1
|
Trypanosoma cruzi: modulation of HSP70 mRNA stability by untranslated regions during heat shock. Exp Parasitol 2010; 126:245-53. [PMID: 20493845 DOI: 10.1016/j.exppara.2010.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/25/2010] [Accepted: 05/16/2010] [Indexed: 11/22/2022]
Abstract
Gene regulation in trypanosomatids occurs mainly by post-transcriptional mechanisms modulating mRNA stability and translation. We have investigated heat shock protein (HSP) 70 gene regulation in Trypanosoma cruzi, the causal agent of Chagas' disease. The HSP70 mRNA's half-life increases after heat shock, and the stabilization is dependent on protein synthesis. In a cell-free RNA decay assay, a U-rich region in the 3' untranslated region (UTR) is a target for degradation, which is reduced when in the presence of protein extracts from heat shocked cells. In a transfected reporter gene assay, both the 5'- and 3'-UTRs confer temperature-dependent regulation. Both UTRs must be present to increase mRNA stability at 37 degrees C, indicating that the 5'- and 3'-UTRs act cooperatively to stabilize HSP70 mRNA during heat shock. We conclude that HSP70 5'- and 3'-UTRs regulate mRNA stability during heat shock in T. cruzi.
Collapse
|
2
|
De Melo LDB, Eisele N, Nepomuceno-Silva JL, Lopes UG. TcRho1, the Trypanosoma cruzi Rho homologue, regulates cell-adhesion properties: Evidence for a conserved function. Biochem Biophys Res Commun 2006; 345:617-22. [PMID: 16690023 DOI: 10.1016/j.bbrc.2006.04.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Rho proteins are members of the Ras superfamily of small GTPases. In higher eukaryotes these proteins play pivotal role in cell movement, phagocytosis, intracellular transport, cell-adhesion, and maintenance of cell morphology, mainly through the regulation of actin microfilaments. The GTPase TcRho1 is the only member of the Rho family described in human protozoan parasite Trypanosoma cruzi. We previously demonstrated that TcRho1 is actually required for differentiation of epimastigote to trypomastigote forms during the parasite cell cycle. In the present work, we describe cellular phenotypes induced by TcRho1 heterologous expression in NIH 3T3 fibroblasts. The NIH-3T3 lineages expressing the TcRho1-G15V and TcRho1-Q76L mutants displayed decreased levels of migration compared to the control lineage NIH-3T3 pcDNA3.1, a phenotype probably due to distinct cell-substrate adhesion properties expressed by the mutant cell lines. Accordingly, cell-substrate adhesion assays revealed that the mutant cell lines of NIH-3T3 expressing TcRho1-positive dominants constructions present enhanced substrate-adhesion phenotype. Furthermore, similar experiments with T. cruzi expressing TcRho1 mutants also revealed an enhancement of cell attachment. These results suggest that TcRho1 plays a conserved regulatory role in cell-substrate adhesion in both NIH-3T3 fibroblasts and T. cruzi epimastigotes. Taken together, our data corroborate the notion that TcRho1 may regulate the substrate-adhesion in T. cruzi, a critical step for successful progression of the parasite life cycle.
Collapse
Affiliation(s)
- Luiz Dione Barbosa De Melo
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
3
|
Ramos FP, Araripe JR, Urményi TP, Silva R, Cunha e Silva NL, Leite Fontes CF, da Silveira JF, Rondinelli E. Characterization of RAB-like4, the first identified RAB-like protein from Trypanosoma cruzi with GTPase activity. Biochem Biophys Res Commun 2005; 333:808-17. [PMID: 15975556 DOI: 10.1016/j.bbrc.2005.05.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 11/25/2022]
Abstract
RAB proteins, which belong to the RAS superfamily, regulate exocytic and endocytic pathways of eukaryotic cells, controlling vesicle docking and fusion. Few RAB proteins have been identified in parasites. Molecular markers for cellular compartments are important to studies concerning about the protein traffic in Trypanosoma cruzi, the causal agent of Chagas disease. In this work, we describe the characterization of TcRABL4, the first RAB-like gene identified in T. cruzi (GenBank Accession No.: ), present as a single-copy gene. TcRABL4 contains all five consensus RAB motifs but lacks cysteine residues at the C terminus, which are essential to isoprenylation, an absolute prerequisite for membrane association of these proteins. TcRABL4 is a functional GTPase that is able to bind and hydrolyze GTP, and its gene is transcribed as a single 1.2 kb mRNA in epimastigotes. TcRABL4 appears to be differentially regulated in the three cell forms of the parasite, and the protein is not associated to membranes, unlike other RAB proteins. It is possible that TcRABL4 may be a member of a novel family of small GTPases.
