1
|
Lin M, Liu L, Chen CA. Transcriptomics of the Anthopleura Sea Anemone Reveals Unique Adaptive Strategies to Shallow-Water Hydrothermal Vent. Ecol Evol 2025; 15:e71252. [PMID: 40225888 PMCID: PMC11985324 DOI: 10.1002/ece3.71252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The nonsymbiotic sea anemone Anthopleura nigrescens dominates the shallow-water hydrothermal vents off the coast of Kueishan Island, Taiwan. These vents represent some of the world's most extreme environments, with recorded pH values as low as 1.52 and temperatures reaching 121°C. To investigate the adaptations of A. nigrescens to these extreme conditions, transcriptomic analyses were conducted to compare populations inhabiting vent and non-vent areas. To identify shared genetic mechanisms in vent-dwelling anemones, specific orthologs conserved in vent sea anemones were identified by comparing the genomic data of Anthopleura species and other sea anemones. Tank experiments with elevated temperatures were also performed to evaluate the expression profiles of genes associated with heat resistance. The transcriptomic analysis revealed that enriched genes in vent populations are involved in H2S homeostasis and stress resistance, suggesting that detoxification and thermal stress resistance are critical adaptive strategies. Two significantly upregulated genes encoding hydroxyacylglutathione hydrolase and thiosulfate sulfurtransferase may play a role in managing sulfur toxicity and maintaining redox balance. The enriched genes and vent-specific gene expression patterns also suggest that efficient DNA repair mechanisms play a crucial role in the thermal stress resistance of vent populations. Interestingly, some genes associated with circadian rhythms were upregulated in vent populations, suggesting these genes may help vent anemones adapt to the highly dynamic conditions of hydrothermal vents. Furthermore, the expression profiles of stress-resistance-related genes reveal that vent anemones have developed unique molecular regulatory mechanisms to cope with elevated temperatures, as observed in the tank experiment. These transcriptomic findings advance our understanding of the life adaptations in shallow-water hydrothermal vent environments.
Collapse
Affiliation(s)
- Mei‐Fang Lin
- Department of Marine Biotechnology and ResourcesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Doctoral Degree Program in Marine BiotechnologyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Li‐Lian Liu
- Frontier Center for Ocean Science and TechnologyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of OceanographyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | | |
Collapse
|
2
|
Truong A, Myerscough D, Campbell I, Atkinson J, Silberg JJ. A cellular selection identifies elongated flavodoxins that support electron transfer to sulfite reductase. Protein Sci 2023; 32:e4746. [PMID: 37551563 PMCID: PMC10503412 DOI: 10.1002/pro.4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Flavodoxins (Flds) mediate the flux of electrons between oxidoreductases in diverse metabolic pathways. To investigate whether Flds can support electron transfer to a sulfite reductase (SIR) that evolved to couple with a ferredoxin, we evaluated the ability of Flds to transfer electrons from a ferredoxin-NADP reductase (FNR) to a ferredoxin-dependent SIR using growth complementation of an Escherichia coli strain with a sulfur metabolism defect. We show that Flds from cyanobacteria complement this growth defect when coexpressed with an FNR and an SIR that evolved to couple with a plant ferredoxin. When we evaluated the effect of peptide insertion on Fld-mediated electron transfer, we observed a sensitivity to insertions within regions predicted to be proximal to the cofactor and partner binding sites, while a high insertion tolerance was detected within loops distal from the cofactor and within regions of helices and sheets that are proximal to those loops. Bioinformatic analysis showed that natural Fld sequence variability predicts a large fraction of the motifs that tolerate insertion of the octapeptide SGRPGSLS. These results represent the first evidence that Flds can support electron transfer to assimilatory SIRs, and they suggest that the pattern of insertion tolerance is influenced by interactions with oxidoreductase partners.
Collapse
Affiliation(s)
- Albert Truong
- Biochemistry and Cell Biology Graduate ProgramRice UniversityHoustonTexasUSA
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | | | - Ian Campbell
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | | | - Jonathan J. Silberg
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of BioengineeringRice UniversityHoustonTexasUSA
- Department of Chemical and Biomolecular EngineeringRice UniversityHoustonTexasUSA
| |
Collapse
|
3
|
Jia G, Li W, Fan M, Yu R, Xu Y, Geng L, Zhang J, Zhu C, Liu H. Pentapeptide-insertion scanning mutational analysis of turkey herpesvirus HVT063 reveals residues important for its RNA silencing suppression activity. Arch Virol 2018; 163:167-174. [PMID: 29052787 DOI: 10.1007/s00705-017-3595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022]
Abstract
HVT063, an RNA-binding protein encoded by turkey herpesvirus, has been shown previously to suppress RNA silencing. Here, a scanning library produced by pentapeptide-insertion scanning mutagenesis was used to identify key residues associated with its RNA silencing suppressor (RSS) activity. Forty-two in-frame insertion mutants of HVT063 protein were evaluated for their RSS activity using the dual-luciferase transient expressing assay system. Sixteen mutations resulted in a loss of RSS activity, 20 mutations resulted in decreased RSS activity, and six mutations exhibited high RSS activity similar to wild-type HVT063. Based on a three-dimensional structure prediction, most of the loss-of-function mutations were located around a predominantly α-helical region at the C-terminal end of HVT063. In particular, a conserved domain in this region, named herpes_UL69, showed low tolerance for five-amino-acid insertions. Combined with the results of our previous studies, basic amino acids could play a key role in RSS activity. These results also demonstrate that pentapeptide-insertion scanning mutagenesis combined with dual-luciferase assays is an effective method to functionally characterize RSSs.
