1
|
Bianchino G, Perrone A, Sgambato A, Sarno I, Nozza F, Omer LC, Ulivi M, Traficante A, Campisi B, Russi S, Calice G, Falco G, Tartarone A. Application of dihydropyrimidine dehydrogenase deficiency testing for the prevention of fluoropyrimidine toxicity: a real-world experience in a Southern Italy cancer center. J Chemother 2025:1-7. [PMID: 40247645 DOI: 10.1080/1120009x.2025.2489837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Fluoropyrimidines (FPs) are antineoplastic agents used for the treatment of various solid tumors, especially gastrointestinal cancers. Patients with variations in dihydropyrimidine dehydrogenase gene (DPYD), which can determine the partial or complete deficiency of the dihydropyrimidine dehydrogenase enzyme (DPD), are at an increased risk of developing severe and potentially life-threatening toxicity. Worldwide the introduction of pharmacogenetic testing into clinical practice has been a slow process and in our center the analysis of the DPYD gene has been adopted since April 2020. We evaluated the clinical application of routine DPYD screening and its ability to prevent early-onset of fluoropyrimidine-related toxicity in patients treated at the Oncology Reference Center of Basilicata (IRCCS-CROB), a recognized cancer centre in Southern Italy. From April 2020 to November 2022, 300 patients (male 137; female 163) diagnosed with various types of cancer were subjected to DPYD genotyping, before starting treatment with FPs. In accordance with the current European Medicines Agency (EMA) and the Italian Association of Medical Oncology (AIOM) guidelines patients were tested for four DPYD variants that are associated with reduced DPD activity. FPs dose adjustments in DPYD variant carriers were made following the previously mentioned guidelines. Three hundred patients underwent DPYD testing and thirteen (4.3%) patients were found to be heterozygous variant carriers; ten out of thirteen patients received FP dose reduction as indicated by the guidelines, one out of thirteen patients received alternative treatment, two of the thirteen patients received no treatment at all. The main toxicities observed in patients who received a DPYD genotype-based dose reduction were anemia, neutropenia, nausea and mucositis but events were primarily grade 1 or 2. Our experience confirms the technical feasibility and the usefulness of DPYD genotyping to reduce the risk of severe FPs toxicities.
Collapse
Affiliation(s)
- Gabriella Bianchino
- Unit of Clinical Pathology IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Alessandra Perrone
- Department of Onco-Hematology, Division of Medical Oncology, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Italo Sarno
- Department of Onco-Hematology, Division of Medical Oncology, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Filomena Nozza
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Ludmila Carmen Omer
- Experimental, Oncology Unit, RCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Massimo Ulivi
- Research and Development team TIB molbiol Syntheselabor GmbH, Berlin, Germany
| | - Antonio Traficante
- Unit of Clinical Pathology IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Biagina Campisi
- Unit of Clinical Pathology IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Alfredo Tartarone
- Department of Onco-Hematology, Division of Medical Oncology, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| |
Collapse
|
2
|
Shi Y, Wei Z, Feng Y, Gan Y, Li G, Deng Y. The diagnosis and treatment of disorders of nucleic acid/nucleotide metabolism associated with epilepsy. ACTA EPILEPTOLOGICA 2025; 7:23. [PMID: 40217360 PMCID: PMC11959797 DOI: 10.1186/s42494-025-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/06/2025] [Indexed: 04/15/2025] Open
Abstract
Epilepsy is a prevalent paroxysmal disorder in the field of neurology. Among the six etiologies of epilepsy, metabolic causes are relatively uncommon in clinical practice. Metabolic disorders encompass amino acid metabolism disorders, organic acid metabolism disorders, and other related conditions. Seizures resulting from nucleic acid/nucleotide metabolism disorders are even more infrequent. This review provides an overview of several studies on nucleic acid/nucleotide metabolism disorders associated with epilepsy, including adenosine succinate lyase deficiency, Lesch-Nyhan syndrome, and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) deficiency, among others. The potential pathogenesis, phenotypic features, diagnostic pathways, and therapeutic approaches of these diseases are discussed in this review. The goal is to help clinicians make an accurate diagnosis when encountering rare nucleic acid/nucleotide metabolism disorders with multi-system symptoms and manifestations of epilepsy.
Collapse
Affiliation(s)
- Yuqing Shi
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Zihan Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Yan Feng
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Yajing Gan
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Guoyan Li
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Yanchun Deng
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, People's Republic of China.
- Xijing Institute of Epileptic Encephalopathy, Shaanxi, Xi'an, 710065, People's Republic of China.
| |
Collapse
|
3
|
Pratt VM, Cavallari LH, Fulmer ML, Gaedigk A, Hachad H, Ji Y, Kalman LV, Ly RC, Moyer AM, Scott SA, Turner AJ, van Schaik RHN, Whirl-Carrillo M, Weck KE. DPYD Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, American College of Medical Genetics and Genomics, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, Pharmacogenomics Knowledgebase, and Pharmacogene Variation Consortium. J Mol Diagn 2024; 26:851-863. [PMID: 39032821 DOI: 10.1016/j.jmoldx.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 07/23/2024] Open
Abstract
The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations for a minimum set of variant alleles (tier 1) and an extended list of variant alleles (tier 2) that will aid clinical laboratories when designing assays for PGx testing. The Association for Molecular Pathology PGx Working Group considered the functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. The goal of this Working Group is to promote standardization of PGx testing across clinical laboratories. This document will focus on clinical DPYD PGx testing that may be applied to all dihydropyrimidine dehydrogenase-related medications. These recommendations are not to be interpreted as prescriptive but to provide a reference guide.
Collapse
Affiliation(s)
- Victoria M Pratt
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Agena Bioscience, San Diego, California.
| | - Larisa H Cavallari
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida
| | - Makenzie L Fulmer
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrea Gaedigk
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Research Institute, Kansas City, Missouri; School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Houda Hachad
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Clinical Operations, AccessDx, Houston, Texas
| | - Yuan Ji
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Lisa V Kalman
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Laboratory Systems, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Reynold C Ly
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ann M Moyer
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stuart A Scott
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Stanford University, Stanford, California; Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, California
| | - Amy J Turner
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pediatrics, Children's Research Institute, The Medical College of Wisconsin, Milwaukee, Wisconsin; RPRD Diagnostics LLC, Wauwatosa, Wisconsin
| | - Ron H N van Schaik
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Clinical Chemistry/International Federation of Clinical Chemistry and Laboratory Medicine Expert Center Pharmacogenetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Michelle Whirl-Carrillo
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Karen E Weck
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
4
|
Ardizzone A, Bulzomì M, De Luca F, Silvestris N, Esposito E, Capra AP. Dihydropyrimidine Dehydrogenase Polymorphism c.2194G>A Screening Is a Useful Tool for Decreasing Gastrointestinal and Hematological Adverse Drug Reaction Risk in Fluoropyrimidine-Treated Patients. Curr Issues Mol Biol 2024; 46:9831-9843. [PMID: 39329936 PMCID: PMC11430620 DOI: 10.3390/cimb46090584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Although the risk of fluoropyrimidine toxicity may be decreased by identifying poor metabolizers with a preemptive dihydropyrimidine dehydrogenase (DPYD) test, following international standards, many patients with wild-type (WT) genotypes for classic variations may still exhibit adverse drug reactions (ADRs). Therefore, the safety of fluoropyrimidine therapy could be improved by identifying new DPYD polymorphisms associated with ADRs. This study was carried out to assess whether testing for the underestimated c.2194G>A (DPYD*6 polymorphism, rs1801160) is useful, in addition to other well-known variants, in reducing the risk of ADRs in patients undergoing chemotherapy treatment. This retrospective study included 132 patients treated with fluoropyrimidine-containing regimens who experienced ADRs such as gastrointestinal, dermatological, hematological, and neurological. All subjects were screened for DPYD variants DPYD2A (IVS14+1G>A, c.1905+1G>A, rs3918290), DPYD13 (c.1679T>G, rs55886062), c.2846A>T (rs67376798), c.1236G>A (rs56038477), and c.2194G>A by real-time polymerase chain reaction (RT-PCR). In this cohort, the heterozygous c.2194G>A variant was present in 26 patients, while 106 individuals were WT; both subgroups were compared for the incidence of ADRs. This assessment revealed a high incidence of gastrointestinal and hematological ADRs in DPYD6 carriers compared to WT. Moreover, we have shown a higher prevalence of ADRs in females compared to males when stratifying c.2194G>A carrier individuals. Considering that c.2194G>A was linked to clinically relevant ADRs, we suggest that this variant should also be assessed preventively to reduce the risk of fluoropyrimidine-related ADRs.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Maria Bulzomì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
- Genetics and Pharmacogenetics Unit, “Gaetano Martino” University Hospital, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| |
Collapse
|
5
|
Chan TH, Zhang JE, Pirmohamed M. DPYD genetic polymorphisms in non-European patients with severe fluoropyrimidine-related toxicity: a systematic review. Br J Cancer 2024; 131:498-514. [PMID: 38886557 PMCID: PMC11300675 DOI: 10.1038/s41416-024-02754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Pre-treatment DPYD screening is mandated in the UK and EU to reduce the risk of severe and potentially fatal fluoropyrimidine-related toxicity. Four DPYD gene variants which are more prominently found in Europeans are tested. METHODS Our systematic review in patients of non-European ancestry followed PRISMA guidelines to identify relevant articles up to April 2023. Published in silico functional predictions and in vitro functional data were also extracted. We also undertook in silico prediction for all DPYD variants identified. RESULTS In 32 studies, published between 1998 and 2022, 53 DPYD variants were evaluated in patients from 12 countries encompassing 5 ethnic groups: African American, East Asian, Latin American, Middle Eastern, and South Asian. One of the 4 common European DPYD variants, c.1905+1G>A, is also present in South Asian, East Asian and Middle Eastern patients with severe fluoropyrimidine-related toxicity. There seems to be relatively strong evidence for the c.557A>G variant, which is found in individuals of African ancestry, but is not currently included in the UK genotyping panel. CONCLUSION Extending UK pre-treatment DPYD screening to include variants that are present in some non-European ancestry groups will improve patient safety and reduce race and health inequalities in ethnically diverse societies.
Collapse
Affiliation(s)
- Tsun Ho Chan
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK
| | - J Eunice Zhang
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK.
| |
Collapse
|
6
|
Lian J, Liang Y, Wang Y, Chen Y, Li X, Xia L. Rapid detection of the irinotecan-related UGT1A1 & 5-fluorouracil related DPYD polymorphism by asymmetric polymerase chain reaction melting curve analysis. Clin Chim Acta 2024; 561:119761. [PMID: 38848897 DOI: 10.1016/j.cca.2024.119761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Determination of DPYD and UGT1A1 polymorphisms prior to 5-fluorouracil and irinotecan therapy is crucial for avoiding severe adverse drug effects. Hence, there is a pressing need for accurate and reliable genotyping methods for the most common DPYD and UGT1A1 polymorphisms. In this study, we introduce a novel polymerase chain reaction (PCR) melting curve analysis method for discriminating DPYD c.1236G > A, c.1679 T > G, c.2846A > T, IVS14 + 1G > A and UGT1A1*1, *28, *6 (G71R) genotypes. METHODS Following protocol optimization, this technique was employed to genotype 28 patients, recruited between March 2023 and October 2023, at the First Affiliated Hospital of Xiamen University. These patients included 20 with UGT1A1 *1/*1, 8 with UGT1A1 *1/*28, 4 with UGT1A1 *28/*28, 22 with UGT1A1*6 G/G, 6 with UGT1A1*6 G/A, 4 with UGT1A1*6 A/A, 27 with DPYD(c.1236) G/G, 3 with DPYD(c.1236) G/A, 2 with DPYD(c.1236) A/A, 27 with DPYD(c.1679) T/T, 2 with DPYD(c.1679) T/G, 3 with DPYD(c.1679) G/G, 28 with DPYD(c.2846A/T) A/A, 2 with DPYD(c.2846A/T) A/T, 2 with DPYD(c.2846A/T) T/T, 28 with DPYD(c.IVS14 + 1) G/G, 2 with DPYD(c.IVS14 + 1) G/G, and 2 with DPYD(c.IVS14 + 1) G/G, as well as 3 plasmid standards. Method accuracy was assessed by comparing results with those from Sanger sequencing or Multiplex quantitative PCR(qPCR). Intra- and inter-run precision of melting temperatures (Tms) were calculated to evaluate reliability, and sensitivity was assessed through limit of detection examination. RESULTS The new method accurately identified all genotypes and exhibited higher accuracy than Multiplex qPCR. Intra- and inter-run coefficients of variation for Tms were both ≤1.97 %, with standard deviations ≤0.95 °C. The limit of detection was 0.09 ng/μL of input genomic DNA. CONCLUSION Our developed PCR melting curve analysis offers accurate, reliable, rapid, simple, and cost-effective detection of DPYD and UGT1A1 polymorphisms. Its application can be easily extended to clinical laboratories equipped with a fluorescent PCR platform.
