1
|
Bernot JP, Rudy G, Erickson PT, Ratnappan R, Haile M, Rosa BA, Mitreva M, O'Halloran DM, Hawdon JM. Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism. Int J Parasitol 2020; 50:603-610. [PMID: 32592811 PMCID: PMC7454011 DOI: 10.1016/j.ijpara.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Free-living nematodes respond to variable and unpredictable environmental stimuli whereas parasitic nematodes exist in a more stable host environment. A positive correlation between the presence of environmental stages in the nematode life cycle and an increasing number of G-protein coupled receptors (GPCRs) reflects this difference in free-living and parasitic lifestyles. As hookworm larvae move from the external environment into a host, they detect uncharacterized host components, initiating a signalling cascade that results in the resumption of development and eventual maturation. Previous studies suggest this process is mediated by GPCRs in amphidial neurons. Here we set out to uncover candidate GPCRs required by a hookworm to recognise its host. First, we identified all potential Ancylostoma ceylanicum GPCRs encoded in the genome. We then used life cycle stage-specific RNA-seq data to identify differentially expressed GPCRs between the free-living infective L3 (iL3) and subsequent parasitic stages to identify receptors involved in the transition to parasitism. We reasoned that GPCRs involved in host recognition and developmental activation would be expressed at higher levels in the environmental iL3 stage than in subsequent stages. Our results support the model that a decrease in GPCR diversity occurs as the larvae develop from the free-living iL3 stage to the parasitic L3 (pL3) in the host over 24-72 h. We find that overall GPCR expression and diversity is highest in the iL3 compared with subsequent parasitic stages. By 72 h, there was an approximately 50% decrease in GPCR richness associated with the moult from the pL3 to the L4. Taken together, our data uncover a negative correlation between GPCR diversity and parasitic development in hookworm. Finally, we demonstrate proof of principal that Caenorhabditis elegans can be used as a heterologous system to examine the expression pattern of candidate host signal chemoreceptors (CRs) from hookworm. We observe expression of candidate host signal CRs in C. elegans, demonstrating that C. elegans can be effectively used as a surrogate to identify expressed hookworm genes. We present several preliminary examples of this strategy and confirm a candidate CR as neuronally expressed.
Collapse
Affiliation(s)
- James P Bernot
- Computational Biology Institute, The George Washington University, Washington DC, USA
| | - Gabriella Rudy
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington DC, USA
| | - Patti T Erickson
- Department of Biological Sciences, Salisbury University, Salisbury, MD, USA
| | - Ramesh Ratnappan
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Meseret Haile
- Department of Biochemistry, Smith College, Northampton, MA, USA
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - John M Hawdon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA.
| |
Collapse
|
2
|
Abstract
Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic and free-living nematodes. Many nematodes show context-dependent, experience-dependent and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also show a wide range of physiological responses to CO2. Here, we review the diverse responses of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive context-dependent and experience-dependent responses of nematodes to CO2.
Collapse
|
3
|
Hong RL, Riebesell M, Bumbarger DJ, Cook SJ, Carstensen HR, Sarpolaki T, Cochella L, Castrejon J, Moreno E, Sieriebriennikov B, Hobert O, Sommer RJ. Evolution of neuronal anatomy and circuitry in two highly divergent nematode species. eLife 2019; 8:47155. [PMID: 31526477 PMCID: PMC6748829 DOI: 10.7554/elife.47155] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
The nematodes C. elegans and P. pacificus populate diverse habitats and display distinct patterns of behavior. To understand how their nervous systems have diverged, we undertook a detailed examination of the neuroanatomy of the chemosensory system of P. pacificus. Using independent features such as cell body position, axon projections and lipophilic dye uptake, we have assigned homologies between the amphid neurons, their first-layer interneurons, and several internal receptor neurons of P. pacificus and C. elegans. We found that neuronal number and soma position are highly conserved. However, the morphological elaborations of several amphid cilia are different between them, most notably in the absence of ‘winged’ cilia morphology in P. pacificus. We established a synaptic wiring diagram of amphid sensory neurons and amphid interneurons in P. pacificus and found striking patterns of conservation and divergence in connectivity relative to C. elegans, but very little changes in relative neighborhood of neuronal processes. These findings demonstrate the existence of several constraints in patterning the nervous system and suggest that major substrates for evolutionary novelty lie in the alterations of dendritic structures and synaptic connectivity. Nerve cells, also called neurons, are responsible both for sensing signals from the environment and for determining how organisms react. This means that the unique features of an animal’s nervous system underpin its characteristic behaviors. Comparing the anatomy of the nervous systems in different animals could therefore yield valuable insights into how structural and behavioral differences emerge over time. Behavioral variation often occurs even in similar-looking animals. One example is a group of microscopic worms, called nematodes. Although many nematode species exist, their overall body plans are the same, and the worms of each species contain a fixed number of cells. Despite these apparent similarities, different