1
|
Kumar A, Matta SK, Vigneshwaran R, D'Silva P. A journey through the gateway of polytopic inner membrane proteins: The carrier translocase machinery. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
3
|
Song P, Guan Y, Chen X, Wu C, Qiao A, Jiang H, Li Q, Huang Y, Huang W, Xu M, Niemtiah O, Yuan C, Li W, Zhou L, Xiao Z, Pan S, Hu Y. Frameshift mutation of Timm8a1 gene in mouse leads to an abnormal mitochondrial structure in the brain, correlating with hearing and memory impairment. J Med Genet 2020; 58:619-627. [PMID: 32820032 DOI: 10.1136/jmedgenet-2020-106925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Deafness-dystonia-optic neuronopathy (DDON) syndrome is a progressive X-linked recessive disorder characterised by deafness, dystonia, ataxia and reduced visual acuity. The causative gene deafness/dystonia protein 1 (DDP1)/translocase of the inner membrane 8A (TIMM8A) encodes a mitochondrial intermembrane space chaperon. The molecular mechanism of DDON remains unclear, and detailed information on animal models has not been reported yet. METHODS AND RESULTS We characterized a family with DDON syndrome, in which the affected members carried a novel hemizygous variation in the DDP1 gene (NM_004085.3, c.82C>T, p.Q28X). We then generated a mouse line with the hemizygous mutation (p.I23fs49X) in the Timm8a1 gene using the clustered regularly interspaced short palindromic repeats /Cas9 technology. The deficient DDP1 protein was confirmed by western blot assay. Electron microscopic analysis of brain samples from the mutant mice indicated abnormal mitochondrial structure in several brain areas. However, Timm8a1 I23fs49X/y mutation did not affect the import of mitochondria inner member protein Tim23 and outer member protein Tom40 as well as the biogenesis of the proteins in the mitochondrial oxidative phosphorylation system and the manganese superoxide dismutase (MnSOD / SOD-2). The male mice with Timm8a1 I23fs49X/y mutant exhibited less weight gain, hearing impairment and cognitive deficit. CONCLUSION Our study suggests that frameshift mutation of the Timm8a1 gene in mice leads to an abnormal mitochondrial structure in the brain, correlating with hearing and memory impairment. Taken together, we have successfully generated a mouse model bearing loss-of-function mutation in Timm8a1.
Collapse
Affiliation(s)
- Pingping Song
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yuqing Guan
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xia Chen
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaochen Wu
- Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - An Qiao
- Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Haishan Jiang
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qi Li
- Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingwei Huang
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Huang
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Neurology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Miaojing Xu
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ouattara Niemtiah
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Yuan
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Li
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Zhou
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongju Xiao
- Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Suyue Pan
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yafang Hu
- Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
5
|
Kumar A, Matta SK, D'Silva P. Role of conserved regions of Tim22 in the structural organization of the carrier translocase. J Cell Sci 2020; 133:jcs.244632. [DOI: 10.1242/jcs.244632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial biogenesis requires efficient sorting of various proteins into different mitochondrial sub-compartments mediated by dedicated protein machinery present in the outer and inner membrane. Among them, the TIM22 complex enables the integration of complex membrane proteins with internal targeting signals into the inner membrane. Although the Tim22 forms the core of the complex, the dynamic recruitment of subunits to the channel is still enigmatic. The present study first-time highlights that IMS and TM4 regions of Tim22 are critically required for the interaction of the membrane-embedded subunits including, Tim54, Tim18, and Sdh3, thereby maintain the functional architecture of TIM22 translocase. On the other hand, TM1 and TM2 regions of Tim22 are important for the Tim18 association, while TM3 is exclusively required for the Sdh3 interaction. Moreover, the impairment in TIM22 complex assembly influences its translocase activity, mitochondrial network, and the viability of cells lacking mitochondrial DNA. Overall our findings provide compelling evidence to highlight the significance of conserved regions of Tim22 that are important for the maintenance of the TIM22 complex and mitochondrial integrity.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| | - Srujan Kumar Matta
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| | - Patrick D'Silva
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| |
Collapse
|
6
|
Kang Y, Anderson AJ, Jackson TD, Palmer CS, De Souza DP, Fujihara KM, Stait T, Frazier AE, Clemons NJ, Tull D, Thorburn DR, McConville MJ, Ryan MT, Stroud DA, Stojanovski D. Function of hTim8a in complex IV assembly in neuronal cells provides insight into pathomechanism underlying Mohr-Tranebjærg syndrome. eLife 2019; 8:48828. [PMID: 31682224 PMCID: PMC6861005 DOI: 10.7554/elife.48828] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Human Tim8a and Tim8b are members of an intermembrane space chaperone network, known as the small TIM family. Mutations in TIMM8A cause a neurodegenerative disease, Mohr-Tranebjærg syndrome (MTS), which is characterised by sensorineural hearing loss, dystonia and blindness. Nothing is known about the function of hTim8a in neuronal cells or how mutation of this protein leads to a neurodegenerative disease. We show that hTim8a is required for the assembly of Complex IV in neurons, which is mediated through a transient interaction with Complex IV assembly factors, in particular the copper chaperone COX17. Complex IV assembly defects resulting from loss of hTim8a leads to oxidative stress and changes to key apoptotic regulators, including cytochrome c, which primes cells for death. Alleviation of oxidative stress with Vitamin E treatment rescues cells from apoptotic vulnerability. We hypothesise that enhanced sensitivity of neuronal cells to apoptosis is the underlying mechanism of MTS.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Thomas Daniel Jackson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - David P De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Kenji M Fujihara
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Tegan Stait
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ann E Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Deidreia Tull
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Victorian Clinical Genetic Services, Royal Children's Hospital, Melbourne, Australia
| | - Malcolm J McConville
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
8
|
Neurodegenerative changes detected by neuroimaging in a patient with contiguous X-chromosome deletion syndrome encompassing BTK and TIMM8A genes. Cent Eur J Immunol 2018; 43:139-147. [PMID: 30135625 PMCID: PMC6102625 DOI: 10.5114/ceji.2018.77383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/18/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction In this study we describe a patient with gross deletion containing the BTK and TIMM8A genes. Mutations in these genes are responsible for X-linked agammaglobulinemia and Mohr-Tranebjaerg syndrome, respectively. X linked agammaglobulinemia is a rare primary immunodeficiency characterized by low levels of B lymphocytes and recurrent microbial infections, whereas, Mohr-Tranebjaerg syndrome is a progressive neurodegenerative disorder with early onset of sensorineural deafness. Material and methods For neuroimaging, the magnetic resonance imaging and magnetic resonance spectroscopy of the brain were performed. Microarray analysis was performed to establish the extent of deletion. Results The first clinical symptoms observed in our patient at the age of 6 months were connected with primary humoral immunodeficiency, whereas clinical signs of MTS emerged in the third year of live. Interestingly, the loss of speech ability was not accompanied by hearing failure. Neuroimaging of the brain suggested leukodystrophy. Molecular tests revealed contiguous X-chromosome deletion syndrome encompassing BTK (from exons 6 through 19) and TIMM8A genes. The loss of the patient’s DNA fragment was accurately localized from 100 601 727 to 100 617 576 bp on chromosome’s loci Xq22.1. Conclusions We diagnosed XLA-MTS in the first Polish patient on the basis of particular molecular methods. We detected neurodegenerative changes in MRI and MR spectroscopy in this patient. Our results provide further insight into this rare syndrome.