Collapse
Affiliation(s)
- Jiabian Lian
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yaoji Liang
- Biochee Biotech Co.,Ltd., Xiamen, 361102, China; Amogene Biotech Co.,Ltd., Xiamen, 361102, China
| | | | - Ying Chen
- Amogene Biotech Co.,Ltd., Xiamen, 361102, China
| | - Xun Li
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Lu Xia
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
7
|
Malekkou A, Tomazou M, Mavrikiou G, Dionysiou M, Georgiou T, Papaevripidou I, Alexandrou A, Sismani C, Drousiotou A, Grafakou O, Petrou PP. A novel large intragenic DPYD deletion causing dihydropyrimidine dehydrogenase deficiency: a case report. BMC Med Genomics 2024; 17:78. [PMID: 38528593 PMCID: PMC10962175 DOI: 10.1186/s12920-024-01846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Dihydropyrimidine dehydrogenase (DPD), is the initial and rate-limiting enzyme in the catabolic pathway of pyrimidines. Deleterious variants in the DPYD gene cause DPD deficiency, a rare autosomal recessive disorder. The clinical spectrum of affected individuals is wide ranging from asymptomatic to severely affected patients presenting with intellectual disability, motor retardation, developmental delay and seizures. DPD is also important as the main enzyme in the catabolism of 5-fluorouracil (5-FU) which is extensively used as a chemotherapeutic agent. Even in the absence of clinical symptoms, individuals with either complete or partial DPD deficiency face a high risk of severe and even fatal fluoropyrimidine-associated toxicity. The identification of causative genetic variants in DPYD is therefore gaining increasing attention due to their potential use as predictive markers of fluoropyrimidine toxicity. METHODS A male infant patient displaying biochemical features of DPD deficiency was investigated by clinical exome sequencing. Bioinformatics tools were used for data analysis and results were confirmed by MLPA and Sanger sequencing. RESULTS A novel intragenic deletion of 71.2 kb in the DPYD gene was identified in homozygosity. The deletion, DPYD(NM_000110.4):c.850 + 23455_1128 + 8811del, eliminates exons 9 and 10 and may have resulted from a non-homologous end-joining event, as suggested by in silico analysis. CONCLUSIONS The study expands the spectrum of DPYD variants associated with DPD deficiency. Furthermore, it raises the concern that patients at risk for fluoropyrimidine toxicity due to DPYD deletions could be missed during pre-treatment genetic testing for the currently recommended single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Anna Malekkou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | - Marios Tomazou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | - Gavriella Mavrikiou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | - Maria Dionysiou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | - Theodoros Georgiou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Cytogenetics and Genomics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | - Angelos Alexandrou
- Cytogenetics and Genomics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | - Carolina Sismani
- Cytogenetics and Genomics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | - Anthi Drousiotou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | - Olga Grafakou
- Department of Pediatrics, Inborn Errors of Metabolism Clinic, Archbishop Makarios III Hospital, Korytsas 6, 2012, Nicosia, Cyprus
| | - Petros P Petrou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus.
| |
Collapse
|
8
|
Mizusawa J, Sato H, Rubinstein LV, Fujiwara T, Yonemori K, Hirakawa A. Racial differences in longitudinal toxicities of anticancer agents in early phase cancer clinical trials. Cancer Med 2023; 12:18098-18109. [PMID: 37519123 PMCID: PMC10524029 DOI: 10.1002/cam4.6370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/25/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Racial differences have been reported in toxicity outcomes for anticancer drug treatments. However, these observations were often from studies with small sample sizes, and many only reported the maximum grade of toxicity and no longitudinal information. This current analysis aims to investigate racial differences in longitudinal toxicities using a large-scale clinical trials database. METHODS Early-phase clinical trials sponsored by the Cancer Therapy Evaluation Program at the National Cancer Institute, USA, that evaluated cytotoxic drugs and molecularly targeted agents between March 2000 and December 2012 were studied. Race was categorized as White, Black or African-American, and Asian. Each toxicity's grade prevalence, mean grade at each cycle, and time to develop grade 2 or higher toxicity was evaluated. RESULTS In total, 25,442 patients from 697 trials were included in this study. The number of patients categorized as White, Black, and Asian designations was 22,756 (89%), 1874 (7%), and 812 (3%), respectively. Notable findings include the rate of any grade of diarrhea in Black people was 26% and 21% lower than that of White and Asian people. The median time to the first grade 2 or higher event was 6 cycles in White people, 8 in Black people, and 6 in Asian people. The rate of any grade hyperglycemia was significantly higher in Asian people. CONCLUSIONS Although we identified several racial differences in longitudinal toxicities, most were of generally lower grade. Further study is needed to clarify the cause of racial differences in treatment-associated toxicities.
Collapse
Affiliation(s)
- Junki Mizusawa
- Biostatistics Section, Clinical Research Support Office, National Cancer Center Hospital/Biostatistics Division, Center for Research Administration & SupportNational Cancer CenterTokyoJapan
- Department of Global Health PromotionTokyo Medical and Dental UniversityTokyoJapan
| | - Hioryuki Sato
- Department of Clinical Biostatistics, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Larry V. Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer InstituteNational Institute of HealthRockvilleMarylandUSA
| | - Takeo Fujiwara
- Department of Global Health PromotionTokyo Medical and Dental UniversityTokyoJapan
| | - Kan Yonemori
- Department of Breast and Medical OncologyNational Cancer Center HospitalTokyoJapan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
9
|
Etienne-Grimaldi MC, Pallet N, Boige V, Ciccolini J, Chouchana L, Barin-Le Guellec C, Zaanan A, Narjoz C, Taieb J, Thomas F, Loriot MA. Current diagnostic and clinical issues of screening for dihydropyrimidine dehydrogenase deficiency. Eur J Cancer 2023; 181:3-17. [PMID: 36621118 DOI: 10.1016/j.ejca.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fluoropyrimidine drugs (FP) are the backbone of many chemotherapy protocols for treating solid tumours. The rate-limiting step of fluoropyrimidine catabolism is dihydropyrimidine dehydrogenase (DPD), and deficiency in DPD activity can result in severe and even fatal toxicity. In this review, we survey the evidence-based pharmacogenetics and therapeutic recommendations regarding DPYD (the gene encoding DPD) genotyping and DPD phenotyping to prevent toxicity and optimize dosing adaptation before FP administration. The French experience of mandatory DPD-deficiency screening prior to initiating FP is discussed.
Collapse
Affiliation(s)
| | - Nicolas Pallet
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Valérie Boige
- Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Joseph Ciccolini
- SMARTc, CRCM INSERM U1068, Université Aix-Marseille, Marseille, France; Laboratory of Pharmacokinetics and Toxicology, Hôpital Universitaire La Timone, F-13385 Marseille, France; COMPO, CRCM INSERM U1068-Inria, Université Aix-Marseille, Marseille, France
| | - Laurent Chouchana
- Regional Center of Pharmacovigilance, Department of Pharmacology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France; French Pharmacovigilance Network, France
| | - Chantal Barin-Le Guellec
- Laboratory of Biochemistry and Molecular Biology, Centre Hospitalo-uinversitaire de Tours, Tours, France; INSERM U1248, IPPRITT, University of Limoges, Limoges, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céline Narjoz
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Julien Taieb
- SIRIC CARPEM, Université de Paris; Fédération Francophone de Cancérologie Digestive (FFCD), Assistance Publique-Hôpitaux de Paris, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Fabienne Thomas
- Laboratory of Pharmacology, Institut Claudius Regaud, IUCT-Oncopole and CRCT, INSERM UMR1037, Université Paul Sabatier, Toulouse, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | | |
Collapse
|
10
|
Wigle TJ, Medwid S, Ross C, Schwarz UI, Kim RB. DPYD Exon 4 Deletion Associated with Fluoropyrimidine Toxicity and Importance of Copy Number Variation. Curr Oncol 2023; 30:663-672. [PMID: 36661700 PMCID: PMC9857685 DOI: 10.3390/curroncol30010051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Fluoropyrimidine chemotherapy is associated with interpatient variability in toxicity. A major contributor to unpredictable and severe toxicity relates to single nucleotide variation (SNV) in dihydropyrimidine dehydrogenase (DPYD), the rate-limiting fluoropyrimidine metabolizing enzyme. In addition to SNVs, a study of Finnish patients suggested that a DPYD exon 4 deletion was observed in their population. To better understand the potential generalizability of such findings, we investigated the presence of this exon 4 deletion in our Canadian patient population, using a TaqMan assay. We selected 125 patients who experienced severe fluoropyrimidine-associated toxicity, and 125 matched controls. One patient in the severe toxicity group harbored a haploid DPYD exon 4 deletion, and required a 35% dose reduction after their first fluoropyrimidine treatment cycle due to toxicity and required an additional 30% dose reduction before tolerating treatment. The predicted allele frequency was 0.2% in our cohort, much lower than the 2.4% previously reported. We also carried out a literature review of copy number variation (CNV) in the DPYD gene, beyond fluoropyrimidine toxicity and show that various types of CNV in DPYD are present in the population. Taken together, our findings suggest that CNV in DPYD may be an underappreciated determinant of DPYD-mediated fluoropyrimidine toxicity.
Collapse
Affiliation(s)
- Theodore J. Wigle
- Department of Physiology & Pharmacology, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Samantha Medwid
- Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Cameron Ross
- Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Ute I. Schwarz
- Department of Physiology & Pharmacology, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Richard B. Kim
- Department of Physiology & Pharmacology, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
11
|
Shao T, Zhang Y, Liu J, Chen J, Shu Q, Shou L. Capecitabine-induced enterocolitis: a case report and pharmacogenetic profile. Pharmacogenomics 2022; 23:953-959. [PMID: 36382550 DOI: 10.2217/pgs-2022-0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Capecitabine is a widely-used antineoplastic drug, a prodrug to 5-fluorouracil which commonly induces gastrointestinal toxicity. Enterocolitis, as a rarely recognized gastrointestinal adverse effect (AE) of capecitabine, is potentially severe and usually results in antitumor treatment withdrawal. For the better management of severe AEs, pharmacogenetics is one promising field. Herein, we describe a case of capecitabine-induced enterocolitis presenting with severe diarrhea in order to improve recognition by clinicians. Moreover, we conduct a pharmacogenetic profile of the patient and review the current studies of gene polymorphisms of 5-fluorouracil-related diarrhea, hoping to offer a reference for further clinical pharmacogenetic practice in predicting capecitabine AEs showing diarrhea as the main symptom.