Collapse
Affiliation(s)
- Gang Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenjing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Meina Fan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ru Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yang Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Liwei Geng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiedao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
4
|
The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates. J Bacteriol 2015; 197:2335-49. [PMID: 25939830 DOI: 10.1128/jb.00189-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are largely undefined. Here, we supply genetic and biochemical evidence that a helical bundle, designated the all-alpha domain (AAD), of T4SS receptors functions as a substrate specificity determinant. We show that AADs from two substrate receptors, Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC, bind DNA without sequence or strand preference but specifically bind the cognate relaxases responsible for nicking and piloting the transferred strand through the T4SS. We propose that interactions of receptor AADs with DNA-processing factors constitute a basis for selective coupling of mobile DNA elements with type IV secretion channels.
Collapse
|
5
|
Mutations that Separate the Functions of the Proofreading Subunit of the Escherichia coli Replicase. G3-GENES GENOMES GENETICS 2015; 5:1301-11. [PMID: 25878065 PMCID: PMC4478557 DOI: 10.1534/g3.115.017285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The dnaQ gene of Escherichia coli encodes the ε subunit of DNA polymerase III, which provides the 3′ → 5′ exonuclease proofreading activity of the replicative polymerase. Prior studies have shown that loss of ε leads to high mutation frequency, partially constitutive SOS, and poor growth. In addition, a previous study from our laboratory identified dnaQ knockout mutants in a screen for mutants specifically defective in the SOS response after quinolone (nalidixic acid) treatment. To explain these results, we propose a model whereby, in addition to proofreading, ε plays a distinct role in replisome disassembly and/or processing of stalled replication forks. To explore this model, we generated a pentapeptide insertion mutant library of the dnaQ gene, along with site-directed mutants, and screened for separation of function mutants. We report the identification of separation of function mutants from this screen, showing that proofreading function can be uncoupled from SOS phenotypes (partially constitutive SOS and the nalidixic acid SOS defect). Surprisingly, the two SOS phenotypes also appear to be separable from each other. These findings support the hypothesis that ε has additional roles aside from proofreading. Identification of these mutants, especially those with normal proofreading but SOS phenotype(s), also facilitates the study of the role of ε in SOS processes without the confounding results of high mutator activity associated with dnaQ knockout mutants.
Collapse
|
6
|
Murchland I, Ahlgren-Berg A, Priest DG, Dodd IB, Shearwin KE. Promoter activation by CII, a potent transcriptional activator from bacteriophage 186. J Biol Chem 2014; 289:32094-32108. [PMID: 25294872 DOI: 10.1074/jbc.m114.608026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lysogeny promoting protein CII from bacteriophage 186 is a potent transcriptional activator, capable of mediating at least a 400-fold increase in transcription over basal activity. Despite being functionally similar to its counterpart in phage λ, it shows no homology at the level of protein sequence and does not belong to any known family of transcriptional activators. It also has the unusual property of binding DNA half-sites that are separated by 20 base pairs, center to center. Here we investigate the structural and functional properties of CII using a combination of genetics, in vitro assays, and mutational analysis. We find that 186 CII possesses two functional domains, with an independent activation epitope in each. 186 CII owes its potent activity to activation mechanisms that are dependent on both the σ(70) and α C-terminal domain (αCTD) components of RNA polymerase, contacting different functional domains. We also present evidence that like λ CII, 186 CII is proteolytically degraded in vivo, but unlike λ CII, 186 CII proteolysis results in a specific, transcriptionally inactive, degradation product with altered self-association properties.
