1
|
Lian X, Bai Y, Du P, Jing Z, Gao J, Liu F, Hu J, Xi Y. Causal influences of testosterone on brain structure change rate: A sex-stratified Mendelian randomization study. J Steroid Biochem Mol Biol 2025; 245:106629. [PMID: 39481491 DOI: 10.1016/j.jsbmb.2024.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
The impact of testosterone levels on changes in brain structure has been reported. However, it is still unclear which specific brain region could be affected. This study approached Mendelian randomization method to reveal the causal relationship between testosterone levels and the rate of longitudinal structural changes in the brain. The testosterone-related GWAS data were determined from 425,097 European participants. The GWAS data on the rate of longitudinal structural changes in the brain came from the ENIGMA consortium, which included 15,640 all-age participants from 40 longitudinal cohorts. The inverse variance weighted was considered as the main estimate, MR Egger and weighted median methods were used to supplement IVW. A positive correlation was found between total testosterone levels and bioavailable testosterone levels in women and age-independent longitudinal changes in cerebral WM and surface area. The sex hormone-binding globulin levels were found a negative correlation with age-dependent longitudinal structural changes of cortical GM in men. Additionally, we also found that the bioavailable testosterone level in males was negatively associated with the quadratic age-dependent longitudinal change rate in the globus pallidum. We also found estradiol levels and sex hormone-binding globulin levels were negatively associated with the quadratic age-dependent longitudinal change rate of total brain in men. Moreover, we found a positive correlation between total testosterone levels and linear age-dependent longitudinal changes in the hippocampus in both males and females. The testosterone levels in different genders may have varying degrees of causal effects on the structural changes of brain regions. These findings provide evidence for the influence of the brain glandular axis on brain structure, particularly during female brain development.
Collapse
Affiliation(s)
- Xin Lian
- Department of Obstetrics and Gynecology, People's Hospital of Linyi County, Yuncheng Central Hospital of Shanxi Medical University, 1125 Fuxi Street, Yuncheng 044100, China
| | - Yaqi Bai
- School of Clinical Medicine, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030000, China
| | - Pengyang Du
- Department of Neurology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Zhinan Jing
- School of Clinical Medicine, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030000, China
| | - Jimi Gao
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Fan Liu
- Department of Neurology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Jingjing Hu
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China.
| | - Yujia Xi
- Department of Urology, Second Hospital of Shanxi Medical University, Male Reproductive Medicine Center, 382 Wuyi Road, Taiyuan 030001, China.
| |
Collapse
|
2
|
Joue G, Navarro-Schröder T, Achtzehn J, Moffat S, Hennies N, Fuß J, Döller C, Wolbers T, Sommer T. Effects of estrogen on spatial navigation and memory. Psychopharmacology (Berl) 2024; 241:1037-1063. [PMID: 38407638 PMCID: PMC11031496 DOI: 10.1007/s00213-024-06539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
RATIONALE Animal studies suggest that the so-called "female" hormone estrogen enhances spatial navigation and memory. This contradicts the observation that males generally out-perform females in spatial navigation and tasks involving spatial memory. A closer look at the vast number of studies actually reveals that performance differences are not so clear. OBJECTIVES To help clarify the unclear performance differences between men and women and the role of estrogen, we attempted to isolate organizational from activational effects of estrogen on spatial navigation and memory. METHODS In a double-blind, placebo-controlled study, we tested the effects of orally administered estradiol valerate (E2V) in healthy, young women in their low-hormone menstrual cycle phase, compared to healthy, young men. Participants performed several first-person, environmentally rich, 3-D computer games inspired by spatial navigation and memory paradigms in animal research. RESULTS We found navigation behavior suggesting that sex effects dominated any E2 effects with men performing better with allocentric strategies and women with egocentric strategies. Increased E2 levels did not lead to general improvements in spatial ability in either sex but to behavioral changes reflecting navigation flexibility. CONCLUSION Estrogen-driven differences in spatial cognition might be better characterized on a spectrum of navigation flexibility rather than by categorical performance measures or skills.
Collapse
Affiliation(s)
- Gina Joue
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Tobias Navarro-Schröder
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
| | - Johannes Achtzehn
- Department of Neurology with Experimental Neurology (CVK), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Scott Moffat
- School of Psychology, Georgia Institute of Technology, 654 Cherry Street, Atlanta, GA, 30332, USA
| | - Nora Hennies
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Johannes Fuß
- Institute of Forensic Psychiatry and Sex Research, University Duisburg-Essen, Hohlweg 26, 45147, Essen, Germany
| | - Christian Döller
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
3
|
Yarmohammadi-Samani P, Vatanparast J. Sex-specific dendritic morphology of hippocampal pyramidal neurons in the adolescent and young adult rats. Int J Dev Neurosci 2024; 84:47-63. [PMID: 37933732 DOI: 10.1002/jdn.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
CA1 and CA3 pyramidal neurons are the major sources of hippocampal efferents. The structural features of these neurons are presumed to be involved in various normal/abnormal cognitive and emotional outcomes by influencing the pattern of synaptic inputs and neuronal signal processing. Although many studies have described hippocampal structure differences between males and females, these reports mainly focused on gross anatomical features in adult or aged models, and such distinctions on neuronal morphology and dendritic spine density during adolescence, a period of high vulnerability to neurodevelopmental disorders, have received much less attention. In this work, we analyzed dendritic architecture and density of spines in CA1 and CA3 neurons of male and female rats in early adolescence (postnatal day, PND 40) and compared them with those in late adolescence/young adulthood (PND 60). On PND 40, CA1 neurons of male rats showed more Sholl intersections and spine density in apical and basal dendrites compared to those in females. The Sholl intersections in basal dendrites of CA3 neurons were also more in males, whereas the number of apical dendrite intersections was not significantly different between sexes. In male rats, there was a notable decrease in the number of branch and terminal points in the basal dendrite of CA1 neurons of young adults when compared to their sex-matched adolescent rats. On the other hand, CA1 neurons in young adult females also showed more Sholl intersections in apical and basal dendrites compared to adolescent females. Meanwhile, the total cable length, the number of branches, and terminal points of apical dendrites in CA3 neurons also exhibited a significant reduction in young adult male rats compared to their sex-matched adolescents. In young adult rats, both apical and basal dendrites of CA3 neurons in males showed fewer intersections with Sholl circles, but there were no significant differences in dendritic spine density or count estimation between males and females. On the other hand, young adult female rats had more Sholl intersections and dendritic spine count on the basal dendrites of CA3 neurons compared to adolescent females. Although no significant sex- and age-dependent difference in neuronal density was detected in CA1 and CA3 subareas, CA3 pyramidal neurons of both male and female rats showed reduced soma area compared to adolescent rats. Our findings show that the sex differences in the dendritic structure of CA1 and CA3 neurons vary by age and also by the compartments of dendritic arbors. Such variations in the morphology of hippocampal pyramidal neurons may take part as a basis for normal cognitive and affective differences between the sexes, as well as distinct sensitivity to interfering factors and the prevalence of neuropsychological diseases.
Collapse
Affiliation(s)
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Lupu DI, Cediel Ulloa A, Rüegg J. Endocrine-Disrupting Chemicals and Hippocampal Development: The Role of Estrogen and Androgen Signaling. Neuroendocrinology 2023; 113:1193-1214. [PMID: 37356425 DOI: 10.1159/000531669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Hormones are important regulators of key processes during fetal brain development. Thus, the developing brain is vulnerable to the action of chemicals that can interfere with endocrine signals. Epidemiological studies have pointed toward sexually dimorphic associations between neurodevelopmental outcomes, such as cognitive abilities, in children and prenatal exposure to endocrine-disrupting chemicals (EDCs). This points toward disruption of sex steroid signaling in the development of neural structures underlying cognitive functions, such as the hippocampus, an essential mediator of learning and memory processes. Indeed, during development, the hippocampus is subjected to the organizational effects of estrogens and androgens, which influence hippocampal cell proliferation, differentiation, dendritic growth, and synaptogenesis in the hippocampal fields of Cornu Ammonis and the dentate gyrus. These early organizational effects correlate with a sexual dimorphism in spatial cognition and are subject to exogenous chemical perturbations. This review summarizes the current knowledge about the organizational effects of estrogens and androgens on the developing hippocampus and the evidence for hippocampal-dependent learning and memory perturbations induced by developmental exposure to EDCs. We conclude that, while it is clear that sex hormone signaling plays a significant role during hippocampal development, a complete picture at the molecular and cellular levels would be needed to establish causative links between the endocrine modes of action exerted by EDCs and the adverse outcomes these chemicals can induce at the organism level.
