergio A Salamanca
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | - Edra E Sorrentino
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | - Joshua D Nosanchuk
- Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY, USA ; Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine Bronx, NY, USA
| | - Luis R Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology Old Westbury, NY, USA
| |
Collapse
|
27
|
Hoefer MM, Sanchez AB, Maung R, de Rozieres CM, Catalan IC, Dowling CC, Thaney VE, Piña-Crespo J, Zhang D, Roberts AJ, Kaul M. Combination of methamphetamine and HIV-1 gp120 causes distinct long-term alterations of behavior, gene expression, and injury in the central nervous system. Exp Neurol 2014; 263:221-34. [PMID: 25246228 DOI: 10.1016/j.expneurol.2014.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/27/2014] [Accepted: 09/06/2014] [Indexed: 01/18/2023]
Abstract
Methamphetamine (METH) abuse is frequent in individuals infected with human immunodeficiency virus type-1 (HIV-1) and is suspected to aggravate HIV-associated neurocognitive disorders (HAND). METH is a psychostimulant that compromises several neurotransmitter systems and HIV proteins trigger neuronal injury but the combined effects of viral infection and METH abuse are incompletely understood. In this study we treated transgenic mice expressing the HIV envelope protein gp120 in the brain (HIV-1 gp120tg) at 3-4 months of age with an escalating-dose, multiple-binge METH regimen. The long-term effects were analyzed after 6-7 months of drug abstinence employing behavioral tests and analysis of neuropathology, electrophysiology and gene expression. Behavioral testing showed that both HIV-1 gp120tg and WT animals treated with METH displayed impaired learning and memory. Neuropathological analysis revealed that METH similar to HIV-1 gp120 caused a significant loss of neuronal dendrites and pre-synaptic terminals in hippocampus and cerebral cortex of WT animals. Electrophysiological studies in hippocampal slices showed that METH exposed HIV-1 gp120tg animals displayed reduced post-tetanic potentiation, whereas both gp120 expression and METH lead to reduced long-term potentiation. A quantitative reverse transcription-polymerase chain reaction array showed that gp120 expression, METH and their combination each caused a significant dysregulation of specific components of GABAergic and glutamatergic neurotransmission systems, providing a possible mechanism for synaptic dysfunction and behavioral impairment. In conclusion, both HIV-1 gp120 and METH caused lasting behavioral impairment in association with neuropathology and altered gene expression. However, combined METH exposure and HIV-1 gp120 expression resulted in the most pronounced, long lasting pre- and post-synaptic alterations coinciding with impaired learning and memory.
Collapse
Affiliation(s)
- Melanie M Hoefer
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cyrus M de Rozieres
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Irene C Catalan
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cari C Dowling
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Juan Piña-Crespo
- Del E. Webb Center for Neuroscience & Aging Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Dongxian Zhang
- Del E. Webb Center for Neuroscience & Aging Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Amanda J Roberts
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, MB6, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA.
| |
Collapse
|
28
|
Human immunodeficiency virus infection heightens concurrent risk of functional dependence in persons with long-term methamphetamine use. J Addict Med 2014; 7:255-63. [PMID: 23648641 DOI: 10.1097/adm.0b013e318293653d] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Disability among long-term methamphetamine (MA) users is multifactorial. This study examined the additive adverse impact of human immunodeficiency virus (HIV) infection, a common comorbidity in MA users, on functional dependence. METHODS A large cohort of participants (N = 798) stratified by lifetime MA-dependence diagnoses (ie, MA+ or MA-) and HIV serostatus (ie, HIV+ or HIV-) underwent comprehensive baseline neuromedical, neuropsychiatric, and functional research evaluations, including assessment of neurocognitive symptoms in daily life, instrumental and basic activities of daily living, and employment status. RESULTS Independent, additive effects of MA and HIV were observed across all measures of functional dependence, independent of other demographic, psychiatric, and substance-use factors. The prevalence of global functional dependence increased in the expected stepwise fashion across the cohort, with the lowest rates in the MA-/HIV- group (29%) and the highest rates in the MA+/HIV+ sample (69%). The impact of HIV on MA-associated functional dependence was moderated by nadir CD4 count, such that polysubstance use was associated with greater disability among those HIV-infected persons with higher but not lower nadir CD4 count. Within the MA+/HIV+ cohort, functional dependence was reliably associated with neurocognitive impairment, lower cognitive reserve, polysubstance use, and major depressive disorder. CONCLUSIONS HIV infection confers an increased concurrent risk of MA-associated disability, particularly among HIV-infected persons without histories of immune compromise. Directed referrals, earlier HIV treatment, and compensatory strategies aimed at counteracting the effects of low cognitive reserve, neurocognitive impairment, and psychiatric comorbidities on functional dependence in MA+/HIV+ individuals may be warranted.