species of nematodes inhabit a variety of environments and may respond differently to the same signals. The main sensory organs in nematodes are called the amphid sensilla. They are used to detect chemicals, as well as other inputs from the environment such as temperature and pheromones from other nematodes. Although researchers have often speculated that the number of cells in these organs and their arrangement are broadly the same across species, their anatomy had not been studied in detail. Hong, Riebesell et al. compared the detailed structure and genetic features of the sensory systems in two distantly related species of nematode worms, Pristionchus pacificus and Caenorhabditis elegans. These two species behave in different ways, for example, P. pacificus is usually found in association with different species of beetles, while C. elegans is free-living and usually found on rotting fruit. By comparing the two, Hong, Riebesell et al. wanted to determine whether the diverse behaviors observed in the two species could be determined by differences between their sensory systems. Experiments using electron microscopy yielded several thousand high resolution images spanning the entire sensory organ. These images were then used to create detailed reconstructions of the sensory nervous system in each worm species, demonstrating that both species had the same number of sensory nerve cells, allowing one-to-one comparisons between them. Further analysis showed that while the overall structure of the neuronal connections remains the same between the two species, the neurons in P. pacificus made more diverse connections than those in C. elegans. Detailed studies of gene activity also revealed that neurons in each species switched on a slightly different group of genes, possibly indicating that each type of worm processes sensory signals in different ways. These results shed new light on how nervous systems in related species can change over time without any change in neuron count. In the future, a better understanding of these changes could link the evolution of the nervous system to the emergence of different behaviors, in both simple and more complex organisms.
Collapse
Affiliation(s)
- Ray L Hong
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany.,Department of Biology, California State University, Northridge, Northridge, United States
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Daniel J Bumbarger
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Steven J Cook
- Department of Biological Sciences, Columbia University, New York, United States
| | - Heather R Carstensen
- Department of Biology, California State University, Northridge, Northridge, United States
| | - Tahmineh Sarpolaki
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jessica Castrejon
- Department of Biology, California State University, Northridge, Northridge, United States
| | - Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany
| |
Collapse
|
4
|
Bryant AS, Hallem EA. Terror in the dirt: Sensory determinants of host seeking in soil-transmitted mammalian-parasitic nematodes. Int J Parasitol Drugs Drug Resist 2018; 8:496-510. [PMID: 30396862 PMCID: PMC6287541 DOI: 10.1016/j.ijpddr.2018.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Infection with gastrointestinal parasitic nematodes is a major cause of chronic morbidity and economic burden around the world, particularly in low-resource settings. Some parasitic nematode species, including the human-parasitic threadworm Strongyloides stercoralis and human-parasitic hookworms in the genera Ancylostoma and Necator, feature a soil-dwelling infective larval stage that seeks out hosts for infection using a variety of host-emitted sensory cues. Here, we review our current understanding of the behavioral responses of soil-dwelling infective larvae to host-emitted sensory cues, and the molecular and cellular mechanisms that mediate these responses. We also discuss the development of methods for transgenesis and CRISPR/Cas9-mediated targeted mutagenesis in Strongyloides stercoralis and the closely related rat parasite Strongyloides ratti. These methods have established S. stercoralis and S. ratti as genetic model systems for gastrointestinal parasitic nematodes and are enabling more detailed investigations into the neural mechanisms that underlie the sensory-driven behaviors of this medically and economically important class of parasites.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Bryant AS, Hallem EA. Temperature-dependent behaviors of parasitic helminths. Neurosci Lett 2018; 687:290-303. [PMID: 30336196 PMCID: PMC6240462 DOI: 10.1016/j.neulet.2018.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Parasitic helminth infections are the most common source of neglected tropical disease among impoverished global communities. Many helminths infect their hosts via an active, sensory-driven process in which environmentally motile infective larvae position themselves near potential hosts. For these helminths, host seeking and host invasion can be divided into several discrete behaviors that are regulated by both host-emitted and environmental sensory cues, including heat. Thermosensation is a critical sensory modality for helminths that infect warm-blooded hosts, driving multiple behaviors necessary for host seeking and host invasion. Furthermore, thermosensory cues influence the host-seeking behaviors of both helminths that parasitize endothermic hosts and helminths that parasitize insect hosts. Here, we discuss the role of thermosensation in guiding the host-seeking and host-infection behaviors of a diverse group of helminths, including mammalian-parasitic nematodes, entomopathogenic nematodes, and schistosomes. We also discuss the neural circuitry and molecular pathways that underlie thermosensory responses in these species.