1
|
Docampo R, Vercesi AE, Huang G, Lander N, Chiurillo MA, Bertolini M. Mitochondrial Ca 2+ homeostasis in trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:261-289. [PMID: 34253297 PMCID: PMC10424509 DOI: 10.1016/bs.ircmb.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial calcium ion (Ca2+) uptake is important for buffering cytosolic Ca2+ levels, for regulating cell bioenergetics, and for cell death and autophagy. Ca2+ uptake is mediated by a mitochondrial Ca2+ uniporter (MCU) and the discovery of this channel in trypanosomes has been critical for the identification of the molecular nature of the channel in all eukaryotes. However, the trypanosome uniporter, which has been studied in detail in Trypanosoma cruzi, the agent of Chagas disease, and T. brucei, the agent of human and animal African trypanosomiasis, has lineage-specific adaptations which include the lack of some homologues to mammalian subunits, and the presence of unique subunits. Here, we review newly emerging insights into the role of mitochondrial Ca2+ homeostasis in trypanosomes, the composition of the uniporter, its functional characterization, and its role in general physiology.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States.
| | - Anibal E Vercesi
- Departamento de Patologia Clinica, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Noelia Lander
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Mayara Bertolini
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Scarpelli PH, Pecenin MF, Garcia CRS. Intracellular Ca 2+ Signaling in Protozoan Parasites: An Overview with a Focus on Mitochondria. Int J Mol Sci 2021; 22:ijms22010469. [PMID: 33466510 PMCID: PMC7796463 DOI: 10.3390/ijms22010469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ signaling has been involved in controling critical cellular functions such as activation of proteases, cell death, and cell cycle control. The endoplasmatic reticulum plays a significant role in Ca2+ storage inside the cell, but mitochondria have long been recognized as a fundamental Ca2+ pool. Protozoan parasites such as Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma cruzi display a Ca2+ signaling toolkit with similarities to higher eukaryotes, including the participation of mitochondria in Ca2+-dependent signaling events. This review summarizes the most recent knowledge in mitochondrial Ca2+ signaling in protozoan parasites, focusing on the mechanism involved in mitochondrial Ca2+ uptake by pathogenic protists.
Collapse
|
3
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
4
|
Docampo R, Huang G. Calcium signaling in trypanosomatid parasites. Cell Calcium 2014; 57:194-202. [PMID: 25468729 DOI: 10.1016/j.ceca.2014.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
Abstract
Calcium ion (Ca(2+)) is an important second messenger in trypanosomatids and essential for their survival although prolonged high intracellular Ca(2+) levels lead to cell death. As other eukaryotic cells, trypanosomes use two sources of Ca(2+) for generating signals: Ca(2+) release from intracellular stores and Ca(2+) entry across the plasma membrane. Ca(2+) release from intracellular stores is controlled by the inositol 1,4,5-trisphosphate receptor (IP3R) that is located in acidocalcisomes, acidic organelles that are the primary Ca(2+) reservoir in these cells. A plasma membrane Ca(2+)-ATPase controls the cytosolic Ca(2+) levels and a number of pumps and exchangers are responsible for Ca(2+) uptake and release from intracellular compartments. The trypanosomatid genomes contain a wide variety of signaling and regulatory proteins that bind Ca(2+) as well as many Ca(2+)-binding proteins that await further characterization. The mitochondrial Ca(2+) transporters of trypanosomatids have an important role in the regulation of cell bioenergetics and flagellar Ca(2+) appears to have roles in sensing the environment. In trypanosomatids in which an intracellular life cycle is present, Ca(2+) signaling is important for host cell invasion.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30620, USA; Departamento de Patologia Clínica, State University of Campinas, Campinas, SP 13083, Brazil.
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30620, USA
| |
Collapse
|
5
|
Trypanosomes and the solution to a 50-year mitochondrial calcium mystery. Trends Parasitol 2011; 28:31-7. [PMID: 22088944 DOI: 10.1016/j.pt.2011.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 12/29/2022]
Abstract
The ability of mitochondria to take up Ca(2+) was discovered 50 years ago. This calcium uptake, through a mitochondrial calcium uniporter (MCU), is important not only for the regulation of cellular ATP concentration but also for more complex pathways such as shaping Ca(2+) signals and the activation of programmed cell death. The molecular nature of the uniporter remained unknown for decades. By a comparative study of mitochondrial protein profiles of organisms lacking or possessing MCU, such as yeast in the former case and vertebrates and trypanosomes in the latter, two groups recently found the protein that possesses all the characteristics of the MCU. These results add another success story to the already substantial contributions of trypanosomes to mammalian biochemistry.