Collapse
Affiliation(s)
- Tianyu Shao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yao Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Jiaping Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Jialu Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Qijin Shu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.,Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, People's Republic of China
| | - Liumei Shou
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, People's Republic of China
| |
Collapse
|
12
|
Salmani M, Ghaderi B, Fotoohi A, Omid-Shafa'at R, Vahabzadeh Z, Fotouhi O, Abdi M. Introducing a simple and cost-effective RT-PCR protocol for detection of DPYD*2A polymorphism: the first study in Kurdish population. Cancer Chemother Pharmacol 2022; 90:389-397. [PMID: 36083300 DOI: 10.1007/s00280-022-04472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Fluoropyrimidines, the major chemotherapeutic agents in various malignancies treatment, are metabolized by dihydropyrimidine dehydrogenase (DPD). DPD deficiency can lead to severe and sometimes fatal toxicity. In the present study, we developed a simple protocol to detect the DPYD*2A variant. Common side effects in patients treated with these drugs were also evaluated in a Kurdish population. METHOD We established a reverse-transcriptase polymerase chain reaction (RT-PCR) technique for detection of DPYD*2A. Sanger sequencing was used to confirm the results. 121 Kurdish patients receiving fluoropyrimidine derivatives were enrolled, and clinical information regarding the dosage and toxicity was analyzed. RESULTS Our RT-PCR method was able to detect one patient with heterozygous state for DPYD*2A (0.8%). The most observed adverse drug reactions were tingling, nausea, and hair loss. The frequency of patients with the toxicity of grade 3 or worse was 6.6%. CONCLUSION This was the first study that detect DPYD*2A polymorphism in the Kurdish population. Our method was successfully able to detect the DPYD*2A variant and, due to its simplicity and cost-effectiveness, it may be considered as an alternative to the current methods, especially in developing countries. Our detected polymorphism rate at 0.8% is comparable with other studies. Despite the low rate of DPYD*2A polymorphism, pharmacogenetics assessment before beginning the treatment process is highly recommended due to its association with a high risk of severe toxicity.
Collapse
Affiliation(s)
- Mohammad Salmani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bayazid Ghaderi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Alan Fotoohi
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ramtin Omid-Shafa'at
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Omid Fotouhi
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
13
|
Božina N, Bilić I, Ganoci L, Šimičević L, Pleština S, Lešnjaković L, Trkulja V. DPYD polymorphisms c.496A>G, c.2194G>A and c.85T>C and risk of severe adverse drug reactions in patients treated with fluoropyrimidine-based protocols. Br J Clin Pharmacol 2022; 88:2190-2202. [PMID: 34780066 DOI: 10.1111/bcp.15144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/27/2023] Open
Abstract
AIMS Cancer patients with reduced dihydropyrimidine dehydrogenase (DPD) activity are at increased risk of severe fluoropyrimidine (FP)-related adverse events (AE). Guidelines recommend FP dosing adjusted to genotype-predicted DPD activity based on four DPYD variants (rs3918290, rs55886062, rs67376798 and rs56038477). We evaluated the relationship between three further DPYD polymorphisms: c.496A>G (rs2297595), *6 c.2194G>A (rs1801160) and *9A c.85T>C (rs1801265) and the risk of severe AEs. METHODS Consecutive FP-treated adult patients were genotyped for "standard" and tested DPYD variants, and for UGT1A1*28 if irinotecan was included, and were monitored for the occurrence of grade ≥3 (National Cancer Institute Common Terminology Criteria) vs. grade 0-2 AEs. For each of the tested polymorphisms, variant allele carriers were matched to respective wild type controls (optimal full matching combined with exact matching, in respect to: age, sex, type of cancer, type of FP, DPYD activity score, use of irinotecan/UGT1A1, adjuvant therapy, radiotherapy, biological therapy and genotype on the remaining two tested polymorphisms). RESULTS Of the 503 included patients (82.3% colorectal cancer), 283 (56.3%) developed grade ≥3 AEs, mostly diarrhoea and neutropenia. Odds of grade ≥3 AEs were higher in c.496A>G variant carriers (n = 127) than in controls (n = 376) [OR = 5.20 (95% CI 1.88-14.3), Bayesian OR = 5.24 (95% CrI 3.06-9.12)]. Odds tended to be higher in c.2194G>A variant carriers (n = 58) than in controls (n = 432) [OR = 1.88 (0.95-3.73), Bayesian OR = 1.90 (1.03-3.56)]. c.85T>C did not appear associated with grade ≥3 AEs (206 variant carriers vs. 284 controls). CONCLUSION DPYD c.496A>G and possibly c.2194G>A variants might need to be considered for inclusion in the DPYD genotyping panel.
Collapse
Affiliation(s)
- Nada Božina
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ivan Bilić
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Stjepko Pleština
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Croatia
| | - Lucija Lešnjaković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
14
|
Desilets A, McCarvill W, Aubin F, Bahig H, Ballivy O, Charpentier D, Filion É, Jamal R, Lambert L, Nguyen-Tan PF, Vadnais C, Weng X, Soulières D. Upfront DPYD Genotyping and Toxicity Associated with Fluoropyrimidine-Based Concurrent Chemoradiotherapy for Oropharyngeal Carcinomas: A Work in Progress. Curr Oncol 2022; 29:497-509. [PMID: 35200545 PMCID: PMC8870563 DOI: 10.3390/curroncol29020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: 5-FU-based chemoradiotherapy (CRT) could be associated with severe treatment-related toxicities in patients harboring at-risk DPYD polymorphisms. Methods: The studied population included consecutive patients with locoregionally advanced oropharyngeal carcinoma treated with carboplatin and 5-FU-based CRT one year before and after the implementation of upfront DPYD*2A genotyping. We aimed to determine the effect of DPYD genotyping on grade ≥3 toxicities. Results: 181 patients were analyzed (87 patients before and 94 patients following DPYD*2A screening). Of the patients, 91% (n = 86) were prospectively genotyped for the DPYD*2A allele. Of those screened, 2% (n = 2/87) demonstrated a heterozygous DPYD*2A mutation. Extended genotyping of DPYD*2A-negative patients later allowed for the retrospective identification of six additional patients with alternative DPYD variants (two c.2846A>T and four c.1236G>A mutations). Grade ≥3 toxicities occurred in 71% of the patients before DPYD*2A screening versus 62% following upfront genotyping (p = 0.18). When retrospectively analyzing additional non-DPYD*2A variants, the relative risks for mucositis (RR 2.36 [1.39–2.13], p = 0.0063), dysphagia (RR 2.89 [1.20–5.11], p = 0.019), and aspiration pneumonia (RR 13 [2.42–61.5)], p = 0.00065) were all significantly increased. Conclusion: The DPYD*2A, c.2846A>T, and c.1236G>A polymorphisms are associated with an increased risk of grade ≥3 toxicity to 5-FU. Upfront DPYD genotyping can identify patients in whom 5-FU-related toxicity should be avoided.
Collapse
|
15
|
García-Alfonso P, Saiz-Rodríguez M, Mondéjar R, Salazar J, Páez D, Borobia AM, Safont MJ, García-García I, Colomer R, García-González X, Herrero MJ, López-Fernández LA, Abad-Santos F. Consensus of experts from the Spanish Pharmacogenetics and Pharmacogenomics Society and the Spanish Society of Medical Oncology for the genotyping of DPYD in cancer patients who are candidates for treatment with fluoropyrimidines. Clin Transl Oncol 2021; 24:483-494. [PMID: 34773566 PMCID: PMC8885558 DOI: 10.1007/s12094-021-02708-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) and oral fluoropyrimidines, such as capecitabine, are widely used in the treatment of cancer, especially gastrointestinal tumors and breast cancer, but their administration can produce serious and even lethal toxicity. This toxicity is often related to the partial or complete deficiency of the dihydropyrimidine dehydrogenase (DPD) enzyme, which causes a reduction in clearance and a longer half-life of 5-FU. It is advisable to determine if a DPD deficiency exists before administering these drugs by genotyping DPYD gene polymorphisms. The objective of this consensus of experts, in which representatives from the Spanish Pharmacogenetics and Pharmacogenomics Society and the Spanish Society of Medical Oncology participated, is to establish clear recommendations for the implementation of genotype and/or phenotype testing for DPD deficiency in patients who are candidates to receive fluoropyrimidines. The genotyping of DPYD previous to treatment classifies individuals as normal, intermediate, or poor metabolizers. Normal metabolizers do not require changes in the initial dose, intermediate metabolizers should start treatment with fluoropyrimidines at doses reduced to 50%, and poor metabolizers are contraindicated for fluoropyrimidines.
Collapse
Affiliation(s)
- P García-Alfonso
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, Sociedad Española de Oncología Médica (SEOM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain.
| | - M Saiz-Rodríguez
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, Sociedad Española de Farmacogenética y Farmacogenómica (SEFF), Burgos, Spain
| | - R Mondéjar
- Medical Oncology Service, Hospital Universitario de la Princesa, Sociedad Española de Oncología Médica (SEOM), Madrid, Spain
| | - J Salazar
- Research Institute of Hospital de la Santa Creu I Sant Pau, Sociedad Española de Farmacogenética y Farmacogenómica (SEFF), Barcelona, Spain
| | - D Páez
- Medical Oncology Department, Hospital de la Santa Creu I Sant Pau, Sociedad Española de Oncología Médica (SEOM), Barcelona, España
| | - A M Borobia
- Clinical Pharmacology Service, Hospital Universitario La Paz, Sociedad Española de Farmacogenética y Farmacogenómica (SEFF), Madrid, Spain
| | - M J Safont
- Medical Oncology Service, Consorcio Hospital General Universitario de Valencia, Universidad de Valencia, CIBERONC, Sociedad Española de Oncología Médica (SEOM), Valencia, Spain
| | - I García-García
- Clinical Pharmacology Service, Hospital Universitario La Paz, Sociedad Española de Farmacogenética y Farmacogenómica (SEFF), Madrid, Spain
| | - R Colomer
- Medical Oncology Service, Hospital Universitario de La Princesa y Cátedra de Medicina Personalizada de Precisión de la Universidad Autónoma de Madrid (UAM), Sociedad Española de Oncología Médica (SEOM), Madrid, Spain
| | - X García-González
- Hospital Pharmacy Service, Hospital General Universitario Gregorio Marañón, Sociedad Española de Farmacogenética y Farmacogenómica (SEFF), Madrid, Spain
| | - M J Herrero
- Pharmacogenetics Platform, IIS La Fe-Hospital La Fe and Pharmacology Department, Universidad de Valencia, Sociedad Española de Farmacogenética y Farmacogenómica (SEFF), Valencia, Spain
| | - L A López-Fernández
- Hospital Pharmacy Service, Hospital General Universitario Gregorio Marañón, Sociedad Española de Farmacogenética y Farmacogenómica (SEFF), Madrid, Spain
| | - F Abad-Santos
- Clinical Pharmacology Service, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Sociedad Española de Farmacogenética y Farmacogenómica (SEFF), C/Diego de León, 62., 28006, Madrid, Spain.
| |
Collapse
|
16
|
Cura Y, Pérez Ramírez C, Sánchez Martín A, Martínez Martínez F, Calleja Hernández MÁ, Ramírez Tortosa MDC, Jiménez Morales A. Genetic polymorphisms on the effectiveness or safety of breast cancer treatment: Clinical relevance and future perspectives. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108391. [PMID: 34893156 DOI: 10.1016/j.mrrev.2021.108391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/14/2023]
Abstract
Breast cancer (BC) is the most frequent neoplasm and one of the main causes of death in women. The pharmacological treatment of BC consists of hormonal therapy, chemotherapeutic agents and targeted therapy. The response to BC therapy is highly variable in clinical practice. This variability can be explained by the presence of genetic polymorphisms in genes involved in the pharmacokinetics, pharmacodynamics or immune response of patients. The abundant evidence of associations between low-activity alleles CYP2D6*3, *4, *5, *6, *10 and *41 and poor results with tamoxifen therapy, and between DPYD gene polymorphisms rs3918290, rs55886062, rs67376798 and rs75017182 and increased risk of toxicity to fluoropyrimidine therapy, justify the existence of clinical pharmacogenetic guidelines. The NQO1 rs1800566 polymorphism is related to poorer results in BC therapy with chemotherapy agents. The polymorphism rs1695 of the GSTP1 gene has been associated with the effectiveness and toxicity of fluorouracil, cyclophosphamide and epirubicin therapy. Finally, the HLA-DQA1*02:01 allele is significantly associated with the occurrence of liver toxicity events in patients receiving lapatinib. There is moderate evidence to support the aforementioned associations and, therefore, a high probability of these being considered as future predictive genetic biomarkers of response. However, further studies are required to reinforce or clarify their clinical relevance.