Collapse
|
29
|
The longitudinal and interactive effects of HIV status, stimulant use, and host genotype upon neurocognitive functioning. J Neurovirol 2014; 20:243-57. [PMID: 24737013 DOI: 10.1007/s13365-014-0241-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/29/2014] [Accepted: 02/06/2014] [Indexed: 12/18/2022]
Abstract
Both human immunodeficiency virus (HIV)-1 infection and illicit stimulant use can adversely impact neurocognitive functioning, and these effects can be additive. However, significant variability exists such that as-of-yet unidentified exogenous and endogenous factors affect one's risk for neurocognitive impairment. Literature on both HIV and stimulant use indicates that host genetic variants in immunologic and dopamine-related genes are one such factor. In this study, the individual and interactive effects of HIV status, stimulant use, and genotype upon neurocognitive functioning were examined longitudinally over a 10-year period. Nine hundred fifty-two Caucasian HIV+ and HIV- cases from the Multicenter AIDS Cohort Study were included. All cases had at least two comprehensive neurocognitive evaluations between 1985 and 1995. Pre-highly active antiretroviral therapy (HAART) data were examined in order to avoid the confounding effect of variable drug regimens. Linear mixed models were used, with neurocognitive domain scores as the outcome variables. No four-way interactions were found, indicating that HIV and stimulant use do not interact over time to affect neurocognitive functioning as a function of genotype. Multiple three-way interactions were found that involved genotype and HIV status. All immunologically related genes found to interact with HIV status affected neurocognitive functioning in the expected direction; however, only C-C chemokine ligand 2 (CCL2) and CCL3 affected HIV+ individuals specifically. Dopamine-related genetic variants generally affected HIV-negative individuals only. Neurocognitive functioning among HIV+ individuals who also used stimulants was not significantly different from those who did not use stimulants. The findings support the role of immunologically related genetic differences in CCL2 and CCL3 in neurocognitive functioning among HIV+ individuals; however, their impact is minor. Being consistent with findings from another cohort, dopamine (DA)-related genetic differences do not appear to impact the longitudinal neurocognitive functioning of HIV+ individuals.
Collapse
|
30
|
Hao S. The Molecular and Pharmacological Mechanisms of HIV-Related Neuropathic Pain. Curr Neuropharmacol 2014; 11:499-512. [PMID: 24403874 PMCID: PMC3763758 DOI: 10.2174/1570159x11311050005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
Infection of the nervous system with the human immunodeficiency virus (HIV-1) can lead to cognitive, motor and sensory disorders. HIV-related sensory neuropathy (HIV-SN) mainly contains the HIV infection-related distal sensory polyneuropathy (DSP) and antiretroviral toxic neuropathies (ATN). The main pathological features that characterize DSP and ATN include retrograde ("dying back") axonal degeneration of long axons in distal regions of legs or arms, loss of unmyelinated fibers, and variable degree of macrophage infiltration in peripheral nerves and dorsal root ganglia (DRG). One of the most common complaints of HIV-DSP is pain. Unfortunately, many conventional agents utilized as pharmacologic therapy for neuropathic pain are not effective for providing satisfactory analgesia in painful HIV-related distal sensory polyneuropathy, because the molecular mechanisms of the painful HIV-SDP are not clear in detail. The HIV envelope glycoprotein, gp120, appears to contribute to this painful neuropathy. Recently, preclinical studies have shown that glia activation in the spinal cord and DRG has become an attractive target for attenuating chronic pain. Cytokines/chemokines have been implicated in a variety of painful neurological diseases and in animal models of HIV-related neuropathic pain. Mitochondria injured by ATN and/or gp120 may be also involved in the development of HIV-neuropathic pain. This review discusses the neurochemical and pharmacological mechanisms of HIV-related neuropathic pain based on the recent advance in the preclinical studies, providing insights into novel pharmacological targets for future therapy.
