1
|
Asama R, Tominaga M, Ito S, Ito Y, Takemura K, Sakuraba S, Katsurada K, Fukuda N, Kondo A, Ishii J. Screening of protein-based inhibitors for the intracellular domain of epidermal growth factor receptor by directed evolution using the yeast Gγ recruitment system. J Biosci Bioeng 2024; 138:375-381. [PMID: 39122620 DOI: 10.1016/j.jbiosc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
Protein-based therapeutics, including antibodies and antibody-like-proteins, have increasingly attracted attention due to their high specificity compared to small-molecular drugs. The Gγ recruitment system, one of the in vivo yeast two-hybrid systems for detecting protein-protein interactions, has been previously developed using yeast signal transduction machinery. In this study, we modified the Gγ recruitment system to screen the protein mutants that efficiently bind to the intracellular domain of the epidermal growth factor receptor L858R mutant (cytoEGFRL858R). Using the modified platform, we performed in vivo directed evolution for growth factor receptor-bound protein 2 (Grb2) and its truncated variant containing only the Src-homology 2 (SH2) domain, successfully identifying several mutants that more strongly bound to cytoEGFRL858R than their parental proteins. Some of them contained novel beneficial mutations (F108Y and Q144H) and specifically bound to the recombinant cytosolic phosphorylated EGFR in vitro, highlighting the utility of the evolutionary platform.
Collapse
Affiliation(s)
- Ririka Asama
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masahiro Tominaga
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Sayaka Ito
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yoichiro Ito
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kazuhiro Takemura
- Ph.D. Program in Biomedical Artificial Intelligence, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Shun Sakuraba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan; Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 265-8522, Japan
| | - Kohei Katsurada
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Nobuo Fukuda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
2
|
Sandouk A, Xu Z, Baruah S, Tremblay M, Hopkins JB, Chakravarthy S, Gakhar L, Schnicker NJ, Houtman JCD. GRB2 dimerization mediated by SH2 domain-swapping is critical for T cell signaling and cytokine production. Sci Rep 2023; 13:3505. [PMID: 36864087 PMCID: PMC9981690 DOI: 10.1038/s41598-023-30562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Collapse
Affiliation(s)
- Aline Sandouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikaela Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Liu Y, Jang H, Zhang M, Tsai CJ, Maloney R, Nussinov R. The structural basis of BCR-ABL recruitment of GRB2 in chronic myelogenous leukemia. Biophys J 2022; 121:2251-2265. [PMID: 35651316 PMCID: PMC9279350 DOI: 10.1016/j.bpj.2022.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
BCR-ABL drives chronic myeloid leukemia (CML). BCR binding to GRB2 transduces signaling via the Ras/MAPK pathway. Despite considerable data confirming the binding, molecular-level understanding of exactly how the two proteins interact, and, especially, what are the determinants of the specificity of the SH2GRB2 domain-phosphorylated BCR (pBCR) recognition are still open questions. Yet, this is vastly important for understanding binding selectivity, and for predicting the phosphorylated receptors, or peptides, that are likely to bind. Here, we uncover these determinants and ascertain to what extent they relate to the affinity of the interaction. Toward this end, we modeled the complexes of the pBCR and SH2GRB2 and other pY/Y-peptide-SH2 complexes and compared their specificity and affinity. We observed that pBCR's 176FpYVNV180 motif is favorable and specific to SH2GRB2, similar to pEGFR, but not other complexes. SH2GRB2 contains two binding pockets: pY-binding recognition pocket triggers binding, and the specificity pocket whose interaction is governed by N179 in pBCR and W121 in SH2GRB2. Our proposed motif with optimal affinity to SH2GRB2 is E/D-pY-E/V-N-I/L. Collectively, we provide the structural basis of BCR-ABL recruitment of GRB2, outline its specificity hallmarks, and delineate a blueprint for prediction of BCR-binding scaffolds and for therapeutic peptide design.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ryan Maloney
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Xiao T, Sun L, Zhang M, Li Z, Haura EB, Schonbrunn E, Ji H. Synthesis and structural characterization of a monocarboxylic inhibitor for GRB2 SH2 domain. Bioorg Med Chem Lett 2021; 51:128354. [PMID: 34506932 DOI: 10.1016/j.bmcl.2021.128354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
A monocarboxylic inhibitor was designed and synthesized to disrupt the protein-protein interaction (PPI) between GRB2 and phosphotyrosine-containing proteins. Biochemical characterizations show compound 7 binds with the Src homology 2 (SH2) domain of GRB2 and is more potent than EGFR1068 phosphopeptide 14-mer. X-ray crystallographic studies demonstrate compound 7 occupies the GRB2 binding site for phosphotyrosine-containing sequences and reveal key structural features for GRB2-inhibitor binding. This compound with a -1 formal charge offers a new direction for structural optimization to generate cell-permeable inhibitors for this key protein target of the aberrant Ras-MAPK signaling cascade.