Collapse
Affiliation(s)
- Yasmin Cura
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Cristina Pérez Ramírez
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen Macarena, Seville, Spain.
| | - Almudena Sánchez Martín
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Fernando Martínez Martínez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | | | | | - Alberto Jiménez Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| |
Collapse
|
17
|
Hodroj K, Barthelemy D, Lega JC, Grenet G, Gagnieu MC, Walter T, Guitton J, Payen-Gay L. Issues and limitations of available biomarkers for fluoropyrimidine-based chemotherapy toxicity, a narrative review of the literature. ESMO Open 2021; 6:100125. [PMID: 33895696 PMCID: PMC8095125 DOI: 10.1016/j.esmoop.2021.100125] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/03/2022] Open
Abstract
Fluoropyrimidine-based chemotherapies are widely used to treat gastrointestinal tract, head and neck, and breast carcinomas. Severe toxicities mostly impact rapidly dividing cell lines and can occur due to the partial or complete deficiency in dihydropyrimidine dehydrogenase (DPD) catabolism. Since April 2020, the European Medicines Agency (EMA) recommends DPD testing before any fluoropyrimidine-based treatment. Currently, different assays are used to predict DPD deficiency; the two main approaches consist of either phenotyping the enzyme activity (directly or indirectly) or genotyping the four main deficiency-related polymorphisms associated with 5-fluorouracil (5-FU) toxicity. In this review, we focused on the advantages and limitations of these diagnostic methods: direct phenotyping by evaluation of peripheral mononuclear cell DPD activity (PBMC-DPD activity), indirect phenotyping assessed by uracil levels or UH2/U ratio, and genotyping DPD of four variants directly associated with 5-FU toxicity. The risk of 5-FU toxicity increases with uracil concentration. Having a pyrimidine-related structure, 5-FU is catabolised by the same physiological pathway. By assessing uracil concentration in plasma, indirect phenotyping of DPD is then measured. With this approach, in France, a decreased 5-FU dose is systematically recommended at a uracil concentration of 16 ng/ml, which may lead to chemotherapy under-exposure as uracil concentration is a continuous variable and the association between uracil levels and DPD activity is not clear. We aim herein to describe the different available strategies developed to improve fluoropyrimidine-based chemotherapy safety, how they are implemented in routine clinical practice, and the possible relationship with inefficacy mechanisms.
Collapse
Affiliation(s)
- K Hodroj
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - D Barthelemy
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Hospices Civils de Lyon Cancer institute, CIRculating CANcer (CIRCAN) Programme, Pierre-Bénite, France
| | - J-C Lega
- Hospices Civils de Lyon, Service de Médecine Interne et Vasculaire, Hôpital Lyon Sud, Pierre-Bénite, France
| | - G Grenet
- Hospices Civils de Lyon, Pole Santé Publique, Service Hospitalo-Universitaire de Pharmacotoxicologie, Lyon, France
| | - M-C Gagnieu
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - T Walter
- Hospices Civils de Lyon Cancer institute, CIRculating CANcer (CIRCAN) Programme, Pierre-Bénite, France; Hospices Civils de Lyon, Service d'Oncologie Médicale, Hôpital Edouard Herriot, Lyon, France
| | - J Guitton
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Centre de Recherche en Cancerologie de Lyon-Ribosome, Traduction et Cancer, UMR INSERM 1052 CNRS 5286, Lyon, France
| | - L Payen-Gay
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Hospices Civils de Lyon Cancer institute, CIRculating CANcer (CIRCAN) Programme, Pierre-Bénite, France; EMR 3738 Ciblage Therapeutique en Oncologie, Faculté de Médecine Lyon Sud, Université Lyon 1, Université de Lyon, Oullins, France.
| |
Collapse
|
18
|
Detailleur S, Segelov E, Re MD, Prenen H. Dihydropyrimidine dehydrogenase deficiency in patients with severe toxicity after 5-fluorouracil: a retrospective single-center study. Ann Gastroenterol 2021; 34:68-72. [PMID: 33414624 PMCID: PMC7774667 DOI: 10.20524/aog.2020.0551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background 5-Fluorouracil (5-FU) is an agent frequently used in the treatment of solid cancers. A deficiency in the enzyme that catabolizes 5-FU leads to severe toxicity. The gene responsible for this enzyme is DPYD, located on chromosome 1q22. The most prevalent alteration described is DPYD*2A, which leads to a splicing defect and thus skipping of the translation of an entire exon. The objectives of this retrospective study were to describe the frequencies of DPYD gene mutations in a Belgian population and to correlate them with the grade of toxicity. Methods This was a retrospective, single-center study conducted at the University Hospitals Leuven, by reviewing a database of patients screened for DPYD gene mutations between May 2009 and June 2015 after prolonged grade 3-4 toxicity. Polymerase chain reaction sequencing of exons 2, 6, 10, 11, 13, 18, 19 and 22, and pyrosequencing of exon 14 were performed by an in-house laboratory. Results Of the 80 patients screened, 65 were heterozygous or compound heterozygous for DPYD and 3 had a homozygous mutation. The most prevalent mutation in our population was DPYD*9A. Conclusions Despite previous reports, in our small retrospective study the most prevalent variation in patients with severe adverse events was DPYD*9A. As this variant has previously been reported to be benign, we suggest that screening for dihydropyrimidine dehydrogenase deficiency should be extended across multiple exons of the DPYD gene.
Collapse
Affiliation(s)
- Stephanie Detailleur
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium (Stephanie Detailleur)
| | - Eva Segelov
- Department of Oncology, Monash University and Monash Health, Melbourne, Victoria, Australia (Eva Segelov)
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (Marzia Del Re)
| | - Hans Prenen
- Department of Oncology, University Hospital Antwerp, Edegem, Belgium (Hans Prenen)
| |
Collapse
|
19
|
In Vitro Assessment of Fluoropyrimidine-Metabolizing Enzymes: Dihydropyrimidine Dehydrogenase, Dihydropyrimidinase, and β-Ureidopropionase. J Clin Med 2020; 9:jcm9082342. [PMID: 32707991 PMCID: PMC7464968 DOI: 10.3390/jcm9082342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/22/2023] Open
Abstract
Fluoropyrimidine drugs (FPs), including 5-fluorouracil, tegafur, capecitabine, and doxifluridine, are among the most widely used anticancer agents in the treatment of solid tumors. However, severe toxicity occurs in approximately 30% of patients following FP administration, emphasizing the importance of predicting the risk of acute toxicity before treatment. Three metabolic enzymes, dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP), and β-ureidopropionase (β-UP), degrade FPs; hence, deficiencies in these enzymes, arising from genetic polymorphisms, are involved in severe FP-related toxicity, although the effect of these polymorphisms on in vivo enzymatic activity has not been clarified. Furthermore, the clinical usefulness of current methods for predicting in vivo activity, such as pyrimidine concentrations in blood or urine, is unknown. In vitro tests have been established as advantageous for predicting the in vivo activity of enzyme variants. This is due to several studies that evaluated FP activities after enzyme metabolism using transient expression systems in Escherichia coli or mammalian cells; however, there are no comparative reports of these results. Thus, in this review, we summarized the results of in vitro analyses involving DPD, DHP, and β-UP in an attempt to encourage further comparative studies using these drug types and to aid in the elucidation of their underlying mechanisms.
Collapse
|
20
|
Xie P, Mo JL, Liu JH, Li X, Tan LM, Zhang W, Zhou HH, Liu ZQ. Pharmacogenomics of 5-fluorouracil in colorectal cancer: review and update. Cell Oncol (Dordr) 2020; 43:989-1001. [PMID: 32474853 DOI: 10.1007/s13402-020-00529-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a disease with high morbidity and mortality rates. 5-fluorouracil (5-FU) is the first-line recommended drug for chemotherapy in patients with CRC, and it has a good effect on a variety of other solid tumors as well. Unfortunately, however, due to the emergence of drug resistance the effectiveness of treatment may be greatly reduced. In the past decade, major progress has been made in the field of 5-FU drug resistance in terms of molecular mechanisms, pre-clinical (animal) models and clinical trials. CONCLUSIONS In this article we systematically review and update current knowledge on 5-FU pharmacogenomics related to drug uptake and activation, the expression and activity of target enzymes (DPD, TS and MTHFR) and key signaling pathways in CRC. Furthermore, a summary of drug combination strategies aimed at targeting specific genes and/or pathways to reverse 5-FU resistance is provided. Based on this, we suggest that causal relationships between genes, pathways and drug sensitivity should be systematically considered from a multidimensional perspective. In the design of research methods, emerging technologies such as CRISPR-Cas, TALENS and patient-derived xenograft models should be applied as far as possible to improve the accuracy of clinically relevant results.
Collapse
Affiliation(s)
- Pan Xie
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078, Changsha, People's Republic of China
| | - Jun-Luan Mo
- Shenzhen Center for Chronic Disease Control, 518020, Shenzhen, People's Republic of China
| | - Jin-Hong Liu
- Shenzhen Center for Chronic Disease Control, 518020, Shenzhen, People's Republic of China
| | - Xi Li
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078, Changsha, People's Republic of China
| | - Li-Ming Tan
- Department of Pharmacy, The Second People's Hospital of Huaihua City, 418000, Huaihua, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078, Changsha, People's Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078, Changsha, People's Republic of China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078, Changsha, People's Republic of China.
| |
Collapse
|
21
|
Merloni F, Ranallo N, Scortichini L, Giampieri R, Berardi R. Tailored therapy in patients treated with fluoropyrimidines: focus on the role of dihydropyrimidine dehydrogenase. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:787-802. [PMID: 35582578 PMCID: PMC8992529 DOI: 10.20517/cdr.2018.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/01/2019] [Accepted: 06/04/2019] [Indexed: 01/19/2023]
Abstract
Fluoropyrimidines are widely used in the treatment of solid tumors, mainly gastrointestinal, head and neck and breast cancer. Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme for catabolism of 5-FU and it is encoded by DPYD gene. To date, many known polymorphisms cause DPD deficiency and subsequent increase of 5-FU toxicity. In addition, reduced inactivation of 5-FU could lead to increased 5-FU intracellular concentration and augmented efficacy of this drugs. Therefore DPD expression, particularly intratumoral, has been investigated as predictive and prognostic marker in 5-FU treated patients. There also seems to be a tendency to support the correlation between DPD expression and response/survival in patients treated with fluoropyrimidine even if definitive conclusions cannot be drawn considering that some studies are conflicting. Therefore, the debate on intratumoral DPD expression as a potential predictor and prognostic marker in patients treated with fluoropyrimidines is still open. Four DPD-polymorphisms are the most relevant for their frequency in population and clinical relevance. Many studies demonstrate that treating a carrier of one of these polymorphisms with a full dose of fluoropyrimidine can expose patient to a severe, even life-threatening, toxicity. Severe toxicity is reduced if this kind of patients received a dose-adjustment after being genotyped. CPIC (Clinical Pharmacogenetics Implementation Consortium) is an International Consortium creating guidelines for facilitating use of pharmacogenetic tests for patient care and helps clinicians ensuring a safer drug delivery to the patient. Using predictive DPD deficiency tests in patients receiving 5FU-based chemotherapy, in particular for colorectal cancer, has proven to be a cost-effective strategy.