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Bryant AS, Ruiz F, Gang SS, Castelletto ML, Lopez JB, Hallem EA. A Critical Role for Thermosensation in Host Seeking by Skin-Penetrating Nematodes. Curr Biol 2018; 28:2338-2347.e6. [PMID: 30017486 PMCID: PMC6091634 DOI: 10.1016/j.cub.2018.05.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are a major source of neglected tropical disease [1-6]. Their life cycle includes an infective third-larval (iL3) stage that searches for hosts to infect in a poorly understood process that involves both thermal and olfactory cues. Here, we investigate the temperature-driven behaviors of skin-penetrating iL3s, including the human-parasitic threadworm Strongyloides stercoralis and the human-parasitic hookworm Ancylostoma ceylanicum. We show that human-parasitic iL3s respond robustly to thermal gradients. Like the free-living nematode Caenorhabditis elegans, human-parasitic iL3s show both positive and negative thermotaxis, and the switch between them is regulated by recent cultivation temperature [7]. When engaging in positive thermotaxis, iL3s migrate toward temperatures approximating mammalian body temperature. Exposing iL3s to a new cultivation temperature alters the thermal switch point between positive and negative thermotaxis within hours, similar to the timescale of thermal plasticity in C. elegans [7]. Thermal plasticity in iL3s may enable them to optimize host finding on a diurnal temperature cycle. We show that temperature-driven responses can be dominant in multisensory contexts such that, when thermal drive is strong, iL3s preferentially engage in temperature-driven behaviors despite the presence of an attractive host odorant. Finally, targeted mutagenesis of the S. stercoralis tax-4 homolog abolishes heat seeking, providing the first evidence that parasitic host-seeking behaviors are generated through an adaptation of sensory cascades that drive environmental navigation in C. elegans [7-10]. Together, our results provide insight into the behavioral strategies and molecular mechanisms that allow skin-penetrating nematodes to target humans.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacqueline B Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Ruiz F, Castelletto ML, Gang SS, Hallem EA. Experience-dependent olfactory behaviors of the parasitic nematode Heligmosomoides polygyrus. PLoS Pathog 2017; 13:e1006709. [PMID: 29190282 PMCID: PMC5708605 DOI: 10.1371/journal.ppat.1006709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
Parasitic nematodes of humans and livestock cause extensive disease and economic loss worldwide. Many parasitic nematodes infect hosts as third-stage larvae, called iL3s. iL3s vary in their infection route: some infect by skin penetration, others by passive ingestion. Skin-penetrating iL3s actively search for hosts using host-emitted olfactory cues, but the extent to which passively ingested iL3s respond to olfactory cues was largely unknown. Here, we examined the olfactory behaviors of the passively ingested murine gastrointestinal parasite Heligmosomoides polygyrus. H. polygyrus iL3s were thought to reside primarily on mouse feces, and infect when mice consume feces containing iL3s. However, iL3s can also adhere to mouse fur and infect orally during grooming. Here, we show that H. polygyrus iL3s are highly active and show robust attraction to host feces. Despite their attraction to feces, many iL3s migrate off feces to engage in environmental navigation. In addition, H. polygyrus iL3s are attracted to mammalian skin odorants, suggesting that they migrate toward hosts. The olfactory preferences of H. polygyrus are flexible: some odorants are repulsive for iL3s maintained on feces but attractive for iL3s maintained off feces. Experience-dependent modulation of olfactory behavior occurs over the course of days and is mediated by environmental carbon dioxide (CO2) levels. Similar experience-dependent olfactory plasticity occurs in the passively ingested ruminant-parasitic nematode Haemonchus contortus, a major veterinary parasite. Our results suggest that passively ingested iL3s migrate off their original fecal source and actively navigate toward hosts or new host fecal sources using olfactory cues. Olfactory plasticity may be a mechanism that enables iL3s to switch from dispersal behavior to host-seeking behavior. Together, our results demonstrate that passively ingested nematodes do not remain inactive waiting to be swallowed, but rather display complex sensory-driven behaviors to position themselves for host ingestion. Disrupting these behaviors may be a new avenue for preventing infections. Many parasitic nematodes infect by passive ingestion when the host consumes food, water, or feces containing infective third-stage larvae (iL3s). Passively ingested nematodes that infect humans cause severe gastrointestinal distress and death in endemic regions, and those that infect livestock are a major cause of production loss worldwide. Because these parasites do not actively invade hosts but instead rely on being swallowed by hosts, it has been assumed that they show only limited sensory responses and do not engage in host-seeking behaviors. Here, we investigate the olfactory behaviors of the passively ingested murine parasite Heligmosomoides polygyrus and show that this assumption is incorrect; H. polygyrus iL3s show robust attraction to a diverse array of odorants found in mammalian skin, sweat, and feces. Moreover, the olfactory responses of H. polygyrus iL3s are experience-dependent: some odorants are repulsive to iL3s cultured on feces but attractive to iL3s removed from feces. Olfactory plasticity is also observed in the ruminant parasite Haemonchus contortus, and may enable iL3s to disperse in search of new hosts or host fecal sources. Our results suggest that passively ingested nematodes use olfactory cues to navigate their environments and position themselves where they are likely to be swallowed. By providing new insights into the olfactory behaviors of these parasites, our results may enable the development of new strategies for preventing infections.