Collapse
Affiliation(s)
- Tao Xiao
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Luxin Sun
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ernst Schonbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States.
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
5
|
Hosoe Y, Numoto N, Inaba S, Ogawa S, Morii H, Abe R, Ito N, Oda M. Structural and functional properties of Grb2 SH2 dimer in CD28 binding. Biophys Physicobiol 2019; 16:80-88. [PMID: 30923665 PMCID: PMC6435016 DOI: 10.2142/biophysico.16.0_80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein that plays a critical role in cellular signal transduction. It contains a central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. Binding of Grb2 SH2 to the cytoplasmic region of CD28, phosphorylated Tyr (pY) containing the peptide motif pY-X-N-X, is required for costimulatory signaling in T cells. In this study, we purified the dimer and monomer forms of Grb2 SH2, respectively, and analyzed their structural and functional properties. Size exclusion chromatography analysis showed that both dimer and monomer exist as stable states. Thermal stability analysis using circular dichroism showed that the dimer mostly dissociates into the monomer around 50°C. CD28 binding experiments showed that the affinity of the dimer to the phosphopeptide was about three fold higher than that of the monomer, possibly due to the avidity effect. The present crystal structure analysis of Grb2 SH2 showed two forms; one is monomer at 1.15 Å resolution, which is currently the highest resolution analysis, and another is dimer at 2.00 Å resolution. In the dimer structure, the C-terminal region, comprising residues 123–152, was extended towards the adjacent molecule, in which Trp121 was the hinge residue. The stable dimer purified using size exclusion chromatography would be due to the C-terminal helix “swapping”. In cases where a mutation caused Trp121 to be replaced by Ser in Grb2 SH2, this protein still formed dimers, but lost the ability to bind CD28.
Collapse
Affiliation(s)
- Yuhi Hosoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satomi Inaba
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.,Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Shuhei Ogawa
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Hisayuki Morii
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan.,Present address: Strategic Innovation and Research Center, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
6
|
Myslinski JM, Clements JH, Martin SF. Protein-ligand interactions: probing the energetics of a putative cation-π interaction. Bioorg Med Chem Lett 2014; 24:3164-7. [PMID: 24856058 DOI: 10.1016/j.bmcl.2014.04.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/01/2023]
Abstract
In order to probe the energetics associated with a putative cation-π interaction, thermodynamic parameters are determined for complex formation between the Grb2 SH2 domain and tripeptide derivatives of RCO-pTyr-Ac6c-Asn wherein the R group is varied to include different alkyl, cycloalkyl, and aryl groups. Although an indole ring is reputed to have the strongest interaction with a guanidinium ion, binding free energies, ΔG°, for derivatives of RCO-pTyr-Ac6c-Asn bearing cyclohexyl and phenyl groups were slightly more favorable than their indolyl analog. Crystallographic analysis of two complexes reveals that test ligands bind in similar poses with the notable exception of the relative orientation and proximity of the phenyl and indolyl rings relative to an arginine residue of the domain. These spatial orientations are consistent with those observed in other cation-π interactions, but there is no net energetic benefit to such an interaction in this biological system. Accordingly, although cation-π interactions are well documented as important noncovalent forces in molecular recognition, the energetics of such interactions may be mitigated by other nonbonded interactions and solvation effects in protein-ligand associations.
