1
|
Tucho A, Mekonnen T, Ghadamgahi F, Ghosh S, Muleta D, Tesfaye K, Wang ES, Alemu T, Vetukuri RR. Analysis of genetic diversity of Zymoseptoria tritici populations in central and south-eastern Ethiopia. FRONTIERS IN PLANT SCIENCE 2025; 16:1505455. [PMID: 40271443 PMCID: PMC12014633 DOI: 10.3389/fpls.2025.1505455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Septoria tritici blotch (STB), caused by the hemibiotrophic fungus Zymoseptoria tritici, is a serious threat to global wheat production, and a major bottleneck to wheat production in Ethiopia. Accurate identification and analysis of the pathogen's genetic structure helps to develop robust STB management strategies. This study aimed at molecular identification and genetic structure analysis of 200 isolates of Z. tritici representing six populations in central and south-eastern regions of Ethiopia. A total of 165 isolates were confirmed by Sanger sequencing of the internal transcribed spacer (ITS) region of nuclear DNA (rDNA) region. The pathogen's genetic structure was further examined using 12 simple sequence repeat (SSR) markers. The microsatellite markers were highly polymorphic and informative, with mean number of alleles (Na), effective alleles (Ne), Nei's gene diversity of 6.23, 2.90, and 0.59, respectively. Analysis of molecular variance (AMOVA) confirmed the presence of low population differentiation (FST = 0.02), high gene flow (Nm = 14.7), with 95% of the total genetic variation residing within populations, and leaving only 5% for the among populations. The highest genetic diversity (Number of allele = 9.33, Effective number of allele = 3.4 and Nei's gene diversity = 0.68) was observed in the Oromia special zone surrounding Finfinnee (OSZ) Z. tritici populations, followed by Arsi and North Shewa populations, indicating that these areas are ideal for multi-location wheat germplasm resistance screening, and also the pathogen genetic and genomic analyses. Cluster analyses did not clearly divide the populations into genetically separate clusters according to their geographic areas of sampling, probably due to high gene flow. The analysis revealed existence of high genetic admixture, and all the individuals shared genomic backgrounds from two subgroups (K=2). Overall, the SSR markers are highly informative and effective genetic tools for unlocking the pathogen's genetic structure. The Z. tritici populations of central and southeast Ethiopia exhibit high genetic diversity, indicating the need to deploy durable and diverse disease management strategies. North Shewa, OSZ, Arsi and West Arsi administrative zones represent hotspots for genetic and genomic analyses of Z. tritici and excellent locations for host-pathogen interaction studies, and wheat germplasm screening for STB resistance.
Collapse
Affiliation(s)
- Ayantu Tucho
- Biotechnology Research Centre, Institute of Advanced Science and Technology (IAST), Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Science, Salale University, Fitche, Ethiopia
| | - Tilahun Mekonnen
- Biotechnology Research Centre, Institute of Advanced Science and Technology (IAST), Addis Ababa University, Addis Ababa, Ethiopia
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Diriba Muleta
- Biotechnology Research Centre, Institute of Advanced Science and Technology (IAST), Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Ethiopia University, Addis Ababa, Ethiopia
- Department of Microbial Sciences and Genetics, College of Natural and Computational Sciences, Bio and Emerging Technology Institute (BETin), Addis Ababa University, Addis Ababa, Ethiopia
| | - Eu Shang Wang
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Ethiopia University, Addis Ababa, Ethiopia
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
2
|
Mirzadi Gohari A, Mehrabi R, Kilaru S, Schuster M, Steinberg G, de Wit PPJGM, Kema GHJ. Functional characterization of extracellular and intracellular catalase-peroxidases involved in virulence of the fungal wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2024; 25:e70009. [PMID: 39363778 PMCID: PMC11450260 DOI: 10.1111/mpp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024]
Abstract
Understanding how pathogens defend themselves against host defence mechanisms, such as hydrogen peroxide (H2O2) production, is crucial for comprehending fungal infections. H2O2 poses a significant threat to invading fungi due to its potent oxidizing properties. Our research focuses on the hemibiotrophic fungal wheat pathogen Zymoseptoria tritici, enabling us to investigate host-pathogen interactions. We examined two catalase-peroxidase (CP) genes, ZtCpx1 and ZtCpx2, to elucidate how Z. tritici deals with host-generated H2O2 during infection. Our analysis revealed that ZtCpx1 was up-regulated during biotrophic growth and asexual spore formation in vitro, while ZtCpx2 showed increased expression during the transition from biotrophic to necrotrophic growth and in-vitro vegetative growth. Deleting ZtCpx1 increased the mutant's sensitivity to exogenously added H2O2 and significantly reduced virulence, as evidenced by decreased Septoria tritici blotch symptom severity and fungal biomass production. Reintroducing the wild-type ZtCpx1 allele with its native promoter into the mutant strain restored the observed phenotypes. While ZtCpx2 was not essential for full virulence, the ZtCpx2 mutants exhibited reduced fungal biomass development during the transition from biotrophic to necrotrophic growth. Moreover, both CP genes act synergistically, as the double knock-out mutant displayed a more pronounced reduced virulence compared to ΔZtCpx1. Microscopic analysis using fluorescent proteins revealed that ZtCpx1 was localized in the peroxisome, indicating its potential role in managing host-generated reactive oxygen species during infection. In conclusion, our research sheds light on the crucial roles of CP genes ZtCpx1 and ZtCpx2 in the defence mechanism of Z. tritici against host-generated hydrogen peroxide.
Collapse
Affiliation(s)
- Amir Mirzadi Gohari
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
- Department of PhytopathologyWageningen University and ResearchWageningenNetherlands
| | - Rahim Mehrabi
- Department of PhytopathologyWageningen University and ResearchWageningenNetherlands
| | | | | | | | | | - Gert H. J. Kema
- Department of PhytopathologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
3
|
Kausar MA, Narayan J, Agarwal P, Singh P, Ahmed RME, El-Hag ABM, Khalifa AM, Mohammed NARK, Singh R, Mahfooz S. Distribution and conservation of simple sequence repeats in plant pathogenic species of Zymoseptoria and development of genomic resources for its orphaned species. Antonie Van Leeuwenhoek 2024; 117:11. [PMID: 38170404 DOI: 10.1007/s10482-023-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
To better understand the structure and evolution of the genomes of four plant pathogenic species of Zymoseptoria, we analyzed the occurrence, relative abundance (RA), and density (RD) of simple sequence repeats (SSRs) in their whole genome and transcriptome sequences. In this study, SSRs are defined as repeats of more than 12 bases in length. The genome and transcriptome sequences of Zymoseptoria ardabiliae show the highest RA (201.1 and 129.9) and RD (3229.4 and 1928.2) of SSRs, while those of Zymoseptoria pseudotritici show the lowest RA (167.2 and 118.5) and RD (2482.2 and 1687.0). The majority of SSRs in the genomic and transcriptome sequences of species were trinucleotide SSRs, while dinucleotide SSRs were the least common. The most common trinucleotide motifs in the transcriptomic sequences across all species were those that encoded the amino acid arginine. As per our motif conservation study, Zymoseptoria tritici (12.4%) possessed the most unique motifs, while Z. pseudotritici (3.9%) had the fewest. Overall, only 38.1% of the motifs were found to be conserved among the species. Gene enrichment studies reveal that three of the species, Z. ardabiliae, Zymoseptoria brevis, and Z. pseudotritici, have SSRs in their genes related to cellular metabolism, while the remaining Z. tritici harbors SSRs in genes related to DNA synthesis and gene expression. In an effort to improve the genetic resources for the orphan species of pathogenic Zymoseptoria, a total of 73,134 primers were created. The genomic resources developed in this study could help with analyses of genetic relatedness within the population and the development of species-specific markers.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, 2440, Hail, Saudi Arabia.
| | - Jitendra Narayan
- CSIR- Institute of Genomics and Integrative Biology, Mall Road, New Delhi, 110007, India
| | - Preeti Agarwal
- CSIR- Institute of Genomics and Integrative Biology, Mall Road, New Delhi, 110007, India
| | - Pallavi Singh
- Department of Biotechnology, Dr APJ Abdul Kalam Technical University, Lucknow, 226031, India
| | | | | | - Amany Mohammed Khalifa
- Department of Pathology, College of Medicine, University of Hail, 2440, Hail, Saudi Arabia
| | | | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia Central University, 110025, New Delhi, India
| | - Sahil Mahfooz
- The Academic Editors, Saryu Enclave, Awadh Vikas Yojna, Lucknow, 226002, India.
- Department of Industrial Microbiology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, India.
| |
Collapse
|
4
|
Sun W, Liu W, Cai Y, Shi X, Wu L, Zhang J, Er L, Huang Q, Yin Q, Zhao Z, He P, Yu F. Structure of the Mating-Type Genes and Mating Systems of Verpa bohemica and Verpa conica (Ascomycota, Pezizomycotina). J Fungi (Basel) 2023; 9:1202. [PMID: 38132802 PMCID: PMC10745113 DOI: 10.3390/jof9121202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Verpa spp. are potentially important economic fungi within Morchellaceae. However, fundamental research on their mating systems, the key aspects of their life cycle, remains scarce. Fungal sexual reproduction is chiefly governed by mating-type genes, where the configuration of these genes plays a pivotal role in facilitating the reproductive process. For this study, de novo assembly methodologies based on genomic data from Verpa spp. were employed to extract precise information on the mating-type genes, which were then precisely identified in silico and by amplifying their single-ascospore populations using MAT-specific primers. The results suggest that the MAT loci of the three tested strains of V. bohemica encompassed both the MAT1-1-1 and MAT1-2-1 genes, implying homothallism. On the other hand, amongst the three V. conica isolates, only the MAT1-1-1 or MAT1-2-1 genes were present in their MAT loci, suggesting that V. conica is heterothallic. Moreover, bioinformatic analysis reveals that the three tested V. bohemica strains and one V. conica No. 21110 strain include a MAT1-1-10 gene in their MAT loci, while the other two V. conica strains contained MAT1-1-11, exhibiting high amino acid identities with those from corresponding Morchella species. In addition, MEME analysis shows that a total of 17 conserved protein motifs are present among the MAT1-1-10 encoded protein, while the MAT1-1-11 protein contained 10. Finally, the mating type genes were successfully amplified in corresponding single-ascospore populations of V. bohemica and V. conica, further confirming their life-cycle type. This is the first report on the mating-type genes and mating systems of Verpa spp., and the presented results are expected to benefit further exploitation of these potentially important economic fungi.