Collapse
Affiliation(s)
- Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| |
Collapse
|
31
|
Hauser KF, Knapp PE. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:231-313. [PMID: 25175867 PMCID: PMC4304845 DOI: 10.1016/b978-0-12-801284-0.00009-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Anatomy & Neurobiology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
32
|
Increased excitability in tat-transgenic mice: Role of tat in HIV-related neurological disorders. Neurobiol Dis 2013; 55:110-9. [DOI: 10.1016/j.nbd.2013.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/03/2013] [Accepted: 02/19/2013] [Indexed: 11/20/2022] Open
|
33
|
Mahajan SD, Hu Z, Reynolds JL, Aalinkeel R, Schwartz SA, Nair MPN. Methamphetamine Modulates Gene Expression Patterns in Monocyte Derived Mature Dendritic Cells. Mol Diagn Ther 2012; 10:257-69. [PMID: 16884330 DOI: 10.1007/bf03256465] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The US is currently experiencing a grave epidemic of methamphetamine use as a recreational drug, and the risk for HIV-1 infection attributable to methamphetamine use continues to increase. Recent studies show a high prevalence of HIV infection among methamphetamine users. Dendritic cells (DCs) are potent antigen presenting cells that are the initial line of defense against HIV-1 infection. In addition, DCs also serve as reservoirs for HIV-1 and function at the interface between the adaptive and the innate immune systems, which recognize and internalize pathogens and subsequently activate T cells. Exposure to methamphetamine results in modulation of immune functional parameters that are necessary for host defense. Chronic methamphetamine use can cause psychiatric co-morbidity, neurological complications, and can alter normal biological processes and immune functions. Limited information is available on the mechanisms by which methamphetamine may influence immune function. This study explores the effect of methamphetamine on a specific array of genes that may modulate immune function. We hypothesize that methamphetamine treatment results in the immunomodulation of DC functions, leading to dysregulation of the immune system of the infected host. This suggests that methamphetamine has a role as a cofactor in the pathogenesis of HIV-1. METHODS We used the high-throughput technology of gene microarray analysis to understand the molecular mechanisms underlying the genomic changes that alter normal biological processes when DCs are treated with methamphetamine. Additionally, we validated the results obtained from microarray experiments using a combination of quantitative real-time PCR and Western blot analysis. RESULTS These data are the first evidence that methamphetamine modulates DC expression of several genes. Methamphetamine treatment alters categories of genes that are associated with chemokine regulation, cytokinesis, signal transduction mechanisms, apoptosis, and cell cycle regulation. This report focuses on a selected group of genes that are significantly modulated by methamphetamine treatment and that have been associated with HIV-1 pathogenesis. DISCUSSION/CONCLUSION The purpose of this study was to identify genes that are unique and/or specific to the complex immunomodulatory mechanisms that are altered as a result of methamphetamine abuse in HIV-1-infected patients. These studies will help to identify the molecular mechanisms that underlie methamphetamine toxicity, and several functionally important classes of genes have emerged as targets in methamphetamine-mediated immunopathogenesis of HIV-1. Identification of novel DC-specific and methamphetamine-responsive genes that modulate several biological, molecular, and signal transduction functions may serve as methamphetamine- and/or HIV-1-specific drug targets.
Collapse
Affiliation(s)
- Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Buffalo General Hospital, Buffalo, New York 14203, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Yue X, Qiao D, Wang A, Tan X, Li Y, Liu C, Wang H. CD200 attenuates methamphetamine-induced microglial activation and dopamine depletion. ACTA ACUST UNITED AC 2012; 32:415-421. [PMID: 22684568 DOI: 10.1007/s11596-012-0072-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 12/21/2022]
Abstract
This study examined the neuroprotective effect of cluster of differentiation molecule 200 (CD200) against methamphetamine (METH)-induced neurotoxicity. In the in vitro experiment, neuron-microglia cultures were treated with METH (20 μmol/L), METH (20 μmol/L)+CD200-Fc (10 μg/mL) or CD200-Fc (10 μg/mL). Those untreated served as control. Microglia activation expressed as the ratio of MHC-II/CD11b was assessed by flow cytometry. The cytokines (IL-1β, TNF-α) secreted by activated microglia were detected by enzyme-linked immunosorbent assay (ELISA). In the in vivo experiment, 40 SD rats were divided into control, METH, METH+CD200-Fc and CD200-Fc groups at random. Rats were intraperitoneally injected with METH (15 mg/kg 8 times at 12 h interval) in METH group, with METH (administered as the same dose and time as the METH group) and CD200-Fc (1 mg/kg at day 0, 2, 4 after METH injection) in METH+CD200-Fc group, with CD200-Fc (1 mg/kg injected as the same time as the METH+CD200-Fc group) or with physiological saline solution in the control group. The level of striatal dopamine (DA) in rats was measured by high-performance liquid chromatography (HPLC). The microglial cells were immunohistochemically detected for the expression of Iba-1, a marker for microglial activation. The results showed that METH could increase the microglia activation in the neuron-microglia cultures and elevate the secretion of IL-1β and TNF-α, which could be attenuated by CD200-Fc. Moreover, CD200-Fc could partially reverse the striatal DA depletion induced by METH and reduce the number of activated microglia, i.e. Iba-1-positive cells. It was concluded that CD200 may have neuroprotective effects against METH-induced neurotoxicity by inhibiting microglial activation and reversing DA depletion in striatum.