Collapse
|
9
|
Callegari S, Richter F, Chojnacka K, Jans DC, Lorenzi I, Pacheu-Grau D, Jakobs S, Lenz C, Urlaub H, Dudek J, Chacinska A, Rehling P. TIM29 is a subunit of the human carrier translocase required for protein transport. FEBS Lett 2016; 590:4147-4158. [PMID: 27718247 PMCID: PMC5215392 DOI: 10.1002/1873-3468.12450] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022]
Abstract
Hydrophobic inner mitochondrial membrane proteins with internal targeting signals, such as the metabolite carriers, use the carrier translocase (TIM22 complex) for transport into the inner membrane. Defects in this transport pathway have been associated with neurodegenerative disorders. While the TIM22 complex is well studied in baker's yeast, very little is known about the mammalian TIM22 complex. Using immunoprecipitation, we purified the human carrier translocase and identified a mitochondrial inner membrane protein TIM29 as a novel component, specific to metazoa. We show that TIM29 is a constituent of the 440 kDa TIM22 complex and interacts with oxidized TIM22. Our analyses demonstrate that TIM29 is required for the structural integrity of the TIM22 complex and for import of substrate proteins by the carrier translocase.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Frank Richter
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | | | - Daniel C Jans
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Germany
| | - Isotta Lorenzi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | | | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,MaxPlanck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
10
|
Vasilevska J, De Souza GA, Stensland M, Skrastina D, Zhulenvovs D, Paplausks R, Kurena B, Kozlovska T, Zajakina A. Comparative protein profiling of B16 mouse melanoma cells susceptible and non-susceptible to alphavirus infection: Effect of the tumor microenvironment. Cancer Biol Ther 2016; 17:1035-1050. [PMID: 27636533 DOI: 10.1080/15384047.2016.1219813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alphavirus vectors are promising tools for cancer treatment. However, relevant entry mechanisms and interactions with host cells are still not clearly understood. The first step toward a more effective therapy is the identification of novel intracellular alterations that could be associated with cancer aggressiveness and could affect the therapeutic potential of these vectors. In this study, we observed that alphaviruses efficiently infected B16 mouse melanoma tumors/tumor cells in vivo, whereas their transduction efficiency in B16 cells under in vitro conditions was blocked. Therefore, we further aimed to understand the mechanisms pertaining to the differential transduction efficacy of alphaviruses in B16 tumor cells under varying growth conditions. We hypothesized that the tumor microenvironment might alter gene expression in B16 cells, leading to an up-regulation of the expression of virus-binding receptors or factors associated with virus entry and replication. To test our hypothesis, we performed a proteomics analysis of B16 cells cultured in vitro and of B16 cells isolated from tumors, and we identified 277 differentially regulated proteins. A further in-depth analysis to identify the biological and molecular functions of the detected proteins revealed a set of candidate genes that could affect virus infectivity. Importantly, we observed a decrease in the expression of interferon α (IFN-α) in tumor-isolated cells that resulted in the suppression of several IFN-regulated genes, thereby abrogating host cell antiviral defense. Additionally, differences in the expression of genes that regulate cytoskeletal organization caused significant alterations in cell membrane elasticity. Taken together, our findings demonstrated favorable intracellular conditions for alphavirus transduction/replication that occurred during tumor transformation. These results pave the way for optimizing the development of strategies for the application of alphaviral vectors as a potent cancer therapy.
Collapse
Affiliation(s)
- Jelena Vasilevska
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | | | - Maria Stensland
- b Department of Immunology , Oslo University Hospital , Oslo , Norway
| | - Dace Skrastina
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | - Dmitry Zhulenvovs
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | | | - Baiba Kurena
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | - Tatjana Kozlovska
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| | - Anna Zajakina
- a Department of Protein Engineering , Biomedical Research and Study Center , Riga , Latvia
| |
Collapse
|
11
|
Modjtahedi N, Tokatlidis K, Dessen P, Kroemer G. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends Biochem Sci 2016; 41:245-260. [PMID: 26782138 DOI: 10.1016/j.tibs.2015.12.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.
Collapse
Affiliation(s)
- Nazanine Modjtahedi
- Institut National de la Santé et de la Recherche Médicale, U1030, Villejuif, France; Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Philippe Dessen
- Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France; Groupe bioinformatique Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, AP-HP, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Mitochondrial protein translocases for survival and wellbeing. FEBS Lett 2014; 588:2484-95. [DOI: 10.1016/j.febslet.2014.05.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
|
13
|
Banks CAS, Lee ZT, Boanca G, Lakshminarasimhan M, Groppe BD, Wen Z, Hattem GL, Seidel CW, Florens L, Washburn MP. Controlling for gene expression changes in transcription factor protein networks. Mol Cell Proteomics 2014; 13:1510-22. [PMID: 24722732 DOI: 10.1074/mcp.m113.033902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBβ, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.