Collapse
Affiliation(s)
- Wenhua Sun
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (W.S.); (Q.Y.)
| | - Wei Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
| | - Yingli Cai
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650221, China;
| | - Xiaofei Shi
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
| | - Liyuan Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
| | - Jin Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
- College of Resource and Environment, Yunnan Agricultural University, Kunming 650100, China
| | - Lingfang Er
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
- College of Resource and Environment, Yunnan Agricultural University, Kunming 650100, China
| | - Qiuchen Huang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
- School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Qi Yin
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (W.S.); (Q.Y.)
| | - Zhiqiang Zhao
- Agricultural Technology Promotion Station in Zhuoni County, Gannan 747600, China;
| | - Peixin He
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (W.S.); (Q.Y.)
| | - Fuqiang Yu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
| |
Collapse
|
5
|
Orellana-Torrejon C, Vidal T, Gazeau G, Boixel AL, Gélisse S, Lageyre J, Saint-Jean S, Suffert F. Multiple scenarios for sexual crosses in the fungal pathogen Zymoseptoria tritici on wheat residues: Potential consequences for virulence gene transmission. Fungal Genet Biol 2022; 163:103744. [PMID: 36209959 DOI: 10.1016/j.fgb.2022.103744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 01/06/2023]
Abstract
Little is known about the impact of host immunity on sexual reproduction in fungal pathogens. In particular, it is unclear whether crossing requires both sexual partners to infect living plant tissues. We addressed this issue in a three-year experiment investigating different scenarios of Zymoseptoria tritici crosses according to the virulence ('vir') or avirulence ('avr') of the parents against a qualitative resistance gene. Co-inoculations ('vir × vir', 'avr × vir', 'avr × avr') and single inoculations were performed on a wheat cultivar carrying the Stb16q resistance gene (Cellule) and a susceptible cultivar (Apache), in the greenhouse. We assessed the intensity of asexual reproduction by scoring disease severity, and the intensity of sexual reproduction by counting the ascospores discharged from wheat residues. As expected, disease severity was more intense on Cellule for 'vir × vir' co-inoculations than for 'avr × vir' co-inoculations, with no disease for 'avr × avr'. However, all types of co-inoculation yielded sexual offspring, whether or not the parental strains caused plant symptoms. Parenthood was confirmed by genotyping (SSR markers), and the occurrence of crosses between (co-)inoculated and exogenous strains (other strains from the experiment, or from far away) was determined. We showed that symptomatic asexual infection was not required for a strain to participate in sexual reproduction, and deduced from this result that avirulent strains could be maintained asymptomatically "on" or "in" leaf tissues of plants carrying the corresponding resistant gene for long enough to reproduce sexually. In two of the three years, the intensity of sexual reproduction did not differ between the three types of co-inoculation in Cellule, suggesting that crosses involving avirulent strains are not anecdotal. We discuss the possible mechanisms explaining the maintenance of avirulence in Z. tritici populations and the potential impact of particular resistance deployments such as cultivar mixtures for limiting resistance breakdown.
Collapse
Affiliation(s)
- Carolina Orellana-Torrejon
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France; Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120 Palaiseau, France
| | - Tiphaine Vidal
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Gwilherm Gazeau
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Anne-Lise Boixel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Sandrine Gélisse
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Jérôme Lageyre
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120 Palaiseau, France
| | - Sébastien Saint-Jean
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120 Palaiseau, France
| | - Frédéric Suffert
- Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France.
| |
Collapse
|
6
|
Aylward J, Havenga M, Wingfield BD, Wingfield MJ, Dreyer LL, Roets F, Steenkamp ET. Novel mating-type-associated genes and gene fragments in the genomes of Mycosphaerellaceae and Teratosphaeriaceae fungi. Mol Phylogenet Evol 2022; 171:107456. [DOI: 10.1016/j.ympev.2022.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
|
7
|
Bock CH, Young CA, Zhang M, Chen C, Brannen PM, Adaskaveg J, Charlton ND. Mating Type Idiomorphs, Heterothallism, and High Genetic Diversity in Venturia carpophila, Cause of Peach Scab. PHYTOPATHOLOGY 2021; 111:408-424. [PMID: 32748736 DOI: 10.1094/phyto-12-19-0485-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scab (caused by Venturia carpophila) is a major disease affecting peach in the eastern United States. The aims of the study were to characterize the mating-type loci in V. carpophila, determine whether they are in equilibrium, and assess the population genetic diversity and structure of the pathogen. The mating-type gene MAT1-1-1 was identified in isolate JP3-5 in an available genome sequence, and the MAT1-2-1 gene was PCR amplified from isolate PS1-1, thus indicating a heterothallic structure. Mating-type loci structures were consistent with those of other Venturia spp. (V. effusa and V. inaequalis): the mating-type gene is positioned between APN2 encoding a DNA lyase and a gene encoding a Pleckstrin homology domain. Primers designed to each of the mating-type genes and a reference gene TUB2 were used as a multiplex PCR to screen a population (n = 81) of V. carpophila from various locations in the eastern United States. Mating types in five of the nine populations studied were in equilibrium. Among the 81 isolates, there were 69 multilocus genotypes. A population genetic analysis of the populations with >10 individuals (four populations) showed them to be genetically diverse. Linkage disequilibrium was found in five of nine populations with ≥4 isolates. A discriminant analysis of principal components indicated three genetic clusters, although extensive admixture was observed. Mating-type identification in V. carpophila provides a basis for understanding reproductive methods of the pathogen and can be a basis for further studies of the genetics of the peach scab pathogen.
Collapse
Affiliation(s)
- Clive H Bock
- United States Department of Agriculture-Agricultural Research Service-Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008
| | - Carolyn A Young
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401
| | - Minling Zhang
- United States Department of Agriculture-Agricultural Research Service-Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008
| | - Chunxian Chen
- United States Department of Agriculture-Agricultural Research Service-Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008
| | - Phillip M Brannen
- Department of Plant Pathology, University of Georgia, 2105 Miller Plant Sciences Building, Athens, GA 30602
| | - Jim Adaskaveg
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA 92521
| | - Nikki D Charlton
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401
| |
Collapse
|
8
|
Petters-Vandresen DAL, Rossi BJ, Groenewald JZ, Crous PW, Machado MA, Stukenbrock EH, Glienke C. Mating-type locus rearrangements and shifts in thallism states in Citrus-associated Phyllosticta species. Fungal Genet Biol 2020; 144:103444. [PMID: 32822858 DOI: 10.1016/j.fgb.2020.103444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/15/2022]
Abstract
Currently, eight Phyllosticta species are known to be associated with several Citrus hosts, incorporating diverse lifestyles: while some of them are endophytic (P. capitalensis and P. citribraziliensis), others are pathogenic (P. citriasiana, P. citricarpa, P. citrichinaensis and P. paracitricarpa). Sexual reproduction plays a key role in the interaction between these Phyllosticta species and their Citrus hosts, especially for the spread and persistence of the pathogenic species in the environment. Given this, differences in sexual reproduction strategies could be related to the differences in lifestyles. To evaluate this hypothesis, we characterized the mating-type loci of six Citrus-associated Phyllosticta species from whole genome assemblies. Mating-type genes in the Citrus-associated Phyllosticta species are highly variable in their sequence content, but the genomic locations and organization of the mating-type loci are conserved. Phyllosticta citriasiana, P. citribraziliensis, P. citricarpa and P. paracitricarpa are heterothallic, while P. capitalensis and P. citrichinaensis are homothallic. In addition, the P. citrichinaensis MAT1-2 idiomorph occurs in a separate location from the mating-type locus. Ancestral state reconstruction suggests that homothallism is the ancestral thallism state in Phyllosticta, with a shift to heterothallism in Phyllosticta species that are pathogenic to Citrus. Moreover, the homothallic strategies of P. capitalensis and P. citrichinaensis result from independent evolutionary events, as P. capitalensis locus likely represents the ancestral state, and P. citrichinaensis homothallism has risen through a reversion in a heterothallic ancestor and underwent remodelling events. As the pathogenic species P. citriasiana, P. citricarpa and P. paracitricarpa are heterothallic and incapable of selfing, disease management practices focused in preventing the occurrence of sexual reproduction could assist in the control of Citrus Black Spot and Citrus Tan Spot diseases. This study emphasizes the importance of studying Citrus-Phyllosticta interactions under evolutionary and genomic perspectives, as these approaches can provide valuable information about the association between Phyllosticta species and their hosts, and also serve as guidance for the improvement of disease management practices.
Collapse
Affiliation(s)
- Desirrê Alexia Lourenço Petters-Vandresen
- Laboratório de Bioprospecção e Genética Molecular de Microrganismos, Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil; Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Bruno Janoski Rossi
- Laboratório de Bioprospecção e Genética Molecular de Microrganismos, Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | | | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | | | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany; Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Chirlei Glienke
- Laboratório de Bioprospecção e Genética Molecular de Microrganismos, Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil.
| |
Collapse
|
9
|
Du XH, Wu D, Kang H, Wang H, Xu N, Li T, Chen K. Heterothallism and potential hybridization events inferred for twenty-two yellow morel species. IMA Fungus 2020; 11:4. [PMID: 32617256 PMCID: PMC7325075 DOI: 10.1186/s43008-020-0027-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
Mating-type genes are central to sexual reproduction in ascomycete fungi and result in the establishment of reproductive barriers. Together with hybridization, they both play important roles in the evolution of fungi. Recently, potential hybridization events and MAT genes were separately found in the Elata Clade of Morchella. Herein, we characterized the MAT1-1-1 and MAT1-2-1 genes of twenty-two species in the Esculenta Clade, another main group in the genus Morchella, and proved heterothallism to be the predominant mating strategy among the twenty-two species tested. Ascospores of these species were multi-nuclear and had many mitochondrial nucleoids. The number of ascospore nuclei might be positively related with the species distribution range. Phylogenetic analyses of MAT1-1-1, MAT1-2-1, intergenic spacer (IGS), and partial histone acetyltransferase ELP3 (F1) were performed and compared with the species phylogeny framework derived from the ribosomal internal transcribed spacer region (ITS) and translation elongation factor 1-alpha (EF1-a) to evaluate their species delimitation ability and investigate potential hybridization events. Conflicting topologies among these genes genealogies and the species phylogeny were revealed and hybridization events were detected between several species. Different evolutionary patterns were suggested for MAT genes between the Esculenta and the Elata Clades. Complex evolutionary trajectories of MAT1-1-1, MAT1-2-1, F1 and IGS in the Esculenta Clade were highlighted. These findings contribute to a better understanding of the importance of hybridization and gene transfer in Morchella and especially for the appearance of reproductive modes during its evolutionary process.