Collapse
Affiliation(s)
- Xia Yue
- Department of Forensic Science, Southern Medical University, Guangzhou, 510515, China
| | - Dongfang Qiao
- Department of Forensic Science, Southern Medical University, Guangzhou, 510515, China
| | - Aifeng Wang
- Department of Forensic Science, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohui Tan
- Department of Forensic Science, Southern Medical University, Guangzhou, 510515, China
| | - Yanhong Li
- Department of Forensic science, Nanchang University, Nanchang, 330006, China
| | - Chao Liu
- Guangzhou Criminal Science & Technology Institute, Guangzhou, 510030, China
| | - Huijun Wang
- Department of Forensic Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
35
|
D1/NMDA receptors and concurrent methamphetamine+ HIV-1 Tat neurotoxicity. J Neuroimmune Pharmacol 2012; 7:599-608. [PMID: 22552781 DOI: 10.1007/s11481-012-9362-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/25/2012] [Indexed: 01/05/2023]
Abstract
The interactive effects of HIV-1 infection and methamphetamine (METH) abuse in producing cognitive dysfunction represent a serious medical problem; however, the neural mechanisms underlying this interactive neurotoxicity remain elusive. In this study, we report that a combination of low, sub-toxic doses of METH + HIV-1 Tat 1-86 B, but not METH + HIV-1 gp120, directly induces death of rodent midbrain neurons in vitro. The effects of D1- and NMDA-receptor specific antagonists (SCH23390 and MK-801, respectively) on the neurotoxicity of different doses of METH or HIV-1 Tat alone and on the METH + HIV-1Tat interaction in midbrain neuronal cultures suggest that the induction of the cell death cascade by METH and Tat requires both dopaminergic (D1) and N-methyl D-aspartate (NMDA) receptor-mediated signaling. This interactive METH+Tat neurotoxicity does not occur in cultures of hippocampal neurons, which are predominately glutamatergic, express very low levels of dopamine receptors, and have no functional dopamine transporter (DAT). Thus, the presence of a subpopulation of neurons capable of dopamine release/uptake is essential for METH+Tat induction of the cell death cascade. Overall, our results support the hypothesis that METH and HIV-1 Tat disrupt the normal conjunction of signaling between D1 and NMDA receptors, resulting in neural dysfunction and death.
Collapse
|
36
|
Schuster RM, Gonzalez R. Substance Abuse, Hepatitis C, and Aging in HIV: Common Cofactors that Contribute to Neurobehavioral Disturbances. ACTA ACUST UNITED AC 2012; 2012:15-34. [PMID: 24014165 DOI: 10.2147/nbhiv.s17408] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the prevalence of neurocognitive disturbances among individuals with HIV has decreased in recent years, rates of impairment still remain high. This review presents findings from comorbid conditions that may contribute to further neurocognitive impairments in this already vulnerable population. We will focus on three co-factors that have received substantial attention in the neuroAIDS literature: drug use, hepatitis C co-infection (HCV), and aging. All three conditions commonly co-occur with HIV and likely interact with HIV in complex ways. Collectively, the extant literature suggests that drug use, HCV, and aging serve to worsen the neurocognitive profile of HIV through several overlapping mechanisms. A better understanding of how specific comorbidities interact with HIV may reveal specific phenotypes of HIV-associated neurocognitive disorder that may aid in the development of more targeted behavioral and pharmacological treatment efforts.