Collapse
Affiliation(s)
- Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michelle L. Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Spencer S. Gang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Gang SS, Hallem EA. Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol 2016; 208:23-32. [PMID: 27211240 DOI: 10.1016/j.molbiopara.2016.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
Abstract
The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors.
Collapse
Affiliation(s)
- Spencer S Gang
- Department of Microbiology, Immunology, and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
9
|
Diverse host-seeking behaviors of skin-penetrating nematodes. PLoS Pathog 2014; 10:e1004305. [PMID: 25121736 PMCID: PMC4133384 DOI: 10.1371/journal.ppat.1004305] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are responsible for some of the most common neglected tropical diseases. The infective larvae of skin-penetrating nematodes are thought to search for hosts using sensory cues, yet their host-seeking behavior is poorly understood. We conducted an in-depth analysis of host seeking in the skin-penetrating human parasite Strongyloides stercoralis, and compared its behavior to that of other parasitic nematodes. We found that Str. stercoralis is highly mobile relative to other parasitic nematodes and uses a cruising strategy for finding hosts. Str. stercoralis shows robust attraction to a diverse array of human skin and sweat odorants, most of which are known mosquito attractants. Olfactory preferences of Str. stercoralis vary across life stages, suggesting a mechanism by which host seeking is limited to infective larvae. A comparison of odor-driven behavior in Str. stercoralis and six other nematode species revealed that parasite olfactory preferences reflect host specificity rather than phylogeny, suggesting an important role for olfaction in host selection. Our results may enable the development of new strategies for combating harmful nematode infections.
Collapse
|
10
|
Abstract
Nearly all animals are capable of sensing changes in environmental oxygen (O2) and carbon dioxide (CO2) levels, which can signal the presence of food, pathogens, conspecifics, predators, or hosts. The free-living nematode Caenorhabditis elegans is a powerful model system for the study of gas sensing. C. elegans detects changes in O2 and CO2 levels and integrates information about ambient gas levels with other internal and external cues to generate context-appropriate behavioral responses. Due to its small nervous system and amenability to genetic and genomic analyses, the functional properties of its gas-sensing microcircuits can be dissected with single-cell resolution, and signaling molecules and natural genetic variations that modulate gas responses can be identified. Here, we discuss the neural basis of gas sensing in C. elegans, and highlight changes in gas-evoked behaviors in the context of other sensory cues and natural genetic variations. We also discuss gas sensing in other free-living nematodes and parasitic nematodes, focusing on how gas-sensing behavior has evolved to mediate species-specific behavioral requirements.
Collapse
|
11
|
Cantacessi C, Campbell BE, Gasser RB. Key strongylid nematodes of animals — Impact of next-generation transcriptomics on systems biology and biotechnology. Biotechnol Adv 2012; 30:469-88. [DOI: 10.1016/j.biotechadv.2011.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
12
|
Abstract
Transgenesis is an essential tool for assessing gene function in any organism, and it is especially crucial for parasitic nematodes given the dwindling armamentarium of effective anthelmintics and the consequent need to validate essential molecular targets for new drugs and vaccines. Two of the major routes of gene delivery evaluated to date in parasitic nematodes, bombardment with DNA-coated microparticles and intragonadal microinjection of DNA constructs, draw upon experience with the free-living nematode Caenorhabditis elegans. Bombardment has been used to transiently transfect Ascaris suum, Brugia malayi and Litomosoides sigmodontis with both RNA and DNA. Microinjection has been used to achieve heritable transgenesis in Strongyloides stercoralis, S. ratti and Parastrongyloides trichosuri and for additional transient expression studies in B. malayi. A third route of gene delivery revisits a classic method involving DNA transfer facilitated by calcium-mediated permeabilization of recipient cells in developing B. malayi larvae and results in transgene inheritance through host and vector passage. Assembly of microinjected transgenes into multi-copy episomal arrays likely results in their transcriptional silencing in some parasitic nematodes. Methods such as transposon-mediated transgenesis that favour low-copy number chromosomal integration may remedy this impediment to establishing stable transgenic lines. In the future, stable transgenesis in parasitic nematodes could enable loss-of-function approaches by insertional mutagenesis, in situ expression of inhibitory double-stranded RNA or boosting RNAi susceptibility through heterologous expression of dsRNA processing and transport proteins.