Collapse
Affiliation(s)
- Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy Agricultural Reclamation of Sciences, Shihezi, 832000 China
| | - Heng Kang
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Hanchen Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Nan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Tingting Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Keliang Chen
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| |
Collapse
|
10
|
Steinhauer D, Salat M, Frey R, Mosbach A, Luksch T, Balmer D, Hansen R, Widdison S, Logan G, Dietrich RA, Kema GHJ, Bieri S, Sierotzki H, Torriani SFF, Scalliet G. A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici. PLoS Pathog 2019; 15:e1007780. [PMID: 31860693 PMCID: PMC6941823 DOI: 10.1371/journal.ppat.1007780] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 01/03/2020] [Accepted: 11/20/2019] [Indexed: 11/24/2022] Open
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides are widely used for the control of a broad range of fungal diseases. This has been the most rapidly expanding fungicide group in terms of new molecules discovered and introduced for agricultural use over the past fifteen years. A particular pattern of differential sensitivity (resistance) to the stretched heterocycle amide SDHIs (SHA-SDHIs), a subclass of chemically-related SDHIs, was observed in naïve Zymoseptoria tritici populations not previously exposed to these chemicals. Subclass-specific resistance was confirmed at the enzyme level but did not correlate with the genotypes of the succinate dehydrogenase (SDH) encoding genes. Mapping and characterization of the molecular mechanisms responsible for standing SHA-SDHI resistance in natural field isolates identified a gene paralog of SDHC, termed ZtSDHC3, which encodes for an alternative C subunit of succinate dehydrogenase, named alt-SDHC. Using reverse genetics, we showed that alt-SDHC associates with the three other SDH subunits, leading to a fully functional enzyme and that a unique Qp-site residue within the alt-SDHC protein confers SHA-SDHI resistance. Enzymatic assays, computational modelling and docking simulations for the two SQR enzymes (altC-SQR, WT_SQR) enabled us to describe enzyme-inhibitor interactions at an atomistic level and to propose rational explanations for differential potency and resistance across SHA-SDHIs. European Z. tritici populations displayed a presence (20–30%) / absence polymorphism of ZtSDHC3, as well as differences in ZtSDHC3 expression levels and splicing efficiency. These polymorphisms have a strong impact on SHA-SDHI resistance phenotypes. Characterization of the ZtSDHC3 promoter in European Z. tritici populations suggests that transposon insertions are associated with the strongest resistance phenotypes. These results establish that a dispensable paralogous gene determines SHA-SDHIs fungicide resistance in natural populations of Z. tritici. This study paves the way to an increased awareness of the role of fungicidal target paralogs in resistance to fungicides and demonstrates the paramount importance of population genomics in fungicide discovery. Zymoseptoria tritici is the causal agent of Septoria tritici leaf blotch (STB) of wheat, the most devastating disease for cereal production in Europe. Multiple succinate dehydrogenase inhibitor (SDHI) fungicides have been developed and introduced for the control of STB. We report the discovery and detailed characterization of a paralog of the C subunit of the SDH enzyme conferring standing resistance towards the SHA-SDHIs, a particular chemical subclass of the SDHIs. The SDHC paralog is characterized by its presence/absence, expression and alternative splicing polymorphisms, which in turn influence resistance levels. The identified mechanisms exemplify the importance of population genomics for the discovery and rational design of the most adapted solutions.
Collapse
Affiliation(s)
| | - Marie Salat
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Regula Frey
- Syngenta Crop Protection AG, Stein, Switzerland
| | | | | | - Dirk Balmer
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Rasmus Hansen
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Stephanie Widdison
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Grace Logan
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Robert A. Dietrich
- Syngenta Biotechnology Inc., Research Triangle Park, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
11
|
Kerdraon L, Barret M, Laval V, Suffert F. Differential dynamics of microbial community networks help identify microorganisms interacting with residue-borne pathogens: the case of Zymoseptoria tritici in wheat. MICROBIOME 2019; 7:125. [PMID: 31470910 PMCID: PMC6717385 DOI: 10.1186/s40168-019-0736-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/16/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Wheat residues are a crucial determinant of the epidemiology of Septoria tritici blotch, as they support the sexual reproduction of the causal agent Zymoseptoria tritici. We aimed to characterize the effect of infection with this fungal pathogen on the microbial communities present on wheat residues and to identify microorganisms interacting with it. We used metabarcoding to characterize the microbiome associated with wheat residues placed outdoors, with and without preliminary Z. tritici inoculation, comparing the first set of residues in contact with the soil and a second set without contact with the soil, on four sampling dates in two consecutive years. RESULTS The diversity of the tested conditions, leading to the establishment of different microbial communities according to the origins of the constitutive taxa (plant only, or plant and soil), highlighted the effect of Z. tritici on the wheat residue microbiome. Several microorganisms were affected by Z. tritici infection, even after the disappearance of the pathogen. Linear discriminant analyses and ecological network analyses were combined to describe the communities affected by the infection. The number of fungi and bacteria promoted or inhibited by inoculation with Z. tritici decreased over time and was smaller for residues in contact with the soil. The interactions between the pathogen and other microorganisms appeared to be mostly indirect, despite the strong position of the pathogen as a keystone taxon in networks. Direct interactions with other members of the communities mostly involved fungi, including other wheat pathogens. Our results provide essential information about the alterations to the microbial community in wheat residues induced by the mere presence of a fungal pathogen, and vice versa. Species already described as beneficial or biocontrol agents were found to be affected by pathogen inoculation. CONCLUSIONS The strategy developed here can be viewed as a proof-of-concept focusing on crop residues as a particularly rich ecological compartment, with a high diversity of fungal and bacterial taxa originating from both the plant and soil compartments, and for Z. tritici-wheat as a model pathosystem. By revealing putative antagonistic interactions, this study paves the way for improving the biological control of residue-borne diseases.
Collapse
Affiliation(s)
- Lydie Kerdraon
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| | - Matthieu Barret
- UMR IRHS, INRA, Agrocampus Ouest, Université d'Angers, 49071, Beaucouzé, France
| | - Valérie Laval
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Frédéric Suffert
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| |
Collapse
|
12
|
King KM, Hawkins NJ, Atkins S, Dyer PS, West JS, Fraaije BA. First application of loop-mediated isothermal amplification (LAMP) assays for rapid identification of mating type in the heterothallic fungus Aspergillus fumigatus. Mycoses 2019; 62:812-817. [PMID: 31211900 PMCID: PMC6771684 DOI: 10.1111/myc.12959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Loop-mediated isothermal amplification (LAMP) assays, which operate at a single temperature and require no postreaction processing, have been described for rapid species-specific detection of numerous fungi. The technology has much less commonly been applied to identification of other key genetic traits such as fungicide resistance, and has not yet been applied to mating-type determination in any fungus. OBJECTIVES To develop first LAMP assays for mating-type identification in a fungus, in this instance with the saprophytic mould and human opportunistic pathogen Aspergillus fumigatus, a heterothallic ascomycete requiring isolates of opposite mating type (MAT1-1, MAT1-2) for sexual reproduction. METHODS New LAMP primer sets, targeted to MAT gene sequences, were screened against 34 A fumigatus isolates (of known mating type) from diverse clinical, environmental and geographic sources to establish whether they could distinguish MAT1-1 or MAT1-2 genotypes. RESULTS AND CONCLUSIONS The new assays, operating at a single temperature of 65°C, correctly identified the mating type of A fumigatus isolates in <20 minutes, and thus have numerous research and practical applications. Similar MAT LAMP assays could now be developed for other fungi of agricultural, environmental, industrial and/or medical importance.
Collapse
Affiliation(s)
- Kevin M King
- Rothamsted Research, Biointeractions and Crop Protection Department, Harpenden, UK
| | - Nichola J Hawkins
- Rothamsted Research, Biointeractions and Crop Protection Department, Harpenden, UK
| | - Sarah Atkins
- Rothamsted Research, Biointeractions and Crop Protection Department, Harpenden, UK
| | - Paul S Dyer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Jonathan S West
- Rothamsted Research, Biointeractions and Crop Protection Department, Harpenden, UK
| | - Bart A Fraaije
- Rothamsted Research, Biointeractions and Crop Protection Department, Harpenden, UK
| |
Collapse
|
13
|
Hassine M, Siah A, Hellin P, Cadalen T, Halama P, Hilbert JL, Hamada W, Baraket M, Yahyaoui A, Legrève A, Duvivier M. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity. Fungal Biol 2019; 123:763-772. [PMID: 31542193 DOI: 10.1016/j.funbio.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/05/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Septoria tritici blotch (STB) caused by the heterothallic ascomycete Zymoseptoria tritici is currently one of the most devastating diseases of wheat worldwide. The extent of sexual reproduction of this pathogen is well documented on bread wheat, but not on durum wheat. The objective of the present study was to quantify the occurrence of Z. tritici sexual reproduction on durum wheat in the Tunisian environment. The assessment was undertaken using a triple approach combining fruiting body assessment, ascospore trapping and population genetic analyses. The results highlighted the formation of pseudothecia on leaves and stubble from the autumn until the end of the growing season. Likewise, qPCR monitoring highlighted a constant release of Z. tritici airborne inoculum during the wheat-growing season, with a peak of production at the end of the season. Genetic investigations using microsatellites revealed high levels of gene and genotypic diversities, an equal distribution of mating types, and a lack of genetic clustering within and between growing seasons. Taken together, these findings indicate that Z. tritici undergoes sexual reproduction on durum wheat in Tunisia at least to the same extent than on bread wheat in Western Europe, and that the dry and warm climate does not affect the mating process of the fungus. Frequent occurrence of sexual reproduction is a valuable knowledge to take into account in STB control strategies on durum wheat.
Collapse
Affiliation(s)
- M Hassine
- University of Carthage, National Agronomic Institute of Tunisia, LR14AGR01, Laboratory of Genetics and Cereal Breeding, National Agronomic Institute of Tunisia, Avenue Charles Nicolle 43, 1082 Tunis, Tunisia.
| | - A Siah
- ISA, INRA, Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - P Hellin
- Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2 Box L7.05.03, 1348 Louvain-la-Neuve, Belgium; Plant Protection and Ecotoxicology Unit, Walloon Agricultural Research Center, Rue du Bordia 11, 5030 Gembloux, Belgium.
| | - T Cadalen
- ISA, INRA, Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - P Halama
- ISA, INRA, Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - J-L Hilbert
- ISA, INRA, Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - W Hamada
- University of Carthage, National Agronomic Institute of Tunisia, LR14AGR01, Laboratory of Genetics and Cereal Breeding, National Agronomic Institute of Tunisia, Avenue Charles Nicolle 43, 1082 Tunis, Tunisia.
| | - M Baraket
- National Research Institute of Rural Engineering, Water and Forestry, Rue Hédi EL Karray El Menzah IV 1004 2080 Ariana, Tunisia.
| | - A Yahyaoui
- International Maize and Wheat Improvement Center, Carretera México-Veracruz Km. 45, El Batán, 56237 Texcoco, México.
| | - A Legrève
- Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2 Box L7.05.03, 1348 Louvain-la-Neuve, Belgium.
| | - M Duvivier
- Plant Protection and Ecotoxicology Unit, Walloon Agricultural Research Center, Rue du Bordia 11, 5030 Gembloux, Belgium.
| |
Collapse
|
14
|
Grandaubert J, Dutheil JY, Stukenbrock EH. The genomic determinants of adaptive evolution in a fungal pathogen. Evol Lett 2019; 3:299-312. [PMID: 31171985 PMCID: PMC6546377 DOI: 10.1002/evl3.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
Unravelling the strength, frequency, and distribution of selective variants along the genome as well as the underlying factors shaping this distribution are fundamental goals of evolutionary biology. Antagonistic host-pathogen coevolution is thought to be a major driver of genome evolution between interacting species. While rapid evolution of pathogens has been documented in several model organisms, the genetic mechanisms of their adaptation are still poorly understood and debated, particularly the role of sexual reproduction. Here, we apply a population genomic approach to infer genome-wide patterns of selection among 13 isolates of Zymoseptoria tritici, a fungal pathogen characterized by extremely high genetic diversity, gene density, and recombination rates. We report that the genome of Z. tritici undergoes a high rate of adaptive substitutions, with 44% of nonsynonymous substitutions being adaptive on average. This fraction reaches 68% in so-called effector genes encoding determinants of pathogenicity, and the distribution of fitness effects differs in this class of genes as they undergo adaptive mutations with stronger positive fitness effects, but also more slightly deleterious mutations. Besides the globally high rate of adaptive substitutions, we report a negative relationship between pN/pS and the fine-scale recombination rate and a strong positive correlation between the rate of adaptive nonsynonymous substitutions (ωa) and recombination rate. This result suggests a pervasive role of both background selection and Hill-Robertson interference even in a species with an exceptionally high recombination rate (60 cM/Mb on average). While transposable elements (TEs) have been suggested to contribute to adaptation by creating compartments of fast-evolving genomic regions, we do not find a significant effect of TEs on the rate of adaptive mutations. Overall our study suggests that sexual recombination is a significant driver of genome evolution, even in rapidly evolving organisms subject to recurrent mutations with large positive effects.