Collapse
Affiliation(s)
- Filippo Merloni
- Scuola di Specializzazione in Oncologia, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Nicoletta Ranallo
- Scuola di Specializzazione in Oncologia, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Laura Scortichini
- Scuola di Specializzazione in Oncologia, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Riccardo Giampieri
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti, Ancona 60126, Italy
| | - Rossana Berardi
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti, Ancona 60126, Italy
| |
Collapse
|
22
|
Identifying a Novel DPYD Polymorphism Associated with Severe Toxicity to 5-FU Chemotherapy in a Saudi Patient. Case Rep Genet 2019; 2019:5150725. [PMID: 31531249 PMCID: PMC6720358 DOI: 10.1155/2019/5150725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/15/2019] [Indexed: 01/30/2023] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD) is the major enzyme in the catabolism of 5-Fluorouracil (5-FU) and its prodrug capecitabine. We report a 65-year-old female with rectal adenocarcinoma who experienced severe toxicities secondary to standard dose 5-FU based chemotherapy. She was found to be heterozygous for rs371313778, c.2434G>A. This finding prompted restarting 5-FU at 50% dose reduction with further titration in subsequent cycles. We herein report the first case of rs371313778, c.2434G>A (p.Val812lle) DPYD polymorphism leading to severe 5-FU toxicities. The patient eventually completed a 6-month course of adjuvant treatment with modification of 5-FU dose.
Collapse
|
23
|
Del Re M, Cinieri S, Michelucci A, Salvadori S, Loupakis F, Schirripa M, Cremolini C, Crucitta S, Barbara C, Di Leo A, Latiano TP, Pietrantonio F, Di Donato S, Simi P, Passardi A, De Braud F, Altavilla G, Zamagni C, Bordonaro R, Butera A, Maiello E, Pinto C, Falcone A, Mazzotti V, Morganti R, Danesi R. DPYD*6 plays an important role in fluoropyrimidine toxicity in addition to DPYD*2A and c.2846A>T: a comprehensive analysis in 1254 patients. THE PHARMACOGENOMICS JOURNAL 2019; 19:556-563. [PMID: 30723313 PMCID: PMC6867961 DOI: 10.1038/s41397-019-0077-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/30/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPYD) is a highly polymorphic gene and classic deficient variants (i.e., c.1236G>A/HapB3, c.1679T>G, c.1905+1G>A and c.2846A>T) are characterized by impaired enzyme activity and risk of severe adverse drug reactions (ADRs) in patients treated with fluoropyrimidines. The identification of poor metabolizers by pre-emptive DPYD screening may reduce the rate of ADRs but many patients with wild-type genotype for classic variants may still display ADRs. Therefore, the search for additional DPYD polymorphisms associated with ADRs may improve the safety of treatment with fluoropyrimidines. This study included 1254 patients treated with fluoropyrimidine-containing regimens and divided into cohort 1, which included 982 subjects suffering from gastrointestinal G≥2 and/or hematological G≥3 ADRs, and cohort 2 (control group), which comprised 272 subjects not requiring dose reduction, delay or discontinuation of treatment. Both groups were screened for DPYD variants c.496A>G, c.1236G>A/HapB3, c.1601G>A (DPYD*4), c.1627A>G (DPYD*5), c.1679T>G (DPYD*13), c.1896T>C, c.1905 + 1G>A (DPYD*2A), c.2194G>A (DPYD*6), and c.2846A>T to assess their association with toxicity. Genetic analysis in the two cohorts were done by Real-Time PCR of DNA extracted from 3 ml of whole blood. DPYD c.496A>G, c.1601G>A, c.1627A>G, c.1896T>C, and c.2194G>A variants were found in both cohort 1 and 2, while c.1905+1G>A and c.2846A>T were present only in cohort 1. DPYD c.1679T>G and c.1236G>A/HapB3 were not found. Univariate analysis allowed the selection of c.1905+1G>A, c.2194G>A and c.2846A>T alleles as significantly associated with gastrointestinal and hematological ADRs (p < 0.05), while the c.496A>G variant showed a positive trend of association with neutropenia (p = 0.06). In conclusion, c.2194G>A is associated with clinically-relevant ADRs in addition to the already known c.1905+1G>A and c.2846A>T variants and should be evaluated pre-emptively to reduce the risk of fluoropyrimidine-associated ADRs.
Collapse
Affiliation(s)
- Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Civil Hospital, Brindisi, Italy
| | - Angela Michelucci
- Medical Genetics Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefano Salvadori
- Epidemiology and Health Services Research Department, Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Fotios Loupakis
- Medical Oncology Unit, Istituto Oncologico del Veneto IRCCS, Padova, Italy
| | - Marta Schirripa
- Medical Oncology Unit, Istituto Oncologico del Veneto IRCCS, Padova, Italy
| | - Chiara Cremolini
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Tiziana Pia Latiano
- Medical Oncology Unit, Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
| | - Filippo Pietrantonio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Paolo Simi
- Medical Genetics Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessandro Passardi
- Medical Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Filippo De Braud
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giuseppe Altavilla
- Medical Oncology Unit, Department of Human Pathology, University of Messina, Messina, Italy
| | - Claudio Zamagni
- Medical Oncology Unit, Addarii Institute of Oncology, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Roberto Bordonaro
- Medical Oncology Unit, Department of Oncology, ARNAS Garibaldi, Catania, Italy
| | - Alfredo Butera
- Medical Oncology Unit, Department of Oncology, Civil Hospital, Agrigento, Italy
| | - Evaristo Maiello
- Medical Oncology Unit, Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
| | - Carmine Pinto
- Medical Oncology Unit, Arcispedale Santa Maria Nuova IRCCS, Reggio Emilia, Italy
| | - Alfredo Falcone
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Valentina Mazzotti
- Statistics Applied to Clinical Trials Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Riccardo Morganti
- Statistics Applied to Clinical Trials Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
24
|
Pharmacogenomics in Cancer Therapeutics. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Dihydropyrimidine Dehydrogenase Deficiency: Homozygosity for an Extremely Rare Variant in DPYD due to Uniparental Isodisomy of Chromosome 1. JIMD Rep 2018. [PMID: 30349988 DOI: 10.1007/8904_2018_138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD) deficiency is a rare autosomal recessive disorder of the pyrimidine degradation pathway and can lead to intellectual disability, motor retardation, and seizures. Genetic variations in DPYD have also emerged as predictive risk factors for severe toxicity in cancer patients treated with fluoropyrimidines. We recently observed a child born to non-consanguineous parents, who demonstrated seizures, cognitive impairment, language delay, and MRI abnormalities and was found to have marked thymine-uraciluria. No residual DPD activity could be detected in peripheral blood mononuclear cells. Molecular analysis showed that the child was homozygous for the very rare c.257C > T (p.Pro86Leu) variant in DPYD. Functional analysis of the recombinantly expressed DPD mutant showed that the DPD mutant carrying the p.Pro86Leu did not possess any residual DPD activity. Carrier testing in parents revealed that the father was heterozygous for the variant but unexpectedly the mother did not carry the variant. Microsatellite repeat testing with markers covering chromosome 1 showed that the DPD deficiency in the child is due to paternal uniparental isodisomy. Our report thus extends the genetic spectrum underlying DPYD deficiency.
Collapse
|
26
|
Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, Klein TE, McLeod HL, Caudle KE, Diasio RB, Schwab M. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther 2017; 103:210-216. [PMID: 29152729 DOI: 10.1002/cpt.911] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
The purpose of this guideline is to provide information for the interpretation of clinical dihydropyrimidine dehydrogenase (DPYD) genotype tests so that the results can be used to guide dosing of fluoropyrimidines (5-fluorouracil and capecitabine). Detailed guidelines for the use of fluoropyrimidines, their clinical pharmacology, as well as analyses of cost-effectiveness are beyond the scope of this document. The Clinical Pharmacogenetics Implementation Consortium (CPIC® ) guidelines consider the situation of patients for which genotype data are already available (updates available at https://cpicpgx.org/guidelines/guideline-for-fluoropyrimidines-and-dpyd/).
Collapse
Affiliation(s)
- Ursula Amstutz
- University Institute of Clinical Chemistry, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Linda M Henricks
- Department of Clinical Pharmacology, Division of Medical Oncology and Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia Barbarino
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Jan H M Schellens
- Department of Clinical Pharmacology, Division of Medical Oncology and Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute and the Department of Population Sciences, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kelly E Caudle
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital, Tuebingen, Germany.,Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
27
|
Ab Mutalib NS, Md Yusof NF, Abdul SN, Jamal R. Pharmacogenomics DNA Biomarkers in Colorectal Cancer: Current Update. Front Pharmacol 2017; 8:736. [PMID: 29075194 PMCID: PMC5644034 DOI: 10.3389/fphar.2017.00736] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) remains as one of the most common cause of worldwide cancer morbidity and mortality. Improvements in surgical modalities and adjuvant chemotherapy have increased the cure rates in early stage disease, but a significant portion of the patients will develop recurrence or advanced disease. The efficacy of chemotherapy of recurrence and advanced CRC has improved significantly over the last decade. Previously, the historical drug 5-fluorouracil was used as single chemotherapeutic agent. Now with the addition of other drugs such as capecitabine, irinotecan, oxaliplatin, bevacizumab, cetuximab, panitumumab, vemurafenib, and dabrafenib, the median survival of patients with advanced CRC has significantly improved from less than a year to the current standard of almost 2 years. However, the side effects of systemic therapy such as toxicity may cause fatal complications and have a major consequences on the patients' quality of life. Hence, there is an urgent need for key biomarkers which will enable the selection of optimal drug singly or in combination for an individual patient. The application of personalized therapy based on DNA testing could aid the clinicians in providing the most effective chemotherapy agents and dose modifications for each patient. Yet, some of the current findings are controversial and the evidences are conflicting. This review aims at summarizing the current state of knowledge about germline pharmacogenomics DNA variants that are currently used to guide therapeutic decisions and variants that have the potential to be clinically useful in the future. In addition, current updates on germline variants conferring treatment sensitivity, drug resistance to existing chemotherapy agents and variants affecting prognosis and survival will also be emphasized. Different alteration in the same gene might confer resistance or enhanced sensitivity; and while most of other published reviews generally stated only the gene name and codon location, we will specifically discuss the exact variants to offer more accurate information in this mini review.