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Franke D, Strube C, Epe C, Welz C, Schnieder T. Larval migration in PERL chambers as an in vitro model for percutaneous infection stimulates feeding in the canine hookworm Ancylostoma caninum. Parasit Vectors 2011; 4:7. [PMID: 21266069 PMCID: PMC3037914 DOI: 10.1186/1756-3305-4-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/25/2011] [Indexed: 11/16/2022] Open
Abstract
Background Ancylostoma caninum third-stage larvae are the non-feeding infective stage of this parasite and are able to infect potential hosts via different infection routes. Since percutaneous infection is one of the most important routes and skin penetration is the first step into parasitic life, an existing in vitro model for percutaneous migration was modified and evaluated. The main parameter used to evaluate migration was the migration ratio (migrated larvae as a percentage of total number of larvae recovered). Additionally, the skin lag was calculated, expressing the percentage of larvae remaining in the skin and therefore not being recovered. Since initiation of feeding is proposed to be an important step in the transition from free-living to parasitic A. caninum larvae, feeding assays were performed with in vitro percutaneously migrated larvae. Additionally, infective larvae of A. caninum were activated via serum-stimulation and feeding behaviour was analysed and compared between percutaneously migrated and serum-stimulated larvae. Results Maximum skin migration levels of infective larvae were observed at temperatures above 32°C when larvae were placed on the epidermal side of skin for more than 12 hours. The medium beneath the skin had no effect on migration ratio, and no significant difference between the migration ratios through fresh and frozen/thawed skin was observed. Maximum feeding levels of 93.2% were observed for percutaneously migrated larvae after 48 h incubation, whereas serum-stimulated larvae reached the maximum of 91.0% feeding larvae after 24 h. Conclusions The PERL chamber system was optimised and standardised as an in vitro model for percutaneous migration. The larvae recovered after percutaneous migration showed characteristic signs of activation similar to that of serum-stimulated larvae. The observed difference in time course of resumption of feeding indicates that percutaneously migrated larvae are not identical to serum-stimulated larvae, which are currently representing the model for early parasitic stages.
Collapse
Affiliation(s)
- Daniela Franke
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
14
|
Bumbarger DJ, Wijeratne S, Carter C, Crum J, Ellisman MH, Baldwin JG. Three-dimensional reconstruction of the amphid sensilla in the microbial feeding nematode, Acrobeles complexus (Nematoda: Rhabditida). J Comp Neurol 2009; 512:271-81. [PMID: 19003904 PMCID: PMC2750866 DOI: 10.1002/cne.21882] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amphid sensilla are the primary olfactory, chemoreceptive, and thermoreceptive organs in nematodes. Their function is well described for the model organism Caenorhabditis elegans, but it is not clear to what extent we can generalize these findings to distantly related nematodes of medical, economic, and agricultural importance. Current detailed descriptions of anatomy and sensory function are limited to nematodes that recent molecular phylogenies would place in the same taxonomic family, the Rhabditidae. Using serial thin-section transmission electron microscopy, we reconstructed the anatomy of the amphid sensilla in the more distantly related nematode, Acrobeles complexus (Cephalobidae). Amphid structure is broadly conserved in number and arrangement of cells. Details of cell anatomy differ, particularly for the sensory neurite termini. We identify an additional sensory neuron not found in the amphid of C. elegans and propose homology with the C. elegans interneuron AUA. Hypotheses of homology for the remaining sensory neurons are also proposed based on comparisons between C. elegans, Strongyloides stercoralis, and Haemonchus contortus.
