1
|
Gianni S, Brunori M. The folding and misfolding of multidomain proteins. Mol Aspects Med 2025; 101:101337. [PMID: 39793266 DOI: 10.1016/j.mam.2025.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Protein folding represents a vital process for any living organism. While significant insights have been gained from studying single-domain proteins, our current knowledge on the folding mechanisms of multidomain proteins remains relatively limited, primarily due to their inherent complexity. The principal aim of this review lies in summarizing the emerging view pertaining multi-domain folding, emphasizing their modular nature, which minimizes misfolding and facilitates evolutionary innovation. We discuss the energetic interplay between domains, highlighting particularly the cases where domain interactions lead to transient misfolded intermediates. These interactions can result in diverse effects, including cooperative folding and domain-specific perturbations, which are particularly relevant to the pathogenesis of neurodegenerative diseases like polyglutamine disorders. The review underscores the critical need to understand multidomain folding, to better comprehend and potentially mitigate the molecular underpinnings of protein misfolding diseases.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari Del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy.
| | - Maurizio Brunori
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari Del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
2
|
Ha JH, Presti MF, Loh SN. A Single Protein Disruption Site Results in Efficient Reassembly by Multiple Engineering Methods. Biophys J 2019; 117:56-65. [PMID: 31221439 DOI: 10.1016/j.bpj.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 01/03/2023] Open
Abstract
Disrupting a protein's sequence by cleavage or insertion of a hinge domain forms the basis for protein engineering tools, including fragment complementation, circular permutation, and domain swapping. Despite the utility of these designs, their widespread implementation has been limited by the difficulty in choosing where to interrupt the protein sequence: the resulting fragments often aggregate or fail to reassemble. Here, we show that an optimal site exists within ribose binding protein (RBP) that, when disrupted, results in the most efficient formation of fragment-complemented and domain-swapped species. Cleaving RBP at this site also produces a highly stable, cooperatively folded circular permutant. This hot-spot site was identified by an experimental approach involving selection among competing folds. We find that efficiency in the case of RBP is determined by kinetic factors (survival of the first) rather than thermodynamics (survival of the fittest). Together with emerging computational tools, this limited data set defines a pathway for designing robust platforms for molecular switches and biosensors based on the aforementioned protein modifications.
Collapse
Affiliation(s)
- Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York.
| |
Collapse
|
3
|
Meng W, Luan B, Lyle N, Pappu RV, Raleigh DP. The Denatured State Ensemble Contains Significant Local and Long-Range Structure under Native Conditions: Analysis of the N-Terminal Domain of Ribosomal Protein L9. Biochemistry 2013; 52:2662-71. [DOI: 10.1021/bi301667u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenli Meng
- Department
of Chemistry, Stony Brook University, Stony
Brook, New York 11794-3400,
United States
| | - Bowu Luan
- Department
of Chemistry, Stony Brook University, Stony
Brook, New York 11794-3400,
United States
| | - Nicholas Lyle
- Department
of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive,
Campus Box 1097, St. Louis, Missouri 63130-4899, United States
| | - Rohit V. Pappu
- Department
of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive,
Campus Box 1097, St. Louis, Missouri 63130-4899, United States
| | - Daniel P. Raleigh
- Department
of Chemistry, Stony Brook University, Stony
Brook, New York 11794-3400,
United States
- Graduate Program in Biochemistry
and Structural Biology and Graduate Program in Biophysics, Stony Brook University, Stony Brook, New York 11794,
United States
| |
Collapse
|
4
|
Cadima-Couto I, Saraiva N, Santos ACC, Goncalves J. HIV-1 Vif interaction with APOBEC3 deaminases and its characterization by a new sensitive assay. J Neuroimmune Pharmacol 2011; 6:296-307. [PMID: 21279453 DOI: 10.1007/s11481-011-9258-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/12/2011] [Indexed: 02/01/2023]
Abstract
The human APOBEC3 (A3) cytidine deaminases, such as APOBEC3G (A3G) and APOBEC3F (A3F), are potent inhibitors of Vif-deficient human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif (viral infectivity factor) binds A3 proteins and targets these proteins for ubiquitination and proteasomal degradation. As such, the therapeutic blockage of Vif-A3 interaction is predicted to stimulate natural antiviral activity by rescuing APOBEC expression and virion packaging. In this study, we describe a successful application of the Protein Fragment Complementation Assay (PCA) based on the enzyme TEM-1 β-lactamase to study Vif-A3 interactions. PCA is based on the interaction between two protein binding partners (e.g., Vif and A3G), which are fused to the two halves of a dissected marker protein (β-lactamase). Binding of the two partners reassembles β-lactamase and hence reconstitutes its activity. To validate our assay, we studied the effect of well-described Vif (DRMR, YRHHY) and A3G (D128K) mutations on the interaction between the two proteins. Additionally, we studied the interaction of human Vif with other members of the A3 family: A3F and APOBEC3C (A3C). Our results demonstrate the applicability of PCA as a simple and reliable technique for the assessment of Vif-A3 interactions. Furthermore, when compared with co-immunoprecipitation assays, PCA appeared to be a more sensitive technique for the quantitative assessment of Vif-A3 interactions. Thus, with our results, we conclude that PCA could be used to quantitatively study specific domains that may be involved in the interaction between Vif and APOBEC proteins.