Collapse
|
37
|
Ances BM, Vaida F, Cherner M, Yeh MJ, Liang CL, Gardner C, Grant I, Ellis RJ, Buxton RB. HIV and chronic methamphetamine dependence affect cerebral blood flow. J Neuroimmune Pharmacol 2011; 6:409-19. [PMID: 21431471 PMCID: PMC3251315 DOI: 10.1007/s11481-011-9270-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/25/2011] [Indexed: 01/20/2023]
Abstract
Human immunodeficiency virus (HIV) and methamphetamine (METH) dependence are independently associated with neuronal dysfunction. The coupling between cerebral blood flow (CBF) and neuronal activity is the basis of many task-based functional neuroimaging techniques. We examined the interaction between HIV infection and a previous history of METH dependence on CBF within the lenticular nuclei (LN). Twenty-four HIV-/METH-, eight HIV-/METH+, 24 HIV+/METH-, and 15 HIV+/METH+ participants performed a finger tapping paradigm. A multiple regression analysis of covariance assessed associations and two-way interactions between CBF and HIV serostatus and/or previous history of METH dependence. HIV+ individuals had a trend towards a lower baseline CBF (-10%, p = 0.07) and greater CBF changes for the functional task (+32%, p = 0.01) than HIV- subjects. Individuals with a previous history of METH dependence had a lower baseline CBF (-16%, p = 0.007) and greater CBF changes for a functional task (+33%, p = 0.02). However, no interaction existed between HIV serostatus and previous history of METH dependence for either baseline CBF (p = 0.53) or CBF changes for a functional task (p = 0.10). In addition, CBF and volume in the LN were not correlated. A possible additive relationship could exist between HIV infection and a history of METH dependence on CBF with a previous history of METH dependence having a larger contribution. Abnormalities in CBF could serve as a surrogate measure for assessing the chronic effects of HIV and previous METH dependence on brain function.
Collapse
Affiliation(s)
- Beau M Ances
- Department of Neurology, Washington University in St. Louis, 660 South Euclid Ave, Box 08111, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rao JS, Kim HW, Kellom M, Greenstein D, Chen M, Kraft AD, Harry GJ, Rapoport SI, Basselin M. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats. J Neuroinflammation 2011; 8:101. [PMID: 21846384 PMCID: PMC3175175 DOI: 10.1186/1742-2094-8-101] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/16/2011] [Indexed: 12/23/2022] Open
Abstract
Background Cognitive impairment has been reported in human immune deficiency virus-1- (HIV-1-) infected patients as well as in HIV-1 transgenic (Tg) rats. This impairment has been linked to neuroinflammation, disturbed brain arachidonic acid (AA) metabolism, and synapto-dendritic injury. We recently reported upregulated brain AA metabolism in 7- to 9-month-old HIV-1 Tg rats. We hypothesized that these HIV-1 Tg rats also would show upregulated brain inflammatory and AA cascade markers and a deficit of synaptic proteins. Methods We measured protein and mRNA levels of markers of neuroinflammation and the AA cascade, as well as pro-apoptotic factors and synaptic proteins, in brains from 7- to 9-month-old HIV-1 Tg and control rats. Results Compared with control brain, HIV-1 Tg rat brain showed immunoreactivity to glycoprotein 120 and tat HIV-1 viral proteins, and significantly higher protein and mRNA levels of (1) the inflammatory cytokines interleukin-1β and tumor necrosis factor α, (2) the activated microglial/macrophage marker CD11b, (3) AA cascade enzymes: AA-selective Ca2+-dependent cytosolic phospholipase A2 (cPLA2)-IVA, secretory sPLA2-IIA, cyclooxygenase (COX)-2, membrane prostaglandin E2 synthase, 5-lipoxygenase (LOX) and 15-LOX, cytochrome p450 epoxygenase, and (4) transcription factor NF-κBp50 DNA binding activity. HIV-1 Tg rat brain also exhibited signs of cell injury, including significantly decreased levels of brain-derived neurotrophic factor (BDNF) and drebrin, a marker of post-synaptic excitatory dendritic spines. Expression of Ca2+-independent iPLA2-VIA and COX-1 was unchanged. Conclusions HIV-1 Tg rats show elevated brain markers of neuroinflammation and AA metabolism, with a deficit in several synaptic proteins. These changes are associated with viral proteins and may contribute to cognitive impairment. The HIV-1 Tg rat may be a useful model for understanding progression and treatment of cognitive impairment in HIV-1 patients.