Collapse
Affiliation(s)
- Iain Murchland
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alexandra Ahlgren-Berg
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David G Priest
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ian B Dodd
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Keith E Shearwin
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
7
|
Liu J, Cropp TA. A method for multi-codon scanning mutagenesis of proteins based on asymmetric transposons. Protein Eng Des Sel 2011; 25:67-72. [PMID: 22184456 DOI: 10.1093/protein/gzr060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Random mutagenesis followed by selection or screening is a commonly used strategy to improve protein function. Despite many available methods for random mutagenesis, nearly all generate mutations at the nucleotide level. An ideal mutagenesis method would allow for the generation of 'codon mutations' to change protein sequence with defined or mixed amino acids of choice. Herein we report a method that allows for mutations of one, two or three consecutive codons. Key to this method is the development of a Mu transposon variant with asymmetric terminal sequences. As a demonstration of the method, we performed multi-codon scanning on the gene encoding superfolder GFP (sfGFP). Characterization of 50 randomly chosen clones from each library showed that more than 40% of the mutants in these three libraries contained seamless, in-frame mutations with low site preference. By screening only 500 colonies from each library, we successfully identified several spectra-shift mutations, including a S205D variant that was found to bear a single excitation peak in the UV region.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | |
Collapse
|
8
|
Cortez D, Quevillon-Cheruel S, Gribaldo S, Desnoues N, Sezonov G, Forterre P, Serre MC. Evidence for a Xer/dif system for chromosome resolution in archaea. PLoS Genet 2010; 6:e1001166. [PMID: 20975945 PMCID: PMC2958812 DOI: 10.1371/journal.pgen.1001166] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 09/17/2010] [Indexed: 12/02/2022] Open
Abstract
Homologous recombination events between circular chromosomes, occurring during or after replication, can generate dimers that need to be converted to monomers prior to their segregation at cell division. In Escherichia coli, chromosome dimers are converted to monomers by two paralogous site-specific tyrosine recombinases of the Xer family (XerC/D). The Xer recombinases act at a specific dif site located in the replication termination region, assisted by the cell division protein FtsK. This chromosome resolution system has been predicted in most Bacteria and further characterized for some species. Archaea have circular chromosomes and an active homologous recombination system and should therefore resolve chromosome dimers. Most archaea harbour a single homologue of bacterial XerC/D proteins (XerA), but not of FtsK. Therefore, the role of XerA in chromosome resolution was unclear. Here, we have identified dif-like sites in archaeal genomes by using a combination of modeling and comparative genomics approaches. These sites are systematically located in replication termination regions. We validated our in silico prediction by showing that the XerA protein of Pyrococcus abyssi specifically recombines plasmids containing the predicted dif site in vitro. In contrast to the bacterial system, XerA can recombine dif sites in the absence of protein partners. Whereas Archaea and Bacteria use a completely different set of proteins for chromosome replication, our data strongly suggest that XerA is most likely used for chromosome resolution in Archaea. Bacteria with circular chromosome and active homologous recombination systems have to resolve chromosomal dimers before segregation at cell division. In Escherichia coli, the Xer site-specific recombination system, composed of two recombinases and a specific chromosomal site (dif), is involved in the correct inheritance of the chromosome. The recombination event is tightly regulated by the chromosome translocase FtsK. This chromosome resolution system has been predicted in most bacteria and further characterized for some species. Intriguingly, most archaea possess a gene coding for a recombinase homologous to bacterial Xers, but none have homologues of the bacterial FtsK. We identified the specific target sites for archaeal Xer. This site, present in one copy per chromosome, is located in the replication termination region and shows sequence similarities with bacterial dif sites. In vitro, the archaeal Xer recombines this site in the absence of protein partner. It has been shown that DNA–related proteins from Archaea and Eukarya share a common origin, whereas their analogues in Bacteria have evolved independently. In this context, Eukarya and Archaea would represent sister groups. Therefore, the presence of a shared Xer-dif system between Bacteria and Archaea illustrates the complex origin of modern DNA genomes.
Collapse
Affiliation(s)
- Diego Cortez
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Sophie Quevillon-Cheruel
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619-CNRS, Université Paris-Sud 11, IFR115, Orsay, France
| | - Simonetta Gribaldo
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Nicole Desnoues
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Guennadi Sezonov
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Patrick Forterre
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
- Institut de Génétique et Microbiologie, Université Paris-Sud 11, UMR8621-CNRS, IFR115, Orsay, France
| | - Marie-Claude Serre
- Institut de Génétique et Microbiologie, Université Paris-Sud 11, UMR8621-CNRS, IFR115, Orsay, France
- * E-mail:
| |
Collapse
|
9
|
Lambert B, Vandeputte J, Desmet PM, Hallet B, Remacle S, Rezsohazy R. Pentapeptide insertion mutagenesis of the Hoxa1 protein: mapping of transcription activation and DNA-binding regulatory domains. J Cell Biochem 2010; 110:484-96. [PMID: 20336696 DOI: 10.1002/jcb.22563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mode of action of Hoxa1, like that of most Hox proteins, remains poorly characterized. In an effort to identify functional determinants contributing to the activity of Hoxa1 as a transcription factor, we generated 18 pentapeptide insertion mutants of the Hoxa1 protein and we assayed them in transfected cells for their activity on target enhancers from the EphA2 and Hoxb1 genes known to respond to Hoxa1 in the developing hindbrain. Only four mutants displayed a complete loss-of-function. Three of them contained an insertion in the homeodomain of Hoxa1, whereas the fourth loss-of-function mutant harbored an insertion in the very N-terminal end of the protein. Transcription activation assays in yeast further revealed that the integrity of both the N-terminal end and homeodomain is required for Hoxa1-mediated transcriptional activation. Furthermore, an insertion in the serine-threonine-proline rich C-terminal extremity of Hoxa1 induced an increase in activity in mammalian cells as well as in the yeast assay. The C-terminal extremity thus modulates the transcriptional activation capacity of the protein. Finally, electrophoretic mobility shift assays revealed that the N-terminal extremity of the protein also exerts a modulatory influence on DNA binding by Hoxa1-Pbx1a heterodimers.