Collapse
Affiliation(s)
- Charles A S Banks
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Zachary T Lee
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Gina Boanca
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | | | - Brad D Groppe
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Zhihui Wen
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Gaye L Hattem
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Chris W Seidel
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Laurence Florens
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Michael P Washburn
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110; §Departments of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
14
|
Fraga H, Ventura S. Oxidative folding in the mitochondrial intermembrane space in human health and disease. Int J Mol Sci 2013; 14:2916-27. [PMID: 23364613 PMCID: PMC3588022 DOI: 10.3390/ijms14022916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/22/2022] Open
Abstract
Oxidative folding in the mitochondrial intermembrane space (IMS) is a key cellular event associated with the folding and import of a large and still undetermined number of proteins. This process is catalyzed by an oxidoreductase, Mia40 that is able to recognize substrates with apparently little or no homology. Following substrate oxidation, Mia40 is reduced and must be reoxidized by Erv1/Alr1 that consequently transfers the electrons to the mitochondrial respiratory chain. Although our understanding of the physiological relevance of this process is still limited, an increasing number of pathologies are being associated with the impairment of this pathway; especially because oxidative folding is fundamental for several of the proteins involved in defense against oxidative stress. Here we review these aspects and discuss recent findings suggesting that oxidative folding in the IMS is modulated by the redox state of the cell.
Collapse
Affiliation(s)
- Hugo Fraga
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| | - Salvador Ventura
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| |
Collapse
|
15
|
Moustris A, Edwards MJ, Bhatia KP. Movement disorders and mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2011; 100:173-92. [PMID: 21496577 DOI: 10.1016/b978-0-444-52014-2.00010-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andreas Moustris
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | | | | |
Collapse
|
16
|
Fullston T, Mitchell M, Wakefield S, Lane M. Mitochondrial inhibition during preimplantation embryogenesis shifts the transcriptional profile of fetal mouse brain. Reprod Fertil Dev 2011; 23:691-701. [DOI: 10.1071/rd10292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/01/2011] [Indexed: 12/14/2022] Open
Abstract
Environmental stress results in perturbations to mitochondrial function in the preimplantation embryo and hinders subsequent embryo and possibly offspring development. Global gene expression in fetal mouse brain was investigated following targeted mitochondrial inhibition by amino-oxyacetate (AOA) from the 2-cell to the blastocyst stage. Blastocysts were transferred to pseudopregnant recipients and RNA extracted from Day 18 fetal brains for microarray interrogation. Exposure to 5 μM AOA during preimplantation embryo development induced differential expression of 166 genes (>1.25 fold) in the fetal brain, relative to control medium-cultured embryos. Altered expression pathways included carbohydrate metabolism, neurological development, cellular proliferation and death, DNA replication, recombination and repair. Of 28 genes exhibiting the greatest change in expression, qPCR confirmed that 16 were significantly altered. Targeted qPCR assessment of a further 20 genes associated with methylation, acetylation and mitochondrial dysfunction revealed that three were significantly altered (Immp1l, Nars2, Sat2) and Dmap1 exhibited a sex-specific response to AOA exposure. Only 2/48 genes had significantly altered expression by qPCR (Nola3, Timm8b) in fetal brains exposed to 50 μM AOA embryo culture, excluding an AOA dose-dependent response. It was concluded that perturbation of mitochondrial function induced by 5 μM AOA during preimplantation embryo development alters gene expression in the neonatal brain in a manner that suggests that proper brain development may be compromised.
Collapse
|
17
|
Cadiñanos J, Llorente JL, de la Rosa J, Villameytide JA, Illán R, Durán NS, Murias E, Cabanillas R. Novel germline SDHD deletion associated with an unusual sympathetic head and neck paraganglioma. Head Neck 2010; 33:1233-40. [DOI: 10.1002/hed.21384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2009] [Indexed: 12/17/2022] Open
|
18
|
Sedivá A, Smith CIE, Asplund AC, Hadac J, Janda A, Zeman J, Hansíková H, Dvoráková L, Mrázová L, Velbri S, Koehler C, Roesch K, Sullivan KE, Futatani T, Ochs HD. Contiguous X-chromosome deletion syndrome encompassing the BTK, TIMM8A, TAF7L, and DRP2 genes. J Clin Immunol 2007; 27:640-6. [PMID: 17851739 DOI: 10.1007/s10875-007-9123-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Accepted: 07/30/2007] [Indexed: 11/28/2022]
Abstract
X-linked agammaglobulinemia (XLA) is characterized by low levels of B-lymphocytes with early-onset, recurrent, microbial infections occasionally causing neurological symptoms. We observed an atypical clinical course of XLA, complicated since early childhood with neurological impairment, progressive sensorineural deafness, and dystonia in six boys of four unrelated families. The neurologic symptoms suggested the diagnosis of Mohr-Tranebjaerg syndrome, caused by mutations in the TIMM8A gene, previously known as DDP1, and located centromerically of BTK. Deafness dystonia peptide (DDP1) participates in neurological development and is a part of the mitochondrial protein import pathway. Mutation analysis of the BTK gene revealed gross deletions of different lengths in all patients, in one case extending approximately 196 kb, including the genes TIMM8A, TAF7L, and DRP2. The most prominent clinical findings of this contiguous deletion syndrome are the combination of immunodeficiency and sensorineural deafness, which were present in all affected boys. The severity of symptoms, however, did not correlate with the extent of the deletion.