Collapse
Affiliation(s)
- Jagadeesh Sridhara Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Methamphetamine toxicity and its implications during HIV-1 infection. J Neurovirol 2011; 17:401-15. [PMID: 21786077 DOI: 10.1007/s13365-011-0043-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
Over the past two decades methamphetamine (MA) abuse has seen a dramatic increase. The abuse of MA is particularly high in groups that are at higher risk for HIV-1 infection, especially men who have sex with men (MSM). This review is focused on MA toxicity in the CNS as well as in the periphery. In the CNS, MA toxicity is comprised of numerous effects, including, but not limited to, oxidative stress produced by dysregulation of the dopaminergic system, hyperthermia, apoptosis, and neuroinflammation. Multiple lines of evidence demonstrate that these effects exacerbate the neurodegenerative damage caused by CNS infection of HIV perhaps because both MA and HIV target the frontostriatal regions of the brain. MA has also been demonstrated to increase viral load in the CNS of SIV-infected macaques. Using transgenic animal models, as well as cultured cells, the HIV proteins Tat and gp120 have been demonstrated to have neurotoxic properties that are aggravated by MA. In addition, MA has been shown to exhibit detrimental effects on the blood-brain barrier (BBB) that have the potential to increase the probability of CNS infection by HIV. Although the effects of MA in the periphery have not been as extensively studied as have the effects on the CNS, recent reports demonstrate the potential effects of MA on HIV infection in the periphery including increased expression of HIV co-receptors and increased expression of inflammatory cytokines.
Collapse
|
40
|
Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain Behav Immun 2011; 25 Suppl 1:S21-8. [PMID: 21256955 PMCID: PMC5654377 DOI: 10.1016/j.bbi.2011.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/22/2022] Open
Abstract
Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction.
Collapse
|
41
|
Buchanan JB, Sparkman NL, Johnson RW. A neurotoxic regimen of methamphetamine exacerbates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. J Neuroinflammation 2010; 7:82. [PMID: 21092194 PMCID: PMC2995792 DOI: 10.1186/1742-2094-7-82] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/22/2010] [Indexed: 02/08/2023] Open
Abstract
Methamphetamine (MA) use is associated with activation of microglia and, at high doses, can induce neurotoxicity. Given the changes in the neuroinflammatory environment associated with MA, we investigated whether MA administration would interfere with the thermoregulatory and neuroinflammatory response to a subsequent peripheral immune stimulus. C57BL6/J mice were given four i.p. injections of either 5 mg/kg MA or saline at two hour intervals. Twenty-four hours following the first MA injection, mice were given 100 μg/kg LPS or saline i.p. and blood and brains were collected. Here we report that mice exposed to MA developed higher fevers in response to LPS than did those given LPS alone. MA also exacerbated the LPS-induced increase in central cytokine mRNA. MA alone increased microglial Iba1 expression and expression was further increased when mice were exposed to both MA and LPS, suggesting that MA not only activated microglia but also influenced their response to a peripheral immune stimulus. Taken together, these data show that MA administration exacerbates the normal central immune response, most likely by altering microglia.
Collapse
Affiliation(s)
- Jessica B Buchanan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
42
|
Neuroimmune pharmacology from a neuroscience perspective. J Neuroimmune Pharmacol 2010; 6:10-9. [PMID: 20717737 DOI: 10.1007/s11481-010-9239-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
The focus of this commentary is to describe how neuroscience, immunology, and pharmacology intersect and how interdisciplinary research involving these areas has expanded knowledge in the area of neuroscience, in particular. Examples are presented to illustrate that the brain can react to the peripheral immune system and possesses immune function and that resident immune molecules play a role in normal brain physiology. In addition, evidence is presented that the brain immune system plays an important role in mediating neurodegenerative diseases, the aging process, and neurodevelopment and synaptic plasticity. The identification of these mechanisms has been facilitated by pharmacological studies and has opened new possibilities for pharmacotherapeutic approaches to the treatment of brain disorders. The emerging field of neuroimmune pharmacology exemplifies this interdisciplinary approach and has facilitated the study of basic cellular and molecular events and disease states and opens avenues for novel therapies.
Collapse
|
43
|
Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 2010; 1187:101-21. [PMID: 20201848 DOI: 10.1111/j.1749-6632.2009.05141.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of biogenic and nonbiogenic amine-containing neurons in several brain areas and endothelial cells that make up the blood-brain barrier have been reported. The processes that mediate this damage involve not only oxidative stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic actions of the amphetamines.