Collapse
Affiliation(s)
- Barbara Lambert
- Unit of Veterinary Sciences, Life Sciences Institute (ISV), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
10
|
Sanchez Garcia J, Baranovskiy AG, Knatko EV, Gray FC, Tahirov TH, MacNeill SA. Functional mapping of the fission yeast DNA polymerase delta B-subunit Cdc1 by site-directed and random pentapeptide insertion mutagenesis. BMC Mol Biol 2009; 10:82. [PMID: 19686603 PMCID: PMC2734569 DOI: 10.1186/1471-2199-10-82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022] Open
Abstract
Background DNA polymerase δ plays an essential role in chromosomal DNA replication in eukaryotic cells, being responsible for synthesising the bulk of the lagging strand. In fission yeast, Pol δ is a heterotetrameric enzyme comprising four evolutionarily well-conserved proteins: the catalytic subunit Pol3 and three smaller subunits Cdc1, Cdc27 and Cdm1. Pol3 binds directly to the B-subunit, Cdc1, which in turn binds the C-subunit, Cdc27. Human Pol δ comprises the same four subunits, and the crystal structure was recently reported of a complex of human p50 and the N-terminal domain of p66, the human orthologues of Cdc1 and Cdc27, respectively. Results To gain insights into the structure and function of Cdc1, random and directed mutagenesis techniques were used to create a collection of thirty alleles encoding mutant Cdc1 proteins. Each allele was tested for function in fission yeast and for binding of the altered protein to Pol3 and Cdc27 using the two-hybrid system. Additionally, the locations of the amino acid changes in each protein were mapped onto the three-dimensional structure of human p50. The results obtained from these studies identify amino acid residues and regions within the Cdc1 protein that are essential for interaction with Pol3 and Cdc27 and for in vivo function. Mutations specifically defective in Pol3-Cdc1 interactions allow the identification of a possible Pol3 binding surface on Cdc1. Conclusion In the absence of a three-dimensional structure of the entire Pol δ complex, the results of this study highlight regions in Cdc1 that are vital for protein function in vivo and provide valuable clues to possible protein-protein interaction surfaces on the Cdc1 protein that will be important targets for further study.
Collapse
Affiliation(s)
- Javier Sanchez Garcia
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Gray FC, Whitehead KA, MacNeill SA. Inactivating pentapeptide insertions in the fission yeast replication factor C subunit Rfc2 cluster near the ATP-binding site and arginine finger motif. FEBS J 2009; 276:4803-13. [PMID: 19664060 DOI: 10.1111/j.1742-4658.2009.07181.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication factor C (RFC) plays a key role in eukaryotic chromosome replication by acting as a loading factor for the essential sliding clamp and polymerase processivity factor, proliferating cell nuclear antigen (PCNA). RFC is a pentamer comprising a large subunit, Rfc1, and four small subunits, Rfc2-Rfc5. Each RFC subunit is a member of the AAA+ family of ATPase and ATPase-like proteins, and the loading of PCNA onto double-stranded DNA is an ATP-dependent process. Here, we describe the properties of a collection of 38 mutant forms of the Rfc2 protein generated by pentapeptide-scanning mutagenesis of the fission yeast rfc2 gene. Each insertion was tested for its ability to support growth in fission yeast rfc2Delta cells lacking endogenous Rfc2 protein and the location of each insertion was mapped onto the 3D structure of budding yeast Rfc2. This analysis revealed that the majority of the inactivating mutations mapped in or adjacent to ATP sites C and D in Rfc2 (arginine finger and P-loop, respectively) or to the five-stranded beta sheet at the heart of the Rfc2 protein. By contrast, nonlethal mutations map predominantly to loop regions or to the outer surface of the RFC complex, often in highly conserved regions of the protein. Possible explanations for the effects of the various insertions are discussed.