Collapse
Affiliation(s)
- Iris Cadima-Couto
- URIA-IMM, Faculdade de Farmácia da Universidade Lisboa, Av. Das Forças Armadas, 1649-059 Lisbon, Portugal
| | | | | | | |
Collapse
|
5
|
Patel MM, Sgourakis NG, Garcia AE, Makhatadze GI. Experimental Test of the Thermodynamic Model of Protein Cooperativity Using Temperature-Induced Unfolding of a Ubq−UIM Fusion Protein. Biochemistry 2010; 49:8455-67. [DOI: 10.1021/bi101163u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mayank M. Patel
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology
| | | | | | - George I. Makhatadze
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology
| |
Collapse
|
6
|
Chen Y, Li S, Chen T, Hua H, Lin Z. Random dissection to select for protein split sites and its application in protein fragment complementation. Protein Sci 2009; 18:399-409. [PMID: 19165722 PMCID: PMC2708047 DOI: 10.1002/pro.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/23/2008] [Accepted: 11/25/2008] [Indexed: 11/11/2022]
Abstract
To identify protein split sites quickly, a selection procedure by using chloramphenicol acetyl transferase (CAT) as reporter was introduced to search for folded protein fragments from libraries generated by random digestion and reassembly of the target gene, which yielded an abundant amount of DNA fragments with controllable lengths. Experimental results of tryptophan synthase alpha subunit (TSalpha) and TEM-1 beta-lactamase agreed well with what the literature has reported. The solubility of these fragments correlated roughly with the minimum inhibitory concentrations of the CAT fusions. The application of this dissection protocol to protein fragment complementation assay (PCA) was evaluated using aminoglycoside-3'-phosphotransferase I (APH(3')-I) as a model protein. Three nearly bisectional sites and a number of possible split points were identified, and guided by this result, four novel pairs of fragments were tested for complementation. Three out of four pairs partially restored the APH activity with the help of leucine zippers, and a truncated but active APH(3')-I (Delta1-25) was also found. Finally, the weakly active APH(3')-I-(1-253)NZ/CZ (254-271) containing a short 18 residue tag was further improved by error-prone PCR, and a best mutant was obtained showing a fourfold improvement after just one round of evolution. These results demonstrate that protein random dissection based on the CAT selection can provide an efficient search for protein breakage points and guide the design of fragments for protein complementation assay. Furthermore, more active fragment pairs can be achieved with the classical directed evolution approach.
Collapse
Affiliation(s)
| | | | | | | | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University1 Tsinghua Garden Road, Beijing 100084, China
| |
Collapse
|
7
|
Ludwig C, Schwarzer D, Mootz HD. Interaction studies and alanine scanning analysis of a semi-synthetic split intein reveal thiazoline ring formation from an intermediate of the protein splicing reaction. J Biol Chem 2008; 283:25264-25272. [PMID: 18625708 DOI: 10.1074/jbc.m802972200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported an artificially split intein based on the Ssp DnaB mini-intein that consists of a synthetic N-terminal intein fragment (Int(N)) and a recombinant C-terminal part (Int(C)), which are 11 and 143 amino acids in length, respectively. This intein holds great promise for the preparation of semi-synthetic proteins by protein trans-splicing. In this work we synthesized a set of Int(N) peptide variants to investigate their structure-function relationship with regard to fragment association and promotion of protein trans-splicing. A further truncation of the Int(N) sequence below 11 amino acids resulted in loss of activity, whereas C-terminal extensions were tolerated. Alanine scanning analysis identified three essential hydrophobic residues, whereas substitutions at other positions were tolerated. We developed assays to monitor association of Int(N) with an Int(C) mutant blocked in protein splicing by native PAGE and fluorescence anisotropy. The kinetic parameters of intein complex formation were K(d) = 1.1 mum, k(on) = 16.8 m(-1) s(-1), and k(off) = 1.8 x 10(-5) s(-1) for the native Int(N11) sequence. Intriguingly, a G(-1)A substitution, previously known to significantly impair protein splicing, was revealed to result in thiazoline ring formation involving the catalytic Cys-1, likely by aberrant dehydration of a oxythiazolidine intermediate. This finding provides experimental evidence for the postulated intermediate during the initial N/S acyl shift and underlines the delicate spatial and temporal alignment required in the intein active site to prevent side reactions of the protein-splicing pathway.
Collapse
Affiliation(s)
- Christina Ludwig
- Fakultät Chemie/Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Dirk Schwarzer
- Fakultät Chemie/Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Henning D Mootz
- Fakultät Chemie/Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany.
| |
Collapse
|
8
|
Hills RD, Brooks CL. Subdomain competition, cooperativity, and topological frustration in the folding of CheY. J Mol Biol 2008; 382:485-95. [PMID: 18644380 DOI: 10.1016/j.jmb.2008.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/30/2008] [Accepted: 07/04/2008] [Indexed: 11/17/2022]
Abstract
The folding of multidomain proteins often proceeds in a hierarchical fashion with individual domains folding independent of one another. A large single-domain protein, however, can consist of multiple modules whose folding may be autonomous or interdependent in ways that are unclear. We used coarse-grained simulations to explore the folding landscape of the two-subdomain bacterial response regulator CheY. Thermodynamic and kinetic characterization shows the landscape to be highly analogous to the four-state landscape reported for another two-subdomain protein, T4 lysozyme. An on-pathway intermediate structured in the more stable nucleating subdomain was observed, as were transient states frustrated in off-pathway contacts prematurely structured in the weaker subdomain. Local unfolding, or backtracking, was observed in the frustrated state before the native conformation could be reached. Nonproductive frustration was attributable to competition for van der Waals contacts between the two subdomains. In an accompanying article, stopped-flow kinetic measurements support an off-pathway burst-phase intermediate, seemingly consistent with our prediction of early frustration in the folding landscape of CheY. Comparison of the folding mechanisms for CheY, T4 lysozyme, and interleukin-1 beta leads us to postulate that subdomain competition is a general feature of large single-domain proteins with multiple folding modules.