Collapse
Affiliation(s)
- Diana-Ioana Lupu
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Koyasu H, Takahashi H, Sasao I, Takagi S, Nagasawa M, Kikusui T. Sociality of Cats toward Humans Can Be Influenced by Hormonal and Socio-Environmental Factors: Pilot Study. Animals (Basel) 2022; 13:ani13010146. [PMID: 36611754 PMCID: PMC9817699 DOI: 10.3390/ani13010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Individual differences in the sociality of cats are influenced by inherited and environmental factors. We recently revealed that hormones can make a difference in intraspecies social behavior. It remains unclear whether cat behavior toward humans is modulated by hormones. Therefore, we analyzed the relationship between cat behavior and their basal hormone concentrations after spending time together with human experimenters. In addition, we analyzed the relationship between cat behavior and the timing of when the individual cats began living with a human because the sociality of cats could be dependent on their developmental experiences. The results showed that male cats that began living with humans earlier had more contact with an experimenter. In addition, individual male cats with low testosterone levels were more likely to interact with an experimenter. These findings of this pilot study suggest that the sociality of male cats toward humans is affected by testosterone and the age at which they begin to live with humans.
Collapse
Affiliation(s)
- Hikari Koyasu
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara 252-5201, Japan
| | - Hironobu Takahashi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara 252-5201, Japan
| | - Ikuto Sasao
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara 252-5201, Japan
| | - Saho Takagi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara 252-5201, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8471, Japan
| | - Miho Nagasawa
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara 252-5201, Japan
- Correspondence:
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara 252-5201, Japan
| |
Collapse
|
7
|
Pašukonis A, Serrano-Rojas SJ, Fischer MT, Loretto MC, Shaykevich DA, Rojas B, Ringler M, Roland AB, Marcillo-Lara A, Ringler E, Rodríguez C, Coloma LA, O'Connell LA. Contrasting parental roles shape sex differences in poison frog space use but not navigational performance. eLife 2022; 11:e80483. [PMID: 36377473 PMCID: PMC9665844 DOI: 10.7554/elife.80483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Sex differences in vertebrate spatial abilities are typically interpreted under the adaptive specialization hypothesis, which posits that male reproductive success is linked to larger home ranges and better navigational skills. The androgen spillover hypothesis counters that enhanced male spatial performance may be a byproduct of higher androgen levels. Animal groups that include species where females are expected to outperform males based on life-history traits are key for disentangling these hypotheses. We investigated the association between sex differences in reproductive strategies, spatial behavior, and androgen levels in three species of poison frogs. We tracked individuals in natural environments to show that contrasting parental sex roles shape sex differences in space use, where the sex performing parental duties shows wider-ranging movements. We then translocated frogs from their home areas to test their navigational performance and found that the caring sex outperformed the non-caring sex only in one out of three species. In addition, males across species displayed more explorative behavior than females and androgen levels correlated with explorative behavior and homing accuracy. Overall, we reveal that poison frog reproductive strategies shape movement patterns but not necessarily navigational performance. Together this work suggests that prevailing adaptive hypotheses provide an incomplete explanation of sex differences in spatial abilities.
Collapse
Affiliation(s)
- Andrius Pašukonis
- Institute of Biosciences, Vilnius University Life Sciences CenterVilniusLithuania
- CEFE, Univ MontpellierMontpellierFrance
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Shirley Jennifer Serrano-Rojas
- Department of Biology, Stanford UniversityStanfordUnited States
- Universidad Nacional de San Antonio Abad del CuscoCuscoPeru
| | | | - Matthias-Claudio Loretto
- Technical University of Munich, TUM School of Life Sciences, Ecosystem Dynamics and Forest Management, Hans-Carl-von-Carlowitz-PlatzFreisingGermany
- Berchtesgaden National Park, DoktorbergBerchtesgadenGermany
| | | | - Bibiana Rojas
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine ViennaViennaAustria
- Department of Biology and Environmental Science, University of JyväskyläJyväskyläFinland
| | - Max Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of BernHinterkappelenSwitzerland
- Institute of Electronic Music and Acoustics, University of Music and Performing Arts GrazGrazAustria
- Department of Behavioral and Cognitive Biology, University of ViennaViennaAustria
- Department of Evolutionary Biology, University of ViennaViennaAustria
| | - Alexandre B Roland
- Research Center on Animal Cognition, Center for Integrative Biology, CNRS - Paul Sabatier UniversityToulouseFrance
| | - Alejandro Marcillo-Lara
- Department of Integrative Biology, Oklahoma State UniversityStillwaterUnited States
- Centro Jambatu de Investigación y Conservación de AnfibiosQuitoEcuador
| | - Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of BernHinterkappelenSwitzerland
- Messerli Research Institute, University of Veterinary Medicine ViennaViennaAustria
| | - Camilo Rodríguez
- Department of Behavioral and Cognitive Biology, University of ViennaViennaAustria
| | - Luis A Coloma
- Centro Jambatu de Investigación y Conservación de AnfibiosQuitoEcuador
| | | |
Collapse
|
8
|
Fernández-Guasti A, Quintanar BG, Reyes R, Hernández A, Chavira R, Roselli CE. Androgen receptors immunoreactivity in the rat brain of males with same-sex preference. Horm Behav 2022; 146:105279. [PMID: 36370679 DOI: 10.1016/j.yhbeh.2022.105279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022]
Abstract
Androgen receptors (AR) are crucial in the control of male sexual behavior and sex preference. AR are particularly concentrated in areas related with the neuroendocrine control of sex preference including the medial amygdala (MeA), the ventromedial nucleus of the hypothalamus (VMH), the bed nucleus of the stria terminalis (BNST), the medial preoptic area (MPOA), the nucleus accumbens (Acb), the suprachiasmatic (SCh) and supraoptic (SO) nuclei, but also seem to be important for the control of reproductive processes in the hippocampus (CA1-CA4 and dentate gyrus, DG). In the present study we analyzed the density of AR in these brain areas of adult male rats with sexual preference (established in a three-compartment box). Same-sex preference was produced in male rats by the prenatal administration of the aromatase inhibitor, letrozole (0.56 μg/kg/ml s.c. G10-22) that usually produces 1-2 animals per litter with same sex preference, while the others retain a female sex preference. We also included a group of proestrus females that had a clear preference for a sexually active male. AR were analyzed by immunocytochemistry using PG21 as primary antibody. We also measured total plasma testosterone concentrations by radioimmunoassay. In males with same sex preference there was a specific AR overexpression in CA3 and CA4 that suggests a feminized pattern because females in proestrus trend to show a higher density of AR in these hippocampal areas. Sex differences in AR density were found in the anterior cingulate cortex (ACg) and frontoparietal cortex (FrPa). Serum levels of testosterone did not differ between groups. Data are discussed based on the role of AR in the hippocampus.
Collapse
Affiliation(s)
| | | | - Rebeca Reyes
- Departament of Pharmacobiology, Cinvestav, Unidad Coapa, México City, Mexico
| | - Alejandra Hernández
- Departament of Pharmacobiology, Cinvestav, Unidad Coapa, México City, Mexico
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Charles E Roselli
- Department of Chemical Physiology and Biochemistry, Oregon Health Science University, Portland, OR, USA
| |
Collapse
|
9
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
10
|
Transwoman Elite Athletes: Their Extra Percentage Relative to Female Physiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159103. [PMID: 35897465 PMCID: PMC9331831 DOI: 10.3390/ijerph19159103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
There is increasing debate as to whether transwoman athletes should be included in the elite female competition. Most elite sports are divided into male and female divisions because of the greater athletic performance displayed by males. Without the sex division, females would have little chance of winning because males are faster, stronger, and have greater endurance capacity. Male physiology underpins their better athletic performance including increased muscle mass and strength, stronger bones, different skeletal structure, better adapted cardiorespiratory systems, and early developmental effects on brain networks that wires males to be inherently more competitive and aggressive. Testosterone secreted before birth, postnatally, and then after puberty is the major factor that drives these physiological sex differences, and as adults, testosterone levels are ten to fifteen times higher in males than females. The non-overlapping ranges of testosterone between the sexes has led sports regulators, such as the International Olympic Committee, to use 10 nmol/L testosterone as a sole physiological parameter to divide the male and female sporting divisions. Using testosterone levels as a basis for separating female and male elite athletes is arguably flawed. Male physiology cannot be reformatted by estrogen therapy in transwoman athletes because testosterone has driven permanent effects through early life exposure. This descriptive critical review discusses the inherent male physiological advantages that lead to superior athletic performance and then addresses how estrogen therapy fails to create a female-like physiology in the male. Ultimately, the former male physiology of transwoman athletes provides them with a physiological advantage over the cis-female athlete.