Collapse
Affiliation(s)
- Fiona C Gray
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, North Haugh, St Andrews, UK
| | | | | |
Collapse
|
12
|
Ballicora MA, Erben ED, Yazaki T, Bertolo AL, Demonte AM, Schmidt JR, Aleanzi M, Bejar CM, Figueroa CM, Fusari CM, Iglesias AA, Preiss J. Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis. J Bacteriol 2007; 189:5325-33. [PMID: 17496097 PMCID: PMC1951854 DOI: 10.1128/jb.00481-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/30/2007] [Indexed: 11/20/2022] Open
Abstract
ADP-glucose pyrophosphorylase (ADP-Glc PPase) is the enzyme responsible for the regulation of bacterial glycogen synthesis. To perform a structure-function relationship study of the Escherichia coli ADP-Glc PPase enzyme, we studied the effects of pentapeptide insertions at different positions in the enzyme and analyzed the results with a homology model. We randomly inserted 15 bp in a plasmid with the ADP-Glc PPase gene. We obtained 140 modified plasmids with single insertions of which 21 were in the coding region of the enzyme. Fourteen of them generated insertions of five amino acids, whereas the other seven created a stop codon and produced truncations. Correlation of ADP-Glc PPase activity to these modifications validated the enzyme model. Six of the insertions and one truncation produced enzymes with sufficient activity for the E. coli cells to synthesize glycogen and stain in the presence of iodine vapor. These were in regions away from the substrate site, whereas the mutants that did not stain had alterations in critical areas of the protein. The enzyme with a pentapeptide insertion between Leu(102) and Pro(103) was catalytically competent but insensitive to activation. We postulate this region as critical for the allosteric regulation of the enzyme, participating in the communication between the catalytic and regulatory domains.
Collapse
|
13
|
Varrelmann M, Maiss E, Pilot R, Palkovics L. Use of pentapeptide-insertion scanning mutagenesis for functional mapping of the plum pox virus helper component proteinase suppressor of gene silencing. J Gen Virol 2007; 88:1005-1015. [PMID: 17325375 DOI: 10.1099/vir.0.82200-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Helper component proteinase (HC-Pro) of Plum pox virus is a multifunctional potyvirus protein that has been examined intensively. In addition to its involvement in aphid transmission, genome amplification and long-distance movement, it is also one of the better-studied plant virus suppressors of RNA silencing. The first systematic analysis using pentapeptide-insertion scanning mutagenesis of the silencing suppression function of a potyvirus HC-Pro is presented here. Sixty-three in-frame insertion mutants, each containing five extra amino acids inserted randomly within the HC-Pro protein, were analysed for their ability to suppress transgene-induced RNA silencing using Agrobacterium infiltration in transgenic Nicotiana benthamiana plants expressing green fluorescent protein. A functional map was obtained, consisting of clearly defined regions with different classes of silencing-suppression activity (wild-type, restricted and disabled). This map confirmed that the N-terminal part of the protein, which is indispensable for aphid transmission, is dispensable for silencing suppression and supports the involvement of the central region in silencing suppression, in addition to its role in maintenance of genome amplification and synergism with other viruses. Moreover, evidence is provided that the C-terminal part of the protein, previously known to be necessary mainly for proteolytic activity, also participates in silencing suppression. Pentapeptide-insertion scanning mutagenesis has been shown to be a fast and powerful tool to functionally characterize plant virus proteins.
Collapse
Affiliation(s)
- Mark Varrelmann
- Department of Crop Science, Section Plant Virology, University of Göttingen, Grisebachstraße 6, D-37077 Göttingen, Germany
| | - Edgar Maiss
- Institute of Plant Diseases and Plant Protection, University of Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| | - Ruth Pilot
- Department of Crop Science, Section Plant Virology, University of Göttingen, Grisebachstraße 6, D-37077 Göttingen, Germany
| | - Laszlo Palkovics
- Department of Plant Pathology, Faculty of Horticultural Science, Corvinus University Budapest, H-1118 Budapest, Hungary
| |
Collapse
|
14
|
Reijns M, Lu Y, Leach S, Colloms SD. Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol 2005; 57:927-41. [PMID: 16091035 DOI: 10.1111/j.1365-2958.2005.04716.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PepA is an aminopeptidase and also functions as a DNA-binding protein in two unrelated systems in Escherichia coli: Xer site-specific recombination and transcriptional regulation of carAB. In these systems, PepA binds to and brings together distant segments of DNA to form interwrapped, nucleosome-like structures. Here we report the selection of PepA mutants that were unable to support efficient Xer recombination. These mutants were defective in DNA-binding and in transcriptional regulation of carAB, but had normal peptidase activity. The mutations define extended patches of basic residues on the surface of the N-terminal domain of PepA that flank a previously proposed DNA-binding groove in the C-terminal domain of PepA. Our results suggest that DNA passes through this C-terminal groove in the PepA hexamer, and is bound by N-terminal DNA-binding determinants at each end of the groove. Based on our data, we propose a new model for the Xer synaptic complex, in which two recombination sites are wrapped around a single hexamer of PepA, bringing the cross-over sites together for strand exchange by the Xer recombinases. In this model, PepA stabilizes negative plectonemic interwrapping between two segments of DNA by passing one segment through the C-terminal groove while the other is held in place in a loop over the groove.