Collapse
Affiliation(s)
- Anna Sedivá
- Institute of Immunology, University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Molecular Genetics of a Patient with Mohr–Tranebjaerg Syndrome due to a New Mutation in the DDP1 Gene. Neuromolecular Med 2007; 9:285-91. [DOI: 10.1007/s12017-007-8000-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 06/18/2007] [Indexed: 11/27/2022]
|
20
|
Blesa JR, Hernández-Yago J. Distinct functional contributions of 2 GABP–NRF-2 recognition sites within the context of the human TOMM70 promoter. Biochem Cell Biol 2006; 84:813-22. [PMID: 17167546 DOI: 10.1139/o06-064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TOMM70 is a subunit of the outer mitochondrial membrane translocase that plays a major role as a receptor of hydrophobic preproteins targeted to mitochondria. We have previously reported 2 binding sites for the transcription factor GABP–NRF-2 in the promoter region of the human TOMM70 gene that are important in activating transcription. To assess the functionality and actual role of these sites, chromatin immunoprecipitation, site-directed mutagenesis, and electrophoretic mobility shift assays were carried out. We conclude that GABP–NRF-2 binds in vivo to the TOMM70 promoter, and that the 2 GABP–NRF-2 binding sites of the promoter have different functional contributions in promoting TOMM70 expression. Evidence is provided that they work in an additive manner as single sites.
Collapse
Affiliation(s)
- José R Blesa
- Fundación Centro de Investigación Príncipe Felipe, Av. Autopista del Saler 16-3, 46013 Valencia, Spain
| | | |
Collapse
|
21
|
Arnoult D, Rismanchi N, Grodet A, Roberts RG, Seeburg DP, Estaquier J, Sheng M, Blackstone C. Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr Biol 2006; 15:2112-8. [PMID: 16332536 DOI: 10.1016/j.cub.2005.10.041] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 10/10/2005] [Accepted: 10/12/2005] [Indexed: 12/19/2022]
Abstract
Mitochondrial morphology within cells is controlled by precisely regulated rates of fusion and fission . During programmed cell death (PCD), mitochondria undergo extensive fragmentation and ultimately caspase-independent elimination through a process known as mitoptosis . Though this increased fragmentation is due to increased fission through the recruitment of the dynamin-like GTPase Drp1 to mitochondria , as well as to a block in mitochondrial fusion , cellular mechanisms underlying these processes remain unclear. Here, we describe a mechanism for the increased mitochondrial Drp1 levels and subsequent stimulation of mitochondrial fission seen during PCD. We observed Bax/Bak-mediated release of DDP/TIMM8a, a mitochondrial intermembrane space (IMS) protein , into the cytoplasm, where it binds to and promotes the mitochondrial redistribution of Drp1, a mediator of mitochondrial fission. Using both loss- and gain-of-function assays, we also demonstrate that the Drp1- and DDP/TIMM8a-dependent mitochondrial fragmentation observed during PCD is an important step in mitoptosis, which in turn is involved in caspase-independent cell death. Thus, following Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), IMS proteins released comprise not only apoptogenic factors such as cytochrome c involved in caspase activation but also DDP/TIMM8a, which activates Drp1-mediated fission to promote mitochondrial fragmentation and subsequently elimination during PCD.
Collapse
Affiliation(s)
- Damien Arnoult
- Cellular Neurology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Santamaría I, Alvarez-Hernández D, Jofré R, Polo JR, Menárguez J, Cannata-Andía JB. Progression of secondary hyperparathyroidism involves deregulation of genes related to DNA and RNA stability. Kidney Int 2005; 67:2267-79. [PMID: 15882268 DOI: 10.1111/j.1523-1755.2005.00330.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Renal secondary hyperparathyroidism in its late stages becomes autonomous, so excessive parathyroid hormone (PTH) secretion no longer responds to physiologic stimuli or to aggressive medical treatment. METHODS To gain molecular understanding of progression of renal secondary hyperparathyroidism, normal and hyperplastic parathyroid tissue with diffuse and nodular growth were analyzed. The results were also compared to parathyroid adenomas. The analysis was performed by high-density oligonucleotide microarray and bidirectional subtraction library. RESULTS Analysis of the DNA arrays found 16 overexpressed and 132 repressed genes in the nodules while the subtraction library produced 34 overexpressed and 40 repressed genes. The differentially expressed genes between diffuse and nodular samples included some related to DNA stability and repair (TALDO1, PRDX2, DDB1, XRCC1, and POLB), RNA stability and degradation (OASL and AUF1), protein synthesis and processing (PFDN5, HSPD1, and NACA), cell growth (CDC25C and GRPR), and tumorigenesis and cell cycle (VIL2 and TPD52). CONCLUSION According to the function described for the deregulated genes, when secondary hyperparathyroidism becomes autonomous and refractory to treatment, RNA degradation may be increased while DNA integrity may be compromised. These two mechanisms, combined with deregulation of genes related to growth and differentiation show the complex pathway of parathyroid glands' evolution in renal hyperparathyroidism and may explain the large amount of molecular cytogenetic aberrations found in refractory hyperparathyroidism. Considering that some of the genes with altered expression in nodular hyperplasia lead to irreversible consequences in the genomic integrity of the cells, an adequate and early management of the secondary hyperparathyroidism of chronic kidney disease becomes mandatory.
Collapse
Affiliation(s)
- Iñigo Santamaría
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | | | | | | | | | | |
Collapse
|
23
|
Mühlenbein N, Hofmann S, Rothbauer U, Bauer MF. Organization and Function of the Small Tim Complexes Acting along the Import Pathway of Metabolite Carriers into Mammalian Mitochondria. J Biol Chem 2004; 279:13540-6. [PMID: 14726512 DOI: 10.1074/jbc.m312485200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tim9, Tim10a, and Tim10b are members of the family of small Tim proteins located in the intermembrane space of mammalian mitochondria. In yeast, members of this family act along the TIM22 import pathway during import of metabolite carriers and other integral inner membrane proteins. Here, we show that the human small proteins form two distinct hetero-oligomeric complexes. A 70-kDa complex that contains Tim9 and Tim10a and a Tim9-10a-10b that is part of a higher molecular weight assembly of 450 kDa. This distribution among two complexes suggests Tim10b to be the functional homologue of yeast Tim12. Both human complexes are tightly associated with the inner membrane and, compared with yeast, soluble 70-kDa complexes appear to be completely absent in the intermembrane space. Thus, the function of soluble 70-kDa complexes as trans-site receptors for incoming carrier proteins is not conserved from lower to higher eukaryotes. During import, the small Tim complexes directly interact with human adenine nucleotide translocator (ANT) in transit in a metal-dependent manner. For insertion of carrier preproteins into the inner membrane, the human small Tim proteins directly interact with human Tim22, the putative insertion pore of the TIM22 translocase. However, in contrast to yeast, only a small fraction of Tim9-Tim10a-Tim10b complex is in a stable association with Tim22. We conclude that different mechanisms and specific requirements for import and insertion of mammalian carrier preproteins have evolved in higher eukaryotes.