Collapse
Affiliation(s)
- Jonathan Grandaubert
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyAugust‐Thienemann‐Str. 224306PlönGermany
- Christian‐Albrechts University of KielAm Botanischen Garten 1–924118KielGermany
| | - Julien Y. Dutheil
- Research group Molecular Systems EvolutionMax Planck Institute for Evolutionary BiologyAugust‐Thienemann‐Str. 224306PlönGermany
- UMR 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHEUniversité de MontpellierPlace E. Bataillon34095MontpellierFrance
| | - Eva H. Stukenbrock
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyAugust‐Thienemann‐Str. 224306PlönGermany
- Christian‐Albrechts University of KielAm Botanischen Garten 1–924118KielGermany
| |
Collapse
|
15
|
Suffert F, Delestre G, Gélisse S. Sexual Reproduction in the Fungal Foliar Pathogen Zymoseptoria tritici Is Driven by Antagonistic Density Dependence Mechanisms. MICROBIAL ECOLOGY 2019; 77:110-123. [PMID: 29876608 DOI: 10.1007/s00248-018-1211-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/22/2018] [Indexed: 05/13/2023]
Abstract
This study provides empirical evidence for antagonistic density dependence mechanisms driving sexual reproduction in the wheat fungal pathogen Zymoseptoria tritici. Biparental crosses with 12 increasing inoculum concentrations, in controlled conditions, showed that sexual reproduction in Z. tritici was impacted by an Allee effect due to mate limitation and a competition with asexual multiplication for resource allocation. The highest number of ascospores discharged was reached at intermediate inoculum concentrations (from 5 × 104 conidia mL-1 to 106 conidia mL-1). Consistent with these results for controlled co-inoculation, we found that the intensity of sexual reproduction varied with both cropping period and the vertical position of the host tissues in the field, with a maximum between 25 and 35 cm above the ground. An optimal lesion density (disease severity of 30 to 45%) maximizing offspring (ascospores) number was established, and its eco-evolutionary consequences are considered here. Two ecological mechanisms may be involved: competition for resources between the two modes of reproduction (decrease in the host resources available for sexual reproduction due to their prior use in asexual multiplication), and competitive disequilibrium between the two parental isolates, due to differential interaction dynamics with the host, for example, leading to an imbalance between mating types. A conceptual model based on these results suggests that sexual reproduction plays a key role in the evolution of pathogenicity traits, including virulence and aggressiveness. Ecological knowledge about the determinants of sexual reproduction in Z. tritici may, therefore, open up new perspectives for the management of other fungal foliar pathogens with dual modes of reproduction.
Collapse
Affiliation(s)
- Frédéric Suffert
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| | - Ghislain Delestre
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Sandrine Gélisse
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| |
Collapse
|
16
|
Habig M, Kema GHJ, Holtgrewe Stukenbrock E. Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus. eLife 2018; 7:e40251. [PMID: 30543518 PMCID: PMC6331196 DOI: 10.7554/elife.40251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/13/2018] [Indexed: 01/03/2023] Open
Abstract
Meiosis is a key cellular process of sexual reproduction that includes pairing of homologous sequences. In many species however, meiosis can also involve the segregation of supernumerary chromosomes, which can lack a homolog. How these unpaired chromosomes undergo meiosis is largely unknown. In this study we investigated chromosome segregation during meiosis in the haploid fungus Zymoseptoria tritici that possesses a large complement of supernumerary chromosomes. We used isogenic whole chromosome deletion strains to compare meiotic transmission of chromosomes when paired and unpaired. Unpaired chromosomes inherited from the male parent as well as paired supernumerary chromosomes in general showed Mendelian inheritance. In contrast, unpaired chromosomes inherited from the female parent showed non-Mendelian inheritance but were amplified and transmitted to all meiotic products. We concluded that the supernumerary chromosomes of Z. tritici show a meiotic drive and propose an additional feedback mechanism during meiosis, which initiates amplification of unpaired female-inherited chromosomes.
Collapse
Affiliation(s)
- Michael Habig
- Environmental GenomicsChristian-Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Gert HJ Kema
- Wageningen Plant ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of PhytopathologyWageningen University and ResearchWageningenThe Netherlands
| | - Eva Holtgrewe Stukenbrock
- Environmental GenomicsChristian-Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| |
Collapse
|
17
|
Allen JL, McKenzie SK, Sleith RS, Alter SE. First genome-wide analysis of the endangered, endemic lichen Cetradonia linearis reveals isolation by distance and strong population structure. AMERICAN JOURNAL OF BOTANY 2018; 105:1556-1567. [PMID: 30157288 DOI: 10.1002/ajb2.1150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Lichenized fungi are evolutionarily diverse and ecologically important, but little is known about the processes that drive their diversification and genetic differentiation. Distributions are often assumed to be wholly shaped by ecological requirements rather than dispersal limitations. Furthermore, although asexual and sexual reproductive structures are observable, the lack of information about recombination rates makes inferences about reproductive strategies difficult. We investigated the population genomics of Cetradonia linearis, a federally endangered lichen in the southern Appalachians of eastern North America, to test the relative contributions of environmental and geographic distance in shaping genetic structure, and to characterize the mating system and genome-wide recombination. METHODS Whole-genome shotgun sequencing was conducted to generate data for 32 individuals of C. linearis. A reference genome was assembled, and reads from all samples were aligned to generate a set of single-nucleotide polymorphisms for further analyses. KEY RESULTS We found evidence for low rates of recombination and for isolation by distance, but not for isolation by environment. The species is putatively unisexual, given that only one mating-type locus was found. Hindcast species distribution models and the distribution of genetic diversity support C. linearis having a larger range during the Last Glacial Maximum in the southern portion of its current extent. CONCLUSIONS Our findings contribute to the understanding of factors that shape genetic diversity in C. linearis and in fungi more broadly. Because all populations are highly genetically differentiated, the extirpation of any population would mean the loss of unique genetic diversity; therefore, our results support the continued conservation of this species.
Collapse
Affiliation(s)
- Jessica L Allen
- The New York Botanical Garden, 2900 Southern Blvd., Bronx, New York, 10458, USA
- The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA
| | - Sean K McKenzie
- Rockefeller University, 1230 York Avenue, New York, New York, 10065, USA
| | - Robin S Sleith
- The New York Botanical Garden, 2900 Southern Blvd., Bronx, New York, 10458, USA
- The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA
| | - S Elizabeth Alter
- The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA
- Biology Department, York College, 94-20 Guy R Brewer Blvd., Jamaica, New York, 11451, USA
| |
Collapse
|
18
|
Siah A, Bomble M, Tisserant B, Cadalen T, Holvoet M, Hilbert JL, Halama P, Reignault P. Genetic Structure of Zymoseptoria tritici in Northern France at Region, Field, Plant, and Leaf Layer Scales. PHYTOPATHOLOGY 2018; 108:1114-1123. [PMID: 29658841 DOI: 10.1094/phyto-09-17-0322-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Population genetic structure of the worldwide-distributed wheat pathogen Zymoseptoria tritici has been extensively studied at large geographical scales, but to a much less extent at small or local spatial scales. A total of 627 single-conidial fungal isolates were sampled from several locations in northern France (Hauts-de-France Region) to assess fungal genetic structure at region, field, plant, and leaf layer scales, using highly polymorphic microsatellite markers and mating type idiomorphs. Important and overall similar levels of both gene and genotype diversities (gene diversity values of ≥0.44 and haplotype frequencies of ≥94%) were found at all the examined scales. Such rates of diversity are likely due to an active sexual recombination in the investigated areas, as revealed by equal proportions of the two mating types scored in all sampled populations. Interestingly, a rare occurrence of clones among lesions from a same leaf, as well as among leaves from different plant leaf layers (e.g., upper versus lower leaves), was highlighted, indicating that ascospores contribute much more than expected to Z. tritici epidemics, compared with pycnidiospores. Population structure and analyses of molecular variance revealed significant genetic differentiation at the regional scale (GST = 0.23) and, as expected, not at the other more local scales (GST ≤ 0.01). Further analyses using Bayesian and unweighted neighbor-joining statistical methods detected six genetic clusters within the regional population, overall distributed according to the locations from which the isolates were sampled. Neither clear directional relative migration linked to the geographical distribution of the locations, nor isolation by distance, were observed. Separate evolutionary trajectories caused by selection and adaptations to habitat heterogeneity could be the main forces shaping such structuration. This study provides new insights into the epidemiology and the genetic structure of Z. tritici at small local and, for the first time, at single plant and leaf layer scales. Such findings would be helpful in implementing effective control strategies.
Collapse
Affiliation(s)
- Ali Siah
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Myriam Bomble
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Benoit Tisserant
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Thierry Cadalen
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Maxime Holvoet
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Jean-Louis Hilbert
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Patrice Halama
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| | - Philippe Reignault
- First, second, fourth, fifth, sixth, and seventh authors: Institut Charles Viollette (ICV-EA 7394), ISA, Université de Lille, SFR Condorcet FR CNRS 3417, 48 bd Vauban, BP 41290, F-59014 Lille Cedex, France; and third and eighth authors: Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais Cedex, France
| |
Collapse
|
19
|
Nagel JH, Wingfield MJ, Slippers B. Evolution of the mating types and mating strategies in prominent genera in the Botryosphaeriaceae. Fungal Genet Biol 2018. [PMID: 29530630 DOI: 10.1016/j.fgb.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Little is known regarding mating strategies in the Botryosphaeriaceae. To understand sexual reproduction in this fungal family, the mating type genes of Botryosphaeria dothidea and Macrophomina phaseolina, as well as several species of Diplodia, Lasiodiplodia and Neofusicoccum were characterized from whole genome assemblies. Comparisons between the mating type loci of these fungi showed that the mating type genes are highly variable, but in most cases the organization of these genes is conserved. Of the species considered, nine were homothallic and seven were heterothallic. Mating type gene fragments were discovered flanking the mating type regions, which indicates both ongoing and ancestral recombination occurring within the mating type region. Ancestral reconstruction analysis further indicated that heterothallism is the ancestral state in the Botryosphaeriaceae and this is supported by the presence of mating type gene fragments in homothallic species. The results also show that at least five transitions from heterothallism to homothallism have taken place in the Botryosphaeriaceae. The study provides a foundation for comparison of mating type evolution between Botryosphaeriaceae and other fungi and also provides valuable markers for population biology studies in this family.