Collapse
Affiliation(s)
- Ronald D Hills
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC6, La Jolla, CA 92037, USA
| | | |
Collapse
|
9
|
Watters AL, Deka P, Corrent C, Callender D, Varani G, Sosnick T, Baker D. The Highly Cooperative Folding of Small Naturally Occurring Proteins Is Likely the Result of Natural Selection. Cell 2007; 128:613-24. [PMID: 17289578 DOI: 10.1016/j.cell.2006.12.042] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/17/2006] [Accepted: 12/28/2006] [Indexed: 11/23/2022]
Abstract
To illuminate the evolutionary pressure acting on the folding free energy landscapes of naturally occurring proteins, we have systematically characterized the folding free energy landscape of Top7, a computationally designed protein lacking an evolutionary history. Stopped-flow kinetics, circular dichroism, and NMR experiments reveal that there are at least three distinct phases in the folding of Top7, that a nonnative conformation is stable at equilibrium, and that multiple fragments of Top7 are stable in isolation. These results indicate that the folding of Top7 is significantly less cooperative than the folding of similarly sized naturally occurring proteins, suggesting that the cooperative folding and smooth free energy landscapes observed for small naturally occurring proteins are not general properties of polypeptide chains that fold to unique stable structures but are instead a product of natural selection.
Collapse
Affiliation(s)
- Alexander L Watters
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Michalet X, Weiss S, Jäger M. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 2006; 106:1785-813. [PMID: 16683755 PMCID: PMC2569857 DOI: 10.1021/cr0404343] [Citation(s) in RCA: 383] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xavier Michalet
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Marcus Jäger
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| |
Collapse
|
11
|
Xue WF, Szczepankiewicz O, Bauer MC, Thulin E, Linse S. Intra- versus intermolecular interactions in monellin: contribution of surface charges to protein assembly. J Mol Biol 2006; 358:1244-55. [PMID: 16574151 DOI: 10.1016/j.jmb.2006.02.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/24/2006] [Accepted: 02/25/2006] [Indexed: 10/24/2022]
Abstract
The relative significance of weak non-covalent interactions in biological context has been much debated. Here, we have addressed the contribution of Coulombic interactions to protein stability and assembly experimentally. The sweet protein monellin, a non-covalently linked heterodimeric protein, was chosen for this study because of its ability to spontaneously reconstitute from separated fragments. The reconstitution of monellin mutants containing large surface charge perturbations was compared to the thermostability of structurally equivalent single-chain monellin containing the same sets of mutations under varying salt concentrations. The affinity between monellin fragments is found to correlate with the thermostability of single chain monellin, indicating the involvement of the same underlying Coulombic interactions. This confirms that there are no principal differences in the interactions involved in folding and binding. Based on comparison with a previous mutational study involving hydrophobic core residues, the relative contribution of Coulombic interactions to stability and affinity is modest. However, the Coulombic perturbations only affect the association rates of reconstitution in contrast to perturbations involving hydrophobic residues, which affect primarily the dissociation rates. These results indicate that Coulombic interactions are likely to be of main importance for the association of protein assembly, relevant for functions of proteins.
Collapse
Affiliation(s)
- Wei-Feng Xue
- Department of Biophysical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund SE-22100, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Dutta S, Batori V, Koide A, Koide S. High-affinity fragment complementation of a fibronectin type III domain and its application to stability enhancement. Protein Sci 2005; 14:2838-48. [PMID: 16199661 PMCID: PMC2253215 DOI: 10.1110/ps.051603005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The tenth fibronectin type III (FN3) domain of human fibronectin (FNfn10), a prototype of the ubiquitous FN3 domain, is a small, monomeric beta-sandwich protein. In this study, we have bisected FNfn10 in each loop to generate a total of six fragment pairs. We found that fragment pairs bisected at multiple loops of FNfn10 show complementation in vivo as tested with a yeast two-hybrid system. The dissociation constant of these fragment pairs determined in vitro were as low as 3 nM, resulting in one of the tightest fragment complementation systems reported so far. Furthermore, we show that the affinity of fragment complementation is correlated with the stability of the uncut parent protein. Exploring this correlation, we screened a yeast two-hybrid library of one fragment and identified mutations that suppress the effect of a destabilizing mutation in the other fragment. One of the identified mutations significantly increased the stability of the uncut wild-type protein, proving that fragment complementation can be used as a novel strategy for the selection of proteins with enhanced stability.