Collapse
Affiliation(s)
- Nicole Mühlenbein
- Institut für Diabetesforschung, Akademisches Krankenhaus München-Schwabing, Kölner Platz 1, D-80804 München, Germany
| | | | | | | |
Collapse
|
24
|
Paixão S, Colaluca IN, Cubells M, Peverali FA, Destro A, Giadrossi S, Giacca M, Falaschi A, Riva S, Biamonti G. Modular structure of the human lamin B2 replicator. Mol Cell Biol 2004; 24:2958-67. [PMID: 15024083 PMCID: PMC371099 DOI: 10.1128/mcb.24.7.2958-2967.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/07/2003] [Accepted: 12/22/2003] [Indexed: 11/20/2022] Open
Abstract
The cis-acting elements necessary for the activity of DNA replication origins in metazoan cells are still poorly understood. Here we report a thorough characterization of the DNA sequence requirements of the origin associated with the human lamin B2 gene. A 1.2-kb DNA segment, comprising the start site of DNA replication and located within a large protein-bound region, as well as a CpG island, displays origin activity when moved to different ectopic positions. Genomic footprinting analysis of both the endogenous and the ectopic origins indicates that the large protein complex is assembled in both cases around the replication start site. Replacement of this footprinted region with an unrelated sequence, maintaining the CpG island intact, abolishes origin activity and the interaction with hORC2, a subunit of the origin recognition complex. Conversely, the replacement of 17 bp within the protected region reduces the extension of the protection without affecting the interaction with hORC2. This substitution does not abolish the origin activity but makes it more sensitive to the integration site. Finally, the nearby CpG island positively affects the efficiency of initiation. This analysis reveals the modular structure of the lamin B2 origin and supports the idea that sequence elements close to the replication start site play an important role in origin activation.
Collapse
Affiliation(s)
- Sónia Paixão
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Blackstone C, Roberts RG, Seeburg DP, Sheng M. Interaction of the deafness-dystonia protein DDP/TIMM8a with the signal transduction adaptor molecule STAM1. Biochem Biophys Res Commun 2003; 305:345-52. [PMID: 12745081 DOI: 10.1016/s0006-291x(03)00767-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Mohr-Tranebjaerg-Jensen deafness-dystonia-optic atrophy protein DDP/TIMM8a is translated on cytoplasmic ribosomes but targeted ultimately to the mitochondrial intermembrane space, where it is involved in mitochondrial protein import. STAM1 is a cytoplasmic signal-transducing adaptor molecule implicated in cytokine signaling. We report here a direct interaction between DDP and STAM1, identified by yeast two-hybrid screening and confirmed by co-immunoprecipitation, fusion protein "pull downs," and nuclear redistribution assays. DDP coordinates Zn(2+), and Zn(2+) was found to stimulate the DDP-STAM1 interaction in vitro. Endogenous STAM1 localizes predominantly to early endosomes, and we found no evidence that STAM1 is imported into mitochondria in vitro. Thus, the DDP-STAM1 interaction likely occurs in the cytoplasm or at the mitochondrial outer membrane. The DDP-STAM1 interaction requires a coiled-coil region in STAM1 that overlaps with the immunoreceptor tyrosine-based activation motif (ITAM), a region previously shown to be important for interaction with Jak2/3 and hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs). Thus, DDP binding may alter the interactions of STAM1 with several cytoplasmic proteins involved in cell signaling and endosomal trafficking.
Collapse
Affiliation(s)
- Craig Blackstone
- Cellular Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 36, Room 5W21, 9000 Rockville Pike, Bethesda, MD 20892-4164, USA
| | | | | | | |
Collapse
|
26
|
Bauer MF, Hofmann S, Neupert W. Import of mitochondrial proteins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:57-90. [PMID: 12512337 DOI: 10.1016/s0074-7742(02)53004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthias F Bauer
- Institute of Clinical Chemistry, Molecular Diagnostics and Mitochondrial Genetics and Diabetes Research Group, Academic Hospital Munich-Schwabing Kölner Platz, D-80804 München, Germany
| | | | | |
Collapse
|
27
|
van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 2002; 9:1031-42. [PMID: 12232790 DOI: 10.1038/sj.cdd.4401088] [Citation(s) in RCA: 457] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2002] [Revised: 06/07/2002] [Accepted: 06/11/2002] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are 'life-essential' organelles for the production of metabolic energy in the form of ATP. Paradoxically mitochondria also play a key role in controlling the pathways that lead to cell death. This latter role of mitochondria is more than just a 'loss of function' resulting in an energy deficit but is an active process involving different mitochondrial proteins. Cytochrome c was the first characterised mitochondrial factor shown to be released from the mitochondrial intermembrane space and to be actively implicated in apoptotic cell death. Since then, other mitochondrial proteins, such as AIF, Smac/DIABLO, endonuclease G and Omi/HtrA2, were found to undergo release during apoptosis and have been implicated in various aspects of the cell death process. Members of the Bcl-2 protein family control the integrity and response of mitochondria to apoptotic signals. The molecular mechanism by which mitochondrial intermembrane space proteins are released and the regulation of mitochondrial homeostasis by Bcl-2 proteins is still elusive. This review summarises and evaluates the current knowledge concerning the complex role of released mitochondrial proteins in the apoptotic process.