Collapse
Affiliation(s)
- Jan H Nagel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0001, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0001, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0001, South Africa.
| |
Collapse
|
20
|
Kema GHJ, Mirzadi Gohari A, Aouini L, Gibriel HAY, Ware SB, van den Bosch F, Manning-Smith R, Alonso-Chavez V, Helps J, Ben M'Barek S, Mehrabi R, Diaz-Trujillo C, Zamani E, Schouten HJ, van der Lee TAJ, Waalwijk C, de Waard MA, de Wit PJGM, Verstappen ECP, Thomma BPHJ, Meijer HJG, Seidl MF. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nat Genet 2018; 50:375-380. [PMID: 29434356 DOI: 10.1038/s41588-018-0052-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/06/2018] [Indexed: 11/09/2022]
Abstract
Host resistance and fungicide treatments are cornerstones of plant-disease control. Here, we show that these treatments allow sex and modulate parenthood in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that the Z. tritici-wheat interaction complies with the gene-for-gene model by identifying the effector AvrStb6, which is recognized by the wheat resistance protein Stb6. Recognition triggers host resistance, thus implying removal of avirulent strains from pathogen populations. However, Z. tritici crosses on wheat show that sex occurs even with an avirulent parent, and avirulence alleles are thereby retained in subsequent populations. Crossing fungicide-sensitive and fungicide-resistant isolates under fungicide pressure results in a rapid increase in resistance-allele frequency. Isolates under selection always act as male donors, and thus disease control modulates parenthood. Modeling these observations for agricultural and natural environments reveals extended durability of host resistance and rapid emergence of fungicide resistance. Therefore, fungal sex has major implications for disease control.
Collapse
Affiliation(s)
- Gerrit H J Kema
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands. .,Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Amir Mirzadi Gohari
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands.,Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Lamia Aouini
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Hesham A Y Gibriel
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sarah B Ware
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands.,Department of Biological Sciences, Benedictine University, Lisle, IL, USA
| | | | | | | | | | - Sarrah Ben M'Barek
- Laboratory of Molecular Plant Physiology, Biotechnology Center of Borj Cedria (CBBC), Hammam-Lif, Tunisia
| | - Rahim Mehrabi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Caucasella Diaz-Trujillo
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands.,Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Elham Zamani
- Department of Plant Pathology, Tarbiat Modares University, Tehran, Iran
| | - Henk J Schouten
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Theo A J van der Lee
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Cees Waalwijk
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Maarten A de Waard
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Els C P Verstappen
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Harold J G Meijer
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
21
|
Thynne E, McDonald MC, Solomon PS. Transition from heterothallism to homothallism is hypothesised to have facilitated speciation among emerging Botryosphaeriaceae wheat-pathogens. Fungal Genet Biol 2017; 109:36-45. [DOI: 10.1016/j.fgb.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023]
|
22
|
Plasticity of the MFS1 Promoter Leads to Multidrug Resistance in the Wheat Pathogen Zymoseptoria tritici. mSphere 2017; 2:mSphere00393-17. [PMID: 29085913 PMCID: PMC5656749 DOI: 10.1128/msphere.00393-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
The ascomycete Zymoseptoria tritici is the causal agent of Septoria leaf blotch on wheat. Disease control relies mainly on resistant wheat cultivars and on fungicide applications. The fungus displays a high potential to circumvent both methods. Resistance against all unisite fungicides has been observed over decades. A different type of resistance has emerged among wild populations with multidrug-resistant (MDR) strains. Active fungicide efflux through overexpression of the major facilitator gene MFS1 explains this emerging resistance mechanism. Applying a bulk-progeny sequencing approach, we identified in this study a 519-bp long terminal repeat (LTR) insert in the MFS1 promoter, a relic of a retrotransposon cosegregating with the MDR phenotype. Through gene replacement, we show the insert as a mutation responsible for MFS1 overexpression and the MDR phenotype. Besides this type I insert, we found two different types of promoter inserts in more recent MDR strains. Type I and type II inserts harbor potential transcription factor binding sites, but not the type III insert. Interestingly, all three inserts correspond to repeated elements present at different genomic locations in either IPO323 or other Z. tritici strains. These results underline the plasticity of repeated elements leading to fungicide resistance in Z. tritici and which contribute to its adaptive potential. IMPORTANCE Disease control through fungicides remains an important means to protect crops from fungal diseases and to secure the harvest. Plant-pathogenic fungi, especially Zymoseptoria tritici, have developed resistance against most currently used active ingredients, reducing or abolishing their efficacy. While target site modification is the most common resistance mechanism against single modes of action, active efflux of multiple drugs is an emerging phenomenon in fungal populations reducing additionally fungicides' efficacy in multidrug-resistant strains. We have investigated the mutations responsible for increased drug efflux in Z. tritici field strains. Our study reveals that three different insertions of repeated elements in the same promoter lead to multidrug resistance in Z. tritici. The target gene encodes the membrane transporter MFS1 responsible for drug efflux, with the promoter inserts inducing its overexpression. These results underline the plasticity of repeated elements leading to fungicide resistance in Z. tritici.
Collapse
|
23
|
Wilken PM, Steenkamp ET, Wingfield MJ, de Beer ZW, Wingfield BD. Which MAT gene? Pezizomycotina (Ascomycota) mating-type gene nomenclature reconsidered. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Meamiche Neddaf H, Aouini L, Bouznad Z, Kema GHJ. Equal Distribution of Mating Type Alleles and the Presence of Strobilurin Resistance in Algerian Zymoseptoria tritici Field Populations. PLANT DISEASE 2017; 101:544-549. [PMID: 30677359 DOI: 10.1094/pdis-03-16-0298-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zymoseptoria tritici, the causal agent of septoria tritici blotch, is an important wheat pathogen responsible for high yield losses worldwide. The assessment of the distribution of both mating type idiomorphs was studied in several wheat-growing areas in North Algeria. Both mating types occurred at all spatial scales tested and showed an equal frequency distribution at the country level, with 53% for Mat1-1 and 47% for Mat1-2. At finer scales, co-occurrence of both mating types was found in 38% of leaves analyzed and 44% of the studied lesions. Additionally, efficacy reduction of strobilurin applications prompted us to study strobilurin resistance conferred by the G143A substitution in the mitochondrial cytochrome b gene, which was found for the first time in six strains. The results suggest that the Algerian Z. tritici population undergoes frequent sexual reproduction mirrored by co-occurrence of both mating types, which likely will rapidly increase the fraction of strobilurin-resistant isolates in the Algerian population, as has been shown in all other regions where strobilurin resistance surfaced.
Collapse
Affiliation(s)
- Hayet Meamiche Neddaf
- Ecole Nationale Supérieure d'Agronomie, Laboratoire de Phytopathologie et de Biologie Moléculaire, El Harrach, Algérie; and Institut National de Recherche Agronomique d'Algérie, Division de Biotechnologies et d'Amélioration des Plantes, El Harrach, Algérie
| | - Lamia Aouini
- Wageningen University and Research Center, Wageningen, The Netherlands
| | - Zouaoui Bouznad
- Ecole Nationale Supérieure d'Agronomie, Laboratoire de Phytopathologie et de Biologie Moléculaire
| | | |
Collapse
|
25
|
Suffert F, Delestre G, Carpentier F, Gazeau G, Walker AS, Gélisse S, Duplaix C. Fashionably late partners have more fruitful encounters: Impact of the timing of co-infection and pathogenicity on sexual reproduction in Zymoseptoria tritici. Fungal Genet Biol 2016; 92:40-9. [DOI: 10.1016/j.fgb.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
26
|
Stukenbrock EH. The Role of Hybridization in the Evolution and Emergence of New Fungal Plant Pathogens. PHYTOPATHOLOGY 2016; 106:104-12. [PMID: 26824768 DOI: 10.1094/phyto-08-15-0184-rvw] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hybridization in fungi has recently been recognized as a major force in the generation of new fungal plant pathogens. These include the grass pathogen Zymoseptoria pseudotritici and the powdery mildew pathogen Blumeria graminis triticale of triticale. Hybridization also plays an important role in the transfer of genetic material between species. This process is termed introgressive hybridization and involves extensive backcrossing between hybrid and the parental species. Introgressive hybridization has contributed substantially to the successful spread of plant pathogens such as Ophiostoma ulmi and O. novo-ulmi, the causal agents of Dutch elm disease, and other tree pathogens such as the rust pathogen Melampsora. Hybridization occurs more readily between species that have previously not coexisted, so-called allopatric species. Reproductive barriers between allopatric species are likely to be more permissive allowing interspecific mating to occur. The bringing together of allopatric species of plant pathogens by global agricultural trade consequently increases the potential for hybridization between pathogen species. In light of global environmental changes, agricultural development, and the facilitated long-distance spread of fungal plant pathogens, hybridization should be considered an important mechanism whereby new pathogens may emerge. Recent studies have gained insight into the genetics and biology of fungal hybrids. Here I summarize current knowledge about hybrid speciation and introgressive hybridization. I propose that future studies will benefit greatly from the availability of large genome data sets and that genome data provide a powerful resource in combination with experimental approaches for analyses of hybrid species.
Collapse
Affiliation(s)
- Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Am Botanischen Garten 9-11, 24118 Kiel, Germany and Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| |
Collapse
|
27
|
Wilson AM, Godlonton T, van der Nest MA, Wilken PM, Wingfield MJ, Wingfield BD. Unisexual reproduction in Huntiella moniliformis. Fungal Genet Biol 2015; 80:1-9. [PMID: 25910452 DOI: 10.1016/j.fgb.2015.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 01/08/2023]
Abstract
Sexual reproduction in fungi is controlled by genes present at the mating type (MAT) locus, which typically harbors transcription factors that influence the expression of many sex-related genes. The MAT locus exists as two alternative idiomorphs in ascomycetous fungi and sexual reproduction is initiated when genes from both idiomorphs are expressed. Thus, the gene content of this locus determines whether a fungus is heterothallic (self-sterile) or homothallic (self-fertile). Recently, a unique sub-class of homothallism has been described in fungi, where individuals possessing a single MAT idiomorph can reproduce sexually in the absence of a partner. Using various mycological, molecular and bioinformatic techniques, we investigated the sexual strategies and characterized the MAT loci in two tree wound-infecting fungi, Huntiella moniliformis and Huntiella omanensis. H. omanensis was shown to exhibit a typically heterothallic sexual reproductive cycle, with isolates possessing either the MAT1-1 or MAT1-2 idiomorph. This was in contrast to the homothallism via unisexual reproduction that was shown in H. moniliformis, where only the MAT1-2-1 gene was present in sexually reproducing cultures. While the evolutionary benefit and mechanisms underpinning a unisexual mating strategy remain unknown, it could have evolved to minimize the costs, while retaining the benefits, of normal sexual reproduction.
Collapse
Affiliation(s)
- A M Wilson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - T Godlonton
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - M A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - P M Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - M J Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - B D Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| |
Collapse
|
28
|
Quantitative trait locus mapping of melanization in the plant pathogenic fungus Zymoseptoria tritici. G3-GENES GENOMES GENETICS 2014; 4:2519-33. [PMID: 25360032 PMCID: PMC4267946 DOI: 10.1534/g3.114.015289] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Melanin plays an important role in virulence and antimicrobial resistance in several fungal pathogens. The wheat pathogen Zymoseptoria tritici is important worldwide, but little is known about the genetic architecture of pathogenicity, including the production of melanin. Because melanin production can exhibit complex inheritance, we used quantitative trait locus (QTL) mapping in two crosses to identify the underlying genes. Restriction site−associated DNA sequencing was used to genotype 263 (cross 1) and 261 (cross 2) progeny at ~8500 single-nucleotide polymorphisms and construct two dense linkage maps. We measured gray values, representing degrees of melanization, for single-spore colonies growing on Petri dishes by using a novel image-processing approach that enabled high-throughput phenotyping. Because melanin production can be affected by stress, each offspring was grown in two stressful environments and one control environment. We detected six significant QTL in cross 1 and nine in cross 2, with three QTL shared between the crosses. Different QTL were identified in different environments and at different colony ages. By obtaining complete genome sequences for the four parents and analyzing sequence variation in the QTL confidence intervals, we identified 16 candidate genes likely to affect melanization. One of these candidates was PKS1, a polyketide synthase gene known to play a role in the synthesis of dihydroxynaphthalene melanin. Three candidate quantitative trait nucleotides were identified in PKS1. Many of the other candidate genes were not previously associated with melanization.