Collapse
|
11
|
Williams ES, Mazei-Robison M, Robison AJ. Sex Differences in Major Depressive Disorder (MDD) and Preclinical Animal Models for the Study of Depression. Cold Spring Harb Perspect Biol 2022; 14:a039198. [PMID: 34404738 PMCID: PMC8886985 DOI: 10.1101/cshperspect.a039198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Depression and related mood disorders constitute an enormous burden on health, quality of life, and the global economy, and women have roughly twice the lifetime risk of men for experiencing depression. Here, we review sex differences in human brain physiology that may be connected to the increased susceptibility of women to major depressive disorder (MDD). Moreover, we summarize decades of preclinical research using animal models for the study of mood dysfunction that uncover some of the potential molecular, cellular, and circuit-level mechanisms that may underlie sex differences and disease etiology. We place particular emphasis on a series of recent studies demonstrating the central contribution of the circuit projecting from ventral hippocampus to nucleus accumbens and how inherent sex differences in the excitability of this circuit may predict and drive depression-related behaviors. The findings covered in this review underscore the continued need for studies using preclinical models and circuit-specific strategies for uncovering molecular and physiological mechanisms that could lead to potential sex-specific diagnosis, prognosis, prevention, and/or treatments for MDD and other mood disorders.
Collapse
Affiliation(s)
- Elizabeth S Williams
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
12
|
Osborne BF, Beamish SB, Schwarz JM. The effects of early-life immune activation on microglia-mediated neuronal remodeling and the associated ontogeny of hippocampal-dependent learning in juvenile rats. Brain Behav Immun 2021; 96:239-255. [PMID: 34126173 PMCID: PMC8319153 DOI: 10.1016/j.bbi.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
Many neurodevelopmental disorders and associated learning deficits have been linked to early-life immune activation or ongoing immune dysregulation (Laskaris et al., 2016; O'Connor et al., 2014; Frick et al., 2013). Neuroscientists have begun to understand how the maturation of neural circuits allows for the emergence of cognitive and learning behaviors; yet we know very little about how these developing neural circuits are perturbed by certain events, including risk-factors such as early-life immune activation and immune dysregulation. To answer these questions, we examined the impact of early-life immune activation on the emergence of hippocampal-dependent learning in juvenile male and female rats using a well-characterized hippocampal-dependent learning task and we investigated the corresponding, dynamic multicellular interactions in the hippocampus that may contribute to these learning deficits. We found that even low levels of immune activation can result in hippocampal-depedent learning deficits days later, but only when this activation occurs during a sensitive period of development. The initial immune response and associated cytokine production in the hippocampus resolved within 24 h, several days prior to the observed learning deficit, but notably the initial immune response was followed by altered microglial-neuronal communication and synapse remodeling that changed the structure of hippocampal neurons during this period of juvenile brain development. We conclude that immune activation or dysregulation during a sensitive period of hippocampal development can precipitate the emergence of learning deficits via a multi-cellular process that may be initiated by, but not the direct result of the initial cytokine response. SIGNIFICANCE STATEMENT: Many neurodevelopmental disorders have been linked to early-life immune activation or immune dysregulation; however, very little is known about how dynamic changes in neuroimmune cells mediate the transition from normal brain function to the early stages of cognitive disorders, or how changes in immune signaling are subsequently integrated into developing neuronal networks. The current experiments examined the consequences of immune activation on the cellular and molecular changes that accompany the emergence of learning deficits during a sensitive period of hippocampal development. These findings have the potential to significantly advance our understanding of how early-life immune activation or dysregulation can result in the emergence of cognitive and learning deficits that are the largest source of years lived with disability in humans.
Collapse
Affiliation(s)
- Brittany F. Osborne
- University of Delaware, Department of Psychological & Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA
| | - Sarah B. Beamish
- University of Delaware, Department of Psychological & Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA
| | - Jaclyn M. Schwarz
- University of Delaware, Department of Psychological & Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA
| |
Collapse
|
13
|
Nalvarte I, Varshney M, Inzunza J, Gustafsson JÅ. Estrogen receptor beta and neural development. VITAMINS AND HORMONES 2021; 116:313-326. [PMID: 33752823 DOI: 10.1016/bs.vh.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The female sex hormone estradiol (E2, 17β-estradiol) has important functions in the developing brain. In addition to regulating sexual differentiation of the brain, E2 participates in the development of brain areas involved in functions unrelated to reproduction, such as cognition. E2 signals mainly thorough two estrogen receptors; estrogen receptor alpha (ERα) and beta (ERβ). While ERα has distinct functions for sexual imprinting of the developing brain, ERβ is considered to participate in the development of brain areas related to cognitive function. In this chapter we will focus on ERβ's role during neural development. We will discuss the contributions of sex chromosomal and sex hormonal effects in this process and place it in relation to recent data on ERβ obtained from stem cell models. Finally, we will discuss the lessons learned from mouse and stem cell models in understanding ERβ's role in neural development and how new stem cell models, by addressing the human relevance, may help to advance our progress in this field.
Collapse
Affiliation(s)
- Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
| |
Collapse
|
14
|
Premachandran H, Zhao M, Arruda-Carvalho M. Sex Differences in the Development of the Rodent Corticolimbic System. Front Neurosci 2020; 14:583477. [PMID: 33100964 PMCID: PMC7554619 DOI: 10.3389/fnins.2020.583477] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, a growing body of research has shown sex differences in the prevalence and symptomatology of psychopathologies, such as depression, anxiety, and fear-related disorders, all of which show high incidence rates in early life. This has highlighted the importance of including female subjects in animal studies, as well as delineating sex differences in neural processing across development. Of particular interest is the corticolimbic system, comprising the hippocampus, amygdala, and medial prefrontal cortex. In rodents, these corticolimbic regions undergo dynamic changes in early life, and disruption to their normative development is believed to underlie the age and sex-dependent effects of stress on affective processing. In this review, we consolidate research on sex differences in the hippocampus, amygdala, and medial prefrontal cortex across early development. First, we briefly introduce current principles on sexual differentiation of the rodent brain. We then showcase corticolimbic regional sex differences in volume, morphology, synaptic organization, cell proliferation, microglia, and GABAergic signaling, and explain how these differences are influenced by perinatal and pubertal gonadal hormones. In compiling this research, we outline evidence of what and when sex differences emerge in the developing corticolimbic system, and illustrate how temporal dynamics of its maturational trajectory may differ in male and female rodents. This will help provide insight into potential neural mechanisms underlying sex-specific critical windows for stress susceptibility and behavioral emergence.
Collapse
Affiliation(s)
| | - Mudi Zhao
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
15
|
Pubertal timing predicts adult psychosexuality: Evidence from typically developing adults and adults with isolated GnRH deficiency. Psychoneuroendocrinology 2020; 119:104733. [PMID: 32563936 PMCID: PMC8938930 DOI: 10.1016/j.psyneuen.2020.104733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/24/2022]
Abstract
Evidence suggests that psychosexuality in humans is modulated by both organizational effects of prenatal and peripubertal sex steroid hormones, and by activational effects of circulating hormones in adulthood. Experimental work in male rodents indicates that sensitivity to androgen-driven organization of sexual motivation decreases across the pubertal window, such that earlier puberty leads to greater sex-typicality. We test this hypothesis in typically developing men (n = 231) and women (n = 648), and in men (n = 72) and women (n = 32) with isolated GnRH deficiency (IGD), in whom the precise timing of peripubertal hormone exposure can be ascertained via the age at which hormone replacement therapy (HRT) was initiated. Psychosexuality was measured with the Sexual Desire Inventory-2 (SDI-2) and Sociosexual Orientation Inventory-Revised (SOI-R). In both sexes, earlier recalled absolute pubertal timing predicted higher psychosexuality in adulthood, although the magnitude of these associations varied with psychosexuality type and group (i.e., typically developing and IGD). Results were robust when controlling for circulating steroid hormones in typically developing participants. Age of initiation of HRT in men with IGD negatively predicted SOI-R. We discuss the clinical implications of our findings for conditions in which pubertal timing is medically altered.
Collapse
|
16
|
Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol 2020; 197:101895. [PMID: 32781107 DOI: 10.1016/j.pneurobio.2020.101895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus. The hippocampus of cognitively impaired subjects tends to shrink with age; however, in many cases, this can be prevented by exercise or cognitive training, suggesting that if you do not use the hippocampus you lose it. We will review the developmental trajectory of sex steroids-regulated differences on the hippocampus, proposing that the overall shaping action of sex-steroids results in a lower usage of the hippocampus in females, which in turn makes them more vulnerable to the effects of ageing, the "network fragility hypothesis". To explain why women rely less on hippocampus-dependent strategies, we propose a "computational hypothesis" that is based on experimental evidence suggesting that the direct effects of estrogens on hippocampal synaptic and structural plasticity during the estrous-cycle confers instability to the memory-dependent hippocampal network. Finally, we propose to counteract AD with training and/or treatments, such as orienteering, which specifically favour the use of the hippocampus.