Collapse
Affiliation(s)
- Martin Reijns
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | | | | | | |
Collapse
|
15
|
Anton BP, Raleigh EA. Transposon-mediated linker insertion scanning mutagenesis of the Escherichia coli McrA endonuclease. J Bacteriol 2004; 186:5699-707. [PMID: 15317774 PMCID: PMC516834 DOI: 10.1128/jb.186.17.5699-5707.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
McrA is one of three functions that restrict modified foreign DNA in Escherichia coli K-12, affecting both methylated and hydroxymethylated substrates. We present here the first systematic analysis of the functional organization of McrA by using the GPS-LS insertion scanning system. We collected in-frame insertions of five amino acids at 46 independent locations and C-terminal truncations at 20 independent locations in the McrA protein. Each mutant was assayed for in vivo restriction of both methylated and hydroxymethylated bacteriophage (M.HpaII-modified lambda and T4gt, respectively) and for induction of the E. coli SOS response in the presence of M.HpaII methylation, indicative of DNA damage. Our findings suggest the presence of an N-terminal DNA-binding domain and a C-terminal catalytic nuclease domain connected by a linker region largely tolerant of amino acid insertions. DNA damage inflicted by a functional C-terminal domain is required for restriction of phage T4gt. Disruption of the N-terminal domain abolishes restriction of both substrates. Surprisingly, truncation mutations that spare the N-terminal domain do not mediate DNA damage, as measured by SOS induction, but nevertheless partially restrict M.HpaII-modified lambda in vivo. We suggest a common explanation for this "restriction without damage" and a similar observation seen in vivo with McrB, a component of another of the modified-DNA restriction functions. Briefly, we propose that unproductive site-specific binding of the protein to a vulnerable position in the lambda genome disrupts the phage development program at an early stage. We also identified a single mutant, carrying an insertion in the N-terminal domain, which could fully restrict lambda but did not restrict T4gt at all. This mutant may have a selective impairment in substrate recognition, distinguishing methylated from hydroxymethylated substrates. The study shows that the technically easy insertion scanning method can provide a rich source of functional information when coupled with effective phenotype tests.
Collapse
Affiliation(s)
- Brian P Anton
- New England Biolabs, 32 Tozer Rd., Beverly, MA 01915, USA
| | | |
Collapse
|
16
|
Petyuk V, McDermott J, Cook M, Sauer B. Functional mapping of Cre recombinase by pentapeptide insertional mutagenesis. J Biol Chem 2004; 279:37040-8. [PMID: 15218019 DOI: 10.1074/jbc.m406042200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cre is a site-specific recombinase from bacteriophage P1. It is a member of the tyrosine integrase family and catalyzes reciprocal recombination between specific 34-bp sites called loxP. To analyze the structure-function relationships of this enzyme, we performed large scale pentapeptide insertional mutagenesis to generate insertions of five amino acids at random positions in the protein. The high density of insertion mutations into Cre allowed us to identify an unexpected degree of functional tolerance to insertions into the 4-5 beta-hairpin and into the loop between helices J and K (both of which contact the DNA in the minor groove) and also into helix A. The phenotypes of the majority of inserts allowed us to confirm a variety of predictions made on the basis of sequence conservation, known three-dimensional structure, and proposed catalytic mechanism. In particular, most insertions into conserved regions or secondary structure elements inactivated Cre, and most insertions located in nonconserved, unstructured regions preserved Cre activity. Less expectedly, the non-conserved and poorly structured loops and linkers between helices A-B, E-F, and M-N did not tolerate insertions, thus identifying these as critical regions for recombinase activity. We purified and characterized in vitro several representatives of these "unexpected" Cre insertion mutants. The role of those regions in the recombination process is discussed.