Collapse
Affiliation(s)
- Daniel J Bumbarger
- Department of Nematology, University of California, Riverside, California 92521, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Srinivasan J, Durak O, Sternberg PW. Evolution of a polymodal sensory response network. BMC Biol 2008; 6:52. [PMID: 19077305 PMCID: PMC2636771 DOI: 10.1186/1741-7007-6-52] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/15/2008] [Indexed: 11/10/2022] Open
Abstract
Background Avoidance of noxious stimuli is essential for the survival of an animal in its natural habitat. Some avoidance responses require polymodal sensory neurons, which sense a range of diverse stimuli, whereas other stimuli require a unimodal sensory neuron, which senses a single stimulus. Polymodality might have evolved to help animals quickly detect and respond to diverse noxious stimuli. Nematodes inhabit diverse habitats and most nematode nervous systems are composed of a small number of neurons, despite a wide assortment in nematode sizes. Given this observation, we speculated that cellular contribution to stereotyped avoidance behaviors would also be conserved between nematode species. The ASH neuron mediates avoidance of three classes of noxious stimuli in Caenorhabditis elegans. Two species of parasitic nematodes also utilize the ASH neuron to avoid certain stimuli. We wanted to extend our knowledge of avoidance behaviors by comparing multiple stimuli in a set of free-living nematode species. Results We used comparative behavioral analysis and laser microsurgery to examine three avoidance behaviors in six diverse species of free-living nematodes. We found that all species tested exhibit avoidance of chemo-, mechano- and osmosensory stimuli. In C. elegans, the bilaterally symmetric polymodal ASH neurons detect all three classes of repellant. We identified the putative ASH neurons in different nematode species by their anatomical positions and showed that in all six species ablation of the ASH neurons resulted in an inability to avoid noxious stimuli. However, in the nematode Pristionchus pacificus, the ADL neuron in addition to the ASH neuron contributed to osmosensation. In the species Caenorhabditis sp. 3, only the ASH neuron was required to mediate nose touch avoidance instead of three neurons in C. elegans. These data suggest that different species can increase or decrease the contribution of additional, non-ASH sensory neurons mediating osmosensation and mechanosensation. Conclusion The overall conservation of ASH mediated polymodal nociception suggests that it is an ancestral evolutionarily stable feature of sensation. However, the finding that contribution from non-ASH sensory neurons mediates polymodal nociception in some nematode species suggests that even in conserved sensory behaviors, the cellular response network is dynamic over evolutionary time, perhaps shaped by adaptation of each species to its environment.
Collapse
Affiliation(s)
- Jagan Srinivasan
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
16
|
Mohamed AK, Burr C, Burr AHJ. Unique two-photoreceptor scanning eye of the nematode Mermis nigrescens. THE BIOLOGICAL BULLETIN 2007; 212:206-21. [PMID: 17565110 DOI: 10.2307/25066603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A single eye is present in females of the nematode Mermis nigrescens. A pigment cup occupies the entire cross section near the anterior tip of the worm, and the curved cuticle at the tip becomes a cornea. The shading pigment is hemoglobin instead of melanin. The eye has been shown to provide a positive phototaxis utilizing a scanning mechanism; however, the eye's structure has not been sufficiently described. Here, we provide a reconstruction of the eye on the basis of light and electron microscopy of serial sections. Hemoglobin crystals are densely packed in the cytoplasm of expanded hypodermal cells, forming the cylindrical shadowing structure. The two putative photoreceptors are found laterally within the transparent conical center of this structure where they would be exposed to light from different anterior fields of view. Each consists of a multilamellar sensory process formed by one of the dendrites in each of the two amphidial sensory nerve bundles that pass through the center. Multilamellar processes are also found in the same location in immature adult females and fourth stage juvenile females, which lack the shadowing pigment and exhibit a weak negative phototaxis. The unique structure of the pigment cup eye is discussed in terms of optical function, phototaxis mechanism, eye nomenclature, and evolution.
Collapse
Affiliation(s)
- Abir Khalil Mohamed
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | |
Collapse
|
17
|
Hoholm F, Zhu X, Ashton FT, Freeman AS, Veklich Y, Castelletto A, Lamont S, Schad GA. New oral linguiform projections and their associated neurons in the third-stage infective larva of the parasitic nematode Oesophagostomum dentatum. J Parasitol 2005; 91:61-8. [PMID: 15856873 DOI: 10.1645/ge-3398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The infective larvae (L3i) of the nematode parasite of swine, Oesophagostomum dentatum, are passively ingested by their hosts. The L3i exhibit certain behaviors that are probably selected to increase the likelihood of ingestion, by strategic positioning in the environment. The larvae show positive geotactic behavior and respond to temperature variations in their environment, as shown by their behavior on a thermal gradient. To investigate neuronal control of this behavior, we initiated a study of the structure of the amphidial neurons of this parasite. The same number and types of neuronal dendritic processes are found in the amphids of the O. dentatum L3i as in those of its close relatives Haemonchus contortus and Ancylostoma caninum. Well-developed dendritic processes of wing cells are located in the amphidial sheath cells, these being similar to wing cells AWA in the free-living nematode Caenorhabditis elegans but actually more extensive. Similar to its close relatives just mentioned, and C. elegans as well, O. dentatum L3i has prominent finger cell processes, the finger cell neurons being the thermoreceptors in all 3 of the preceding species. However, unlike the arrangement seen in H. contortus and A. caninum, where the microvilli-like "fingers" of these neurons lie dorsal to the amphidial channel and occupy a very large portion (>50%) of the anterior end of the larva, the dendritic process of the finger cells in O. dentatum extends into unusual linguiform projections that, in turn, extend into the lumen of the mouth tube, a complex structural arrangement that has not been described for any other nematode.