Collapse
Affiliation(s)
- Giulia Torromino
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
17
|
Abstract
The hippocampus is central to spatial learning and stress responsiveness, both of which differ in form and function in males versus females, yet precisely how the hippocampus contributes to these sex differences is largely unknown. In reproductively mature individuals, sex differences in the steroid hormone milieu undergirds many sex differences in hippocampal-related endpoints. However, there is also evidence for developmental programming of adult hippocampal function, with a central role for androgens as well as their aromatized byproduct, estrogens. These include sex differences in cell genesis, synapse formation, dendritic arborization, and excitatory/inhibitory balance. Enduring effects of steroid hormone modulation occur during two developmental epochs, the first being the classic perinatal critical period of sexual differentiation of the brain and the other being adolescence and the associated hormonal changes of puberty. The cellular mechanisms by which steroid hormones enduringly modify hippocampal form and function are poorly understood, but we here review what is known and highlight where attention should be focused.
Collapse
|
18
|
Spritzer MD, Roy EA. Testosterone and Adult Neurogenesis. Biomolecules 2020; 10:biom10020225. [PMID: 32028656 PMCID: PMC7072323 DOI: 10.3390/biom10020225] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
It is now well established that neurogenesis occurs throughout adulthood in select brain regions, but the functional significance of adult neurogenesis remains unclear. There is considerable evidence that steroid hormones modulate various stages of adult neurogenesis, and this review provides a focused summary of the effects of testosterone on adult neurogenesis. Initial evidence came from field studies with birds and wild rodent populations. Subsequent experiments with laboratory rodents have tested the effects of testosterone and its steroid metabolites upon adult neurogenesis, as well as the functional consequences of induced changes in neurogenesis. These experiments have provided clear evidence that testosterone increases adult neurogenesis within the dentate gyrus region of the hippocampus through an androgen-dependent pathway. Most evidence indicates that androgens selectively enhance the survival of newly generated neurons, while having little effect on cell proliferation. Whether this is a result of androgens acting directly on receptors of new neurons remains unclear, and indirect routes involving brain-derived neurotrophic factor (BDNF) and glucocorticoids may be involved. In vitro experiments suggest that testosterone has broad-ranging neuroprotective effects, which will be briefly reviewed. A better understanding of the effects of testosterone upon adult neurogenesis could shed light on neurological diseases that show sex differences.
Collapse
Affiliation(s)
- Mark D. Spritzer
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
- Correspondence: ; Tel.: 802-443-5676
| | - Ethan A. Roy
- Graduate School of Education, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
19
|
Tsai HW, Franklin M, Armoskus C, Taniguchi S, Moder C, Trang K, Santacruz M, Milla A. Androgenic regulation of sexually dimorphic expression of RNA binding motif protein 48 in the developing mouse cortex and hippocampus. Int J Dev Neurosci 2019; 78:33-44. [PMID: 31400491 PMCID: PMC6897302 DOI: 10.1016/j.ijdevneu.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022] Open
Abstract
To further reveal the molecular mechanism underlying sexual differentiation of the mouse cerebral cortex and hippocampus, we reanalyzed our previous microarray study with Gene Ontology (GO) term enrichment and found that the GO term "RNA binding" was over-represented among the 89 sexually dimorphic candidate genes. Thus, we selected 16 autosomal genes annotated to the term RNA binding and profiled their mRNA expression in the developing male and female mouse cortex/hippocampus. During the first three weeks after birth, sex differences in mRNA levels of Khdrbs2, Nanos2, Rbm48, and Tdrd3 were observed in the mouse cortex/hippocampus. Of these genes, only the female-biased expression of Rbm48 in neonates was abolished by prenatal exposure to testosterone propionate (TP), while postnatal treatment of TP three weeks after birth increased Rbm48 and Tdrd3 mRNA levels in both sexes. Regardless of sex, the postnatal cortex/hippocampus also showed a marked increase in the content of androgen receptor (Ar) and estrogen receptor β (Esr2), but a decrease in estrogen receptor α (Esr1) and aromatase (Cyp19a1), which might confer the different responses of Rbm48 to prenatal and postnatal TP. Our results suggest that androgen-regulated, sexually dimorphic Rbm48 expression might present a novel molecular mechanism by which perinatal androgens control development of sexual dimorphism in cortical and hippocampal structure and function.
Collapse
Affiliation(s)
- Houng-Wei Tsai
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Michael Franklin
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Chris Armoskus
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Saori Taniguchi
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Courtney Moder
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Kathy Trang
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Marilisa Santacruz
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Allyson Milla
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
20
|
Ycaza Herrera A, Wang J, Mather M. The gist and details of sex differences in cognition and the brain: How parallels in sex differences across domains are shaped by the locus coeruleus and catecholamine systems. Prog Neurobiol 2019; 176:120-133. [PMID: 29772255 PMCID: PMC6485927 DOI: 10.1016/j.pneurobio.2018.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/04/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Across three different domains, there are similar sex differences in how men and women process information. There tends to be a male advantage in attending to and remembering the gist (essential central information of a scene or situation), but a female advantage in attending to and remembering the details (non-essential peripheral information of a scene or situation). This is seen in emotional memory, where emotion enhances gist memory more for males than for females, but enhances detail memory more for females than for males. It also occurs in spatial memory, where men tend to notice and remember the gist of where they or objects are in space, allowing them to more flexibly manipulate themselves or objects within that space, whereas women tend to recall the details of the space around them, allowing them to accurately remember the locations of objects. Finally, such sex differences have also been noted in perception of stimuli such that men attend to global aspects of stimuli (such as a large letter E) more than women, whereas women attend more to the local aspects (such as the many smaller letter Ts making up the E). We review the parallel sex differences seen across these domains in this paper and how they relate to the different brain systems involved in each of these task domains. In addition, we discuss how sex differences in evolutionary pressures and in the locus coeruleus and norepinephrine system may account for why parallel sex differences occur across these different task domains.
Collapse
Affiliation(s)
| | - Jiaxi Wang
- University of Southern California, Leonard Davis School of Gerontology, United States; East China Normal University, School of Psychology and Cognitive Science, Shanghai Key Laboratory of Brain Functional Genomics, China
| | - Mara Mather
- University of Southern California, Leonard Davis School of Gerontology, United States; University of Southern California, Department of Psychology, United States; University of Southern California, Neuroscience Graduate Program, United States
| |
Collapse
|
21
|
Chung BYT, Bailey CDC. Sex differences in the nicotinic excitation of principal neurons within the developing hippocampal formation. Dev Neurobiol 2018; 79:110-130. [PMID: 30354016 DOI: 10.1002/dneu.22646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
The hippocampal formation (HF) plays an important role to facilitate higher order cognitive functions. Cholinergic activation of heteromeric nicotinic acetylcholine receptors (nAChRs) within the HF is critical for the normal development of principal neurons within this brain region. However, previous research investigating the expression and function of heteromeric nAChRs in principal neurons of the HF is limited to males or does not differentiate between the sexes. We used whole-cell electrophysiology to show that principal neurons in the CA1 region of the female mouse HF are excited by heteromeric nAChRs throughout postnatal development, with the greatest response occurring during the first two weeks of postnatal life. Excitability responses to heteromeric nAChR stimulation were also found in principal neurons in the CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI (ECVI) of young postnatal female HF. A direct comparison between male and female mice found that principal neurons in ECVI display greater heteromeric nicotinic passive and active excitability responses in females. This sex difference is likely influenced by the generally more excitable nature of ECVI neurons from female mice, which display a higher resting membrane potential, greater input resistance, and smaller afterhyperpolarization potential of medium duration (mAHP). These findings demonstrate that heteromeric nicotinic excitation of ECVI neurons differs between male and female mice during a period of major circuitry development within the HF, which may have mechanistic implications for known sex differences in the development and function of this cognitive brain region.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
22
|
Scandurra A, Marinelli L, Lõoke M, D’Aniello B, Mongillo P. The effect of age, sex and gonadectomy on dogs’ use of spatial navigation strategies. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Kosarussavadi S, Pennington ZT, Covell J, Blaisdell AP, Schlinger BA. Across sex and age: Learning and memory and patterns of avian hippocampal gene expression. Behav Neurosci 2018; 131:483-491. [PMID: 29189019 DOI: 10.1037/bne0000222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Age-related decrements in cognitive ability have been proposed to stem from deteriorating function of the hippocampus. Many birds are long lived, especially for their relatively small body mass and elevated metabolism, making them a unique model of resilience to aging. Nevertheless, little is known about avian age-related changes in cognition and hippocampal physiology. We studied spatial cognition and hippocampal expression of the age-related gene, Apolipoprotein D (ApoD), and the immediate early gene Egr-1 in zebra finches at various developmental time points. In a first experiment, middle-aged adult males outperformed middle-aged females in learning correct food locations in a four-arm maze, but all birds remembered the task equally well after a 5- or 10-day delay. In a second experiment comparing young and old birds, aged birds showed minimal evidence for deterioration in spatial cognition or motivation relative to young birds, except that aged females showed less rapid gains in accuracy during spatial learning than young females. These findings indicate that sex differences in hippocampus-dependent spatial learning and decline with age are phylogenetically conserved. With respect to hippocampal gene expression, adult females expressed Egr-1 at significantly greater levels than males after memory retrieval, perhaps reflecting a neurobiological compensation. Contrary to mammals, ApoD expression was elevated in young zebra finches compared with aged birds. This may explain the near absence of decrements in spatial memory due to age, possibly indicating an alternative mechanism of managing oxidative stress in aged birds. (PsycINFO Database Record
Collapse
Affiliation(s)
- Saritha Kosarussavadi
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| | | | - Jeremy Covell
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| | | | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| |
Collapse
|
24
|
Babstock DM, Walling SG, Harley CW, Malsbury CW. Androgen receptor ontogeny in the dorsal hippocampus of male and female rats. Horm Behav 2018. [PMID: 29534889 DOI: 10.1016/j.yhbeh.2018.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- D M Babstock
- Psychology Department, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - S G Walling
- Psychology Department, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - C W Harley
- Psychology Department, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada.