Collapse
|
6
|
Ibrahim HMS, Al-Salabi MI, El Sabbagh N, Quashie NB, Alkhaldi AAM, Escale R, Smith TK, Vial HJ, de Koning HP. Symmetrical choline-derived dications display strong anti-kinetoplastid activity. J Antimicrob Chemother 2010; 66:111-25. [PMID: 21078603 DOI: 10.1093/jac/dkq401] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES to investigate the anti-kinetoplastid activity of choline-derived analogues with previously reported antimalarial efficacy. METHODS from an existing choline analogue library, seven antimalarial compounds, representative of the first-, second- and third-generation analogues previously developed, were assessed for activity against Trypanosoma and Leishmania spp. Using a variety of techniques, the effects of choline analogue exposure on the parasites were documented and a preliminary investigation of their mode of action was performed. RESULTS the activities of choline-derived compounds against Trypanosoma brucei and Leishmania mexicana were determined. The compounds displayed promising anti-kinetoplastid activity, particularly against T. brucei, to which 4/7 displayed submicromolar EC(50) values for the wild-type strain. Low micromolar concentrations of most compounds cleared trypanosome cultures within 24-48 h. The compounds inhibit a choline transporter in Leishmania, but their entry may not depend only on this carrier; T. b. brucei lacks a choline carrier and the mode of uptake remains unclear. The compounds had no effect on the overall lipid composition of the cells, cell cycle progression or cyclic adenosine monophosphate production or short-term effects on intracellular calcium levels. However, several of the compounds, displayed pronounced effects on the mitochondrial membrane potential; this action was not associated with production of reactive oxygen species but rather with a slow rise of intracellular calcium levels and DNA fragmentation. CONCLUSIONS the choline analogues displayed strong activity against kinetoplastid parasites, particularly against T. b. brucei. In contrast to their antimalarial activity, they did not act on trypanosomes by disrupting choline salvage or phospholipid metabolism, instead disrupting mitochondrial function, leading to chromosomal fragmentation.
Collapse
Affiliation(s)
- Hasan M S Ibrahim
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Moysés DN, Barrabin H. Rotenone-sensitive mitochondrial potential in Phytomonas serpens: electrophoretic Ca(2+) accumulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:96-103. [PMID: 15178471 DOI: 10.1016/j.bbabio.2004.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 02/04/2004] [Accepted: 02/04/2004] [Indexed: 11/24/2022]
Abstract
Phytomonas sp. are flagellated trypanosomatid plant parasites that cause diseases of economic importance in plantations of coffee, oil palm, cassava and coconuts. Here we investigated Ca(2+) uptake by the vanadate-insensitive compartments using permeabilized Phytomonas serpens promastigotes. This uptake occurs at a rate of 1.13+/-0.23 nmol Ca(2+) mg x protein(-1) min(-1). It is completely abolished by the H(+) ionophore FCCP and by valinomycin and nigericin. It is also inhibited by 2 microM ruthenium red, which, at this low concentration, is known to inhibit the mitochondrial calcium uniport. Furthermore, salicylhydroxamic acid (SHAM) and propylgallate, specific inhibitors of the alternative oxidase in plant and parasite mitochondria, are also effective as inhibitors of the Ca(2+) transport. These compounds abolish the membrane potential that is monitored with safranine O. Rotenone, an inhibitor of NADH-CoQ oxidoreductase, can also dissipate 100% of the membrane potential. It is suggested that the mitochondria of P. serpens can be energized via oxidation of NADH in a pathway involving the NADH-CoQ oxidoreductase and the alternative oxidase to regenerate the ubiquinone. The electrochemical H(+) gradient can be used to promote Ca(2+) uptake by the mitochondria.