Collapse
Affiliation(s)
- Sanjib Dutta
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
13
|
Poussu E, Jäntti J, Savilahti H. A gene truncation strategy generating N- and C-terminal deletion variants of proteins for functional studies: mapping of the Sec1p binding domain in yeast Mso1p by a Mu in vitro transposition-based approach. Nucleic Acids Res 2005; 33:e104. [PMID: 16006618 PMCID: PMC1174911 DOI: 10.1093/nar/gni102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage Mu in vitro transposition constitutes a versatile tool in molecular biology, with applications ranging from engineering of single genes or proteins to modification of genome segments or entire genomes. A new strategy was devised on the basis of Mu transposition that via a few manipulation steps simultaneously generates a nested set of gene constructions encoding deletion variants of proteins. C-terminal deletions are produced using a mini-Mu transposon that carries translation stop signals close to each transposon end. Similarly, N-terminal deletions are generated using a transposon with appropriate restriction sites, which allows deletion of the 5'-distal part of the gene. As a proof of principle, we produced a set of plasmid constructions encoding both C- and N-terminally truncated variants of yeast Mso1p and mapped its Sec1p-interacting region. The most important amino acids for the interaction in Mso1p are located between residues T46 and N78, with some weaker interactions possibly within the region E79-N105. This general-purpose gene truncation strategy is highly efficient and produces, in a single reaction series, a comprehensive repertoire of gene constructions encoding protein deletion variants, valuable in many types of functional studies. Importantly, the methodology is applicable to any protein-encoding gene cloned in an appropriate vector.
Collapse
Affiliation(s)
| | - Jussi Jäntti
- VTT BiotechnologyPO Box 1500, FI-02044, VTT, Finland
| | - Harri Savilahti
- To whom correspondence should be addressed. Tel: +358 9 19159516; Fax: +358 9 19159366.
| |
Collapse
|
14
|
Paschon DE, Ostermeier M. Construction of protein fragment complementation libraries using incremental truncation. Methods Enzymol 2004; 388:103-16. [PMID: 15289065 DOI: 10.1016/s0076-6879(04)88010-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- David E Paschon
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
15
|
Abstract
The fastest simple, kinetically two-state protein folds a million times more rapidly than the slowest. Here we review many recent theories of protein folding kinetics in terms of their ability to qualitatively rationalize, if not quantitatively predict, this fundamental experimental observation.
Collapse
Affiliation(s)
- Blake Gillespie
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA.
| | | |
Collapse
|
16
|
Zeng Y, Montrichok A, Zocchi G. Bubble nucleation and cooperativity in DNA melting. J Mol Biol 2004; 339:67-75. [PMID: 15123421 DOI: 10.1016/j.jmb.2004.02.072] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/24/2004] [Accepted: 02/24/2004] [Indexed: 12/01/2022]
Abstract
Bubbles in DNA are related to fundamental processes such as duplication and transcription. Using a new ensemble technique to trap intermediate states, we present direct measurements of the average length of the denaturation bubble and the statistical weights of the bubble states in the temperature-driven melting of DNA oligomers. For a bubble flanked by double-stranded regions, we find a nucleation size of approximately 20 bases, and a broad distribution of bubble sizes. However, for bubbles opening at the ends of the molecule there is no nucleation threshold. The measured statistical weights of different conformations agree with the predictions of the thermodynamic models in the case of unzipping from the ends; however, internal bubble states are not completely described by the models. The measurements further show that, due to end effects, the melting transition becomes a two-state process only in the limit of a molecule length L approximately 1 bp.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095-1547, USA
| | | | | |
Collapse
|
17
|
Jewett AI, Pande VS, Plaxco KW. Cooperativity, smooth energy landscapes and the origins of topology-dependent protein folding rates. J Mol Biol 2003; 326:247-53. [PMID: 12547206 DOI: 10.1016/s0022-2836(02)01356-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The relative folding rates of simple, single-domain proteins, proteins whose folding energy landscapes are smooth, are highly dispersed and strongly correlated with native-state topology. In contrast, the relative folding rates of small, Gō-potential lattice polymers, which also exhibit smooth energy landscapes, are poorly dispersed and insignificantly correlated with native-state topology. Here, we investigate this discrepancy in light of a recent, quantitative theory of two-state folding kinetics, the topomer search model. This model stipulates that the topology-dependence of two-state folding rates is a direct consequence of the extraordinarily cooperative equilibrium folding of simple proteins. We demonstrate that traditional Gō polymers lack the extreme cooperativity that characterizes the folding of naturally occurring, two-state proteins and confirm that the folding rates of a diverse set of Gō 27-mers are poorly dispersed and effectively uncorrelated with native state topology. Upon modestly increasing the cooperativity of the Gō-potential, however, significantly increased dispersion and strongly topology-dependent kinetics are observed. These results support previous arguments that the cooperative folding of simple, single-domain proteins gives rise to their topology-dependent folding rates. We speculate that this cooperativity, and thus, indirectly, the topology-rate relationship, may have arisen in order to generate the smooth energetic landscapes upon which rapid folding can occur.