Collapse
|
29
|
Gautier A, Marcel TC, Confais J, Crane C, Kema G, Suffert F, Walker AS. Development of a rapid multiplex SSR genotyping method to study populations of the fungal plant pathogen Zymoseptoria tritici. BMC Res Notes 2014; 7:373. [PMID: 24943709 PMCID: PMC4074386 DOI: 10.1186/1756-0500-7-373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 05/30/2014] [Indexed: 11/29/2022] Open
Abstract
Background Zymoseptoria tritici is a hemibiotrophic ascomycete fungus causing leaf blotch of wheat that often decreases yield severely. Populations of the fungus are known to be highly diverse and poorly differentiated from each other. However, a genotyping tool is needed to address further questions in large collections of isolates, regarding regional population structure, adaptation to anthropogenic selective pressures, and dynamics of the recently discovered accessory chromosomes. This procedure is limited by costly and time-consuming simplex PCR genotyping. Recent development of genomic approaches and of larger sets of SSRs enabled the optimization of microsatellite multiplexing. Findings We report here a reliable protocol to amplify 24 SSRs organized in three multiplex panels, and covering all Z. tritici chromosomes. We also propose an automatic allele assignment procedure, which allows scoring alleles in a repeatable manner across studies and laboratories. All together, these tools enabled us to characterize local and worldwide populations and to calculate diversity indexes consistent with results reported in the literature. Conclusion This easy-to-use, accurate, repeatable, economical, and faster technical strategy can provide useful genetic information for evolutionary inferences concerning Z. tritici populations. Moreover, it will facilitate the comparison of studies from different scientific groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anne-Sophie Walker
- UR 1290 BIOGER-CPP, INRA, BP01, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France.
| |
Collapse
|
30
|
Geng Y, Li Z, Xia LY, Wang Q, Hu XM, Zhang XG. Characterization and phylogenetic analysis of the mating-type loci in the asexual ascomycete genus Ulocladium. Mycologia 2014; 106:649-65. [PMID: 24891417 DOI: 10.3852/13-383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genus Ulocladium is thought to be strictly asexual. Mating-type (MAT) loci regulate sexual reproduction in fungi and their study may help to explain the apparent lack of sexual reproduction in Ulocladium. We sequenced the full length of two MAT genes in 26 Ulocladium species and characterized the entire MAT idiomorphs plus flanking regions of Ulocladium botrytis. The MAT1-1 ORF encodes a protein with an alpha-box motif by the MAT1-1-1 gene and the MAT1-2 ORF encodes a protein with an HMG box motif by the MAT1-2-1 gene. Both MAT1-1-1 and MAT1-2-1 genes were detected in a single strain of every species. Moreover, the results of RT-PCR revealed that both MAT genes are expressed in all 26 Ulocladium species. This demonstrates that MAT genes of Ulocladium species might be functional and that they have the potential for sexual reproduction. Phylogenies based on MAT genes were compared with GAPDH and Alt a 1 phylograms in Ulocladium using maximum parsimony (MP) and Bayesian analysis. The MAT genealogies and the non-MAT trees displayed different topologies, indicating that MAT genes are unsuitable phylogenetic markers at the species level in Ulocladium. Furthermore, the conflicting topologies between MAT1-1-1 and MAT1-2-1 phylogeny indicate separate evolutionary events for the two MAT genes. However, the intergeneric phylogeny of four closely allied genera (Ulocladium, Alternaria, Cochliobolus, Stemphylium) based on MAT alignments demonstrated that MAT genes are suitable for phylogenetic analysis among allied genera.
Collapse
Affiliation(s)
- Yun Geng
- Department of Plant Pathology, Shandong Agricultural University, Taian, 271018, China
| | - Zhuang Li
- Department of Plant Pathology, Shandong Agricultural University, Taian, 271018, China
| | - Li-Yun Xia
- Department of Plant Pathology, Shandong Agricultural University, Taian, 271018, China
| | - Qun Wang
- Department of Plant Pathology, Shandong Agricultural University, Taian, 271018, China
| | - Xian-Mei Hu
- Department of Plant Pathology, Shandong Agricultural University, Taian, 271018, China
| | - Xiu-Guo Zhang
- Department of Plant Pathology, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
31
|
hassine AB, Hamada W. First isolation of the
Mycosphaerella graminicola
teleomorph stage causing Septoria leaf blotch on wheat in Tunisia. ACTA ACUST UNITED AC 2014. [DOI: 10.5197/j.2044-0588.2014.029.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- A. Ben hassine
- Laboratory of Genetics and Plant BreedingInstitut National Agronomique de Tunisie 43Avenue Charles Nicolle1082TunisMahrajèneTunisia
| | - W. Hamada
- Laboratory of Genetics and Plant BreedingInstitut National Agronomique de Tunisie 43Avenue Charles Nicolle1082TunisMahrajèneTunisia
- Higher School of Agriculture of Kef (ESAK)Boulifa7119kefTunisia
| |
Collapse
|
32
|
Wilken PM, Steenkamp ET, Wingfield MJ, de Beer ZW, Wingfield BD. DNA loss at the Ceratocystis fimbriata mating locus results in self-sterility. PLoS One 2014; 9:e92180. [PMID: 24651494 PMCID: PMC3961304 DOI: 10.1371/journal.pone.0092180] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/20/2014] [Indexed: 12/15/2022] Open
Abstract
Fungi have evolved a remarkable diversity of reproductive strategies. Some of these, most notably those of the model fungi, have been well studied but others are poorly understood. The latter is also true for uni-directional mating type switching, which has been reported in only five fungal genera, including Ceratocystis. Mating type switching allows a self-fertile fungal isolate to produce both self-fertile and self-sterile offspring. This study considered the molecular nature of uni-directional mating type switching in the type species of Ceratocystis, C. fimbriata. To do this, the genome of C. fimbriata was first examined for the presence of mating type genes. Three mating genes (MAT1-1-1, MAT1-2-1 and MAT1-1-2) were found in an atypical organisation of the mating type locus. To study the effect that uni-directional switching has on this locus, several self-sterile offspring were analysed. Using a combination of next generation and conventional Sanger sequencing, it was shown that a 3581 base pair (bp) region had been completely deleted from the MAT locus. This deletion, which includes the entire MAT1-2-1 gene, results in the permanent loss of self-fertility, rendering these isolates exclusively self-sterile. Our data also suggest that the deletion mechanism is tightly controlled and that it always occurs at the same genomic position. Two 260 bp direct repeats flanking the deleted region are strongly implicated in the process, although the exact mechanism behind the switching remains unclear.
Collapse
Affiliation(s)
- P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Bihon W, Wingfield MJ, Slippers B, Duong TA, Wingfield BD. MAT gene idiomorphs suggest a heterothallic sexual cycle in a predominantly asexual and important pine pathogen. Fungal Genet Biol 2014; 62:55-61. [DOI: 10.1016/j.fgb.2013.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
|
34
|
Structure and function of the mating-type locus in the homothallic ascomycete, Didymella zeae-maydis. J Microbiol 2013; 51:814-20. [DOI: 10.1007/s12275-013-3465-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/07/2013] [Indexed: 01/29/2023]
|
35
|
Yang F, Li W, Jørgensen HJL. Transcriptional reprogramming of wheat and the hemibiotrophic pathogen Septoria tritici during two phases of the compatible interaction. PLoS One 2013; 8:e81606. [PMID: 24303057 PMCID: PMC3841193 DOI: 10.1371/journal.pone.0081606] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023] Open
Abstract
The disease septoria leaf blotch of wheat, caused by fungal pathogen Septoria tritici, is of worldwide concern. The fungus exhibits a hemibiotrophic lifestyle, with a long symptomless, biotrophic phase followed by a sudden transition to necrotrophy associated with host necrosis. Little is known about the systematic interaction between fungal pathogenicity and host responses at specific growth stages and the factors triggering the transition. In order to gain some insights into global transcriptome alterations in both host and pathogen during the two phases of the compatible interaction, disease transition was monitored using pathogenesis-related gene markers and H2O2 signature prior to RNA-Seq. Transcriptome analysis revealed that the slow symptomless growth was accompanied by minor metabolic responses and slightly suppressed defences in the host, whereas necrotrophic growth was associated with enhanced host responses involving energy metabolism, transport, signalling, defence and oxidative stress as well as a decrease in photosynthesis. The fungus expresses distinct classes of stage-specific genes encoding potential effectors, probably first suppressing plant defence responses/facilitating the symptomless growth and later triggering life style transition and inducing host necrosis/facilitating the necrotrophic growth. Transport, signalling, anti-oxidative stress mechanisms and apoplastic nutrient acquisition play important roles in the entire infection process of S. tritici. Our findings uncover systematic S. tritici-induced expression profiles of wheat related to specific fungal infection strategies and provide a transcriptome resource for studying both hosts and pathogens in plant-Dothideomycete interactions.
Collapse
Affiliation(s)
- Fen Yang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| | | | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
36
|
Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Cimerman NG, Plemenitaš A. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 2013; 8:e71328. [PMID: 23977017 PMCID: PMC3744574 DOI: 10.1371/journal.pone.0071328] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/27/2013] [Indexed: 01/14/2023] Open
Abstract
Hortaea werneckii, ascomycetous yeast from the order Capnodiales, shows an exceptional adaptability to osmotically stressful conditions. To investigate this unusual phenotype we obtained a draft genomic sequence of a H. werneckii strain isolated from hypersaline water of solar saltern. Two of its most striking characteristics that may be associated with a halotolerant lifestyle are the large genetic redundancy and the expansion of genes encoding metal cation transporters. Although no sexual state of H. werneckii has yet been described, a mating locus with characteristics of heterothallic fungi was found. The total assembly size of the genome is 51.6 Mb, larger than most phylogenetically related fungi, coding for almost twice the usual number of predicted genes (23333). The genome appears to have experienced a relatively recent whole genome duplication, and contains two highly identical gene copies of almost every protein. This is consistent with some previous studies that reported increases in genomic DNA content triggered by exposure to salt stress. In hypersaline conditions transmembrane ion transport is of utmost importance. The analysis of predicted metal cation transporters showed that most types of transporters experienced several gene duplications at various points during their evolution. Consequently they are present in much higher numbers than expected. The resulting diversity of transporters presents interesting biotechnological opportunities for improvement of halotolerance of salt-sensitive species. The involvement of plasma P-type H⁺ ATPases in adaptation to different concentrations of salt was indicated by their salt dependent transcription. This was not the case with vacuolar H⁺ ATPases, which were transcribed constitutively. The availability of this genomic sequence is expected to promote the research of H. werneckii. Studying its extreme halotolerance will not only contribute to our understanding of life in hypersaline environments, but should also identify targets for improving the salt- and osmotolerance of economically important plants and microorganisms.