Collapse
Affiliation(s)
- Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
44
|
Tipton D, Legan Z, Dabbous M. Methamphetamine cytotoxicity and effect on LPS-stimulated IL-1β production by human monocytes. Toxicol In Vitro 2010; 24:921-7. [DOI: 10.1016/j.tiv.2009.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 12/19/2022]
|
45
|
Buchanan J, Sparkman N, Johnson R. Methamphetamine sensitization attenuates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. Brain Behav Immun 2010; 24:502-11. [PMID: 20035859 PMCID: PMC2834480 DOI: 10.1016/j.bbi.2009.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/18/2009] [Accepted: 12/20/2009] [Indexed: 10/20/2022] Open
Abstract
Methamphetamine (MA) use is associated with activation of microglia and, at high doses, can induce neurotoxicity. Given the changes in the neuroinflammatory environment associated with MA, we investigated whether MA sensitization, a model of stimulant psychosis and an indicator of drug addiction, would interfere with the thermoregulatory and neuroinflammatory response to a subsequent peripheral immune stimulus. C57BL6/J mice were given either 1 mg/kg MA or saline i.p. once a day for 5 days to produce behavioral sensitization. Seventy-two hours following the last MA injection, 100 microg/kg LPS or saline was co-administered with 1 mg/kg MA or saline and blood and brains were collected. Here we report that while co-administration of LPS and MA did not affect the LPS-induced increase in central cytokine mRNA, mice sensitized to MA showed an attenuated central response to LPS. Interestingly, the peripheral response to LPS was not affected by MA sensitization. Plasma cytokines increased similarly in all groups after LPS. Further, c-Fos expression in the nucleus of the solitary tract did not differ between groups, suggesting that the periphery-to-brain immune signal is intact in MA-sensitized mice and that the deficit lies in the central cytokine compartment. We also show that MA sensitization decreased LPS- or acute MA-induced microglial Iba1 expression compared to non-sensitized mice. Taken together, these data show that MA sensitization interferes with the normal central immune response, preventing the CNS from efficiently responding to signals from the peripheral immune system.
Collapse
|
46
|
Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab 2009; 29:1933-45. [PMID: 19654589 PMCID: PMC3384723 DOI: 10.1038/jcbfm.2009.112] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methamphetamine (METH), a potent stimulant with strong euphoric properties, has a high abuse liability and long-lasting neurotoxic effects. Recent studies in animal models have indicated that METH can induce impairment of the blood-brain barrier (BBB), thus suggesting that some of the neurotoxic effects resulting from METH abuse could be the outcome of barrier disruption. In this study, we provide evidence that METH alters BBB function through direct effects on endothelial cells and explore possible underlying mechanisms leading to endothelial injury. We report that METH increases BBB permeability in vivo, and exposure of primary human brain microvascular endothelial cells (BMVEC) to METH diminishes the tightness of BMVEC monolayers in a dose- and time-dependent manner by decreasing the expression of cell membrane-associated tight junction (TJ) proteins. These changes were accompanied by the enhanced production of reactive oxygen species, increased monocyte migration across METH-treated endothelial monolayers, and activation of myosin light chain kinase (MLCK) in BMVEC. Antioxidant treatment attenuated or completely reversed all tested aspects of METH-induced BBB dysfunction. Our data suggest that BBB injury is caused by METH-mediated oxidative stress, which activates MLCK and negatively affects the TJ complex. These observations provide a basis for antioxidant protection against brain endothelial injury caused by METH exposure.
Collapse
|
47
|
Role of Tat protein in HIV neuropathogenesis. Neurotox Res 2009; 16:205-20. [PMID: 19526283 DOI: 10.1007/s12640-009-9047-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 12/13/2022]
Abstract
The Tat protein of the human immunodeficiency virus (HIV) has been implicated in the pathophysiology of the neurocognitive deficits associated with HIV infection. This is the earliest protein to be produced by the proviral DNA in the infected cell. The protein not only drives the regulatory regions of the virus but may also be actively released from the cell and then interact with the cell surface receptors of other uninfected cells in the brain leading to cellular dysfunction. It may also be taken up by these cells and can then activate a number of host genes. The Tat protein is highly potent and has the unique ability to travel along neuronal pathways. Importantly, its production is not impacted by the use of antiretroviral drugs once the proviral DNA has been formed. This article reviews the pleomorphic actions of Tat protein and the evidence supporting its central role in the neuropathogenesis of the HIV infection.