Collapse
Affiliation(s)
- Andrew I Jewett
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
18
|
Makarov DE, Plaxco KW. The topomer search model: A simple, quantitative theory of two-state protein folding kinetics. Protein Sci 2003; 12:17-26. [PMID: 12493824 PMCID: PMC2312397 DOI: 10.1110/ps.0220003] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Most small, single-domain proteins fold with the uncomplicated, single-exponential kinetics expected for diffusion on a smooth energy landscape. Despite this energetic smoothness, the folding rates of these two-state proteins span a remarkable million-fold range. Here, we review the evidence in favor of a simple, mechanistic description, the topomer search model, which quantitatively accounts for the broad scope of observed two-state folding rates. The model, which stipulates that the search for those unfolded conformations with a grossly correct topology is the rate-limiting step in folding, fits observed rates with a correlation coefficient of approximately 0.9 using just two free parameters. The fitted values of these parameters, the pre-exponential attempt frequency and a measure of the difficulty of ordering an unfolded chain, are consistent with previously reported experimental constraints. These results suggest that the topomer search process may dominate the relative barrier heights of two-state protein-folding reactions.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Biochemistry and Institute for Theoretical Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
19
|
Buczek O, Krowarsch D, Otlewski J. Thermodynamics of single peptide bond cleavage in bovine pancreatic trypsin inhibitor (BPTI). Protein Sci 2002; 11:924-32. [PMID: 11910035 PMCID: PMC2373530 DOI: 10.1110/ps.4460102] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A major goal of this paper was to estimate a dynamic range of equilibrium constant for the opening of a single peptide bond in a model protein, bovine pancreatic trypsin inhibitor (BPTI). Ten mutants of BPTI containing a single Xaa-->Met substitution introduced in different parts of the molecule were expressed in Escherichia coli. The mutants were folded, purified to homogeneity, and cleaved with cyanogen bromide to respective cleaved forms. Conformation of the intact mutants was similar to the wildtype, as judged from their circular dichroism spectra. Substantial conformational changes were observed on the chemical cleavage of three single peptide bonds--Met46-Ser, Met49-Cys, and Met53-Thr--located within the C-terminal helix. Cleavage of those peptide bonds caused a significant destabilization of the molecule, with a drop of the denaturation temperature by 56.4 degrees C to 68 degrees C at pH 4.3. Opening of the remaining seven peptide bonds was related to a 10.8 degrees C to 39.4 degrees C decrease in T(den). Free energies of the opening of 10 single peptide bonds in native mutants (Delta G(op,N)) were estimated from the thermodynamic cycle that links denaturation and cleavage free energies. To calculate those values, we assumed that the free energy of opening of a single peptide bond in the denatured state (Delta G(op,D)) was equal to -2.7 kcal/mole, as reported previously. Calculated Delta G(op,N) values in BPTI were in the range from 0.2 to 10 kcal/mole, which was equivalent to a >1 million-fold difference in equilibrium constants. The values of Delta G(op,N) were the largest for peptide bonds located in the C-terminal helix and significantly lower for peptide bonds in the beta-structure or loop regions. It appears that opening constants for single peptide bonds in various proteins span across 33 orders of magnitude. Typical equilibrium values for a single peptide bond opening in a protein containing secondary structure elements fall into negligibly low values, from 10(-3) to 10(-8), and are efficient to ensure stability against proteolysis.
Collapse
Affiliation(s)
- Olga Buczek
- Laboratory of Protein Engineering, Institute of Biochemistry and Molecular Biology, University of Wroclaw, 50-137 Wroclaw, Poland
| | | | | |
Collapse
|
20
|
Lindberg MO, Tångrot J, Otzen DE, Dolgikh DA, Finkelstein AV, Oliveberg M. Folding of circular permutants with decreased contact order: general trend balanced by protein stability. J Mol Biol 2001; 314:891-900. [PMID: 11734005 DOI: 10.1006/jmbi.2001.5186] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the influence of contact order and stability on the refolding rate constant for two-state proteins, we have analysed the folding kinetics of the small beta-alpha-beta protein S6 and two of its circular permutants with relative contact orders of 0.19, 0.15 and 0.12. Data reveal a small but significant increase of the refolding rate constant (log k(f)) with decreasing contact order. At the same time, the decreased contact order is correlated to losses in global stability and alterations of the folding nucleus. When the differences in stability are accounted for by addition of Na2SO4 or by comparison of the folding kinetics at the transition mid-point, the dependence between log k(f) and contact order becomes stronger and follows the general correlation for two-state proteins. The observation emphasizes the combined action of topology and stability in controlling the rate constant of protein folding.
Collapse
Affiliation(s)
- M O Lindberg
- Department of Biochemistry, Umeå University, Umeå, S-901 87, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Ojennus DD, Fleissner MR, Wuttke DS. Reconstitution of a native-like SH2 domain from disordered peptide fragments examined by multidimensional heteronuclear NMR. Protein Sci 2001; 10:2162-75. [PMID: 11604523 PMCID: PMC2374061 DOI: 10.1110/ps.18701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2001] [Revised: 07/16/2001] [Accepted: 07/25/2001] [Indexed: 10/14/2022]
Abstract
The N-terminal SH2 domain from the p85alpha subunit of phosphatidylinositol 3' kinase is cleaved specifically into 9- and 5-kD fragments by limited proteolytic digestion with trypsin. The noncovalent SH2 domain complex and its constituent tryptic peptides have been investigated using high-resolution heteronuclear magnetic resonance (NMR). These studies have established the viability of the SH2 domain as a fragment complementation system. The individual peptide fragments are predominantly unstructured in solution. In contrast, the noncovalent 9-kD + 5-kD complex shows a native-like (1)H-(15)N HSQC spectrum, demonstrating that the two fragments fold into a native-like structure on binding. Chemical shift analysis of the noncovalent complex compared to the native SH2 domain reveals that the highest degree of perturbation in the structure occurs at the cleavage site within a flexible loop and along the hydrophobic interface between the two peptide fragments. Mapping of these chemical shift changes on the structure of the domain reveals changes consistent with the reduction in affinity for the target peptide ligand observed in the noncovalent complex relative to the intact protein. The 5-kD fragment of the homologous Src protein is incapable of structurally complementing the p85 9-kD fragment, either in complex formation or in the context of the full-length protein. These high-resolution structural studies of the SH2 domain fragment complementation features establish the suitability of the system for further protein-folding and design studies.