Collapse
Affiliation(s)
- Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- * E-mail:
| | - Cene Gostinčar
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Shaun Jackman
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Martina Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Nina Gunde Cimerman
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Improvement of fruiting body production in Cordyceps militaris by molecular assessment. Arch Microbiol 2013; 195:579-85. [PMID: 23756567 DOI: 10.1007/s00203-013-0904-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
Cordyceps militaris is a heterothallic ascomycetous fungus that has been cultivated as a medicinal mushroom. This study was conducted to improve fruiting body production by PCR assessment. Based on single-ascospore isolates selected from wild and cultivated populations, the conserved sequences of α-BOX in MAT1-1 and HMG-BOX in MAT1-2 were used as markers for the detection of mating types by PCR. PCR results indicated that the ratio of mating types is consistent with a theoretical ratio of 1:1 (MAT1-1:MAT1-2) in wild (66:70) and cultivated (71:60) populations. Cross-mating between the opposite mating types produced over fivefold more well-developed fruiting bodies than self- or cross-mating between strains within the same mating type. This study may serve as a valuable reference for artificial culturing of C. militaris and other edible and medicinal mushrooms and may be useful to develop an efficient process for the selection, domestication, and management of strains for industrial-scale production.
Collapse
|
38
|
Yang F, Melo-Braga MN, Larsen MR, Jørgensen HJL, Palmisano G. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics. Mol Cell Proteomics 2013; 12:2497-508. [PMID: 23722186 DOI: 10.1074/mcp.m113.027532] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The fungus Septoria tritici causes the disease septoria tritici blotch in wheat, one of the most economically devastating foliar diseases in this crop. To investigate signaling events and defense responses in the wheat-S. tritici interaction, we performed a time-course study of S. tritici infection in resistant and susceptible wheat using quantitative proteomics and phosphoproteomics, with special emphasis on the initial biotrophic phase of interactions. Our study revealed an accumulation of defense and stress-related proteins, suppression of photosynthesis, and changes in sugar metabolism during compatible and incompatible interactions. However, differential regulation of the phosphorylation status of signaling proteins, transcription and translation regulators, and membrane-associated proteins was observed between two interactions. The proteomic data were correlated with a more rapid or stronger accumulation of signal molecules, including calcium, H2O2, NO, and sugars, in the resistant than in the susceptible cultivar in response to the infection. Additionally, 31 proteins and 5 phosphoproteins from the pathogen were identified, including metabolic proteins and signaling proteins such as GTP-binding proteins, 14-3-3 proteins, and calcium-binding proteins. Quantitative PCR analysis showed the expression of fungal signaling genes and genes encoding a superoxide dismutase and cell-wall degrading enzymes. These results indicate roles of signaling, antioxidative stress mechanisms, and nutrient acquisition in facilitating the initial symptomless growth. Taken in its entirety, our dataset suggests interplay between the plant and S. tritici through complex signaling networks and downstream molecular events. Resistance is likely related to several rapidly and intensively triggered signal transduction cascades resulting in a multiple-level activation of transcription and translation processes of defense responses. Our sensitive approaches and model provide a comprehensive (phospho)proteomics resource for studying signaling from the point of view of both host and pathogen during a plant-pathogen interaction.
Collapse
Affiliation(s)
- Fen Yang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proc Natl Acad Sci U S A 2012; 109:10954-9. [PMID: 22711811 DOI: 10.1073/pnas.1201403109] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a genome alignment of five individuals of the ascomycete fungus Zymoseptoria pseudotritici, a close relative of the wheat pathogen Z. tritici (synonym Mycosphaerella graminicola), we observed peculiar diversity patterns. Long regions up to 100 kb without variation alternate with similarly long regions of high variability. The variable segments in the genome alignment are organized into two main haplotype groups that have diverged ∼3% from each other. The genome patterns in Z. pseudotritici are consistent with a hybrid speciation event resulting from a cross between two divergent haploid individuals. The resulting hybrids formed the new species without backcrossing to the parents. We observe no variation in 54% of the genome in the five individuals and estimate a complete loss of variation for at least 30% of the genome in the entire species. A strong population bottleneck following the hybridization event caused this loss of variation. Variable segments in the Z. pseudotritici genome exhibit the two haplotypes contributed by the parental individuals. From our previously estimated recombination map of Z. tritici and the size distribution of variable chromosome blocks untouched by recombination we estimate that the hybridization occurred ∼380 sexual generations ago. We show that the amount of lost variation is explained by genetic drift during the bottleneck and by natural selection, as evidenced by the correlation of presence/absence of variation with gene density and recombination rate. The successful spread of this unique reproductively isolated pathogen highlights the strong potential of hybridization in the emergence of pathogen species with sexual reproduction.
Collapse
|
40
|
Woudenberg JHC, De Gruyter J, Crous PW, Zwiers LH. Analysis of the mating-type loci of co-occurring and phylogenetically related species of Ascochyta and Phoma. MOLECULAR PLANT PATHOLOGY 2012; 13:350-62. [PMID: 22014305 PMCID: PMC6638728 DOI: 10.1111/j.1364-3703.2011.00751.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ascochyta and Phoma are fungal genera containing several important plant pathogenic species. These genera are morphologically similar, and recent molecular studies performed to unravel their phylogeny have resulted in the establishment of several new genera within the newly erected Didymellaceae family. An analysis of the structure of fungal mating-type genes can contribute to a better understanding of the taxonomic relationships of these plant pathogens, and may shed some light on their evolution and on differences in sexual strategy and pathogenicity. We analysed the mating-type loci of phylogenetically closely related Ascochyta and Phoma species (Phoma clematidina, Didymella vitalbina, Didymella clematidis, Peyronellaea pinodes and Peyronellaea pinodella) that co-occur on the same hosts, either on Clematis or Pisum. The results confirm that the mating-type genes provide the information to distinguish between the homothallic Pey. pinodes (formerly Ascochyta pinodes) and the heterothallic Pey. pinodella (formerly Phoma pinodella), and indicate the close phylogenetic relationship between these two species that are part of the disease complex responsible for Ascochyta blight on pea. Furthermore, our analysis of the mating-type genes of the fungal species responsible for causing wilt of Clematis sp. revealed that the heterothallic D. vitalbina (Phoma anamorph) is more closely related to the homothallic D. clematidis (Ascochyta anamorph) than to the heterothallic P. clematidina. Finally, our results indicate that homothallism in D. clematidis resulted from a single crossover between MAT1-1 and MAT1-2 sequences of heterothallic ancestors, whereas a single crossover event followed by an inversion of a fused MAT1/2 locus resulted in homothallism in Pey. pinodes.
Collapse
Affiliation(s)
- Joyce H C Woudenberg
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | | | | | | |
Collapse
|
41
|
Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. The Top 10 fungal pathogens in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2012. [PMID: 22471698 DOI: 10.1111/j.1364-3703.2012.2011.00783.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.
Collapse
Affiliation(s)
- Ralph Dean
- Department of Plant Pathology, Fungal Genomics Laboratory, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. The Top 10 fungal pathogens in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2012; 13:414-30. [PMID: 22471698 PMCID: PMC6638784 DOI: 10.1111/j.1364-3703.2011.00783.x] [Citation(s) in RCA: 2352] [Impact Index Per Article: 180.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.
Collapse
Affiliation(s)
- Ralph Dean
- Department of Plant Pathology, Fungal Genomics Laboratory, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stukenbrock EH, Bataillon T, Dutheil JY, Hansen TT, Li R, Zala M, McDonald BA, Wang J, Schierup MH. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res 2011; 21:2157-66. [PMID: 21994252 DOI: 10.1101/gr.118851.110] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The fungus Mycosphaerella graminicola emerged as a new pathogen of cultivated wheat during its domestication ~11,000 yr ago. We assembled 12 high-quality full genome sequences to investigate the genetic footprints of selection in this wheat pathogen and closely related sister species that infect wild grasses. We demonstrate a strong effect of natural selection in shaping the pathogen genomes with only ~3% of nonsynonymous mutations being effectively neutral. Forty percent of all fixed nonsynonymous substitutions, on the other hand, are driven by positive selection. Adaptive evolution has affected M. graminicola to the highest extent, consistent with recent host specialization. Positive selection has prominently altered genes encoding secreted proteins and putative pathogen effectors supporting the premise that molecular host-pathogen interaction is a strong driver of pathogen evolution. Recent divergence between pathogen sister species is attested by the high degree of incomplete lineage sorting (ILS) in their genomes. We exploit ILS to generate a genetic map of the species without any crossing data, document recent times of species divergence relative to genome divergence, and show that gene-rich regions or regions with low recombination experience stronger effects of natural selection on neutral diversity. Emergence of a new agricultural host selected a highly specialized and fast-evolving pathogen with unique evolutionary patterns compared with its wild relatives. The strong impact of natural selection, we document, is at odds with the small effective population sizes estimated and suggest that population sizes were historically large but likely unstable.
Collapse
Affiliation(s)
- Eva H Stukenbrock
- Bioinformatics Research Center, Aarhus University, C.F. Moellers Alle, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gurung S, Goodwin SB, Kabbage M, Bockus WW, Adhikari TB. Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. PHYTOPATHOLOGY 2011; 101:1251-1259. [PMID: 21692645 DOI: 10.1094/phyto-08-10-0212] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mycosphaerella graminicola causes Septoria tritici blotch (STB) in wheat (Triticum aestivum) and is considered one of the most devastating pathogens of that crop in the United States. Although the genetic structures of M. graminicola populations from different countries have been analyzed using various molecular markers, relatively little is known about M. graminicola populations from geographically distinct areas of the United States and, in particular, of those from spring versus winter wheat. These are exposed to great differences in environmental conditions, length and season of host-free periods, and resistance sources used in geographically separated wheat breeding programs. Thus, there is more likely to be genetic differentiation between populations from spring versus winter wheat than there is among those within each region. To test this hypothesis, 330 single-spore isolates of M. graminicola representing 11 populations (1 from facultative winter wheat in California, 2 from spring wheat in North Dakota, and 8 from winter wheat in Indiana and Kansas) were analyzed for mating type frequency and for genetic variation at 17 microsatellite or simple-sequence repeat (SSR) loci. Analysis of clone-corrected data revealed an equal distribution of both mating types in the populations from Kansas, Indiana, and North Dakota, but a deviation from a 1:1 ratio in the California population. In total, 306 haplotypes were detected, almost all of which were unique in all 11 populations. High levels of gene diversity (H = 0.31 to 0.56) were observed within the 11 populations. Significant (P ≤ 0.05) gametic disequilibrium, as measured by the index of association (rBarD), was observed in California, one Indiana population (IN1), and three populations (KS1, KS2, and KS3) in Kansas that could not be explained by linkage. Corrected standardized fixation index (G″(ST)) values were 0.000 to 0.621 between the 11 populations and the majority of pairwise comparisons were statistically significant (P ≤ 0.001), suggesting some differentiation between populations. Analysis of molecular variance showed that there was a small but statistically significant level of genetic differentiation between populations from spring versus winter wheat. However, most of the total genetic variation (>98%) occurred within spring and winter wheat regions while <2% was due to genetic differentiation between these regions. Taken together, these results provide evidence that sexual recombination occurs frequently in the M. graminicola populations sampled and that most populations are genetically differentiated over the major spring- and winter-wheat-growing regions of the United States.