Collapse
Affiliation(s)
- G van Loo
- Molecular Signalling and Cell Death Unit, Department of Molecular Biomedical Research, VIB, Gent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Van Loo G, Demol H, van Gurp M, Hoorelbeke B, Schotte P, Beyaert R, Zhivotovsky B, Gevaert K, Declercq W, Vandekerckhove J, Vandenabeele P. A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid. Cell Death Differ 2002; 9:301-8. [PMID: 11859412 DOI: 10.1038/sj.cdd.4400966] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2001] [Revised: 09/18/2001] [Accepted: 09/26/2001] [Indexed: 01/18/2023] Open
Abstract
A crucial event in the process of apoptosis is caspase-dependent generation of truncated Bid (tBid), inducing release of cytochrome c. In an in vitro reconstitution system we combined purified recombinant tBid with isolated liver mitochondria and identified the released proteins using a proteomic matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) approach. In order to meet physiological conditions, the concentration of tBid was chosen such that it was unable to induce cytochrome c release in mitochondria derived from liver-specific Bcl-2-transgenic mice. Several mitochondrial proteins were identified to be released in a tBid-dependent way, among which cytochrome c, DIABLO/Smac, adenylate kinase 2, acyl-CoA-binding protein, endonuclease G, polypyrimidine tract-binding protein, a type-I RNA helicase, a WD-40 repeat-containing protein and the serine protease Omi. Western blotting confirmed the absence of adenylate kinase 3, a matrix mitochondrial protein. These results demonstrate that a physiologically relevant concentration of tBid is sufficient to induce release of particular intermembrane mitochondrial proteins belonging to a broad molecular-mass range.
Collapse
Affiliation(s)
- G Van Loo
- Flanders Interuniversity Institute for Biotechnology and Ghent University, Department of Molecular Biology, Unit of Molecular Signaling and Cell Death, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rothbauer U, Hofmann S, Mühlenbein N, Paschen SA, Gerbitz KD, Neupert W, Brunner M, Bauer MF. Role of the deafness dystonia peptide 1 (DDP1) in import of human Tim23 into the inner membrane of mitochondria. J Biol Chem 2001; 276:37327-34. [PMID: 11489896 DOI: 10.1074/jbc.m105313200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tim8 and Tim13 of yeast belong to a family of evolutionary conserved zinc finger proteins that are organized in hetero-oligomeric complexes in the mitochondrial intermembrane space. Mutations in DDP1 (deafness dystonia peptide 1), the human homolog of Tim8, are associated with the Mohr-Tranebjaerg syndrome, a progressive neurodegenerative disorder. We show that DDP1 acts with human Tim13 in a complex in the intermembrane space. The DDP1.hTim13 complex is in direct contact with translocation intermediates of human Tim23 in mammalian mitochondria. The human DDP1.hTim13 complex complements the function of the TIM8.13 complex in yeast and facilitates import of yeast and human Tim23. Thus, the pathomechanism underlying the Mohr-Tranebjaerg syndrome may involve an impaired biogenesis of the human TIM23 complex causing severe pleiotropic mitochondrial dysfunction.
Collapse
Affiliation(s)
- U Rothbauer
- Institut für Klinische Chemie, Molekulare Diagnostik und Mitochondriale Genetik, Akademisches Lehrkrankenhaus München-Schwabing, Koelner Platz 1, München 80804, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kaiser A, Fedrowitz M, Ebert U, Zimmermann E, Hedrich HJ, Wedekind D, Löscher W. Auditory and vestibular defects in the circling (ci2) rat mutant. Eur J Neurosci 2001; 14:1129-42. [PMID: 11683905 DOI: 10.1046/j.0953-816x.2001.01726.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The circling rat is an autosomal recessive mutant (homozygous ci2/ci2) that displays lateralized circling behaviour, locomotor hyperactivity, ataxia and stereotypic head-movement. These abnormal behaviours occur in phases or bursts either spontaneously or in response to stress. Heterozygous (ci2/+) littermates display normal spontaneous behaviours. We have previously found that ci2/ci2 rats of both genders have a lower tissue content of dopamine in the striatum ipsilateral to the preferred direction of rotation, indicating that the rats turn away from the brain hemisphere with higher striatal dopaminergic activity. In view of the similarities of the motor syndrome of the ci2/ci2 mutant rat to that of mouse deafness mutants, the present study evaluated the hearing ability of the circling rat mutant by recording brainstem auditory-evoked potentials. To test for vestibular dysfunction, a swimming test was conducted. Histological methods were used to examine the cochlear and vestibular parts of the inner ear and the cochlear and vestibular brainstem nuclei for defects. The absence of auditory-evoked potentials demonstrated a complete hearing loss in the adult ci2/ci2 mutant rat, whereas heterozygous littermates exhibited auditory-evoked potentials with thresholds resembling those of other laboratory strains. Furthermore, the mutant rats were unable to swim. Histological analysis of the inner ear of adult mutants revealed virtually complete loss of the cochlear neuroepithelium, while no such hair cell degeneration was seen in the vestibular parts of the inner ear. However, part of the vestibular hair cells showed protrusions into the endolymphatic space, suggesting alterations in the cytoskeletal architecture. The histological findings in mutant circling rats strongly indicate that the hearing loss of the mutants is of the sensory neural type, the most prevalent type of hearing loss. In the cochlear nuclei of the brain stem of mutant rats, neurons exhibited an abnormal shape, reduced size and increased density compared to controls. In contrast, no abnormal neuronal morphology was seen in the vestibular nuclei, but a significantly reduced neuronal density was found in the medial vestibular nucleus. Abnormal vestibular function would be a likely explanation for the disturbed balance of mutant rats as exemplified by the ataxia and the inability to swim, whereas the previous data on these rats strongly indicate an involvement of the basal ganglia in the abnormal circling behaviour. The genetic defect in the mutant rats, thus, results in a clinical syndrome with features also seen in human genetic disorders with deafness and hyperkinesia, making the ci2/ci2 rat an excellent model for investigating both cochlear/vestibular dysfunction and hyperkinetic movement disorders.