Collapse
Affiliation(s)
- D D Ojennus
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
22
|
Scholz O, Kintrup M, Reich M, Hillen W. Mechanism of Tet repressor induction by tetracyclines: length compensates for sequence in the alpha8-alpha9 loop. J Mol Biol 2001; 310:979-86. [PMID: 11502007 DOI: 10.1006/jmbi.2001.4820] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural Tet repressor (TetR) variants are alpha-helical proteins bearing a large loop between helices 8 and 9, which is variable in sequence and length. We have deleted this loop consisting of 14 amino acid residues in TetR(D) and rebuilt it stepwise with up to 42 alanine residues. All except the mutant with the longest alanine loop show wild-type repression, but none is inducible with tetracycline. This demonstrates the importance of the alpha8-alpha9 loop and its amino acid sequence for induction. The induction efficiencies increase with loop length, when the more tightly binding inducer anhydrotetracycline is used. The largest increase of inducibility was observed for TetR mutants with loop lengths between eight and 17 alanine residues. Since loop residues Asp/Glu157 and Arg158 are conserved in the natural TetR sequence variants, we constructed a mutant in which all other residues of the loop were replaced by alanine. This mutant exhibits increased anhydrotetracycline induction compared to the corresponding alanine variant. Thus, these residues are important for induction. Binding constants for the anhydrotetracycline-TetR interaction are below the detection level of 10(5) M(-1) for the mutant with a loop of two alanine residues and increase sharply until a loop size of ten residues is reached. TetR variants with longer loops have similar anhydrotetracycline-binding constants, ranging between 2.6 x 10(9) M(-1) and 8.0 x 10(9) M(-1), about 500-fold lower than wild-type TetR. The increase of the affinity occurs at shorter loop lengths than that of inducibility. We conclude that the induction defect of the polyalanine variants arises from two increments: (i) the loop must have a minimal length-to allow efficient inducer binding; (ii) the loop must structurally participate in the conformational change associated with induction.
Collapse
Affiliation(s)
- O Scholz
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie Biochemie und Genetik, Friedrich-Alexander Universität Erlangen-Nurnberg, Germany
| | | | | | | |
Collapse
|
23
|
Michnick SW, Remy I, Campbell-Valois FX, Vallée-Bélisle A, Pelletier JN. Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol 2001; 328:208-30. [PMID: 11075347 DOI: 10.1016/s0076-6879(00)28399-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- S W Michnick
- Département de Biochimie, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
24
|
Abstract
The high structural resolution of the main transition states for the formation of native structure for the six small proteins of which Phi-values for a large set of mutants have become available, barstar, barnase, chymotrypsin inhibitor 2, Arc repressor, the src SH3 domain, and a tetrameric p53 domain reveals that for the first 5 of these proteins: (1) Residues that belong to regular secondary structure have a significantly larger average fraction of native structural consolidation than residues in loops; (2) on the other hand, secondary and tertiary structures have built up to the same degree, or at least a high degree, but nonuniformly distributed over the molecule; (3) the most consolidated parts of each protein molecule in the transition state cluster together, and these clusters contain a significantly higher percentage of residues that belong to regular secondary structure than the rest of the molecule. These observations further reconcile the framework model with the nucleation-condensation mechanism for folding: The amazing speed of protein folding can be understood as caused by the catalytic effect of the formation of clusters of residues which have particularly high preferences for the early formation of regular secondary structure in the presence of significant amounts of tertiary structure interactions.
Collapse
Affiliation(s)
- B Nölting
- Prussian Private Institute of Technology at Berlin, Berlin, Germany.
| | | |
Collapse
|
25
|
|
26
|
Abstract
A coarse-grained dynamic Monte Carlo (MC) simulation method is used to investigate the conformational dynamics of chymotrypsin inhibitor 2 (CI2). Each residue is represented therein by two interaction sites, one at the alpha-carbon and the other on the amino acid side-chain. The energy and geometry parameters extracted from databank structures are used. The calculated rms fluctuations of alpha-carbon atoms are in good agreement with crystallographic temperature factors. The two regions of the protein that pack against each other to form the main hydrophobic core exhibit negatively correlated fluctuations. The conformational dynamics could efficiently be probed by the time-delayed orientational and conformational correlation functions of the virtual bonds: the active site loop, excluding the active site bond, the turn region, and the N-terminal of the alpha-helix are relatively more mobile regions of the structure. A correlation is observed between the hydrogen/deuterium (H/D) exchange behavior and the long-time orientational and conformational autocorrelation function values for CI2. A cooperativity in the rotations of the bonds near in sequence is observed at all time windows, whereas the cooperative rotations of the bonds far along the sequence appear at long time windows; these correlations contribute to the stability of the secondary structures and the tertiary structure, respectively.