Collapse
Affiliation(s)
- Vladislav Petyuk
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Transposons are mobile genetic elements that can relocate from one genomic location to another. As well as modulating gene expression and contributing to genome plasticity and evolution, transposons are remarkably diverse molecular tools for both whole-genome and single-gene studies in bacteria, yeast, and other microorganisms. Efficient but simple in vitro transposition reactions now allow the mutational analysis of previously recalcitrant microorganisms. Transposon-based signature-tagged mutagenesis and genetic footprinting strategies have pinpointed essential genes and genes that are crucial for the infectivity of a variety of human and other pathogens. Individual proteins and protein complexes can be dissected by transposon-mediated scanning linker mutagenesis. These and other transposon-based approaches have reaffirmed the usefulness of these elements as simple yet highly effective mutagens for both functional genomic and proteomic studies of microorganisms.
Collapse
Affiliation(s)
- Finbarr Hayes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England.
| |
Collapse
|
18
|
Villion M, Szatmari G. The XerC recombinase of Proteus mirabilis: characterization and interaction with other tyrosine recombinases. FEMS Microbiol Lett 2003; 226:65-71. [PMID: 13129609 DOI: 10.1016/s0378-1097(03)00577-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
XerC and XerD are two site-specific recombinases, which act on different sites to maintain replicons in a monomeric state. This system, which was first discovered and studied in Escherichia coli, is present in several species including Proteus mirabilis, where the XerD recombinase was previously characterized by our laboratory. In this paper, we report the presence of the xerC gene in P. mirabilis. Using in vitro reactions, we show that the two P. mirabilis recombinases display binding and cleavage activity on the E. coli dif site and the ColE1 cer site, together or in collaboration with E. coli recombinases. In vivo, P. mirabilis XerC and XerD are able to resolve and monomerize a plasmid containing two cer sites, increasing its stability. However, P. mirabilis XerC, in combination with E. coli XerD, is unable to perform these functions.
Collapse
Affiliation(s)
- Manuela Villion
- Département de microbiologie et immunologie, Université de Montréal, CP 6128, Succ. Centre-Ville, H3C 3J7, Montreal, QC, Canada
| | | |
Collapse
|
19
|
Weinert T, Little E, Shanks L, Admire A, Gardner R, Putnam C, Michelson R, Nyberg K, Sundareshan P. Details and concerns regarding the G2/M DNA damage checkpoint in budding yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:433-41. [PMID: 12760059 DOI: 10.1101/sqb.2000.65.433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jouan L, Szatmari G. Interactions of the Caulobacter crescentus XerC and XerD recombinases with the E. coli dif site. FEMS Microbiol Lett 2003; 222:257-62. [PMID: 12770716 DOI: 10.1016/s0378-1097(03)00311-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In most bacteria, chromosome dimers arise from homologous recombination between replicated chromosomes. These dimers are then resolved by the action of the XerC and XerD recombinases, which act on the chromosomal dif site in the presence of the FtsK cell division protein. We have cloned the xerC and xerD genes from Caulobacter crescentus, and overexpressed them as maltose-binding protein fusion proteins. These fusion proteins were purified and used in in vitro DNA-binding assays to the Escherichia coli dif site with each protein individually, and in combination with each other. In addition, combinations of Xer proteins from E. coli were also tested for cooperativity with the corresponding C. crescentus proteins.
Collapse
Affiliation(s)
- Loubna Jouan
- Département de Microbiologie et Immunologie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC, Canada H3C3J7
| | | |
Collapse
|
21
|
Hayes F, Hallet B. Pentapeptide scanning mutagenesis: encouraging old proteins to execute unusual tricks. Trends Microbiol 2000; 8:571-7. [PMID: 11115754 DOI: 10.1016/s0966-842x(00)01857-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pentapeptide scanning mutagenesis is a facile transposon-based procedure for the random insertion of a variable five amino acid cassette into a target protein. The analysis of a library of proteins harbouring pentapeptide insertions can provide invaluable information on the essential and inessential regions of a target protein, as well as revealing surprising aspects of target protein function and activity.
Collapse
Affiliation(s)
- F Hayes
- Dept of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, M60 1QD, Manchester, UK.
| | | |
Collapse
|
22
|
Smith SG, Dorman CJ. Functional analysis of the FimE integrase of Escherichia coli K-12: isolation of mutant derivatives with altered DNA inversion preferences. Mol Microbiol 1999; 34:965-79. [PMID: 10594822 DOI: 10.1046/j.1365-2958.1999.01657.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phase variable expression of type 1 fimbriae in Escherichia coli arises from a site-specific recombination event that inverts a short segment of chromosomal DNA carrying the promoter for transcription of the gene encoding the fimbrial subunit protein. Two integrase-like recombinases are involved in switching. The FimB recombinase inverts the DNA segment in either orientation, whereas the FimE protein inverts it predominantly in the ON-to-OFF direction. In this paper, we report the isolation of a FimE mutant protein that has enhanced bidirectional switching activity. This protein has an arginine-to-lysine substitution at position 59, and this confers a FimB-like switching character on FimE without altering its ability to bind to DNA. The arginine was not a member of the arginine-histidine-arginine-tyrosine catalytic tetrad that is common to all integrase-like recombinases. The catalytic tetrad members of FimE were identified at positions 41, 136, 139 and 171 and shown to be essential for FimE function. In addition, other amino acid residues that make important contributions to the DNA binding activity of FimE or its ON-to-OFF inversion efficiency were identified.