Collapse
Affiliation(s)
- Suraj Gurung
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | | | | | | | | |
Collapse
|
45
|
Stukenbrock EH, Jørgensen FG, Zala M, Hansen TT, McDonald BA, Schierup MH. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet 2010; 6:e1001189. [PMID: 21203495 PMCID: PMC3009667 DOI: 10.1371/journal.pgen.1001189] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 09/30/2010] [Indexed: 12/17/2022] Open
Abstract
The fungus Mycosphaerella graminicola has been a pathogen of wheat since host domestication 10,000–12,000 years ago in the Fertile Crescent. The wheat-infecting lineage emerged from closely related Mycosphaerella pathogens infecting wild grasses. We use a comparative genomics approach to assess how the process of host specialization affected the genome structure of M. graminicola since divergence from the closest known progenitor species named M. graminicola S1. The genome of S1 was obtained by Illumina sequencing resulting in a 35 Mb draft genome sequence of 32X. Assembled contigs were aligned to the previously sequenced M. graminicola genome. The alignment covered >90% of the non-repetitive portion of the M. graminicola genome with an average divergence of 7%. The sequenced M. graminicola strain is known to harbor thirteen essential chromosomes plus eight dispensable chromosomes. We found evidence that structural rearrangements significantly affected the dispensable chromosomes while the essential chromosomes were syntenic. At the nucleotide level, the essential and dispensable chromosomes have evolved differently. The average synonymous substitution rate in dispensable chromosomes is considerably lower than in essential chromosomes, whereas the average non-synonymous substitution rate is three times higher. Differences in molecular evolution can be related to different transmission and recombination patterns, as well as to differences in effective population sizes of essential and dispensable chromosomes. In order to identify genes potentially involved in host specialization or speciation, we calculated ratios of synonymous and non-synonymous substitution rates in the >9,500 aligned protein coding genes. The genes are generally under strong purifying selection. We identified 43 candidate genes showing evidence of positive selection, one encoding a potential pathogen effector protein. We conclude that divergence of these pathogens was accompanied by structural rearrangements in the small dispensable chromosomes, while footprints of positive selection were present in only a small number of protein coding genes. The fungal wheat pathogen Mycosphaerella graminicola emerged in the Middle East 11,000 years ago, coinciding with host domestication. We sequenced the genome of the closest known endemic relative of M. graminicola infecting wild grass hosts. A comparative genome analysis allowed us to infer how speciation and host specialization processes have influenced pathogen evolution. The wild grass-adapted pathogen can infect wheat, but M. graminicola shows a significantly higher degree of host specificity and virulence in a detached leaf assay. The genomes of the pathogens are 7% divergent with a high degree of synteny in the 13 essential core chromosomes. However, structural rearrangements have strongly affected eight small dispensable chromosomes. These chromosomes also show altered rates of non-synonymous and synonymous substitutions. We found 43 genes showing evidence of positive selection. As the divergence of species occurred very recently, these genes are likely involved in host specialization or speciation. None of the genes have a known function, although one encodes a signal peptide and is a potential pathogen effector. We conclude that the genomic basis of the rapid emergence of the wheat-specialized pathogen M. graminicola has involved structural changes in the eight dispensable chromosomes and positive selection in a small number of genes.
Collapse
|
46
|
Martin T, Lu SW, van Tilbeurgh H, Ripoll DR, Dixelius C, Turgeon BG, Debuchy R. Tracing the origin of the fungal α1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution. PLoS One 2010; 5:e15199. [PMID: 21170349 PMCID: PMC2999568 DOI: 10.1371/journal.pone.0015199] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Background Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an α1 domain showing similarity to the Matα1p protein of Saccharomyces cerevisiae. DNA-binding HMG proteins are ubiquitous and well characterized. In contrast, α1 domain proteins have limited distribution and their evolutionary origin is obscure, precluding a complete understanding of mating-type evolution in Ascomycota. Although much work has focused on the role of the S. cerevisiae Matα1p protein as a transcription factor, it has not yet been placed in any of the large families of sequence-specific DNA-binding proteins. Methodology/Principal Findings We present sequence comparisons, phylogenetic analyses, and in silico predictions of secondary and tertiary structures, which support our hypothesis that the α1 domain is related to the HMG domain. We have also characterized a new conserved motif in α1 proteins of Pezizomycotina. This motif is immediately adjacent to and downstream of the α1 domain and consists of a core sequence Y-[LMIF]-x(3)-G-[WL] embedded in a larger conserved motif. Conclusions/Significance Our data suggest that extant α1-box genes originated from an ancestral HMG gene, which confirms the current model of mating-type evolution within the fungal kingdom. We propose to incorporate α1 proteins in a new subclass of HMG proteins termed MATα_HMG.
Collapse
Affiliation(s)
- Tom Martin
- Department of Plant Biology and Forest Genetics, Uppsala Biocenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Shun-Wen Lu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Herman van Tilbeurgh
- Univ Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619 Univ Paris-Sud CNRS, Orsay, France
| | - Daniel R. Ripoll
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Christina Dixelius
- Department of Plant Biology and Forest Genetics, Uppsala Biocenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Robert Debuchy
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR8621 Univ Paris-Sud CNRS, Orsay, France
- CNRS, Institut de Génétique et Microbiologie, UMR8621 Univ Paris-Sud CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
47
|
Siah A, Tisserant B, El Chartouni L, Duyme F, Deweer C, Roisin-Fichter C, Sanssené J, Durand R, Reignault P, Halama P. Mating type idiomorphs from a French population of the wheat pathogen Mycosphaerella graminicola: widespread equal distribution and low but distinct levels of molecular polymorphism. Fungal Biol 2010; 114:980-90. [DOI: 10.1016/j.funbio.2010.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 09/06/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
|
48
|
Billiard S, López-Villavicencio M, Devier B, Hood ME, Fairhead C, Giraud T. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev Camb Philos Soc 2010; 86:421-42. [PMID: 21489122 DOI: 10.1111/j.1469-185x.2010.00153.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The advantage of sex has been among the most debated issues in biology. Surprisingly, the question of why sexual reproduction generally requires the combination of distinct gamete classes, such as small and large gametes, or gametes with different mating types, has been much less investigated. Why do systems with alternative gamete classes (i.e. systems with either anisogamy or mating types or both) appear even though they restrict the probability of finding a compatible mating partner? Why does the number of gamete classes vary from zero to thousands, with most often only two classes? We review here the hypotheses proposed to explain the origin, maintenance, number, and loss of gamete classes. We argue that fungi represent highly suitable models to help resolve issues related to the evolution of distinct gamete classes, because the number of mating types vary from zero to thousands across taxa, anisogamy is present or not, and because there are frequent transitions between these conditions. We review the nature and number of gamete classes in fungi, and we attempt to draw inferences from these data on the evolutionary forces responsible for their appearance, loss or maintenance, and number.
Collapse
Affiliation(s)
- Sylvain Billiard
- Université Lille Nord de France, USTL, GEPV, CNRS, FRE 3268, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
49
|
Arzanlou M, Crous PW, Zwiers LH. Evolutionary dynamics of mating-type loci of Mycosphaerella spp. occurring on banana. EUKARYOTIC CELL 2010; 9:164-72. [PMID: 19915079 PMCID: PMC2805284 DOI: 10.1128/ec.00194-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/02/2009] [Indexed: 11/20/2022]
Abstract
The devastating Sigatoka disease complex of banana is primarily caused by three closely related heterothallic fungi belonging to the genus Mycosphaerella: M. fijiensis, M. musicola, and M. eumusae. Previous phylogenetic work showing common ancestry led us to analyze the mating-type loci of these Mycosphaerella species occurring on banana. We reasoned that this might provide better insight into the evolutionary history of these species. PCR and chromosome-walking approaches were used to clone the mating-type loci of M. musicola and M. eumusae. Sequences were compared to the published mating-type loci of M. fijiensis and other Mycosphaerella spp., and a novel organization of the MAT loci was found. The mating-type loci of the examined Mycosphaerella species are expanded, containing two additional Mycosphaerella-specific genes in a unique genomic organization. The proteins encoded by these novel genes show a higher interspecies than intraspecies homology. Moreover, M. fijiensis, M. musicola, and M. eumusae contain two additional mating-type-like loci, containing parts of both MAT1-1-1 and MAT1-2-1. The data indicate that M. fijiensis, M. musicola, and M. eumusae share an ancestor in which a fusion event occurred between MAT1-1-1 and MAT1-2-1 sequences and in which additional genes became incorporated into the idiomorph. The new genes incorporated have since then evolved independently in the MAT1-1 and MAT1-2 loci. Thus, these data are an example of the evolutionary dynamics of fungal MAT loci in general and show the great flexibility of the MAT loci of Mycosphaerella species in particular.
Collapse
Affiliation(s)
- Mahdi Arzanlou
- Evolutionary Phytopathology, CBS-KNAW Fungal Biodiversity Center, Utrecht 3508 AD, The Netherlands, Wageningen University and Research Center (WUR), Laboratory of Phytopathology, Wageningen 6708 PB, The Netherlands, Plant Protection Department, Agriculture Faculty, University of Tabriz, Tabriz, P.O. Box 5166614766, Iran
| | - Pedro W. Crous
- Evolutionary Phytopathology, CBS-KNAW Fungal Biodiversity Center, Utrecht 3508 AD, The Netherlands, Wageningen University and Research Center (WUR), Laboratory of Phytopathology, Wageningen 6708 PB, The Netherlands, Plant Protection Department, Agriculture Faculty, University of Tabriz, Tabriz, P.O. Box 5166614766, Iran
| | - Lute-Harm Zwiers
- Evolutionary Phytopathology, CBS-KNAW Fungal Biodiversity Center, Utrecht 3508 AD, The Netherlands, Wageningen University and Research Center (WUR), Laboratory of Phytopathology, Wageningen 6708 PB, The Netherlands, Plant Protection Department, Agriculture Faculty, University of Tabriz, Tabriz, P.O. Box 5166614766, Iran
| |
Collapse
|
50
|
Roohparvar R, Mehrabi R, Van Nistelrooy JGM, Zwiers LH, De Waard MA. The drug transporter MgMfs1 can modulate sensitivity of field strains of the fungal wheat pathogen Mycosphaerella graminicola to the strobilurin fungicide trifloxystrobin. PEST MANAGEMENT SCIENCE 2008; 64:685-693. [PMID: 18366066 DOI: 10.1002/ps.1569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND The major facilitator superfamily (MFS) drug transporter MgMfs1 of the wheat pathogen Mycosphaerella graminicola (Fuckel) J Schroeter is a potent multidrug transporter with high capacity to transport strobilurin fungicides in vitro. The data presented in this paper indicate that, in addition to the predominant cause of strobilurin resistance, cytochrome b G143A subsititution, MgMfs1 can play a role in sensitivity of field strains of this pathogen to trifloxystrobin. RESULTS In a major part of field strains of M. graminicola (collected in the Netherlands in 2004) containing the cytochrome b G143A substitution, the basal level of expression of MgMfs1 was elevated as compared with sensitive strains lacking the G143A substitution. Induction of MgMfs1 expression in wild-type isolates upon treatment with trifloxystrobin at sublethal concentrations proceeded rapidly. Furthermore, in disease control experiments on wheat seedlings, disruption mutants of MgMfs1 displayed an increased sensitivity to trifloxystrobin. CONCLUSION It is concluded that the drug transporter MgMfs1 is a determinant of strobilurin sensitivity of field strains of M. graminicola.
Collapse
Affiliation(s)
- Ramin Roohparvar
- Laboratory of Phytopathology, Wageningen University, PO Box 8025, 6700 EE Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|