Collapse
Affiliation(s)
- N Kurt
- Chemical Engineering Department, Boğaziçi University, Bebek, Istanbul, Turkey
| | | |
Collapse
|
27
|
Tsai CJ, Maizel JV, Nussinov R. Distinguishing between sequential and nonsequentially folded proteins: implications for folding and misfolding. Protein Sci 1999; 8:1591-604. [PMID: 10452603 PMCID: PMC2144423 DOI: 10.1110/ps.8.8.1591] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We describe here an algorithm for distinguishing sequential from nonsequentially folding proteins. Several experiments have recently suggested that most of the proteins that are synthesized in the eukaryotic cell may fold sequentially. This proposed folding mechanism in vivo is particularly advantageous to the organism. In the absence of chaperones, the probability that a sequentially folding protein will misfold is reduced significantly. The problem we address here is devising a procedure that would differentiate between the two types of folding patterns. Footprints of sequential folding may be found in structures where consecutive fragments of the chain interact with each other. In such cases, the folding complexity may be viewed as being lower. On the other hand, higher folding complexity suggests that at least a portion of the polypeptide backbone folds back upon itself to form three-dimensional (3D) interactions with noncontiguous portion(s) of the chain. Hence, we look at the mechanism of folding of the molecule via analysis of its complexity, that is, through the 3D interactions formed by contiguous segments on the polypeptide chain. To computationally splice the structure into consecutively interacting fragments, we either cut it into compact hydrophobic folding units or into a set of hypothetical, transient, highly populated, contiguous fragments ("building blocks" of the structure). In sequential folding, successive building blocks interact with each other from the amino to the carboxy terminus of the polypeptide chain. Consequently, the results of the parsing differentiate between sequentially vs. nonsequentially folded chains. The automated assessment of the folding complexity provides insight into both the likelihood of misfolding and the kinetic folding rate of the given protein. In terms of the funnel free energy landscape theory, a protein that truly follows the mechanism of sequential folding, in principle, encounters smoother free energy barriers. A simple sequentially folded protein should, therefore, be less error prone and fold faster than a protein with a complex folding pattern.
Collapse
Affiliation(s)
- C J Tsai
- Laboratory of Experimental and Computational Biology, NCI-FCRDC, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
28
|
Abstract
Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly, with a range of complexed conformations. Hence, knowledge of the shape of the folding funnels is biologically very useful. The converse also holds: If kinetic and thermodynamic data are available, hints regarding the role of the protein and its binding selectivity may be obtained. Thus, the utility of the concept of the funnel carries over to the origin of the protein and to its function.
Collapse
Affiliation(s)
- C J Tsai
- Laboratory of Experimental and Computational Biology, NCI-FCRDC, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
29
|
Ostermeier M, Nixon AE, Shim JH, Benkovic SJ. Combinatorial protein engineering by incremental truncation. Proc Natl Acad Sci U S A 1999; 96:3562-7. [PMID: 10097076 PMCID: PMC22333 DOI: 10.1073/pnas.96.7.3562] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a combinatorial approach, using incremental truncation libraries of overlapping N- and C-terminal gene fragments, that examines all possible bisection points within a given region of an enzyme that will allow the conversion of a monomeric enzyme into its functional heterodimer. This general method for enzyme bisection will have broad applications in the engineering of new catalytic functions through domain swapping and chemical synthesis of modified peptide fragments and in the study of enzyme evolution and protein folding. We have tested this methodology on Escherichia coli glycinamide ribonucleotide formyltransferase (PurN) and, by genetic selection, identified PurN heterodimers capable of glycinamide ribonucleotide transformylation. Two were chosen for physical characterization and were found to be comparable to the wild-type PurN monomer in terms of stability to denaturation, activity, and binding of substrate and cofactor. Sequence analysis of 18 randomly chosen, active PurN heterodimers revealed that the breakpoints primarily clustered in loops near the surface of the enzyme, that the breaks could result in the deletion of highly conserved residues and, most surprisingly, that the active site could be bisected.
Collapse
Affiliation(s)
- M Ostermeier
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802-6300, USA
| | | | | | | |
Collapse
|
30
|
Neira JL, Fersht AR. Acquisition of native-like interactions in C-terminal fragments of barnase. J Mol Biol 1999; 287:421-32. [PMID: 10080903 DOI: 10.1006/jmbi.1999.2602] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterised a series of C-terminal fragments of barnase by different biophysical techniques to find out when they acquire secondary and tertiary native-like structure. Fragments B96-110 (which comprises the last 15 residues of the intact protein) up to B37-110 (which involves most of the protein except the two first helices and a loop) were mainly disordered. Only fragment B23-110, which lacks alpha-helix1, showed native-like near and far-UV CD and fluorescence spectra. The intensities of these spectra were lower than those of the full-length protein, which suggests the absence of complete side-chain packing. Urea denaturation followed by fluorescence, far-UV CD and gel-filtration chromatography techniques indicated a co-operative transition only for B23-110. None of the fragments melted co-operatively with temperature. Thus, the formation of secondary and tertiary structure requires most of the polypeptide chain to be present, that is, secondary and tertiary structure are formed in parallel. This agrees with the proposed model for barnase folding, where the residual structure in small fragments is weak and flickering, and it is only consolidated when there are enough tertiary interactions. Thus, the development of structure in the series of C-terminal fragments follows a similar behaviour to that observed in the series of N-terminal fragments of barnase.