Collapse
Affiliation(s)
- Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Najwa F Md Yusof
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shafina-Nadiawati Abdul
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Palmirotta R, Lovero D, Silvestris E, Carella C, Felici C, Quaresmini D, Cafforio P, Silvestris F. Characterization of a rare nonpathogenic sequence variant (c.1905C>T) of the dihydropyrimidine dehydrogenase gene (DPYD). Int J Biol Markers 2017; 32:e357-e360. [PMID: 28430339 DOI: 10.5301/ijbm.5000260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND In the era of precision medicine, the suitability of fluoropyrimidine therapies in clinical oncology can be checked by pharmacogenetic investigations of single patients, thus optimizing resources and indicating the appropriate drugs to personalize their chemotherapy. For example, the presence of dihydropyrimidine dehydrogenase gene (DPYD) polymorphisms in cancer patients may lead to adverse effects when adopting fluoropyrimidine-based therapies. METHODS We detected in a cancer patient a rare germline synonymous heterozygous variant of DPYD (c.1905C>T) in proximity to the exon 14 splice donor site. Because in silico analyses hypothesized potential deleterious effects of the splice site, we performed both quantitative and qualitative mRNA analyses to investigate the possible pathogenic nature of the variant. RESULTS We did not detect any alterations in mRNA expression or in the cDNA sequence of DPYD gene transcript. CONCLUSIONS Our observations suggest that the c.1905C>T variant of DPYD does not have a pathogenic effect. Therefore, assessment of the clinical significance of rare sequence variants could emphasize the predictive value of DPYD gene alterations in identifying patients at potential risk for fluoropyrimidine-related toxicity.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari - Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari - Italy
| | - Erica Silvestris
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari - Italy
| | - Claudia Carella
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari - Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari - Italy
| | - Davide Quaresmini
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari - Italy
| | - Paola Cafforio
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari - Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari - Italy
| |
Collapse
|
29
|
Etienne-Grimaldi MC, Boyer JC, Beroud C, Mbatchi L, van Kuilenburg A, Bobin-Dubigeon C, Thomas F, Chatelut E, Merlin JL, Pinguet F, Ferrand C, Meijer J, Evrard A, Llorca L, Romieu G, Follana P, Bachelot T, Chaigneau L, Pivot X, Dieras V, Largillier R, Mousseau M, Goncalves A, Roché H, Bonneterre J, Servent V, Dohollou N, Château Y, Chamorey E, Desvignes JP, Salgado D, Ferrero JM, Milano G. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One 2017; 12:e0175998. [PMID: 28481884 PMCID: PMC5421769 DOI: 10.1371/journal.pone.0175998] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background Deficiency in dihydropyrimidine dehydrogenase (DPD) enzyme is the main cause of severe and lethal fluoropyrimidine-related toxicity. Various approaches have been developed for DPD-deficiency screening, including DPYD genotyping and phenotyping. The goal of this prospective observational study was to perform exhaustive exome DPYD sequencing and to examine relationships between DPYD variants and toxicity in advanced breast cancer patients receiving capecitabine. Methods Two-hundred forty-three patients were analysed (88.5% capecitabine monotherapy). Grade 3 and grade 4 capecitabine-related digestive and/or neurologic and/or hemato-toxicities were observed in 10.3% and 2.1% of patients, respectively. DPYD exome, along with flanking intronic regions 3’UTR and 5’UTR, were sequenced on MiSeq Illumina. DPD phenotype was assessed by pre-treatment plasma uracil (U) and dihydrouracil (UH2) measurement. Results Among the 48 SNPs identified, 19 were located in coding regions, including 3 novel variations, each observed in a single patient (among which, F100L and A26T, both pathogenic in silico). Combined analysis of deleterious variants *2A, I560S (*13) and D949V showed significant association with grade 3–4 toxicity (sensitivity 16.7%, positive predictive value (PPV) 71.4%, relative risk (RR) 6.7, p<0.001) but not with grade 4 toxicity. Considering additional deleterious coding variants D342G, S492L, R592W and F100L increased the sensitivity to 26.7% for grade 3–4 toxicity (PPV 72.7%, RR 7.6, p<0.001), and was significantly associated with grade 4 toxicity (sensitivity 60%, PPV 27.3%, RR 31.4, p = 0.001), suggesting the clinical relevance of extended targeted DPYD genotyping. As compared to extended genotype, combining genotyping (7 variants) and phenotyping (U>16 ng/ml) did not substantially increase the sensitivity, while impairing PPV and RR. Conclusions Exploring an extended set of deleterious DPYD variants improves the performance of DPYD genotyping for predicting both grade 3–4 and grade 4 toxicities (digestive and/or neurologic and/or hematotoxicities) related to capecitabine, as compared to conventional genotyping restricted to consensual variants *2A, *13 and D949V.
Collapse
Affiliation(s)
| | | | - Christophe Beroud
- Aix-Marseille University, INSERM UMR S910, GMGF, Marseille, France
- APHM Hôpital Timone, Laboratoire de Génétique Moléculaire, Marseille, France
| | - Litaty Mbatchi
- Faculté de Pharmacie de Montpellier, Montpellier, France
| | - André van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam,The Netherlands
| | | | - Fabienne Thomas
- Institut Claudius-Regaud, CRCT, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Etienne Chatelut
- Institut Claudius-Regaud, CRCT, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, UMR CNRS 7039 CRAN, Université de Lorraine, Nancy, France
| | | | | | - Judith Meijer
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam,The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | - Henri Roché
- Institut Claudius-Regaud, CRCT, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | | | | | | | | | | | - David Salgado
- Aix-Marseille University, INSERM UMR S910, GMGF, Marseille, France
| | | | | |
Collapse
|
30
|
Boisdron-Celle M, Capitain O, Faroux R, Borg C, Metges JP, Galais MP, Kaassis M, Bennouna J, Bouhier-Leporrier K, Francois E, Baumgaertner I, Guerin-Meyer V, Cojocarasu O, Roemer-Becuwe C, Stampfli C, Rosenfeld L, Lecompte T, Berger V, Morel A, Gamelin E. Prevention of 5-fluorouracil-induced early severe toxicity by pre-therapeutic dihydropyrimidine dehydrogenase deficiency screening: Assessment of a multiparametric approach. Semin Oncol 2017; 44:13-23. [DOI: 10.1053/j.seminoncol.2017.02.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
DPYD gene polymorphisms are associated with risk and chemotherapy prognosis in pediatric patients with acute lymphoblastic leukemia. Tumour Biol 2016; 37:10393-402. [DOI: 10.1007/s13277-016-4908-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/22/2016] [Indexed: 01/13/2023] Open
|
32
|
Dhawan A, Ruwali M, Pant MC, Rahman Q, Parmar D. Association of genetic variability in enzymes metabolizing chemotherapeutic agents with treatment response in head and neck cancer cases. Asia Pac J Clin Oncol 2016; 13:e11-e20. [DOI: 10.1111/ajco.12446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/16/2015] [Accepted: 11/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Ankur Dhawan
- Department of Radiotherapy; King George's Medical University; Lucknow India
- Amity University; Lucknow Campus; Gomti Nagar Lucknow India
| | - Munindra Ruwali
- Amity Institute of Biotechnology; Amity University Haryana; Manesar Gurgaon India
| | - Mohan C Pant
- Department of Radiotherapy; King George's Medical University; Lucknow India
| | - Qamar Rahman
- Amity University; Lucknow Campus; Gomti Nagar Lucknow India
| | - Devendra Parmar
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow India
| |
Collapse
|
33
|
Genetic polymorphisms of dihydropyrimidinase in a Japanese patient with capecitabine-induced toxicity. PLoS One 2015; 10:e0124818. [PMID: 25915935 PMCID: PMC4411063 DOI: 10.1371/journal.pone.0124818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 03/20/2015] [Indexed: 01/12/2023] Open
Abstract
Dihydropyrimidinase (DHP) is the second enzyme in the catabolic pathway of uracil, thymine, and chemotherapeutic fluoropyrimidine agents such as 5-fluorouracil (5-FU). Thus, DHP deficiency might be associated with 5-FU toxicity during fluoropyrimidine chemotherapy. We performed genetic analyses of the family of a patient with advanced colon cancer who underwent radical colectomy followed by treatment with 5-FU prodrug capecitabine and developed severe toxicity attributable to a lack of DHP. We measured urinary uracil and dihydrouracil, and genotyped DPYS in the patient and her family. We also measured the allele frequency of DPYS polymorphisms in 391 unrelated Japanese subjects. The patient had compound heterozygous missense and nonsense polymorphisms comprising c.1001A>G (p.Gln334Arg) in exon 6 and c.1393C>T (p.Arg465Ter) in exon 8, which are known to result in a DHP enzyme with little or no activity. The urinary dihydrouracil/uracil ratio in the patient was 17.08, while the mean ± SD urinary dihydrouracil/uracil ratio in family members who were heterozygous or homozygous for wild-type DPYS was 0.25 ± 0.06. In unrelated subjects, 8 of 391 individuals were heterozygous for the c.1001A>G mutation, while the c.1393C>T mutation was not identified. This is the first report of a DHP-deficient patient with DPYS compound heterozygous polymorphisms who was treated with a fluoropyrimidine, and our findings suggest that polymorphisms in the DPYS gene are pharmacogenomic markers associated with severe 5-FU toxicity in Japanese patients.
Collapse
|
34
|
Falvella FS, Caporale M, Cheli S, Martinetti A, Berenato R, Maggi C, Niger M, Ricchini F, Bossi I, Di Bartolomeo M, Sottotetti E, Bernardi FF, de Braud F, Clementi E, Pietrantonio F. Undetected toxicity risk in pharmacogenetic testing for dihydropyrimidine dehydrogenase. Int J Mol Sci 2015; 16:8884-95. [PMID: 25906475 PMCID: PMC4425114 DOI: 10.3390/ijms16048884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD), a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD) polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T), fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C), conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer.
Collapse
Affiliation(s)
- Felicia Stefania Falvella
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco", Università di Milano, Milan 20157, Italy.
| | - Marta Caporale
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Stefania Cheli
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco", Università di Milano, Milan 20157, Italy.
| | - Antonia Martinetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Rosa Berenato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Claudia Maggi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Francesca Ricchini
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Ilaria Bossi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Elisa Sottotetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Francesca Futura Bernardi
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Faculty of Medicine and Surgery, Second University of Naples, Naples 80138, Italy.
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| | - Emilio Clementi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco 23842, Italy.
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, Consiglio Nazionale delle Ricerche Institute of Neuroscience, University Hospital "Luigi Sacco", Università di Milano, Milan 20157, Italy.
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, Milan 20133, Italy.
| |
Collapse
|
35
|
Matsusaka S, Lenz HJ. Pharmacogenomics of fluorouracil -based chemotherapy toxicity. Expert Opin Drug Metab Toxicol 2015; 11:811-21. [PMID: 25800061 DOI: 10.1517/17425255.2015.1027684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION 5- fluorouracil (5-FU), alone or in combination, is the most prevalent and effective chemotherapeutic agent for the treatment of cancers of the head and neck, breast, pancreas and gastrointestinal tract. AREAS COVERED Three rare DPYD mutations, a splice mutation in intron 14 (c.1905+1G>A) and two nonsynonymous coding variants (c.1679T>G, c.2846A>T), have consistently been associated with severe 5-FU toxicity. A relatively common haplotype, hapB3, containing three intronic polymorphisms (c.483+18G>A; c.680+139G>A; c.959-51T>C) and a synonymous mutation c.1236G>A linked to c.1129-5923C>G, is a major contributor to early onset severe toxicity. TYMS VNTR 2R and TYMS-3'-UTR 6-bp ins-del variants were associated with global toxicity in capecitabine-treated patients. A candidate gene study of capecitabine-related toxicity reported that the s12132152 were strongly associated with hand-foot syndrome (HFS), whereas rs7548189 was associated with diarrhea. The rs2612091 and rs2741171, which are downstream of TYMS and intronic for ENOSF1, were associated with increased global toxicity and HFS. EXPERT OPINION Sex-dependent differences, ethnicity, cancer types and 5-FU-based chemotherapy regimens might affect the heterogeneity of genetic variants for predictive 5-FU-related toxicity. Future approaches using genome-wide association analyses may help in identifying additional candidate genes causally involved in the path mechanisms of 5-FU-related toxicity.