Collapse
Affiliation(s)
- Fabiane Pereira Ramos
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21949-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Araripe JR, Ramos FP, Cunha e Silva NL, Urményi TP, Silva R, Leite Fontes CF, da Silveira JF, Rondinelli E. Characterization of a RAB5 homologue in Trypanosoma cruzi. Biochem Biophys Res Commun 2005; 329:638-45. [PMID: 15737633 DOI: 10.1016/j.bbrc.2005.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Indexed: 11/30/2022]
Abstract
RAB proteins are small GTPases involved in exocytic and endocytic pathways of eukaryotic cells, controlling vesicle docking and fusion. RABs show a remarkable specificity in subcellular localization, so they can be used as molecular markers for studying protein trafficking in Trypanosoma cruzi, the causal agent of Chagas' disease. RAB5 is a component of early endosomes. It has been identified in kinetoplastids such as Trypanosoma brucei and Leishmania donovani. In this work, we describe the characterization of the complete coding sequence of a RAB5 gene homologue in T. cruzi (TcRAB5, GenBank Accession No. AY730667). It is present as a single copy gene, located at chromosomal bands XIII and XIV. TcRAB5 shares the highest degrees of similarity (71%) and identity (63%) with Trypanosoma brucei rhodesiense RAB5a and contains all five characteristic RAB motifs. TcRAB5 is transcribed as a single 1.5kb mRNA in epimastigotes. Its transcript was also detected in the other two forms of the parasite, metacyclic trypomastigotes and spheromastigotes. The recombinant TcRAB5 protein was able to bind and hydrolyze GTP. The identification of proteins involved in T. cruzi endo- and exocytic pathways may generate cellular compartment markers, an invaluable tool to better understand the vesicular transport in this parasite.
Collapse
Affiliation(s)
- Júlia Rolão Araripe
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21949-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Porter-Kelley JM, Gerald NJ, Engel JC, Ghedin E, Dwyer DM. LdARF1 in trafficking and structural maintenance of the trans-Golgi cisternal network in the protozoan pathogen Leishmania donovani. Traffic 2005; 5:868-83. [PMID: 15479452 DOI: 10.1111/j.1600-0854.2004.00229.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine diphosphate ribosylation factors (ARFs) are small guanosine-5'-triphosphatases that are essential in vesicular trafficking and in the maintenance of the Golgi network. In this report, we identified a homolog of the mammalian ARF1 in the human pathogenic protozoan parasite, Leishmania donovani (Ld). Ld ARF1 is a 549 bp gene encoding a 183-amino acid deduced protein of approximately 20 kDa. We demonstrated by Southern blot analysis that there are at least two copies of ARF1 in the Ld genome. Moreover, Northern blot analysis revealed that Ld ARF1 is expressed on a 1.35 kb transcript in both the insect vector (promastigotes) and mammalian host (amastigotes) forms of this parasite. Fluorescent microscopy studies using Ld promastigotes episomally transfected with an ARF1::GFP (green fluorescent protein) chimeric construct showed that such chimeras appeared to localize to the Golgi region of these organisms. This observation was verified by immunoelectron microscopy using an anti-GFP antibody. Such studies also revealed that Ld ARF1::GFP chimeras localized to trans-Golgi vesicles, the flagellar pocket/reservoir and other vesicles located between the trans-Golgi network and flagellar pocket in these apically polarized cells. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching experiments revealed both the dynamic binding and releasing activity of Ld ARF1 from the Golgi network in these parasites. Further, episomal expression of a constitutively active ("on") ARF1 (Q71L mutation) resulted in the aberrant swelling and distended-structure of the trans-Golgi cisternae in these cells. These results show that Ld ARF1 is transiently associated with the Golgi network and plays a role in the structural maintenance of this organelle in these important human pathogens.