Collapse
Affiliation(s)
- A Kaiser
- Department of Zoology, School of Veterinary Medicine, 30559 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Swerdlow RH, Wooten GF. A novel deafness/dystonia peptide gene mutation that causes dystonia in female carriers of Mohr-Tranebjaerg syndrome. Ann Neurol 2001; 50:537-40. [PMID: 11601506 DOI: 10.1002/ana.1160] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sex-linked male deafness and dystonia (Mohr-Tranebjaerg syndrome) arises from mutation of the deafness/dystonia peptide (DDP) gene. We describe a novel guanine deletion at nucleotide 108 of the DDP gene in a family with Mohr-Tranebjaerg syndrome, which terminates this 97-amino acid protein at codon 25. Unlike previously reported kindreds, carrier females in this family also manifest dystonias, including torticollis and writer's cramp. A family history of male deafness should alert clinicians to the possibility of DDP mutation in women with focal dystonias.
Collapse
Affiliation(s)
- R H Swerdlow
- Department of Neurology and the Center for the Study of Neurodegenerative Diseases, University of Virginia Health System, Charlottesville, USA.
| | | |
Collapse
|
32
|
Bauer MF, Neupert W. Import of proteins into mitochondria: a novel pathomechanism for progressive neurodegeneration. J Inherit Metab Dis 2001; 24:166-80. [PMID: 11405338 DOI: 10.1023/a:1010314900814] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vast majority of mitochondrial proteins are encoded as precursors by the nuclear genome. A major aspect of mitochondrial biogenesis is therefore the transfer of nuclear-encoded, cytosplasmically synthesized precursor proteins across and into the mitochondrial membranes. During the past years the use of simple model organisms such as the yeasts S. cerevisiae and N. crassa has helped considerably to identify and unravel the structure and function of a substantial number of components involved in targeting of nuclear-encoded preproteins to mitochondria. Several pathways and a number of components were characterized that are involved in guiding mitochondrial preproteins to their specific sites of function. In particular, import of nuclear-encoded precursor proteins into and across the mitochondrial inner membrane is mediated by two distinct translocases, the TIM23 complex and the TIM22 complex. Both TIM complexes cooperate with the general preprotein translocase of the outer membrane, TOM complex. The TIM complexes differ in the their substrate specificity. While the TIM23 complex mediates import of preproteins with a positively charged matrix targeting signal, the TIM22 complex facilitates the insertion of a class of hydrophobic proteins with internal targeting signals into the inner membrane. Most recently the rapid progress of research has allowed elucidation of a new mitochondrial disease on the molecular level. This rare X-linked progressive neurodegenerative disorder, named Mohr-Tranebjaerg (MT syndrome), is caused by mutations in the DDP1 gene and includes sensorineural deafness, blindness, mental retardation and a complex movement disorder. The analysis of the novel pathomechanism is based on the homology of the affected DDP1 protein to a family of conserved yeast components acting along the TIM22 pathway. This contribution briefly summarizes the current knowledge of the pathways of protein import and proposes a mechanism to explain how defective import leads to neurodegeneration.
Collapse
Affiliation(s)
- M F Bauer
- Institut fur Klinische Chemie, Molekulare Diagnostik und Mitochondriale Genetik am Akad. Lehrkrankenhaus München-Schwabing, Germany.
| | | |
Collapse
|
33
|
Seyda A, Newbold RF, Hudson TJ, Verner A, MacKay N, Winter S, Feigenbaum A, Malaney S, Gonzalez-Halphen D, Cuthbert AP, Robinson BH. A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13. Am J Hum Genet 2001; 68:386-96. [PMID: 11156534 PMCID: PMC1235272 DOI: 10.1086/318196] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Accepted: 11/28/2000] [Indexed: 11/03/2022] Open
Abstract
We have studied cultured skin fibroblasts from three siblings and one unrelated individual, all of whom had fatal mitochondrial disease manifesting soon after birth. After incubation with 1 mM glucose, these four cell strains exhibited lactate/pyruvate ratios that were six times greater than those of controls. On further analysis, enzymatic activities of the pyruvate dehydrogenase complex, the 2-oxoglutarate dehydrogenase complex, NADH cytochrome c reductase, succinate dehydrogenase, and succinate cytochrome c reductase were severely deficient. In two of the siblings the enzymatic activity of cytochrome oxidase was mildly decreased (by approximately 50%). Metabolite analysis performed on urine samples taken from these patients revealed high levels of glycine, leucine, valine, and isoleucine, indicating abnormalities of both the glycine-cleavage system and branched-chain alpha-ketoacid dehydrogenase. In contrast, the activities of fibroblast pyruvate carboxylase, mitochondrial aconitase, and citrate synthase were normal. Immunoblot analysis of selected complex III subunits (core 1, cyt c(1), and iron-sulfur protein) and of the pyruvate dehydrogenase complex subunits revealed no visible changes in the levels of all examined proteins, decreasing the possibility that an import and/or assembly factor is involved. To elucidate the underlying molecular defect, analysis of microcell-mediated chromosome-fusion was performed between the present study's fibroblasts (recipients) and a panel of A9 mouse:human hybrids (donors) developed by Cuthbert et al. (1995). Complementation was observed between the recipient cells from both families and the mouse:human hybrid clone carrying human chromosome 2. These results indicate that the underlying defect in our patients is under the control of a nuclear gene, the locus of which is on chromosome 2. A 5-cM interval has been identified as potentially containing the critical region for the unknown gene. This interval maps to region 2p14-2p13.