Collapse
Affiliation(s)
- S G Smith
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Republic of Ireland
| | | |
Collapse
|
23
|
Abstract
Studies of the site-specific recombinase Cre suggest a key role for interactions between the C-terminus of the protein and a region located about 30 residues from the C-terminus in linking in a cyclical manner the four recombinase monomers present in a recombination complex, and in controlling the catalytic activity of each monomer. By extrapolating the Cre DNA recombinase structure to the related site-specific recombinases XerC and XerD, it is predicted that the extreme C-termini of XerC and XerD interact with alpha-helix M in XerD and the equivalent region of XerC respectively. Consequently, XerC and XerD recombinases deleted for C-terminal residues, and mutated XerD proteins containing single amino acid substitutions in alphaM or in the C-terminal residues were analysed. Deletion of C-terminal residues of XerD has no measurable effect on co-operative interactions with XerC in DNA-binding assays to the recombination site dif, whereas deletion of 5 or 10 residues of XerC reduces co-operativity with XerD some 20-fold. Co-operative interactions between pairs of truncated proteins during dif DNA binding are reduced 20- to 30-fold. All of the XerD mutants, except one, were catalytically proficient in vitro; nevertheless, many failed to mediate a recombination reaction on supercoiled plasmid in vivo or in vitro, implying that the ability to form a productive recombination complex and/or mediate a controlled recombination reaction is impaired.
Collapse
Affiliation(s)
- A J Spiers
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
24
|
Abstract
The Xer site-specific recombination system is involved in the stable maintenance of replicons (certain plasmids and chromosomes) in Escherichia coli and other bacteria by converting multimers into monomers. This system requires a cis-acting DNA sequence (the chromosomal dif site or the ColE1 cer site) and two trans-acting factors: the XerC and XerD recombinases, which belong to the lambda integrase family of tyrosine site-specific recombinases. In addition, in order to resolve plasmid multimers into monomers, two additional factors are required: the ArgR and PepA proteins. We have previously shown the presence of xerC and xerD genes (and their function) by Southern hybridisation and by in vivo recombination in a wide variety of Enterobacteriaceac. We have now cloned and sequenced the xerD gene of Proteus mirabilis using degenerate and inverse PCR methods. This gene encodes a tyrosine recombinase which is highly similar to the E. coli XerD recombinase, is capable of complementing an E. coli xerD mutant, and displays sequence-specific DNA binding activity.
Collapse
Affiliation(s)
- M Villion
- Dèpartement de Microbiologie et Immunologie, Université de Montréal, Que., Canada
| | | |
Collapse
|
25
|
Hayes F, Hallet B, Cao Y. Insertion mutagenesis as a tool in the modification of protein function. Extended substrate specificity conferred by pentapeptide insertions in the omega-loop of TEM-1 beta-lactamase. J Biol Chem 1997; 272:28833-6. [PMID: 9360947 DOI: 10.1074/jbc.272.46.28833] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The TEM-1 beta-lactamase enzyme efficiently hydrolyzes beta-lactam antibiotics such as ampicillin but cleaves third generation cephalosporin antibiotics poorly. Variant beta-lactamases that conferred elevated levels of resistance to the cephalosporin ceftazidime were identified in a set of beta-lactamase derivatives previously generated by pentapeptide scanning mutagenesis in which a variable 5-amino acid cassette was introduced randomly in the target protein. This mutagenesis procedure was also modified to allow the direct selection of variant beta-lactamases with pentapeptide insertions that conferred extended substrate specificities. All insertions associated with enhanced resistance to ceftazidime were targetted to the 19-amino acid Omega-loop region, which forms part of the catalytic pocket of the beta-lactamase enzyme. However, pentapeptide insertions in the C- and N-terminal halves of this region had different effects on the ability of the enzyme to hydrolyze ampicillin in vivo. Larger insertions that increased the length of the Omega-loop by up to 2-fold also retained catalytic activity toward ampicillin and/or ceftazidime in vivo. In accord with previous substitution mutation studies, these results emphasize the extreme flexibility of the Omega-loop with regards the primary structure requirements for ceftazidime hydrolysis by beta-lactamase. The potential of pentapeptide scanning mutagenesis in mimicking evolution events that result from the insertion and excision of transposons in nature is discussed.
Collapse
Affiliation(s)
- F Hayes
- Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | | | | |
Collapse
|