| | - C W Malsbury
- Psychology Department, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| |
Collapse
|
25
|
Wagner BA, Braddick VC, Batson CG, Cullen BH, Miller LE, Spritzer MD. Effects of testosterone dose on spatial memory among castrated adult male rats. Psychoneuroendocrinology 2018; 89:120-130. [PMID: 29414025 PMCID: PMC5878712 DOI: 10.1016/j.psyneuen.2017.12.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
Previous research on the activational effects of testosterone on spatial memory has produced mixed results, possibly because such effects are dose-dependent. We tested a wide range of testosterone doses using two spatial memory tasks: a working-reference memory version of the radial-arm maze (RAM) and an object location memory task (OLMT). Adult male Sprague-Dawley rats were castrated or sham-castrated and given daily injections of drug vehicle (Oil Sham and Oil GDX) or one of four doses of testosterone propionate (0.125, 0.250, 0.500, and 1.000 mg T) beginning seven days before the first day of behavioral tests and continuing throughout testing. For the RAM, four arms of the maze were consistently baited on each day of testing. Testosterone had a significant effect on working memory on the RAM, with the Oil Sham, 0.125 mg T, and 0.500 mg T groups performing better than the Oil GDX group. In contrast, there was no significant effect of testosterone on spatial reference memory on the RAM. For the OLMT, we tested long-term memory using a 2 h inter-trial interval between first exposure to two identical objects and re-exposure after one object had been moved. Only the 0.125 and 0.500 mg T groups showed a significant increase in exploration of the moved object during the testing trials, indicating better memory than all other groups. Testosterone replacement restored spatial memory among castrated male rats on both behavioral tasks, but there was a complex dose-response relationship; therefore, the therapeutic value of testosterone is likely sensitive to dose.
Collapse
Affiliation(s)
- Benjamin A. Wagner
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | | | | | - Brendan H. Cullen
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | - L. Erin Miller
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | - Mark D. Spritzer
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A,Department of Biology, Middlebury College, Middlebury, VT 05753, U.S.A,Corresponding author: Mark Spritzer, Department of Biology, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA, phone: 802-443-5676, FAX: 802-443-2072
| |
Collapse
|
26
|
Miranda A, Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav 2018; 8:e00920. [PMID: 29484271 PMCID: PMC5822586 DOI: 10.1002/brb3.920] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022] Open
Abstract
An adverse maternal hormonal environment during pregnancy can be associated with abnormal brain growth. Subtle changes in fetal brain development have been observed even for maternal hormone levels within the currently accepted physiologic ranges. In this review, we provide an update of the research data on maternal hormonal impact on fetal neurodevelopment, giving particular emphasis to thyroid hormones and glucocorticoids. Thyroid hormones are required for normal brain development. Despite serum TSH appearing to be the most accurate indicator of thyroid function in pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the major determinant of postnatal psychomotor development. Even a transient period of maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk of expressive language and nonverbal cognitive delays in offspring. Nevertheless, most recent clinical guidelines advocate for targeted high-risk case finding during first trimester of pregnancy despite universal thyroid function screening. Corticosteroids are determinant in suppressing cell proliferation and stimulating terminal differentiation, a fundamental switch for the maturation of fetal organs. Not surprisingly, intrauterine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, has a molecular and structural impact on brain development and appears to impair cognition and increase anxiety and reactivity to stress. Limbic regions, such as hippocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corticosteroids seem to have short-term benefits of less respiratory distress and fewer serious health problems in offspring. Nevertheless, neurodevelopmental growth in later childhood and adulthood needs further clarification. Future studies should address the relevance of monitoring the level of thyroid hormones and corticosteroids during pregnancy in the risk stratification for impaired postnatal neurodevelopment.
Collapse
Affiliation(s)
- Alexandra Miranda
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Obstetrics and GynecologyHospital de BragaBragaPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinic Academic Center ‐ 2CABragaPortugal
| |
Collapse
|
27
|
Adhya D, Annuario E, Lancaster MA, Price J, Baron‐Cohen S, Srivastava DP. Understanding the role of steroids in typical and atypical brain development: Advantages of using a "brain in a dish" approach. J Neuroendocrinol 2018; 30:e12547. [PMID: 29024164 PMCID: PMC5838783 DOI: 10.1111/jne.12547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/02/2023]
Abstract
Steroids have an important role in growth, development, sexual differentiation and reproduction. All four classes of steroids, androgens, oestrogens, progestogens and glucocorticoids, have varying effects on the brain. Androgens and oestrogens are involved in the sexual differentiation of the brain, and also influence cognition. Progestogens such as progesterone and its metabolites have been shown to be involved in neuroprotection, although their protective effects are timing-dependent. Glucocorticoids are linked with stress and memory performance, also in a dose- and time-dependent manner. Importantly, dysfunction in steroid function has been implicated in the pathogenesis of disease. Moreover, regulating steroid-signalling has been suggested as potential therapeutic avenue for the treatment of a number of neurodevelopmental, psychiatric and neurodegenerative disorders. Therefore, clarifying the role of steroids in typical and atypical brain function is essential for understanding typical brain functions, as well as determining their potential use for pharmacological intervention in the atypical brain. However, the majority of studies have thus far have been conducted using animal models, with limited work using native human tissue or cells. Here, we review the effect of steroids in the typical and atypical brain, focusing on the cellular, molecular functions of these molecules determined from animal models, and the therapeutic potential as highlighted by human studies. We further discuss the promise of human-induced pluripotent stem cells, including advantages of using three-dimensional neuronal cultures (organoids) in high-throughput screens, in accelerating our understanding of the role of steroids in the typical brain, and also with respect to their therapeutic value in the understanding and treatment of the atypical brain.
Collapse
Affiliation(s)
- D. Adhya
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - E. Annuario
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | | | - J. Price
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
- National Institute for Biological Standards and ControlSouth MimmsUK
| | - S. Baron‐Cohen
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
| | - D. P. Srivastava
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
28
|
Meyer CE, Kurth F, Lepore S, Gao JL, Johnsonbaugh H, Oberoi MR, Sawiak SJ, MacKenzie-Graham A. In vivo magnetic resonance images reveal neuroanatomical sex differences through the application of voxel-based morphometry in C57BL/6 mice. Neuroimage 2017; 163:197-205. [PMID: 28923275 PMCID: PMC5716897 DOI: 10.1016/j.neuroimage.2017.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Behaviorally relevant sex differences are often associated with structural differences in the brain and many diseases are sexually dimorphic in prevalence and progression. Characterizing sex differences is imperative to gaining a complete understanding of behavior and disease which will, in turn, allow for a balanced approach to scientific research and the development of therapies. In this study, we generated novel tissue probability maps (TPMs) based on 30 male and 30 female in vivo C57BL/6 mouse brain magnetic resonance images and used voxel-based morphometry (VBM) to analyze sex differences. Females displayed larger anterior hippocampus, basolateral amygdala, and lateral cerebellar cortex volumes, while males exhibited larger cerebral cortex, medial amygdala, and medial cerebellar cortex volumes. Atlas-based morphometry (ABM) revealed a statistically significant sex difference in cortical volume and no difference in whole cerebellar volume. This validated our VBM findings that showed a larger cerebral cortex in male mice and a pattern of dimorphism in the cerebellum where the lateral portion was larger in females and the medial portion was larger in males. These results are consonant with previous ex vivo studies examining sex differences, but also suggest further regions of interest.