Collapse
Affiliation(s)
- Agnieszka Seyda
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Robert F. Newbold
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Thomas J. Hudson
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Andrei Verner
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Neviana MacKay
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Susan Winter
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Annette Feigenbaum
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Suzann Malaney
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Diego Gonzalez-Halphen
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Andrew P. Cuthbert
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| | - Brian H. Robinson
- Metabolism Research Programme, Research Institute and Division of Clinical Genetics, Hospital for Sick Children, and Departments of Biochemistry and Paediatrics, University of Toronto, Toronto; Department of Biology and Biochemistry, Brunel University, Uxbridge, UK, Montréal General Hospital, Montréal; Medical Genetics/Metabolism, Valley Children’s Hospital, Fresno, CA; Garvin Institute of Medical Research, Darlinghurst, Australia; Departamento de Bioenergetica, Universidad Nacional Autonoma de Mexico, Mexico City; and Division of Medical and Molecular Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London
| |
Collapse
|
34
|
Paschen SA, Rothbauer U, Káldi K, Bauer MF, Neupert W, Brunner M. The role of the TIM8-13 complex in the import of Tim23 into mitochondria. EMBO J 2000; 19:6392-400. [PMID: 11101512 PMCID: PMC305865 DOI: 10.1093/emboj/19.23.6392] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tim8 and Tim13 are non-essential, conserved proteins of the mitochondrial intermembrane space, which are organized in a hetero-oligomeric complex. They are structurally related to Tim9 and Tim10, essential components of the import machinery for mitochondrial carrier proteins. Here we show that the TIM8-13 complex interacts with translocation intermediates of Tim23, which are partially translocated across the outer membrane but not with fully imported or assembled Tim23. The TIM8-13 complex binds to the N-terminal or intermediate domain of Tim23. It traps the incoming precursor in the intermembrane space thereby preventing retrograde translocation. The TIM8-13 complex is strictly required for import of Tim23 under conditions when a low membrane potential exists in the mitochondria. The human homologue of Tim8 is encoded by the DDP1 (deafness/dystonia peptide 1) gene, which is associated with the Mohr-Tranebjaerg syndrome (MTS), a progressive neurodegenerative disorder leading to deafness. It is demonstrated that import of human Tim23 is dependent on a high membrane potential. A mechanism to explain the pathology of MTS is discussed.
Collapse
Affiliation(s)
- S A Paschen
- Institut für Physiologische Chemie der Universität München, Goethestrasse 33, 80336 München, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
This article discusses the latest research in the molecular biology and genetics of hearing impairment and its importance to otolaryngologists. Recent research has led to the discovery of many of the genes and gene products that are responsible for hereditary hearing impairment. State mandated screening of newborn infants for hearing loss ensures that a large number of hearing-impaired children will be detected at a very early age. Additionally, these children often will be referred to the otolaryngologist for evaluation of the hearing impairment. It is the otolaryngologist who must gather a detailed family history and perform a thorough physical examination to fully assess the cause of the hearing impairment. In taking the family history, it is important to note that the diagnosis of a hereditary hearing impairment often involves the evaluation of a large-sized family that has a history of hearing disorders. A history of an affected individual in a small family does not necessarily support a diagnosis of hearing impairment in later affected offspring because of the small sample size. Often, a hearing impairment that is part of a syndrome may not be detected because the physical findings associated with a syndrome are subtle in a young infant. For example, the white forelock seen in patients with Waardenburg's syndrome type I cannot be visualized in the infant who lacks hair. Additionally, some patients with syndromic hearing impairment do not present with physical findings, but rather they exhibit abnormal laboratory studies. Additional points to remember include the following: As infectious iatrogenic causes of hearing impairment decrease, the relative incidence of hereditary hearing impairment will increase. Hereditary hearing impairment can present as an isolated finding, or in association with a number of anomalies recognizable as a syndrome. The study of genetics and molecular biology has led to the identification of genes associated with hearing impairment and will allow for future screening and possible therapy for the hearing-impaired. The screening of newborns for hearing impairment using the techniques of molecular biologists and geneticists will result in early identification and appropriate intervention for those at risk for hereditary hearing impairment. An understanding of the syndromic and nonsyndromic causes of hereditary hearing impairment can help the otolaryngologist make a diagnosis and provide appropriate audiologic and educational management to the patient.
Collapse
Affiliation(s)
- K M Grundfast
- Department of Otolaryngology-Head and Neck Surgery, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
36
|
Nakane T, Inada Y, Ito F, Itoh N, Tazawa S, Chiba S. Cloning and expression of mouse deafness dystonia peptide 1 cDNA. Biochem Biophys Res Commun 2000; 273:759-64. [PMID: 10873677 DOI: 10.1006/bbrc.2000.3004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complementary DNA of mouse deafness dystonia peptide 1 (DDP1) was isolated from adipocyte cDNA library and expressed in mammalian cells. The sequence shares homology of 92 and 97% on the nucleic acid and the amino acid levels with human DDP1. In comparison to mouse Bruton's tyrosine kinase (Btk) locus, the coding region spans 2 exons and the splice point is the same as human DDP1. Northern blot analysis suggests that mouse DDP1 expresses ubiquitously. In vitro transcription/translation study showed that the cDNA of mouse DDP1 codes about 11 kDa peptide. DDP1 tagged with FLAG localized in mitochondria and cytoplasm of COS7 cells. P19 embryonal carcinoma cells transfected with anti sense DDP1 cDNA were frequently dead after subculture and all the survivals expressed endogenous DDP1 mRNA. Therefore, mouse DDP1 may play an important role to survive in contrast to Tim8p, a yeast homologue, which was unnecessary in yeast.
Collapse
Affiliation(s)
- T Nakane
- Department of Pharmacology, Department of Pathology, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621,
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Mitochondria have been linked to both necrotic and apoptotic cell death, which are thought to have a major role in the pathogenesis of neurodegenerative diseases. Recent evidence shows that nuclear gene defects affecting mitochondrial function have a role in the pathogenesis of Friedreich's ataxia, Wilson's disease and hereditary spastic paraplegia. There is also accumulating evidence that mitochondrial dysfunction might have a role in the pathogenesis of amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease and Alzheimer's disease. If this is so, a number of therapeutic targets are implicated that might result in novel treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- M F Beal
- Dept of Neurology and Neuroscience, Weill Medical College of Cornell University and the New York Hospital, Weill Cornell Medical Center, New York, NY 10021, USA
| |
Collapse
|