Collapse
Affiliation(s)
- J L Neira
- MRC Unit for Protein Function and Design Cambridge Centre for Protein Engineering, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
31
|
Spector S, Rosconi M, Raleigh DP. Conformational analysis of peptide fragments derived from the peripheral subunit-binding domain from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: evidence for nonrandom structure in the unfolded state. Biopolymers 1999; 49:29-40. [PMID: 10070261 DOI: 10.1002/(sici)1097-0282(199901)49:1<29::aid-bip4>3.0.co;2-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is currently a great deal of interest in the early events in protein folding. Two issues that have generated particular interest are the nature of the unfolded state under native conditions and the role of local interactions in folding. Here, we report the results of a study of a set of peptides derived from a small two-helix protein, the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex. Five peptides of overlapping sequence were prepared, including sequences corresponding to each of the helices and to the region connecting them. The peptides were characterized by CD and, where possible, nmr. A peptide corresponding to the second helix is between 12 and 17% helical at neutral pH. CD also indicates a lower percentage of helical structure in the peptide corresponding to the first alpha-helix, although the values of the alpha-proton chemical shifts suggest some preference for nonrandom structure. Peptides corresponding to the interhelical loop, which in the full domain contains two overlapping beta-turns and a 5-residue 3(10)-helix, are less structured. There is no significant change in the helicity of any of these peptides with pH. To test for fragment complementation, CD spectra of the two peptides derived from each helix and the long connecting peptide were compared to the spectra of each possible pair, as well as to a mixture containing all three. No increase in structure was observed. We complement our peptide studies by characterizing a point mutant, D34V, which disrupts a critical hydrogen bonding network. This mutant is unable to fold and provides a useful model of the denatured state. The mutant is between 9 and 16% helical as judged by CD. The modest amount of helical structure formed in some of the peptide fragments and in the point mutant suggests that the denatured state of the peripheral subunit binding domain is not completely unstructured. This may contribute to the very rapid folding observed for the intact protein.
Collapse
Affiliation(s)
- S Spector
- Department of Physiology and Biophysics, State University of New York at Stony Brook 11794-8661, USA
| | | | | |
Collapse
|
32
|
Pelletier JN, Campbell-Valois FX, Michnick SW. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc Natl Acad Sci U S A 1998; 95:12141-6. [PMID: 9770453 PMCID: PMC22798 DOI: 10.1073/pnas.95.21.12141] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reassembly of enzymes from peptide fragments has been used as a strategy for understanding the evolution, folding, and role of individual subdomains in catalysis and regulation of activity. We demonstrate an oligomerization-assisted enzyme reassembly strategy whereby fragments are covalently linked to independently folding and interacting domains whose interactions serve to promote efficient refolding and complementation of fragments, forming active enzyme. We show that active murine dihydrofolate reductase (E.C. 1.5.1.3) can be reassembled from complementary N- and C-terminal fragments when fused to homodimerizing GCN4 leucine zipper-forming sequences as well as heterodimerizing protein partners. Reassembly is detected by an in vivo selection assay in Escherichia coli and in vitro. The effects of mutations that disrupt fragment affinity or enzyme activity were assessed. The steady-state kinetic parameters for the reassembled mutant (Phe-31 --> Ser) were determined; they are not significantly different from the full-length mutant. The strategy described here provides a general approach for protein dissection and domain swapping studies, with the capacity both for rapid in vivo screening as well as in vitro characterization. Further, the strategy suggests a simple in vivo enzyme-based detection system for protein-protein interactions, which we illustrate with two examples: ras-GTPase and raf-ras-binding domain and FK506-binding protein-rapamycin complexed with the target of rapamycin TOR2.
Collapse
Affiliation(s)
- J N Pelletier
- Département de biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | | |
Collapse
|
33
|
Ladurner AG, Fersht AR. Glutamine, alanine or glycine repeats inserted into the loop of a protein have minimal effects on stability and folding rates. J Mol Biol 1997; 273:330-7. [PMID: 9367765 DOI: 10.1006/jmbi.1997.1304] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural proteins can contain flexible regions in their polypeptide chain. We have investigated the effects of glycine, alanine and glutamine repeats on the stability and folding of a protein by inserting stretches of 7 to 13 residues into a suitable position in a model system, the chymotrypsin inhibitor-2 (CI2). This folds by residues (1-40) docking with residues (41-64) to form a folding nucleus. The peptides GQ4GM, GQ6GM, GQ8GM, GQ10GM, GA2SA4SA2GM and G3SG4SG3M were inserted after residue 40. The stability of the mutant proteins changes only weakly with chain length and nature of insertion, suggesting that the presence of unstructured polypeptide chains in a protein does not have a great energetic penalty. This has implications in catalysis, for example, where floppy regions have been noted in active sites, and in DNA transcription where activators, transcription factors and intermediary proteins all show long repeats of glycine/serine and/or glutamine, which are thought to be important for function. We find that the rate of folding is very insensitive to the length of the linker. The changes in rate are close to those predicted from polymer theory for the loss of configuration entropy on closing a loop. This implies that all the diffusion steps are relatively rapid.
Collapse
Affiliation(s)
- A G Ladurner
- MRC Cambridge Centre for Protein Engineering, MRC Centre, UK
| | | |
Collapse
|