Collapse
Affiliation(s)
- Cassandra E Meyer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Florian Kurth
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Stefano Lepore
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Josephine L Gao
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Hadley Johnsonbaugh
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Mandavi R Oberoi
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Stephen J Sawiak
- Wolfson Brain Imaging Centre, University of Cambridge, Box 65 Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Borbélyová V, Domonkos E, Bábíčková J, Tóthová Ľ, Bosý M, Hodosy J, Celec P. No effect of testosterone on behavior in aged Wistar rats. Aging (Albany NY) 2017; 8:2848-2861. [PMID: 27852981 PMCID: PMC5191874 DOI: 10.18632/aging.101096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022]
Abstract
In men, aging is accompanied by a gradual decline in androgen secretion. Studies suggest beneficial effects of endogenous and exogenous testosterone on affective behavior and cognitive functions. The aim of this study was to describe behavioral and cognitive sex differences and to analyze the effects of long-term androgen deficiency in aged male rats. Thirty-months old rats divided into three groups (males, females and males gonadectomized as young adults) underwent a battery of behavioral tests assessing locomotor activity, anxiety, memory, anhedonia, sociability and depression-like behavior. No major effect of gonadectomy was found in any of the analyzed behavioral measures in male rats. The only consistent sex difference was confirmed in depression-like behavior with longer immobility time observed in males. In an interventional experiment, a single dose of testosterone had no effect on gonadectomized male and female rats in the forced swim test. In contrast to previous studies this comprehensive behavioral phenotyping of aged rats revealed no major role of endogenous testosterone. Based on our results long-term hypogonadism does not alter the behavior of aged male rats, neither does acute testosterone treatment. Whether these findings have any consequences on androgen replacement therapy in aged men remains to be elucidated.
Collapse
Affiliation(s)
- Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Emese Domonkos
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Janka Bábíčková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Biomedical Research Center, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Biomedical Research Center, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia
| | - Martin Bosý
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia.,Biomedical Research Center, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia.,Biomedical Research Center, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia
| |
Collapse
|
30
|
Cambiasso MJ, Cisternas CD, Ruiz-Palmero I, Scerbo MJ, Arevalo MA, Azcoitia I, Garcia-Segura LM. Interaction of sex chromosome complement, gonadal hormones and neuronal steroid synthesis on the sexual differentiation of mammalian neurons. J Neurogenet 2017; 31:300-306. [DOI: 10.1080/01677063.2017.1390572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Maria Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carla Daniela Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Isabel Ruiz-Palmero
- CSIC, Instituto Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Julia Scerbo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Angeles Arevalo
- CSIC, Instituto Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Iñigo Azcoitia
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, Ciudad Universitaria, Madrid, Spain
| | - Luis M. Garcia-Segura
- CSIC, Instituto Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
In vivo and in vitro sex differences in the dendritic morphology of developing murine hippocampal and cortical neurons. Sci Rep 2017; 7:8486. [PMID: 28814778 PMCID: PMC5559594 DOI: 10.1038/s41598-017-08459-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
Altered dendritic morphology is common in neurodevelopmental disorders (NDDs), many of which show sex biases in prevalence, onset and/or severity. However, whether dendritic morphology varies as a function of sex in juvenile mice or primary neuronal cell cultures is largely unknown even though both are widely used models for studying NDDs. To address this gap, we quantified dendritic morphology in CA1 pyramidal hippocampal and adjacent somatosensory pyramidal cortical neurons from male and female postnatal day (P)28 C57BL/6J mice. As determined by Sholl analysis of Golgi-stained brain sections, dendritic arbors of male hippocampal neurons are more complex than females. Conversely, dendritic morphology of female cortical neurons is more complex than males. In primary neuron-glia co-cultures from P0 mouse hippocampi, male neurons have more complex dendritic arbors than female neurons. Sex differences are less pronounced in cortical cultures. In vitro sex differences in dendritic morphology are driven in part by estrogen-dependent mechanisms, as evidenced by decreased dendritic complexity in male hippocampal neurons cultured in phenol red-free media or in the presence of an estrogen receptor antagonist. Evidence that sex influences dendritic morphogenesis in two models of neurodevelopment in a region-specific manner has significant mechanistic implications regarding sex biases in NDDs.
Collapse
|
32
|
Mongillo P, Scandurra A, D’Aniello B, Marinelli L. Effect of sex and gonadectomy on dogs’ spatial performance. Appl Anim Behav Sci 2017. [DOI: 10.1016/j.applanim.2017.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Chung YH, Han JH, Lee SB, Lee YH. Inhalation Toxicity of Bisphenol A and Its Effect on Estrous Cycle, Spatial Learning, and Memory in Rats upon Whole-Body Exposure. Toxicol Res 2017; 33:165-171. [PMID: 28503266 PMCID: PMC5426503 DOI: 10.5487/tr.2017.33.2.165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 11/20/2022] Open
Abstract
Bisphenol A (BPA) is a monomer used in a polymerization reaction in the production of polycarbonate plastics. It has been used in many consumer products, including plastics, polyvinyl chloride, food packaging, dental sealants, and thermal receipts. However, there is little information available on the inhalation toxicity of BPA. Therefore, the aim of this study was to determine its inhalation toxicity and effects on the estrous cycle, spatial learning, and memory. Sprague-Dawley rats were exposed to 0, 10, 30, and 90 mg/m3 BPA, 6 hr/day, 5 days/week for 8 weeks via whole-body inhalation. Mortality, clinical signs, body weight, hematology, serum chemistry, estrous cycle parameters, performance in the Morris water maze test, and organ weights, as well as gross and histopathological findings, were compared between the control and BPA exposure groups. Statistically significant changes were observed in serum chemistry and organ weights upon exposure to BPA. However, there was no BPA-related toxic effect on the body weight, food consumption, hematology, serum chemistry, organ weights, estrous cycle, performance in the Morris water maze test, or gross or histopathological lesions in any male or female rats in the BPA exposure groups. In conclusion, the results of this study suggested that the no observable adverse effect level (NOAEL) for BPA in rats is above 90 mg/m3/6 hr/day, 5 days/week upon 8-week exposure. Furthermore, BPA did not affect the estrous cycle, spatial learning, or memory in rats.
Collapse
Affiliation(s)
- Yong Hyun Chung
- Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| | - Jeong Hee Han
- Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| | - Sung-Bae Lee
- Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| | - Yong-Hoon Lee
- Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| |
Collapse
|
34
|
Taylor GT, Manzella FM, Huffman J, Cabrera OH, Hoffman J. Cognition in female rats after blocking conversion of androgens to estrogens. Horm Behav 2017; 90:84-89. [PMID: 28257758 DOI: 10.1016/j.yhbeh.2017.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 11/18/2022]
Abstract
Women and non-human females have surprisingly high levels of circulating testosterone, yet the effects of androgens on non-reproductive behaviors, including cognition, of females are not well characterized. The current project used an aromatase inhibitor, letrozole, to block conversion of androgens to estrogens. Adult female rats were ovariectomized and administered either vehicle only, testosterone propionate only (400μg/kg, TP only), letrozole only (1mg/kg, Letro only), or the combination of letrozole and testosterone (TP+Letro) over 4weeks. A gonadally intact group was used for comparisons. During the last 3weeks, the animals were tested for working memory in both a spatial task (radial arm maze) and a non-spatial task (object recognition). At sacrifice, uterine weights and serum testosterone and estradiol were determined. Behavioral results were the intact animals showed better working memories on the object recognition task, but that there were no differences among the ovariectomized groups. In the radial arm maze task, groups with best to worst performance were TP only>Intact=TP+Letro>vehicle=Letro only. Highest to lowest serum titers, for testosterone, were TP+Letro>TP only>Intact=Letro only>vehicle and, for estradiol, Intact>TP only>Vehicle>Letro only=TP+Letro. Our interpretation is that testosterone enhanced spatial performance when bioavailability of both TP and E2 are high, and high testosterone can rescue spatial memory when E2 bioavailability is low.