Collapse
Affiliation(s)
- James M Myslinski
- The Department of Chemistry, The Institute of Cellular and Molecular Biology, and the Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, TX 78712, USA
| | - John H Clements
- The Department of Chemistry, The Institute of Cellular and Molecular Biology, and the Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, TX 78712, USA
| | - Stephen F Martin
- The Department of Chemistry, The Institute of Cellular and Molecular Biology, and the Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Higo K, Ikura T, Oda M, Morii H, Takahashi J, Abe R, Ito N. High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28. PLoS One 2013; 8:e74482. [PMID: 24098653 PMCID: PMC3787023 DOI: 10.1371/journal.pone.0074482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
Src homology 2 (SH2) domains play a critical role in cellular signal transduction. They bind to peptides containing phosphotyrosine (pY) with various specificities that depend on the flanking amino-acid residues. The SH2 domain of growth-factor receptor-bound protein 2 (Grb2) specifically recognizes pY-X-N-X, whereas the SH2 domains in phosphatidylinositol 3-kinase (PI3K) recognize pY-X-X-M. Binding of the pY site in CD28 (pY-M-N-M) by PI3K and Grb2 through their SH2 domains is a key step that triggers the CD28 signal transduction for T cell activation and differentiation. In this study, we determined the crystal structure of the Grb2 SH2 domain in complex with a pY-containing peptide derived from CD28 at 1.35 Å resolution. The peptide was found to adopt a twisted U-type conformation, similar to, but distinct from type-I β-turn. In all previously reported crystal structures, the peptide bound to the Grb2 SH2 domains adopts a type-I β-turn conformation, except those with a proline residue at the pY+3 position. Molecular modeling also suggests that the same peptide bound to PI3K might adopt a very different conformation.
Collapse
Affiliation(s)
- Kunitake Higo
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Teikichi Ikura
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto-shi, Kyoto, Japan
| | - Hisayuki Morii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki, Japan
| | - Jun Takahashi
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Iwata T, Tanaka K, Tahara T, Nozaki S, Onoe H, Watanabe Y, Fukase K. A conformationally fixed analog of the peptide mimic Grb2–SH2 domain: synthesis and evaluation against the A431 cancer cell. MOLECULAR BIOSYSTEMS 2013; 9:1019-25. [DOI: 10.1039/c3mb25462c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Kraskouskaya D, Duodu E, Arpin CC, Gunning PT. Progress towards the development of SH2 domain inhibitors. Chem Soc Rev 2013; 42:3337-70. [DOI: 10.1039/c3cs35449k] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Tanaka K, Shirotsuki S, Iwata T, Kageyama C, Tahara T, Nozaki S, Siwu ERO, Tamura S, Douke S, Murakami N, Onoe H, Watanabe Y, Fukase K. Template-assisted and self-activating clicked peptide as a synthetic mimic of the SH2 domain. ACS Chem Biol 2012; 7:637-45. [PMID: 22239652 DOI: 10.1021/cb2003175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new synthetic strategy for obtaining artificial receptors that selectively regulate and/or control specific protein/protein interactions was developed based on the template-assisted and the self-activating click reaction applied to a combinatorial library. Synthetic mimics of the Grb2-SH2 domain, examined as a model case, selectively bound to a target signaling protein to induce cytotoxicity and inhibit tumor growth in vivo.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Sanae Shirotsuki
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Takayuki Iwata
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Chika Kageyama
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi,
Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| | - Satoshi Nozaki
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi,
Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| | - Eric R. O. Siwu
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Satoru Tamura
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka,
Suita-shi, Osaka 565-0871, Japan
| | - Shunsuke Douke
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka,
Suita-shi, Osaka 565-0871, Japan
| | - Nobutoshi Murakami
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka,
Suita-shi, Osaka 565-0871, Japan
| | - Hirotaka Onoe
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi,
Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi,
Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| | - Koichi Fukase
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| |
Collapse
|
11
|
Yanagisawa T, Hino N, Iraha F, Mukai T, Sakamoto K, Yokoyama S. Wide-range protein photo-crosslinking achieved by a genetically encoded Nε-(benzyloxycarbonyl)lysine derivative with a diazirinyl moiety. MOLECULAR BIOSYSTEMS 2012; 8:1131-5. [DOI: 10.1039/c2mb05321g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Hino N, Oyama M, Sato A, Mukai T, Iraha F, Hayashi A, Kozuka-Hata H, Yamamoto T, Yokoyama S, Sakamoto K. Genetic Incorporation of a Photo-Crosslinkable Amino Acid Reveals Novel Protein Complexes with GRB2 in Mammalian Cells. J Mol Biol 2011; 406:343-53. [PMID: 21185312 DOI: 10.1016/j.jmb.2010.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Nobumasa Hino