Collapse
Affiliation(s)
- Johanna M Porter-Kelley
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | | | |
Collapse
|
6
|
Gomes GG, Peter Urményi T, Rondinelli E, Williams N, Silva R. TcRRMs and Tcp28 genes are intercalated and differentially expressed in Trypanosoma cruzi life cycle. Biochem Biophys Res Commun 2004; 322:985-92. [PMID: 15336561 DOI: 10.1016/j.bbrc.2004.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Indexed: 10/26/2022]
Abstract
The identification and characterization of RNA binding proteins in Trypanosoma cruzi are particularly relevant as they play key roles in the regulatory mechanisms of gene expression. In this work, we have identified coding sequences for the proteins, named TcRRM1 and TcRRM2, in the EST database generated by the T. cruzi genomic initiative. TcRRM1 and TcRRM2 contain two RNA binding domains (RRM) and are very similar to two Trypanosoma brucei RNA binding proteins previously reported, Tbp34 and Tbp37, and to a not yet annotated ORF in Leishmania major genome project. The T. cruzi RRM genes are organized in tandem, alternating with copies of Tcp28, a gene of unknown function. However, TcRRM transcript accumulation is higher in the spheromastigote stage, while Tcp28 transcripts accumulate more in the trypomastigote stage suggesting developmental regulation.
Collapse
|
7
|
Araripe JR, Cunha e Silva NL, Leal ST, de Souza W, Rondinelli E. Trypanosoma cruzi: TcRAB7 protein is localized at the Golgi apparatus in epimastigotes. Biochem Biophys Res Commun 2004; 321:397-402. [PMID: 15358190 DOI: 10.1016/j.bbrc.2004.06.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Indexed: 11/15/2022]
Abstract
In mammalian cells, the Rab7 protein is a key element of late endocytic membrane traffic. Several results suggest that it is involved in the transport from early to late endosome or from late endosome to lysosome. We have previously characterized a Rab7 gene homologue (TcRAB7) in Trypanosoma cruzi. Now, using an affinity-purified antibody specific to TcRAB7 protein we have determined that it is localized at the Golgi apparatus of the parasite. Our results indicate that the T. cruzi Rab7 homologue may function in a different route than its counterparts in mammalian cells.
Collapse
Affiliation(s)
- Júlia R Araripe
- Lab. Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
8
|
de Melo LDB, Nepomuceno-Silva JL, Sant'Anna C, Eisele N, Ferraro RB, Meyer-Fernandes JR, de Souza W, Cunha-e-Silva NL, Lopes UG. TcRho1 of Trypanosoma cruzi: role in metacyclogenesis and cellular localization. Biochem Biophys Res Commun 2004; 323:1009-16. [PMID: 15381100 DOI: 10.1016/j.bbrc.2004.08.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Indexed: 11/23/2022]
Abstract
Here we have investigated the function of TcRho1, a Rho family orthologue from the parasite Trypanosoma cruzi. We have selected parasites overexpressing wild-type TcRho1 and a truncated form of TcRho1 (TcRho1-DeltaCaaX) which is unable to undergo farnesylation and supposed to interfere with recruitment of Rho effectors to membranes. TcRho1 protein was localized at the anterior region of wild-type and TcRho1 overexpressing epimastigotes, suggesting association with the Golgi apparatus. Accordingly, parasites overexpressing TcRho1-DeltaCaaX presented cytoplasmic fluorescence. To address the function of TcRho1 during differentiation, from epimastigotes to trypomastigotes, we submitted parasites overexpressing the above-cited lineages to metacyclogenesis assays. Parasites overexpressing TcRho1-DeltaCaaX generated a discrete number of metacyclic trypomastigotes when compared with other lineages. Strikingly, TcRho1-DeltaCaaX cells died synchronously during the process of metacyclogenesis.
Collapse
Affiliation(s)
- Luiz Dione B de Melo
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Morgan GW, Hall BS, Denny PW, Field MC, Carrington M. The endocytic apparatus of the kinetoplastida. Part II: machinery and components of the system. Trends Parasitol 2002; 18:540-6. [PMID: 12482539 DOI: 10.1016/s1471-4922(02)02392-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endocytic systems within eukaryotic cells are a diverse set of intracellular transport pathways responsible for uptake, recycling, interaction with the exocytic system and degradation of molecules. Each of these pathways requires the interaction of distinct protein components that function in macromolecule sorting, control of transport rates and in membrane biogenesis. In the second of two articles on kinetoplastida endocytosis, the endocytic system in Trypanosoma brucei is considered as a model, and the molecules that control this system and the protein components of the endocytic pathway are discussed. We also consider novel mechanisms for sorting that have been proposed to operate in trypanosomes.