Collapse
Affiliation(s)
- George T Taylor
- Behavioral Neuroscience Program, Department of Psychological Sciences, University of Missouri - St. Louis, USA, St. Louis, MO 63121, USA; Interfakultäre Biomedizinische Forschungseinrichtung (IBF) der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Francesca M Manzella
- Behavioral Neuroscience Program, Department of Psychological Sciences, University of Missouri - St. Louis, USA, St. Louis, MO 63121, USA; Department of Psychiatry, Washington University in St. Louis School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA.
| | - Jacob Huffman
- Behavioral Neuroscience Program, Department of Psychological Sciences, University of Missouri - St. Louis, USA, St. Louis, MO 63121, USA
| | - Omar H Cabrera
- Behavioral Neuroscience Program, Department of Psychological Sciences, University of Missouri - St. Louis, USA, St. Louis, MO 63121, USA; Department of Psychiatry, Washington University in St. Louis School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Jessica Hoffman
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
35
|
Bhaskar R, Mishra AK, Mohanty B. Neonatal Exposure to Endocrine Disrupting Chemicals Impairs Learning Behaviour by Disrupting Hippocampal Organization in Male Swiss Albino Mice. Basic Clin Pharmacol Toxicol 2017; 121:44-52. [DOI: 10.1111/bcpt.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Rakesh Bhaskar
- Department of Zoology; University of Allahabad; Allahabad India
| | | | | |
Collapse
|
36
|
White ER, Pinar C, Bostrom CA, Meconi A, Christie BR. Mild Traumatic Brain Injury Produces Long-Lasting Deficits in Synaptic Plasticity in the Female Juvenile Hippocampus. J Neurotrauma 2017; 34:1111-1123. [DOI: 10.1089/neu.2016.4638] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emily R. White
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Cristina Pinar
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Crystal A. Bostrom
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Alicia Meconi
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R. Christie
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
- Centre for Brain Health and Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Koss WA, Frick KM. Sex differences in hippocampal function. J Neurosci Res 2016; 95:539-562. [DOI: 10.1002/jnr.23864] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Wendy A. Koss
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - Karyn M. Frick
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| |
Collapse
|
38
|
Mendoza C, Barreto GE, Ávila-Rodriguez M, Echeverria V. Role of neuroinflammation and sex hormones in war-related PTSD. Mol Cell Endocrinol 2016; 434:266-77. [PMID: 27216917 DOI: 10.1016/j.mce.2016.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022]
Abstract
The susceptibility to develop posttraumatic stress disorder (PTSD) is greatly influenced by both innate and environmental risk factors. One of these factors is gender, with women showing higher incidence of trauma-related mental health disorders than their male counterparts. The evidence so far links these differences in susceptibility or resilience to trauma to the neuroprotective actions of sex hormones in reducing neuroinflammation after severe stress exposure. In this review, we discuss the impact of war-related trauma on the incidence of PTSD in civilian and military populations as well as differences associated to gender in the incidence and recovery from PTSD. In addition, the mutually influencing role of inflammation, genetic, and sex hormones in modulating the consequences derived from exposure to traumatic events are discussed in light of current evidence.
Collapse
Affiliation(s)
- Cristhian Mendoza
- Neurobiology Laboratory, Facultad Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, Concepción, 4080871, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Center for Biomedical Research, Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago, Chile
| | | | - Valentina Echeverria
- Neurobiology Laboratory, Facultad Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, Concepción, 4080871, Chile; Research and Development, Bay Pines VA Healthcare System, Bay Pines, FL, USA.
| |
Collapse
|
39
|
Jones BA, Wagner LS, Watson NV. The Effects of Bisphenol A Exposure at Different Developmental Time Points in an Androgen-Sensitive Neuromuscular System in Male Rats. Endocrinology 2016; 157:2972-7. [PMID: 27022676 DOI: 10.1210/en.2015-1574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The industrial plasticizer bisphenol A (BPA) is a ubiquitous endocrine disruptor to which the general human population is routinely exposed. Although BPA is well known as an estrogenic mimic, there have been some suggestions that this compound may also alter activity at the androgen receptor. To determine whether BPA does have antiandrogenic properties, we evaluated BPA effects in the spinal nucleus of the bulbocavernosus and dorsolateral nucleus, sexually dimorphic groups of motor neurons in the lumbar spinal cord that are critically dependent on androgens for survival and maintenance, as well as the monomorphic retrodorsolateral nucleus. In experiment 1, we administered varying concentrations of BPA to juvenile rats pre- and postnatally and examined both the number and size of motor neurons in adulthood. In experiment 2, different doses of BPA were given to adult rats for 28 days, after which the soma size of motor neurons were measured. Although no effect of BPA on neural survival or soma size was noted after perinatal BPA exposure, BPA exposure did result in a decrease in soma size in all motor neuron pools after chronic exposure in adulthood. These findings are discussed with regard to putative antiandrogenic effects of BPA; we argue that BPA is not antiandrogenic but is acting through nonandrogen receptor-dependent mechanisms.
Collapse
Affiliation(s)
- Bryan A Jones
- Department of Psychology (B.A.J., L.S.W., N.V.W.), Simon Fraser University, Burnaby, Canada BC V5A1S6; and Psychology Department (B.A.J.), Douglas College, New Westminster, Canada BC V3L5B2
| | - Lydia S Wagner
- Department of Psychology (B.A.J., L.S.W., N.V.W.), Simon Fraser University, Burnaby, Canada BC V5A1S6; and Psychology Department (B.A.J.), Douglas College, New Westminster, Canada BC V3L5B2
| | - Neil V Watson
- Department of Psychology (B.A.J., L.S.W., N.V.W.), Simon Fraser University, Burnaby, Canada BC V5A1S6; and Psychology Department (B.A.J.), Douglas College, New Westminster, Canada BC V3L5B2
| |
Collapse
|
40
|
Keeley R, Bye C, Trow J, McDonald R. Strain and sex differences in brain and behaviour of adult rats: Learning and memory, anxiety and volumetric estimates. Behav Brain Res 2015; 288:118-31. [DOI: 10.1016/j.bbr.2014.10.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
|
41
|
Drollette ES, Scudder MR, Raine LB, Davis Moore R, Pontifex MB, Erickson KI, Hillman CH. The sexual dimorphic association of cardiorespiratory fitness to working memory in children. Dev Sci 2015; 19:90-108. [DOI: 10.1111/desc.12291] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Eric S. Drollette
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; USA
| | - Mark R. Scudder
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; USA
| | - Lauren B. Raine
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; USA
| | - R. Davis Moore
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; USA
| | | | - Kirk I. Erickson
- Department of Psychology; University of Pittsburgh; USA
- The Center for the Neural Basis of Cognition; University of Pittsburgh; USA
| | - Charles H. Hillman
- Department of Kinesiology and Community Health; University of Illinois at Urbana-Champaign; USA
| |
Collapse
|
42
|
Celec P, Ostatníková D, Hodosy J. On the effects of testosterone on brain behavioral functions. Front Neurosci 2015; 9:12. [PMID: 25741229 PMCID: PMC4330791 DOI: 10.3389/fnins.2015.00012] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
Testosterone influences the brain via organizational and activational effects. Numerous relevant studies on rodents and a few on humans focusing on specific behavioral and cognitive parameters have been published. The results are, unfortunately, controversial and puzzling. Dosing, timing, even the application route seem to considerably affect the outcomes. In addition, the methods used for the assessment of psychometric parameters are a bit less than ideal regarding their validity and reproducibility. Metabolism of testosterone contributes to the complexity of its actions. Reduction to dihydrotestosterone by 5-alpha reductase increases the androgen activity; conversion to estradiol by aromatase converts the androgen to estrogen activity. Recently, the non-genomic effects of testosterone on behavior bypassing the nuclear receptors have attracted the interest of researchers. This review tries to summarize the current understanding of the complexity of the effects of testosterone on brain with special focus on their role in the known sex differences.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Center for Molecular Medicine, Slovak Academy of Sciences Bratislava, Slovakia ; Institute of Pathophysiology, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University Bratislava, Slovakia
| | - Daniela Ostatníková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Center for Molecular Medicine, Slovak Academy of Sciences Bratislava, Slovakia ; Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Slovakia
| |
Collapse
|
43
|
Age- and Sex-Dependent Changes in Androgen Receptor Expression in the Developing Mouse Cortex and Hippocampus. NEUROSCIENCE JOURNAL 2015; 2015:525369. [PMID: 26317111 PMCID: PMC4437260 DOI: 10.1155/2015/525369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/02/2015] [Accepted: 01/02/2015] [Indexed: 02/06/2023]
Abstract
During the perinatal period, male mice are exposed to higher levels of testosterone (T) than females, which promotes sexual dimorphism in their brain structures and behaviors. In addition to acting via estrogen receptors after being locally converted into estradiol by aromatase, T also acts directly through androgen receptor (AR) in the brain. Therefore, we hypothesized that AR expression in the developing mouse cortex and hippocampus was sexually dimorphic. To test our hypothesis, we measured and determined AR mRNA and protein levels in mouse cortex/hippocampus collected on the day of birth (PN0) and 7 (PN7), 14 (PN14), and 21 (PN21) days after birth. We demonstrated that, as age advanced, AR mRNA levels increased in the cortex/hippocampus of both sexes but showed no sex difference. Two AR proteins, the full-length (110 kDa) and a smaller isoform (70 kDa), were detected in the developing mouse cortex/hippocampus with an age-dependent increase in protein levels of both AR isoforms at PN21 and a transient masculine increase in expression of the full-length AR protein on PN7. Thus, we conclude that the postnatal age and sex differences in AR protein expression in combination with the sex differences in circulating T may cause sexual differentiation of the mouse cortex/hippocampus.