Collapse
Affiliation(s)
- Danuza Nogueira Moysés
- Departamento de Bioquímica Médica, ICB-CCS, Universidade Federal do Rio de Janeiro-UFRJ, Ilha do Fundão, 21941-590-Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
Abstract
The calcium ion (Ca(2+)) is used as a major signaling molecule in a diverse range of eukaryotic cells including several human parasitic protozoa, such as Trypanosoma cruzi, Trypanosoma brucei, Leishmania spp, Plasmodium spp, Toxoplasma gondii, Cryptosporidium parvum, Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis. Ca(2+) is critical for invasion of intracellular parasites, and its cytosolic concentration is regulated by the concerted operation of several transporters present in the plasma membrane, endoplasmic reticulum, mitochondria and acidocalcisomes. Recent findings have shed light on the function of these transporters, the roles that they play in cellular metabolism and their potential use for targeting them for new therapies.
Collapse
Affiliation(s)
- Silvia N J Moreno
- Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | | |
Collapse
|
9
|
Mendoza M, Mijares A, Rojas H, Ramos M, DiPolo R. Trypanosoma evansi: a convenient model for studying intracellular Ca(2+) homeostasis using fluorometric ratio imaging from single parasites. Exp Parasitol 2001; 99:213-9. [PMID: 11888248 DOI: 10.1006/expr.2001.4654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work was to measure, for the first time, the basal cytosolic Ca(2+) levels of Trypanosoma evansi and to explore the possibility of observing changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) using fluorescence ratio imaging techniques in single isolated parasites of this species. Under appropriate loading conditions, the high intracellular levels of the Ca(2+) fluorescence probe Fura-2 permits resolution, in real time, of single parasite [Ca(2+)](i) signals. Measurements of the basal [Ca(2+)](i) indicate that homeostatic mechanisms maintain [Ca(2+)](i) at 106 +/- 38 (n = 32) nM in the presence of 2 mM extracellular calcium. The resting [Ca(2+)](i) was unaffected by changes in extracellular Ca(2+) in the range from 0 to 10 mM. The Ca(2+) ionophore A23187 induced a large increase in [Ca(2+)](i) which (i) reached a steady state value even in the simultaneous presence of both external calcium and ionophore and (ii) returned to base line upon removal of extracellular Ca(2+). A dose-response curve of the protonophore nigericin shows that T. evansi contains an important pH-sensitive intracellular pool which may be released by this drug with a K(1/2) of 8 microM. These data demonstrate that this parasite contains highly efficient systems to control [Ca(2+)](i). Finally, our results, with the use of sera as source of an antibody-complement to induce Ca(2+) entry, demonstrate that it is possible to resolve fast [Ca(2+)](i) signals in single parasites from T. evansi.
Collapse
Affiliation(s)
- M Mendoza
- Centro de Estudios Biomédicos y Veterinarios, Caracas, Venezuela
| | | | | | | | | |
Collapse
|
10
|
Marhl M, Haberichter T, Brumen M, Heinrich R. Complex calcium oscillations and the role of mitochondria and cytosolic proteins. Biosystems 2000; 57:75-86. [PMID: 11004387 DOI: 10.1016/s0303-2647(00)00090-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracellular calcium oscillations, which are oscillatory changes of cytosolic calcium concentration in response to agonist stimulation, are experimentally well observed in various living cells. Simple calcium oscillations represent the most common pattern and many mathematical models have been published to describe this type of oscillation. On the other hand, relatively few theoretical studies have been proposed to give an explanation of complex intracellular calcium oscillations, such as bursting and chaos. In this paper, we develop a new possible mechanism for complex calcium oscillations based on the interplay between three calcium stores in the cell: the endoplasmic reticulum (ER), mitochondria and cytosolic proteins. The majority ( approximately 80%) of calcium released from the ER is first very quickly sequestered by mitochondria. Afterwards, a much slower release of calcium from the mitochondria serves as the calcium supply for the intermediate calcium exchanges between the ER and the cytosolic proteins causing bursting calcium oscillations. Depending on the permeability of the ER channels and on the kinetic properties of calcium binding to the cytosolic proteins, different patterns of complex calcium oscillations appear. With our model, we are able to explain simple calcium oscillations, bursting and chaos. Chaos is also observed for calcium oscillations in the bursting mode.