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Orcajo-Rincón ÁL, Ortega-Gutiérrez S, Serrano P, Torrecillas IR, Wüthrich K, Campillo M, Pardo L, Viso A, Benhamú B, López-Rodríguez ML. Development of Non-Peptide Ligands of Growth Factor Receptor-Bound Protein 2-Src Homology 2 Domain Using Molecular Modeling and NMR Spectroscopy. J Med Chem 2011; 54:1096-100. [DOI: 10.1021/jm101478n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ángel L. Orcajo-Rincón
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | - Ivan R. Torrecillas
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona, E-08913 Bellaterra, Barcelona, Spain
| | - Kurt Wüthrich
- Department of Molecular Biology
- Skaggs Institute for Chemical Biology
| | - Mercedes Campillo
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona, E-08913 Bellaterra, Barcelona, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona, E-08913 Bellaterra, Barcelona, Spain
| | - Alma Viso
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Bellinda Benhamú
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María L. López-Rodríguez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
14
|
Ladbury JE, Arold ST. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling. Methods Enzymol 2011; 488:147-83. [PMID: 21195228 DOI: 10.1016/b978-0-12-381268-1.00007-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular signaling from receptor tyrosine kinases (RTK) on extracellular stimulation is fundamental to all cellular processes. The protein-protein interactions which form the basis of this signaling are mediated through a limited number of polypeptide domains. For signal transduction without corruption, based on a model where signaling pathways are considered as linear bimolecular relays, these interactions have to be highly specific. This is particularly the case when one considers that any cell may have copies of similar binding domains found in numerous proteins. In this work, an overview of the thermodynamics of binding of two of the most common of these domains (SH2 and SH3 domains) is given. This, coupled with insight from high-resolution structural detail, provides a comprehensive survey of how recognition of cognate binding sites for these domains occurs. Based on the data presented, we conclude that specificity offered by these interactions of SH2 and SH3 domains is limited and not sufficient to enforce mutual exclusivity in RTK-mediated signaling. This may explain the current lack of success in pharmaceutical intervention to inhibit the interactions of these domains when they are responsible for aberrant signaling and the resulting disease states such as cancer.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
15
|
Clements JH, DeLorbe JE, Benfield AP, Martin SF. Binding of flexible and constrained ligands to the Grb2 SH2 domain: structural effects of ligand preorganization. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1101-15. [PMID: 20944243 PMCID: PMC2954456 DOI: 10.1107/s0907444910035584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/04/2010] [Indexed: 02/08/2023]
Abstract
Structures of the Grb2 SH2 domain complexed with a series of pseudopeptides containing flexible (benzyl succinate) and constrained (aryl cyclopropanedicarboxylate) replacements of the phosphotyrosine (pY) residue in tripeptides derived from Ac-pYXN-NH(2) (where X = V, I, E and Q) were elucidated by X-ray crystallography. Complexes of flexible/constrained pairs having the same pY + 1 amino acid were analyzed in order to ascertain what structural differences might be attributed to constraining the phosphotyrosine replacement. In this context, a given structural dissimilarity between complexes was considered to be significant if it was greater than the corresponding difference in complexes coexisting within the same asymmetric unit. The backbone atoms of the domain generally adopt a similar conformation and orientation relative to the ligands in the complexes of each flexible/constrained pair, although there are some significant differences in the relative orientations of several loop regions, most notably in the BC loop that forms part of the binding pocket for the phosphate group in the tyrosine replacements. These variations are greater in the set of complexes of constrained ligands than in the set of complexes of flexible ligands. The constrained ligands make more direct polar contacts to the domain than their flexible counterparts, whereas the more flexible ligand of each pair makes more single-water-mediated contacts to the domain; there was no correlation between the total number of protein-ligand contacts and whether the phosphotyrosine replacement of the ligand was preorganized. The observed differences in hydrophobic interactions between the complexes of each flexible/constrained ligand pair were generally similar to those observed upon comparing such contacts in coexisting complexes. The average adjusted B factors of the backbone atoms of the domain and loop regions are significantly greater in the complexes of constrained ligands than in the complexes of the corresponding flexible ligands, suggesting greater thermal motion in the crystalline state in the former complexes. There was no apparent correlation between variations in crystal packing and observed structural differences or similarities in the complexes of flexible and constrained ligands, but the possibility that crystal packing might result in structural variations cannot be rigorously excluded. Overall, it appears that there are more variations in the three-dimensional structure of the protein and the ligand in complexes of the constrained ligands than in those of their more flexible counterparts.