Collapse
|
44
|
Shahrzad P, Nasser N. GABA<sub>b</sub> Receptor Antagonist (CGP<sub>35348</sub>) Improves Testosterone Induced Spatial Acquisition Impairment in Adult Male Rat. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.511047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Ransome MI. Could androgens maintain specific domains of mental health in aging men by preserving hippocampal neurogenesis? Neural Regen Res 2014; 7:2227-39. [PMID: 25538744 PMCID: PMC4268723 DOI: 10.3969/j.issn.1673-5374.2012.028.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/10/2012] [Indexed: 12/18/2022] Open
Abstract
Interest surrounds the role of sex-hormones in regulating brain function outside of reproductive behaviour. Declining androgen production in aging males has been associated with cognitive impairment, depression and increased risk of developing Alzheimer's disease. Indication for testosterone replacement therapy is based on biochemically determined low circulating testosterone combined with manifest symptoms. However, which aspects of age-related cognitive decline are attributable to low circulating testosterone remain ambiguous. Studies examining cognition in aging men receiving testosterone replacement therapy have yielded equivocal results. The exact role of testosterone in maintaining cognitive function and the underlying neural mechanisms are largely unknown, though it would appear to be domain specific. Clarity in this area will provide clinical direction toward addressing an increasing healthcare burden of mental health decline coincident with increasing longevity. The premise that androgens contribute to maintaining aspects of mental health in aging men by preserving hippocampal neurogenesis will be used as a forum in this review to discuss current knowledge and the need for further studies to better define testosterone replacement strategies for aging male health.
Collapse
Affiliation(s)
- Mark I Ransome
- Florey Neurosciences Institute, Melbourne Brain Centre, the University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
46
|
Gore AC, Martien KM, Gagnidze K, Pfaff D. Implications of prenatal steroid perturbations for neurodevelopment, behavior, and autism. Endocr Rev 2014; 35:961-91. [PMID: 25211453 PMCID: PMC4234775 DOI: 10.1210/er.2013-1122] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 08/29/2014] [Indexed: 12/16/2022]
Abstract
The prenatal brain develops under the influence of an ever-changing hormonal milieu that includes endogenous fetal gonadal and adrenal hormones, placental and maternal hormones, and exogenous substances with hormonal activity that can cross the placental barrier. This review discusses the influences of endogenous fetal and maternal hormones on normal brain development and potential consequences of pathophysiological hormonal perturbations to the developing brain, with particular reference to autism. We also consider the effects of hormonal pharmaceuticals used for assisted reproduction, the maintenance of pregnancy, the prevention of congenital adrenal hypertrophy, and hormonal contraceptives continued into an unanticipated pregnancy, among others. These treatments, although in some instances life-saving, may have unintended consequences on the developing fetuses. Additional concern is raised by fetal exposures to endocrine-disrupting chemicals encountered universally by pregnant women from food/water containers, contaminated food, household chemicals, and other sources. What are the potential outcomes of prenatal steroid perturbations on neurodevelopmental and behavioral disorders, including autism-spectrum disorders? Our purposes here are 1) to summarize some consequences of steroid exposures during pregnancy for the development of brain and behavior in the offspring; 2) to summarize what is known about the relationships between exposures and behavior, including autism spectrum disorders; 3) to discuss the molecular underpinnings of such effects, especially molecular epigenetic mechanisms of prenatal steroid manipulations, a field that may explain effects of direct exposures, and even transgenerational effects; and 4) for all of these, to add cautionary notes about their interpretation in the name of scientific rigor.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology (A.C.G.), University of Texas at Austin, Austin, Texas 78712; Massachusetts General Hospital for Children (K.M.M.), Lexington, Massachusetts, 02421; and Laboratory of Neurobiology and Behavior (K.G., D.P.), Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
47
|
Zup SL, Edwards NS, McCarthy MM. Sex- and age-dependent effects of androgens on glutamate-induced cell death and intracellular calcium regulation in the developing hippocampus. Neuroscience 2014; 281:77-87. [PMID: 25264034 DOI: 10.1016/j.neuroscience.2014.09.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/31/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
Hippocampal neurons must maintain control over cytosolic calcium levels, especially during development, as excitation and calcium flux are necessary for proper growth and function. But excessive calcium can lead to excitotoxic cell death. Previous work suggests that neonatal male and female hippocampal neurons regulate cytosolic calcium differently, thereby leading to differential susceptibility to excitotoxic damage. Hippocampal neurons are also exposed to gonadal hormones during development and express high levels of androgen receptors. Androgens have both neuroprotective and neurotoxic effects in adults and developing animals. The present study sought to examine the effect of androgen on cell survival after an excitatory stimulus in the developing hippocampus, and whether androgen-mediated calcium regulation was the governing mechanism. We observed that glutamate did not induce robust or sexually dimorphic apoptosis in cultured hippocampal neurons at an early neonatal time point, but did 5days later - only in males. Further, pretreatment with the androgen dihydrotestosterone (DHT) protected males from apoptosis during this time, but had no effect on females. Calcium imaging of sex-specific cultures revealed that DHT decreased the peak of intracellular calcium induced by glutamate, but only in males. To determine a possible mechanism for this androgen neuroprotection and calcium regulation, we quantified three calcium regulatory proteins, plasma membrane calcium ATPase1 (PMCA1), sodium/calcium exchanger1 (NCX1), and the sarco/endoplasmic reticulum calcium ATPase 2 (SERCA2). Surprisingly, there was no sex difference in the level of any of the three proteins. Treatment with DHT significantly decreased PMCA1 and NCX1, but increased SERCA2 protein levels in very young animals but not at a later timepoint. Taken together, these data suggest a complex interaction of sex, hormones, calcium regulation and developmental age; however androgens acting during the first week of life are implicated in regulation of hippocampal cell death and may be an underlying mechanism for sexually dimorphic apoptosis.
Collapse
Affiliation(s)
- S L Zup
- Program in Developmental and Brain Sciences, University of Massachusetts Boston, Boston, MA 02125, United States; Department of Psychology, University of Massachusetts Boston, Boston, MA 02125, United States.
| | - N S Edwards
- Department of Pharmacology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - M M McCarthy
- Department of Pharmacology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
48
|
Luine VN. Estradiol and cognitive function: past, present and future. Horm Behav 2014; 66:602-18. [PMID: 25205317 PMCID: PMC4318702 DOI: 10.1016/j.yhbeh.2014.08.011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
A historical perspective on estradiol's enhancement of cognitive function is presented, and research, primarily in animals, but also in humans, is reviewed. Data regarding the mechanisms underlying the enhancements are discussed. Newer studies showing rapid effects of estradiol on consolidation of memory through membrane interactions and activation of inter-cellular signaling pathways are reviewed as well as studies focused on traditional genomic mechanisms. Recent demonstrations of intra-neuronal estradiol synthesis and possible actions as a neurosteroid to promote memory are discussed. This information is applied to the critical issue of the current lack of effective hormonal (or other) treatments for cognitive decline associated with menopause and aging. Finally, the critical period hypothesis for estradiol effects is discussed along with novel strategies for hormone/drug development. Overall, the historical record documents that estradiol positively impacts some aspects of cognitive function, but effective therapeutic interventions using this hormone have yet to be realized.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| |
Collapse
|
49
|
Zhou L, Pruitt C, Shin CB, Garcia AD, Zavala AR, See RE. Fos expression induced by cocaine-conditioned cues in male and female rats. Brain Struct Funct 2014; 219:1831-40. [PMID: 23832598 PMCID: PMC3877704 DOI: 10.1007/s00429-013-0605-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/24/2013] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that female rats exhibit different patterns of drug seeking during multiple phases of cocaine addiction when compared with males. However, the underlying mechanisms for these sex differences remain largely unknown. Here, we used a cocaine self-administration/reinstatement model to examine neuronal activation, as determined by Fos expression, following cue-induced reinstatement of cocaine seeking in male and female rats. Fos expression revealed both similarities between sexes in some brain regions, as well as selective sexually dimorphic patterns. As compared to no cue control subjects, conditioned cues induced higher Fos expression in the Cg1 region of the anterior cingulate cortex, but lower expression in the nucleus accumbens in both males and females. Females exhibited higher Fos expression than males in multiple brain regions, including the agranular insular cortex, dorsal medial caudate-putamen, nucleus accumbens shell, ventral tegmental area, dorsal subiculum, and ventral CA1 and CA3 regions of the hippocampus. Notably, only Fos expression in the prelimbic cortex, nucleus accumbens shell, basolateral amygdala, and ventral subiculum correlated positively with lever responding in response to conditioned cues across males and females. These findings indicate that while sexually dimorphic Fos activation does occur, the relationship between cue-induced cocaine seeking and neuronal activation may be similar for males and females in key brain regions of the relapse circuit.
Collapse
Affiliation(s)
- Luyi Zhou
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA,
| | | | | | | | | | | |
Collapse
|
50
|
Hippocampal α-adrenoceptors involve in the effect of histamine on spatial learning. Physiol Behav 2014; 129:17-24. [DOI: 10.1016/j.physbeh.2014.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
|