Collapse
Affiliation(s)
- Gareth W Morgan
- Wellcome Trust Laboratories for Molecular Parasitology, Dept of Biological Sciences, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | |
Collapse
|
10
|
Langford TD, Silberman JD, Weiland MEL, Svärd SG, McCaffery JM, Sogin ML, Gillin FD. Giardia lamblia: identification and characterization of Rab and GDI proteins in a genome survey of the ER to Golgi endomembrane system. Exp Parasitol 2002; 101:13-24. [PMID: 12243734 DOI: 10.1016/s0014-4894(02)00037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate the complexity of the endomembrane transport system in the early diverging eukaryote, Giardia lamblia, we characterized homologues of the GTP-binding proteins, Rab1 and Rab2, involved in regulating vesicular trafficking between the endoplasmic reticulum and Golgi in higher eukaryotes, and GDI, which plays a key role in the cycling of Rab proteins. G. lamblia Rab1, 2.1, and GDI sequences largely resemble yeast and mammalian homologues, are transcribed as 0.66-, 0.62-, and 1.4-kb messages, respectively, and are expressed during growth and encystation. Western analyses detected an abundant Rab/GDI complex at approximately 80 kDa, and free GDI (60 kDa) in both trophozoites and encysting cells. Immunoelectron microscopy with antibody to Rab1 localized Rab with ER, encystation secretory vesicles, and lysosome-like peripheral vesicles. GDI associated with these structures, and with small vesicles found throughout the cytoplasm, consistent with GDI's key role in Rab cycling between organelles within the cell.
Collapse
Affiliation(s)
- T Dianne Langford
- Division of Infectious Diseases, Department of Pathology, University of California, San Diego, CA 92103-8416, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 2002; 66:122-54; table of contents. [PMID: 11875130 PMCID: PMC120783 DOI: 10.1128/mmbr.66.1.122-154.2002] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Trypanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles in the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
12
|
Nepomuceno-Silva JL, Yokoyama K, de Mello LD, Mendonca SM, Paixão JC, Baron R, Faye JC, Buckner FS, Van Voorhis WC, Gelb MH, Lopes UG. TcRho1, a farnesylated Rho family homologue from Trypanosoma cruzi: cloning, trans-splicing, and prenylation studies. J Biol Chem 2001; 276:29711-8. [PMID: 11359782 DOI: 10.1074/jbc.m102920200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are members of the Ras superfamily and are involved in signal transduction pathways, including maintenance of cell morphology and motility, cell cycle progression, and transcription activation. We report the molecular identification in trypanosomatids (Trypanosoma cruzi) of the first member of the Rho family. The cloned Rho protein, TcRho1, shares approximately 40% homology with other members of the Rho family. Southern blot analysis revealed that TcRHO1 is a single copy gene per haploid genome, and Northern blot assays showed a transcript of 1200 nucleotides in length. Mapping the 5'-untranslated region of TcRHO1 transcripts revealed at least five different transcripts derived from differential trans-splicing. Three of the five transcripts contain the trans-splicing site within the coding region of the TcRHO1 gene. TcRho1 also contains the C-terminal sequence CQLF (CAAX motif), which is predicted to direct post-translation prenylation of the cysteine residue. A synthetic peptide containing this C-terminal motif, when tested against Q-Sepharose chromatography fractions from T. cruzi cytosol, was shown to be efficiently farnesylated, but not geranylgeranylated, despite the fact that the CAAX motif with X = Phe specifies geranylgeranylation by mammalian protein geranylgeranyltransferase I. Furthermore, immunoblot analyses of epimastigote protein with anti-S-farnesylcysteine methyl ester and anti-TcRho1 antisera strongly suggested that TcRho1 is farnesylated in vivo. The farnesylation of proteins such as Rho GTPases could be the basis for the selective cytotoxic action of protein farnesyltransferase inhibitors on trypanosomatids versus mammalian cells.
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Chromatography, Agarose
- Chromosome Mapping
- Cloning, Molecular
- Cysteine/chemistry
- Electrophoresis, Polyacrylamide Gel
- Gene Library
- Immunoblotting
- Molecular Sequence Data
- Peptides/chemistry
- Phylogeny
- Protein Prenylation
- Protein Processing, Post-Translational
- Protozoan Proteins
- RNA Splicing
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transfection
- Trypanosoma cruzi/chemistry
- rho GTP-Binding Proteins/chemistry
- rho GTP-Binding Proteins/genetics
Collapse
Affiliation(s)
- J L Nepomuceno-Silva
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|