Collapse
Affiliation(s)
- John H. Clements
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, USA
| | - John E. DeLorbe
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, USA
| | - Aaron P. Benfield
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, USA
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, USA
| |
Collapse
|
16
|
DeLorbe JE, Clements JH, Teresk MG, Benfield AP, Plake HR, Millspaugh LE, Martin SF. Thermodynamic and Structural Effects of Conformational Constraints in Protein−Ligand Interactions. Entropic Paradoxy Associated with Ligand Preorganization. J Am Chem Soc 2009; 131:16758-70. [DOI: 10.1021/ja904698q] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John E. DeLorbe
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| | - John H. Clements
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| | - Martin G. Teresk
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| | - Aaron P. Benfield
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| | - Hilary R. Plake
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| | - Laura E. Millspaugh
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| |
Collapse
|
17
|
Spuches AM, Argiros HJ, Lee KH, Haas LL, Pero SC, Krag DN, Roller PP, Wilcox DE, Lyons BA. Calorimetric investigation of phosphorylated and non-phosphorylated peptide ligand binding to the human Grb7-SH2 domain. J Mol Recognit 2007; 20:245-52. [PMID: 17705331 DOI: 10.1002/jmr.834] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20-30% of breast cancers. In general, growth factor receptor bound (Grb) proteins bind to activated membrane-bound receptor tyrosine kinases (RTKs; e.g., the epidermal growth factor receptor, EGFR) through their Src homology 2 (SH2) domains. In particular, Grb7 binds to erbB2 (a.k.a. EGFR2) and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In previous studies, we reported the solution structure and the backbone relaxation behavior of the Grb7-SH2/erbB2 peptide complex. In this study, isothermal titration calorimetry studies have been completed by measuring the thermodynamic binding parameters of several phosphorylated and non-phosphorylated peptides representative of natural Grb7 receptor ligands as well as ligands developed through combinatorial peptide screening methods. The entirety of these calorimetric studies is interpreted in an effort to describe the specific ligand binding characteristics of the Grb7 protein.
Collapse
Affiliation(s)
- A M Spuches
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Benfield AP, Whiddon BB, Clements JH, Martin SF. Structural and energetic aspects of Grb2-SH2 domain-swapping. Arch Biochem Biophys 2007; 462:47-53. [PMID: 17466257 PMCID: PMC1947945 DOI: 10.1016/j.abb.2007.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 12/31/2022]
Abstract
The SH2 domain of growth factor receptor-bound protein 2 (Grb2) has been the focus of numerous studies, primarily because of the important roles it plays in signal transduction. More recently, it has emerged as a useful protein to study the consequences of ligand preorganization upon energetics and structure in protein-ligand interactions. The Grb2-SH2 domain is known to form a domain-swapped dimer, and as part of our investigations toward correlating structure and energetics in biological systems, we examined the effects that domain-swapping dimerization of the Grb2-SH2 domain had upon ligand binding affinities. Isothermal titration calorimetry was performed using Grb2-SH2 in both its monomeric and domain-swapped dimeric forms and a phosphorylated tripeptide AcNH-pTyr-Val-Asn-NH(2) that is similar to the Shc sequence recognized by Grb2-SH2 in vivo. The two binding sites of domain-swapped dimer exhibited a 4- and a 13-fold reduction in ligand affinity compared to monomer. Crystal structures of peptide-bound and uncomplexed forms of Grb2-SH2 domain-swapped dimer were obtained and reveal that the orientation of residues V122, V123, and R142 may influence the conformation of W121, an amino acid that is believed to play an important role in Grb2-SH2 ligand sequence specificity. These findings suggest that domain-swapping of Grb2-SH2 not only results in a lower affinity for a Shc-derived ligand, but it may also affect ligand specificity.