Collapse
Affiliation(s)
- Satoshi Matsusaka
- University of Southern California, Keck School of Medicine, Norris Comprehensive Cancer Center, Division of Medical Oncology , Los Angeles, CA , USA
| | | |
Collapse
|
36
|
Chiu J, Tang V, Leung R, Wong H, Chu KW, Poon J, Epstein RJ, Yau T. Efficacy and tolerability of adjuvant oral capecitabine plus intravenous oxaliplatin (XELOX) in Asian patients with colorectal cancer: 4-year analysis. Asian Pac J Cancer Prev 2015; 14:6585-90. [PMID: 24377572 DOI: 10.7314/apjcp.2013.14.11.6585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Although FOLFOX (infusional fluorouracil/leucovorin plus oxaliplatin) is established as a standard chemotherapeutic regimen, the long term efficacy of adjuvant XELOX (oral capecitabine plus intravenous oxaliplatin) in Asian colorectal cancer (CRC) patients remains anecdotal. Moreover, uncertainties persist as to whether pharmacogenetic differences in Asian populations preclude equally tolerable and effective administration of these drugs. METHOD One hundred consecutive patients with resected colorectal cancer received adjuvant XELOX (oxaliplatin 130 mg/m2 on day 1 plus capecitabine 900 mg/m2 twice daily on day 1 to 14 every 3 weeks for 8 cycles) at Queen Mary Hospital, Hong Kong. Endpoints monitored during follow-up were disease-free survival (DFS) and disease recurrence, overall survival (OS) and adverse events (AEs). RESULTS The median patient age was 56 years, 56% were diagnosed with rectal cancer and 44% with colonic cancer. After a median follow-up of 4.3 years (95% confidence interval, 3.2-4.7), 24 recurrences were confirmed including 13 patients who died due to progressive disease. Four-year DFS was 81% in colon cancer patients and 67% in rectal cancer patients (p=0.06 by log-rank test). For the cohort as a whole, OS was 90% at 3 years and 84% at 5 years. Treatment-related AEs led to early withdrawal in four patients. The commonest non-hematological AEs were neuropathy (91%), hand-foot syndrome (49%) and diarrhea (46%), while the commonest grade 3/4 AEs were neutropenia (11%) and diarrhea (10%). CONCLUSION These results confirm the favourable long term survival benefit with good tolerability in using adjuvant XELOX in treating East Asian colorectal cancer patients.
Collapse
Affiliation(s)
- Joanne Chiu
- University Department of Medicine, Queen Mary Hospital, Hong Kong, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Influence of DPYD Genetic Polymorphisms on 5-Fluorouracil Toxicities in Patients with Colorectal Cancer: A Meta-Analysis. Gastroenterol Res Pract 2014; 2014:827989. [PMID: 25614737 PMCID: PMC4295351 DOI: 10.1155/2014/827989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Our meta-analysis aggregated existing results from relevant studies to comprehensively investigate the correlations between genetic polymorphisms in dihydropyrimidine dehydrogenase (DPYD) gene and 5-fluorouracil (5-FU) toxicities in patients with colorectal cancer (CRC). The MEDLINE (1966∼2013), the Cochrane Library Database (Issue 12, 2013), EMBASE (1980∼2013), CINAHL (1982∼2013), Web of Science (1945∼2013), and the Chinese Biomedical Database (CBM) (1982∼2013) were searched without language restrictions. Meta-analyses were conducted with the use of STATA software (Version 12.0, Stata Corporation, College Station, TX, USA). Seven clinical cohort studies with a total of 946 CRC patients met our inclusion criteria, and NOS scores of each of the included studies were ≥5. Our findings showed that DPYD genetic polymorphisms were significantly correlated with high incidences of 5-FU-related toxicity in CRC patients. SNP-stratified analysis indicated that there were remarkable connections of IVS14+1G>A, 464T>A, and 2194G>A polymorphisms with the incidence of marrow suppression in CRC patients receiving 5-FU chemotherapy. Furthermore, we found that IVS14+1G>A, 496A>G, and 2194G>A polymorphisms were correlated with the incidence of gastrointestinal reaction. Ethnicity-stratified analysis also revealed that DPYD genetic polymorphisms might contribute to the development of marrow suppression and gastrointestinal reaction among Asians, but not among Caucasians. The present meta-analysis suggests that DPYD genetic polymorphisms may be correlated with the incidence of 5-FU-related toxicity in CRC patients.
Collapse
|
38
|
Chen BC, Mohd Rawi R, Meinsma R, Meijer J, Hennekam RCM, van Kuilenburg ABP. Dihydropyrimidine dehydrogenase deficiency in two malaysian siblings with abnormal MRI findings. Mol Syndromol 2014; 5:299-303. [PMID: 25565930 DOI: 10.1159/000366074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 11/19/2022] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD) deficiency is an autosomal recessive disorder of the pyrimidine metabolism. Deficiency of this enzyme leads to an accumulation of thymine and uracil and a deficiency of metabolites distal to the catabolic enzyme. The disorder presents with a wide clinical spectrum, ranging from asymptomatic to severe neurological manifestations, including intellectual disability, seizures, microcephaly, autistic behavior, and eye abnormalities. Here, we report on an 11-year-old Malaysian girl and her 6-year-old brother with DPD deficiency who presented with intellectual disability, microcephaly, and hypotonia. Brain MRI scans showed generalized cerebral and cerebellar atrophy and callosal body dysgenesis in the boy. Urine analysis showed strongly elevated levels of uracil in the girl and boy (571 and 578 mmol/mol creatinine, respectively) and thymine (425 and 427 mmol/mol creatinine, respectively). Sequence analysis of the DPYD gene showed that both siblings were homozygous for the mutation c.1651G>A (pAla551Thr).
Collapse
Affiliation(s)
- Bee Chin Chen
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Rowani Mohd Rawi
- School of Medical Sciences, University of Sciences Malaysia, Kelantan, Malaysia
| | - Rutger Meinsma
- Laboratory of Genetic Metabolic Diseasess, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith Meijer
- Laboratory of Genetic Metabolic Diseasess, University of Amsterdam, Amsterdam, The Netherlands
| | - Raoul C M Hennekam
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
39
|
Panczyk M. Pharmacogenetics research on chemotherapy resistance in colorectal cancer over the last 20 years. World J Gastroenterol 2014; 20:9775-827. [PMID: 25110414 PMCID: PMC4123365 DOI: 10.3748/wjg.v20.i29.9775] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/17/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023] Open
Abstract
During the past two decades the first sequencing of the human genome was performed showing its high degree of inter-individual differentiation, as a result of large international research projects (Human Genome Project, the 1000 Genomes Project International HapMap Project, and Programs for Genomic Applications NHLBI-PGA). This period was also a time of intensive development of molecular biology techniques and enormous knowledge growth in the biology of cancer. For clinical use in the treatment of patients with colorectal cancer (CRC), in addition to fluoropyrimidines, another two new cytostatic drugs were allowed: irinotecan and oxaliplatin. Intensive research into new treatment regimens and a new generation of drugs used in targeted therapy has also been conducted. The last 20 years was a time of numerous in vitro and in vivo studies on the molecular basis of drug resistance. One of the most important factors limiting the effectiveness of chemotherapy is the primary and secondary resistance of cancer cells. Understanding the genetic factors and mechanisms that contribute to the lack of or low sensitivity of tumour tissue to cytostatics is a key element in the currently developing trend of personalized medicine. Scientists hope to increase the percentage of positive treatment response in CRC patients due to practical applications of pharmacogenetics/pharmacogenomics. Over the past 20 years the clinical usability of different predictive markers has been tested among which only a few have been confirmed to have high application potential. This review is a synthetic presentation of drug resistance in the context of CRC patient chemotherapy. The multifactorial nature and volume of the issues involved do not allow the author to present a comprehensive study on this subject in one review.
Collapse
|
40
|
Potential of dihydropyrimidine dehydrogenase genotypes in personalizing 5-fluorouracil therapy among colorectal cancer patients. Ther Drug Monit 2014; 35:624-30. [PMID: 23942539 DOI: 10.1097/ftd.0b013e318290acd2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dihydropyrimidine dehydrogenase (DPD) is a pyrimidine catabolic enzyme involved in the initial and rate-limiting step of the catabolic pathway of toxic metabolites of 5-fluorouracil (5-FU). Several studies have reported that deficiency of DPD and polymorphisms of its gene are related to 5-FU toxicities and death. Association between serum concentration of 5-FU and its related toxicity has also been previously demonstrated. Hence, this study aims to understand the role of DPYD variants in serum level of 5-FU and the risk of developing toxicity to prevent adverse reactions and maximize therapy outcome for personalized medicine. METHODS A total of 26 patients comprising 3 different ethnic groups (Malay, Chinese, and Indian) diagnosed with colorectal cancer and treated with 5-FU chemotherapy regimen from local hospital were recruited. Polymerase chain reaction and denaturing high-performance liquid chromatography methods were developed to screen polymorphisms of DPYD gene. High-performance liquid chromatography-based quantification assay was developed to measure the serum concentration of 5-FU among these patients. RESULTS Patients with DPYD genotypes of deficient enzyme activity had higher median serum levels of 5-FU compared with normal DPD group (median, 11.51 mcg/mL; 95% confidence interval, 10.18-16.11 versus median, 0.83 mcg/mL; 95% confidence interval, 0.55-5.90, Mann-Whitney U test; P = 0.010). Patients with neutropenia (n = 11) had significantly higher serum concentrations of 5-FU as compared with those with normal white blood cell count (n = 15) (Mann-Whitney U test, P = 0.031). Combined regression analysis showed that the predictive power of DPYD*5 (rs1801159) and 1896 T>C (rs17376848) for serum concentrations of 5-FU in the studied group was 36.6% (P = 0.04). Similarly, DPYD*5 and 1896 T>C accounted for 29.9% of the occurrences of neutropenia (analysis of variance, P = 0.017). CONCLUSIONS This study revealed that DPYD*5 (rs1801159) and 1896 T>C (rs17376848) are potentially useful predictive markers of patients' responses to 5-FU chemotherapy. Pharmacogenotyping is therefore recommended to guide dosing of 5-FU and prevent neutropenia.
Collapse
|
41
|
La dihydropyrimidine déshydrogénase (DPD). ONCOLOGIE 2014. [DOI: 10.1007/s10269-014-2373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Chung C, Christianson M. Predictive and prognostic biomarkers with therapeutic targets in breast, colorectal, and non-small cell lung cancers: a systemic review of current development, evidence, and recommendation. J Oncol Pharm Pract 2014; 20:11-28. [PMID: 23493335 DOI: 10.1177/1078155212474047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Appropriate evidence-based roles of prognostic and predictive biomarkers of known therapeutic targets in breast, colorectal, and non-small cell lung cancers in adults are reviewed, with summary of evidence for use and recommendation. Current development in biomarker studies is also discussed. Computerized literature searches of PubMed (National Library of Medicine), the Cochrane Collaboration Library, and commonly accepted US and international guidelines (American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network) were performed from 2001 to 2012. Literature published before 2001 was noted for historical interest but not evaluated. Literature review was focused on available systematic reviews and meta-analyses of published predictive (associated with treatment response and/or efficacy) and prognostic (associated with disease outcome) biomarkers of known therapeutic targets in colorectal, breast, and non-small cell lung cancers. In general, significant health outcomes (e.g. predicted response to therapy, overall survival, disease-free survival, quality of life, lesser toxicity, and cost-effectiveness) were used for making recommendations. Four breast cancer biomarkers were evaluated, two of which (2D6 genotyping, Oncotype Dx) were considered emerging with insufficient evidence. Seven colorectal cancer biomarkers were evaluated, five of which (EGFR gene expression, K-ras G13D gene mutation, B-raf V600E gene mutation, dihydropyrimidine dehydrogenase deficiency, and UGT1A1 genotyping) were considered emerging. Seven non-small cell lung cancer biomarkers were evaluated, five of which were emerging (EGFR gene expression, ERCC gene expression, RRM1 gene expression, K-ras gene mutation, and TS gene expression). Of all 18 biomarkers evaluated, the following showed evidence of clinical utility and were recommended for routine use in practice: ER/PR and HER2 for breast cancer; K-ras gene mutation (except G13D gene mutation) for colorectal cancer; mismatch repair deficiency or microsatellite instability for colorectal cancer; and EGFR and EML4-ALK gene mutations for non-small cell lung. Not all recommendations for these biomarkers were uniformly supported by all guidelines.