Collapse
Affiliation(s)
- Fredrik Hoholm
- Department of Pathobiology/Parasitology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tobata-Kudo H, Kudo H, Tada I. Strongyloides ratti: chemokinesis of glycolytic enzyme- and lectin-treated third-stage infective larvae in vitro. Parasitol Int 2005; 54:147-52. [PMID: 15866477 DOI: 10.1016/j.parint.2005.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 03/04/2005] [Indexed: 11/28/2022]
Abstract
The infective third-stage larvae (L3s) of Strongyloides ratti, a parasitic nematode in rodents, showed two types of chemokinesis on a gradient of sodium chloride (NaCl) in an in vitro agarose tracking assay. The types were a consistent directional avoidance behavior under unfavorable environmental conditions and a reduced avoidance behavior under favorable conditions. We examined the effects of treatments with glycolytic enzymes and lectins by analyzing the avoidance behavior. L-Fucose dehydrogenase, hyaluronidase, beta-glucosidase, alpha-mannosidase, beta-galactosidase, concanavalin A, wheat germ agglutinin and soybean agglutinin exhibited inhibitory or enhancive effects on chemokinesis. We also confirmed the sites of the amphids of L3s aside from the mouth at the anterior end by scanning electron microscopy, and that concanavalin A-binding sites existed in the vicinity of the amphids using lectin-histochemistry. The carbohydrate moieties in the amphids of S. ratti L3s may play an important role as chemosensors in perceiving environmental cues.
Collapse
Affiliation(s)
- Hiroe Tobata-Kudo
- Tobata Laboratory, 1-20-10 Asakawagakuendai, Yahatanishi-ku, Kitakyushu 807-0871, Japan.
| | | | | |
Collapse
|
19
|
Tobata-Kudo H, Kudo H, Tada I. Strongyloides ratti: thermokinesis of glycolytic enzyme- and lectin-treated third-stage infective larvae in vitro. Parasitol Res 2005; 95:314-8. [PMID: 15696317 DOI: 10.1007/s00436-004-1282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 11/23/2004] [Indexed: 11/28/2022]
Abstract
The infective third-stage larvae (L3s) of a parasitic nematode of rodents, Strongyloides ratti, showed three types of thermokinesis on a temperature gradient using an in vitro agarose tracking assay method. These depended both on the pattern of gradient temperature and the prior culture temperature. Most L3s (> or = 80%) isolated from rat feces cultured at 25 degrees C and placed on a gradient at temperatures between 30 degrees C and 37 degrees C showed no directional response, at 22-29 degrees C more than 50% of the L3s showed positive thermokinesis, at 21 degrees C L3s showed positive, negative and no directional responses in the same ratio, while at 18-20 degrees C, L3s showed negative thermokinesis (approx. 40%) or no directional response (approx. 60%) as in our previous study. The present study describes the effects of glycolytic enzyme- and lectin-treated positive thermokinesis of L3s. alpha-Glucosidase or concanavalin A significantly exhibited inhibitory effects on thermokinesis.
Collapse
Affiliation(s)
- Hiroe Tobata-Kudo
- Tobata Laboratory, 1-20-10 Asakawagakuendai, Yahatanishi-ku, 807-0871 Kitakyushu, Japan.
| | | | | |
Collapse
|
20
|
Haas W, Haberl B, Idris I, Kersten S. Infective larvae of the human hookworms Necator americanus and Ancylostoma duodenale differ in their orientation behaviour when crawling on surfaces. Parasitol Res 2004; 95:25-9. [PMID: 15614586 DOI: 10.1007/s00436-004-1256-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
The infective third stage larvae of hookworms infect their hosts by active skin invasion, and they find and recognize their hosts by the behavioural phases of activation, directed crawling, and penetration. Here we analyse the orientation of the infective larvae of the human hookworms Necator americanus and Ancylostoma duodenale when crawling on surfaces. Their behaviour differed from that of the larvae of the dog hookworm Ancylostoma caninum, but the two species also differed from each other. N. americanus crawled towards light, but A. duodenale did not. Both species migrated towards the warm ends of thermal gradients, and this response was more sensitive than in other skin-invading helminths (threshold 0.09 degrees C/cm). However, A. duodenale turned back and accumulated at higher temperatures than N. americanus [turn-back 45.7 (44.5-49.9) vs 41.5 (38.5-43.9) degrees C; accumulation 43.6 (41.6-46.0) vs 39.5 (37.9-43.0) degrees C]. In contrast to other skin-invading helminths, both species showed no chemo-orientation towards skin compounds when crawling on surfaces. This behaviour may reflect adaptations for reaching the skin surface from hairs or adhering material, but the differences in the orientation of the two species could not be attributed to differing transmission strategies.