Collapse
Affiliation(s)
- M Marhl
- Department of Physics, Faculty of Education, University of Maribor, Koroska cesta 160, SI-2000, Maribor, Slovenia.
| | | | | | | |
Collapse
|
11
|
Catisti R, Uyemura SA, Docampo R, Vercesi AE. Calcium mobilization by arachidonic acid in trypanosomatids. Mol Biochem Parasitol 2000; 105:261-71. [PMID: 10693748 DOI: 10.1016/s0166-6851(99)00186-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A recent report (Eintracht J, Maathai R, Mellors A, Ruben L. Calcium entry in Trypanosoma brucei is regulated by phospholipase A, and arachidonic acid, Biochem J 1998:336:659-66) provided evidence that calcium entry in Trypanosoma brucei bloodstream trypomastigotes is regulated via a signaling pathway involving phospholipase A2-mediated generation of arachidonic acid and stimulation of a plasma membrane-located calcium channel. Here we show that Ca2+ influx in T. brucei procyclic trypomastigotes, Leishmania donovani promastigotes and T. cruzi amastigotes was also stimulated in a dose-dependent manner (50-400 nM) by the amphiphilic peptide melittin. This effect was blocked by the phospholipase A, inhibitor 3-(4-octadecyl)-benzoylacrylic acid. The unsaturated fatty acid arachidonic acid, in the range of 10-75 microM, induced Ca2+ entry by a mechanism sensitive to LaCl3. However, both melittin and arachidonic acid induced an increase in [Ca2+]i in T. brucei procyclic trypomastigotes incubated in Ca2+-free medium implying Ca2+ mobilization from intracellular stores. This hypothesis was supported by experiments showing that arachidonic acid promoted Ca2+ release from the acidocalcisomes of these cells. The results showing changes in mitochondrial membrane potential, release of acridine orange and Ca2+ from the acidocalcisomes and Ca2+ transport across the plasma membrane suggest that in addition to the possible stimulation of a Ca2+ channel-mediated process, arachidonic acid, in the range of concentrations used here, have other nonspecific effects on the trypanosomatids membranes.
Collapse
Affiliation(s)
- R Catisti
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana 61802, USA
| | | | | | | |
Collapse
|
12
|
Parsons M, Ruben L. Pathways involved in environmental sensing in trypanosomatids. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:56-62. [PMID: 10652488 DOI: 10.1016/s0169-4758(99)01590-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Digenetic parasites, such as those of the order Kinetoplastida, must respond to extracellular and intracellular signals as they adapt to new environments within their different hosts. Evidence for signal transduction has been obtained for Trypanosoma brucei, T. cruzi and Leishmania, as reviewed here by Marilyn Parsons and Larry Ruben. Although the broad picture suggests similarities with the mammalian host, there are large gaps in our understanding of these processes; this probably contributes to a perception of differences. Nonetheless, current evidence suggests that the trypanosomatids might lack certain classes of signalling molecules found in other organisms.
Collapse
Affiliation(s)
- M Parsons
- Seattle Biomedical Research Institute, 4 Nickerson St, Seattle, WA 98109, USA.
| | | |
Collapse
|
13
|
Eintracht J, Maathai R, Mellors A, Ruben L. Calcium entry in Trypanosoma brucei is regulated by phospholipase A2 and arachidonic acid. Biochem J 1998; 336 ( Pt 3):659-66. [PMID: 9841878 PMCID: PMC1219917 DOI: 10.1042/bj3360659] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In contrast with mammalian cells, little is known about the control of Ca2+ entry into primitive protozoans. Here we report that Ca2+ influx in pathogenic Trypanosoma brucei can be regulated by phospholipase A2 (PLA2) and the subsequent release of arachidonic acid (AA). Several PLA2 inhibitors blocked Ca2+ entry; 3-(4-octadecyl)-benzoylacrylic acid (OBAA; IC50 0.4+/-0.1 microM) was the most potent. We identified in live trypanosomes PLA2 activity that was sensitive to OBAA and could be stimulated by Ca2+, suggesting the presence of positive feedback control. The cell-associated PLA2 activity was able to release [14C]AA from labelled phospholipid substrates. Exogenous AA (5-50 microM) also initiated Ca2+ entry in a manner that was inhibited by the Ca2+ antagonist La3+ (100 microM). Ca2+ entry did not depend on AA metabolism or protein kinase activation. The cell response was specific for AA, and fatty acids with greater saturation than tetraeicosanoic acid (AA) or with chain lengths less than C20 exhibited greatly diminished ability to initiate Ca2+ influx. Myristate and palmitate inhibited PLA2 activity and also inhibited Ca2+ influx. Overall, these results demonstrate that Ca2+ entry into T. brucei can result from phospholipid hydrolysis and the release of eicosanoic acids.
Collapse
Affiliation(s)
- J Eintracht
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | | | | | | |
Collapse
|