Collapse
Affiliation(s)
- Clement Chung
- Department of Pharmacy, Kennewick General Hospital, WA, USA
| | | |
Collapse
|
43
|
Caudle KE, Thorn CF, Klein TE, Swen JJ, McLeod HL, Diasio RB, Schwab M. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin Pharmacol Ther 2013; 94:640-5. [PMID: 23988873 PMCID: PMC3831181 DOI: 10.1038/clpt.2013.172] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/22/2013] [Indexed: 01/07/2023]
Abstract
The fluoropyrimidines are the mainstay chemotherapeutic agents for the treatment of many types of cancers. Detoxifying metabolism of fluoropyrimidines requires dihydropyrimidine dehydrogenase (DPD, encoded by the DPYD gene), and reduced or absent activity of this enzyme can result in severe, and sometimes fatal, toxicity. We summarize evidence from the published literature supporting this association and provide dosing recommendations for fluoropyrimidines based on DPYD genotype (updates at http://www.pharmgkb.org).
Collapse
Affiliation(s)
- K E Caudle
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - C F Thorn
- Department of Genetics, Stanford University Medical Center, Stanford, California, USA
| | - T E Klein
- Department of Genetics, Stanford University Medical Center, Stanford, California, USA
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H L McLeod
- Moffitt Cancer Center, Tampa, Florida, USA
| | - R B Diasio
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - M Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital, Tuebingen, Germany
| |
Collapse
|
44
|
Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin Pharmacol Ther 2013; 95:423-31. [PMID: 24253661 PMCID: PMC3961508 DOI: 10.1038/clpt.2013.229] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022]
Abstract
Since September 2010, over 10,000 patients have undergone preemptive, panel-based pharmacogenomic testing through the Vanderbilt Pharmacogenomic Resource for Enhanced Decisions in Care and Treatment (PREDICT) program. Analysis of the genetic data from the first 9,589 individuals reveals the frequency of genetic variants is concordant with published allele frequencies. Based on five currently implemented drug-genome interactions, the multiplexed test identified one or more actionable variants in 91% of the genotyped patients and in 96% of African-American patients. Using medication exposure data from electronic medical records, we compared a theoretical “reactive,” prescription-triggered, serial single-gene testing strategy to our preemptive, multiplexed genotyping approach. Reactive genotyping would have generated 14,656 genetic tests. These data highlight three advantages of preemptive genotyping: 1)the vast majority of patients carry at least one pharmacogene variant; 2)data are available at the point of care; and 3)there is a substantial reduction in testing burden compared to a reactive strategy.
Collapse
|
45
|
13C-uracil breath test to predict 5-fluorouracil toxicity in gastrointestinal cancer patients. Cancer Chemother Pharmacol 2013; 72:1273-82. [DOI: 10.1007/s00280-013-2309-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/25/2013] [Indexed: 11/26/2022]
|
46
|
Díaz R, Segura A, Aparicio J, Calderero V, Guerrero A, Pellín L. Lethal Toxicity After 5-Fluorouracil Chemotherapy and Its Possible Relationship to Dihydropyrimidine Dehydrogenase Deficiency: A Case Report and Review. J Chemother 2013; 16:599-603. [PMID: 15700854 DOI: 10.1179/joc.2004.16.6.599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
5-fluorouracil (5-FU) is a chemotherapeutic agent widely used in the treatment of solid malignancies, especially in colorectal cancer. A characteristic note seen with its use is the considerable interindividual variation in the incidence and severity of the toxicities seen among patients. We report the case of a 55-year old woman who presented with severe, lethal toxicity to standard doses of 5-fluorouracil (5-FU) and folinic acid. We discuss the known clinical determinants of toxicity. We also discuss the possible molecular factors implicated in the variable toxicity seen to 5-FU, especially in regards to dihiyropyrimidine dehydrogenase, a pivotal enzyme in the metabolism of 5-FU.
Collapse
Affiliation(s)
- R Díaz
- Medical Oncology Unit, University Hospital La Fe, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Borràs E, Dotor E, Arcusa A, Gamundi MJ, Hernan I, de Sousa Dias M, Mañé B, Agúndez JAG, Blanca M, Carballo M. High-resolution melting analysis of the common c.1905+1G>A mutation causing dihydropyrimidine dehydrogenase deficiency and lethal 5-fluorouracil toxicity. Front Genet 2013; 3:312. [PMID: 23335937 PMCID: PMC3547229 DOI: 10.3389/fgene.2012.00312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/19/2012] [Indexed: 01/13/2023] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD) deficiency is a pharmacogenetic syndrome associated with life-threatening toxicity following exposure to the fluoropyrimidine drugs 5-fluorouracil (5-FU) and capecitabine (CAP), widely used for the treatment of colorectal cancer and other solid tumors. The most prominent loss-of-function allele of the DPYD gene is the splice-site mutation c.1905+1G>A. In this study we report the case of a 73-year old woman with metastatic colorectal cancer who died from drug-induced toxicity after the first cycle of 5-FU-containing chemotherapy. Her symptoms included severe neutropenia, thrombocytopenia, mucositis and diarrhea; she died 16 days later despite intensive care measures. Post-mortem genetic analysis revealed that the patient was homozygous for the c.1905+1G>A deleterious allele and several family members consented to being screened for this mutation. This is the first report in Spain of a case of 5-FU-induced lethal toxicity associated with a genetic defect that results in the complete loss of the DPD enzyme. Although the frequency of c.1905+1G>A carriers in the white population ranges between 1 and 2%, the few data available for the Spanish population and the severity of this case prompted us to design a genotyping procedure to prevent future toxic effects of 5-FU/CAP. Since our group had previously developed a high-resolution melting (HRM) assay for the simultaneous detection of KRAS, BRAF, and/or EGFR somatic mutations in colorectal and lung cancer patients considered for EGFR-targeted therapies, we included the DPYD c.1905+1G>A mutation in the screening test that we describe herein. HRM provides a rapid, sensitive, and inexpensive method that can be easily implemented in diagnostic settings for the routine pre-therapeutic testing of a gene mutation panel with implications in the pharmacologic treatment.
Collapse
Affiliation(s)
- Emma Borràs
- Molecular Genetics Unit, Hospital de Terrassa Terrassa, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang X, Sun B, Lu Z. Evaluation of clinical value of single nucleotide polymorphisms of dihydropyrimidine dehydrogenase gene to predict 5-fluorouracil toxicity in 60 colorectal cancer patients in China. Int J Med Sci 2013; 10:894-902. [PMID: 23781135 PMCID: PMC3675503 DOI: 10.7150/ijms.5556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/05/2013] [Indexed: 11/28/2022] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD) activity could be affected by single nucleotide polymorphisms (SNPs), resulting in either no effect, partial or complete loss of DPD activity. To evaluate if SNPs of DPD can be used to predict 5-FU toxicity, we evaluated five SNPs of DPD (14G1A, G1156T, G2194A, T85C and T464A) by TaqMan real time PCR in 60 colorectal cancer patients. Clinical data demonstrated that there was higher correlation between DPD activity and toxic effects of 5-FU (p<0.05). Six patients were positive for G2194A detection, which were all heterozygous. Two patients had lower DPD activities (< 3) with higher toxic effects (≥ stage III) while one patient was also positive for T85C detection. Ten patients were positive for T85C detection. Two patients were homozygous with lower DPD activities and higher toxic effects. Two patients were positive for the T464A detection, which were heterozygous with lower DPD activity and higher toxic effects and also positive for T85C detection. These data clearly indicated that the T464A and homozygous of the T85C are stronger biomarkers to predict the 5-FU toxicity. Our study significantly indicated that the detection for G2194A, T85C and T464A could predict ~13% of 5-FU severe toxic side effects.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, China, 130041
| | | | | |
Collapse
|
49
|
Bosch TM, Bakker R, Schellens JHM, Cats A, Smits PHM, Beijnen JH. Rapid Detection of the DPYD IVS14+1G>A Mutation for Screening Patients to Prevent Fluorouracil-Related Toxicity. Mol Diagn Ther 2012; 11:105-8. [PMID: 17397246 DOI: 10.1007/bf03256229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Deficiency of dihydropyrimidine dehydrogenase (DPD) has been linked to severe or lethal fluorouracil (FU)-related toxicity. The most prominent mutation in the DPYD gene is the IVS14+1G>A mutation, which causes skipping of exon 14 in the messenger RNA (mRNA) and results in DPD enzyme deficiency. Several methods have been described to detect this mutation, but all are labor intensive and low throughput. OBJECTIVE Our aim was to develop a high-throughput real-time PCR assay to screen patients for the IVS14+1G>A mutation. METHODS Primers and probes were developed and several reaction conditions were tested. In total, 165 individuals were screened for this mutation, with DNA sequencing as a reference method. RESULTS Results of the real-time PCR assay and DNA sequencing were 100% identical. In total, eight heterozygous individuals were identified, of which six were patients with severe FU-related toxicity after FU or capecitabine treatment and two were healthy volunteers. CONCLUSION This new real-time PCR assay with a high throughput is particularly suitable for large-scale screening for the IVS14+1G>A mutation in patients selected for treatment with fluoropyrimidines in order to prevent severe FU-related toxicity.
Collapse
Affiliation(s)
- Tessa M Bosch
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
A rapid HPLC-ESI-MS/MS method for determination of dihydrouracil/uracil ratio in plasma: evaluation of toxicity to 5-flurouracil in patients with gastrointestinal cancer. Ther Drug Monit 2012; 34:59-66. [PMID: 22210098 DOI: 10.1097/ftd.0b013e318240405f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND A liquid chromatography-tandem mass spectrometry method for the simultaneous quantitation of endogenous uracil (U) and dihydrouracil (UH2) was developed and tested in a Brazilian population of patients with gastrointestinal cancer previously exposed to 5-fluorouracil (5FU). METHODS The analytes were extracted by a liquid-liquid method using 5-clorouracil as internal standard. The separation was performed on a reversed-phase XTerra C18 column with a mobile phase composed of methanol and aqueous 0.1% ammonium hydroxide (15:85). Mass spectrometry detection was carried out using negative electrospray ionization and selected reaction monitoring. Bovine serum albumin was employed as an alternative matrix to prepare the calibration standards, aiming to avoid the measurement of physiologic U and UH2. Calibration curves were constructed over the range of 5-200 ng/mL for U and 10-500 ng/mL for UH2. RESULTS The mean RSD values in the intrarun precision were 6.5% and 10.0% and in the interrun precision were 7.8% and 9.0% for U and UH2, respectively. The mean accuracy values were within the range of 90%-110% for both analytes. The analytes were stable in plasma under different conditions of temperature and time. The validated method was successfully applied to determine the plasma concentrations of U and UH2 in patients with gastrointestinal cancer (n = 32) previously treated with 5FU and for whom clinical toxicity was well documented. U concentrations varied from 21.8 to 56.6 ng/mL, whereas UH2 concentrations varied from 57.7 to 271.5 ng/mL. UH2/U ratio ranged from 1.56 to 6.18. CONCLUSIONS The method has proved to provide a quick, reliable, and reproducible quantitation of the plasma concentrations of U and its metabolite UH2. The UH2/U ratios did not discriminate patients previously exposed to 5FU with and without severe toxicities, possibly due to the small sample. Further studies in a larger population are desirable.
Collapse
|