Collapse
Affiliation(s)
- Wilfried Haas
- Institute for Zoology I, University Erlangen-Nuernberg, Staudtstrasse 5, 91058, Erlangen, Germany.
| | | | | | | |
Collapse
|
21
|
Forbes WM, Ashton FT, Boston R, Zhu X, Schad GA. Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively. Vet Parasitol 2004; 120:189-98. [PMID: 15041094 DOI: 10.1016/j.vetpar.2004.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 01/09/2004] [Indexed: 11/27/2022]
Abstract
Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.
Collapse
Affiliation(s)
- W M Forbes
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Rosenthal Building, Room 212, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
22
|
Fagerholm HP, Brunanská M, Roepstorff A, Eriksen L. PHASMID ULTRASTRUCTURE OF AN ASCARIDOID NEMATODE HYSTEROTHYLACIUM AUCTUM. J Parasitol 2004; 90:499-506. [PMID: 15270092 DOI: 10.1645/ge-3168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Here, for the first time in an ascaridoid (Hysterothylacium auctum), we present structural features of the phasmids, paired sense organs, positioned in a bilateral manner close to the point of the tail; the features were obtained using scanning and transmission electron microscopy. We found that each phasmid consists of a single ciliated dendritic process situated in a phasmidial canal surrounded by 2 supporting cells, a socket and a sheath cell. The socket cell contains clusters of electron-dense fibrous material in its apical region and covers the phasmidial canal along its whole length. The sheath cell is characterized by a well-developed endoplasmic reticulum. The phasmidial canal is lined with a thin layer of cuticle that becomes incomplete at the base of the ciliated dendritic process. In this region, the dendritic process consists primarily of a high number of microtubule singlets and some peripheral microtubule doublets. The base of the dendritic process, containing numerous striated rootlets, gives off a large number of fingerlike offshoots, villi, invading the surrounding sheath cell. The systematic significance and functional implication of the phasmid in nematodes are also discussed.
Collapse
Affiliation(s)
- Hans-Peter Fagerholm
- Laboratory of Aquatic Pathobiology, Department of Biology, Abo Akademi University, BioCity, Artillerigatan 6, FIN-20520 Abo/Turku, Finland.
| | | | | | | |
Collapse
|
23
|
Sciacca J, Forbes WM, Ashton FT, Lombardini E, Gamble HR, Schad GA. Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. Parasitol Int 2002; 51:53-62. [PMID: 11880227 DOI: 10.1016/s1383-5769(01)00105-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The response of infective third-stage larvae (L3) of three species of parasitic nematodes, Ancylostoma caninum, Strongyloides stercoralis, and Haemonchus contortus to carbon dioxide (CO(2)) at physiological concentrations was investigated. L3 of the skin-penetrating species, A. caninum and S. stercoralis, were stimulated by CO(2) at the concentration found in human breath (3.3-4%); these larvae responded by crawling actively, but not directionally. Crawling was not stimulated by breath passed through a CO(2)-removing "scrubber" or by "bench air". Both A. caninum and S. stercoralis L3 stopped crawling when exposed to 5% CO(2) for 1 min. L3 of A. caninum became active 9-14 min after exposure to 5% CO(2) ended, but activity resumed more rapidly (10-15 s) if larvae were subsequently exposed to breath or breath through the scrubber. L3 of S. stercoralis resumed crawling 30-35 s after exposure to 5% CO(2), but resumed crawling within a very few seconds when exposed to breath or breath through the scrubber. Thus, while 5% CO(2) was inhibitory, lower concentrations of this gas stimulated L3 of both species. Apparently, exposing immobilized larvae to breath or breath through the scrubber causes the environmental CO(2) concentration to drop to a level that is stimulatory. The L3 of H. contortus ceased crawling and coiled when exposed to human breath or to 1% CO(2), but continued to move within the coil in both cases. The crawling response of the L3 of the two skin-penetrating species, A. caninum and S. stercoralis, to stimulation by CO(2) probably relates to their active host-finding behavior, while the cessation response elicited by CO(2) in H. contortus larvae may relate to the fact that they rely on passive ingestion by a ruminant host.
Collapse
Affiliation(s)
- Joslyn Sciacca
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The organism about which most is known on a molecular level is a nematode, the free-living organism Caenorhabditis elegans. This organism has served as a reasonable model for the discovery of anthelmintic drugs and for research on the mechanism of action of anthelmintics. Useful information on mechanisms of anthelmintic resistance has also been obtained from studies on C. elegans. Unfortunately, there has not been a large-scale extension of genetic techniques developed in C. elegans to research on parasitic species of veterinary (or human) parasites. Much can be learned about the essentials of nematode biology by studying C. elegans, but discovering the basic biology of nematode parasitism can only be gained through comparative studies on multiple parasitic species.
Collapse
Affiliation(s)
- T G Geary
- Discovery Research, Pharmacia Animal Health, 7923-25-111, 7000 Portage Road, Kalamazoo, MI 49001-0199, USA.
| | | |
Collapse
|