Collapse
|
48
|
Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW. Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1148-59. [PMID: 19661443 DOI: 10.2353/ajpath.2009.081067] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The prevalence of human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) that result from HIV infection of the central nervous system is increasing. Macrophages, the primary target for HIV within the central nervous system, play a central role in HIV-induced neuropathogenesis. Drug abuse exacerbates HAND, but the mechanism(s) by which this increased neuropathology results in more severe forms of HAND in HIV-infected drug abusers is unclear. The addictive and reinforcing effects of many drugs of abuse, such as cocaine and methamphetamine, are mediated by increased extracellular dopamine in the brain. We propose a novel mechanism by which drugs of abuse intensify HIV neuropathogenesis through direct effects of the neurotransmitter dopamine on HIV infection of macrophages. We found that macrophages express dopamine receptors 1 and 2, and dopamine activates macrophages by increasing ERK 1 phosphorylation. Our results demonstrate for the first time that dopamine increases HIV replication in human macrophages and that the mechanism by which dopamine mediates this change is by increasing the total number of HIV-infected macrophages. This increase in HIV replication is mediated by activation of dopamine receptor 2. These findings suggest a common mechanism by which drugs of abuse enhance HIV replication in macrophages and indicate that the drug abuse-heightened levels of central nervous system dopamine could increase viral replication, thereby accelerating the development of HAND.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
49
|
Martin-Thormeyer EM, Paul RH. Drug abuse and hepatitis C infection as comorbid features of HIV associated neurocognitive disorder: neurocognitive and neuroimaging features. Neuropsychol Rev 2009; 19:215-31. [PMID: 19468837 PMCID: PMC3635478 DOI: 10.1007/s11065-009-9101-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 05/06/2009] [Indexed: 02/06/2023]
Abstract
Substance abuse and co-infection with hepatitis C (HCV) are two highly relevant determinants of neurocognitive and neuroimaging abnormalities associated with HIV. Substance abuse and HCV are common in the HIV population and there is increasing evidence that the CNS is directly compromised by these comorbid conditions via additive or synergistic processes. In this article we review the current literature regarding mechanisms of neuronal injury as well as the neuropsychological and neuroimaging signatures associated with substance abuse and HCV status among HIV patients. We discuss specific methodological challenges and threats to validity associated with studies of HIV and comorbid substance use disorders or HCV and review potential strategies for minimizing their confounding effects. Efforts to understand the interactions between HIV, substance abuse and HCV co-infection will lead to more complete models of neuropathogenesis of HIV and a greater understanding of the variability in neuropsychological expression of HIV Associated Neurocognitive Disorder.
Collapse
|
50
|
Norman LR, Basso M, Kumar A, Malow R. Neuropsychological consequences of HIV and substance abuse: a literature review and implications for treatment and future research. CURRENT DRUG ABUSE REVIEWS 2009; 2:143-56. [PMID: 19630745 PMCID: PMC6167747 DOI: 10.2174/1874473710902020143] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropsychological dysfunction, ranging from mild cognitive symptoms to dementia has been a consistent part of the clinical picture of HIV/AIDS. However, advances in clinical management, particularly antiretroviral (ARV) treatment, have mitigated the neuropsychological effects of HIV and revised the pattern and nature of cognitive deficits, which are observed in HIV-infected individuals. The attendant improvements in mortality and morbidity have led to a need for programs and interventions that sustain healthy behavior and prevent a resurgence of HIV transmission risk. Psychiatric risk factors, particularly substance use, which often contribute to initial acquisition of HIV, still require attention. These risk factors may also exacerbate neuropsychological dysfunction and compromise adherence to prevention recommendations and treatment. Specifically, a more complete understanding of the effects of substance abuse on the progression of HIV related cognitive decline can inform evaluation and management of HIV seropositives with concurrent substance use disorders. This review provides an overview of the neuropsychology of HIV and substance abuse and the extant research that has examined the effects of both HIV disease and substance use on neuropsychological functioning and implications for treatment and future research.
Collapse
Affiliation(s)
- Lisa R Norman
- AIDS Research Program, Ponce School of Medicine, Ponce, PR 00732.
| | | | | | | |
Collapse
|