Collapse
Affiliation(s)
- Aaron P Benfield
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
19
|
Leroux V, Gresh N, Liu WQ, Garbay C, Maigret B. Role of water molecules for binding inhibitors in the SH2 domain of Grb2: A molecular dynamics study. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.theochem.2006.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Benfield AP, Teresk MG, Plake HR, DeLorbe JE, Millspaugh LE, Martin SF. Ligand preorganization may be accompanied by entropic penalties in protein-ligand interactions. Angew Chem Int Ed Engl 2007; 45:6830-5. [PMID: 17001728 DOI: 10.1002/anie.200600844] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aaron P Benfield
- Department of Chemistry and Biochemistry and The Institute of Cellular and Molecular Biology, University of Texas at Austin, 1 University Station, A5300, 78712-1167, USA
| | | | | | | | | | | |
Collapse
|
21
|
Benfield AP, Teresk MG, Plake HR, DeLorbe JE, Millspaugh LE, Martin SF. Ligand Preorganization May Be Accompanied by Entropic Penalties in Protein–Ligand Interactions. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600844] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Chen H, Luzy JP, Gresh N, Garbay C. An Efficient and Enantioselective Synthesis of Suitably Protected β-[1-(4-Malonyl)naphthyl]-L-alanine and β-[1-(4-Malonylmethyl)naphthyl]-L-alanine: Novel Fluorescent and Non-Hydrolysable Phosphotyrosine Mimetics. European J Org Chem 2006. [DOI: 10.1002/ejoc.200500835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Shao H, Xu X, Jing N, Tweardy DJ. Unique structural determinants for Stat3 recruitment and activation by the granulocyte colony-stimulating factor receptor at phosphotyrosine ligands 704 and 744. THE JOURNAL OF IMMUNOLOGY 2006; 176:2933-41. [PMID: 16493051 DOI: 10.4049/jimmunol.176.5.2933] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
G-CSFR cytoplasmic tyrosine (Y) residues (Y704, Y729, Y744, and Y764) become phosphorylated upon ligand binding and recruit specific Src homology 2 domain-containing proteins that link to distinct yet overlapping programs for myeloid cell survival, differentiation, proliferation, and activation. The structural basis for recruitment specificity is poorly understood but could be exploited to selectively target deleterious G-CSFR-mediated signaling events such as aberrant Stat3 activation demonstrated in a subset of acute myeloid leukemia patients with poor prognosis. Recombinant Stat3 bound to G-CSFR phosphotyrosine peptide ligands pY704VLQ and pY744LRC with similar kinetics. Testing of three models for Stat3 Src homology 2-pY ligand binding in vitro and in vivo revealed unique determinants for Stat3 recruitment and activation by the G-CSFR, the side chain of Stat3 R609, which interacts with the pY ligand phosphate group, and the peptide amide hydrogen of E638, which bonds with oxygen/sulfur within the + 3 Q/C side chain of the pY ligand when it assumes a beta turn. Thus, our findings identify for the first time the structural basis for recruitment and activation of Stat3 by the G-CSFR and reveal unique features of this interaction that can be exploited to target Stat3 activation for the treatment of a subset of acute myeloid leukemia patients.
Collapse
Affiliation(s)
- Huang Shao
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
24
|
Development of Grb2 SH2 Domain Signaling Antagonists: A Potential New Class of Antiproliferative Agents. Int J Pept Res Ther 2006; 12:33-48. [PMID: 19444322 PMCID: PMC2678932 DOI: 10.1007/s10989-006-9014-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Indexed: 11/24/2022]
Abstract
Aberrant signaling through protein-tyrosine kinase (PTK)-dependent pathways is associated with several proliferative diseases. Accordingly, PTK inhibitors are being developed as new approaches for the treatment of certain cancers. Growth factor receptor bound protein 2 (Grb2) is an important downstream mediator of PTK signaling that serves obligatory roles in many pathogenic processes. One of the primary functions of Grb2 is to bind to specific phosphotyrosyl (pTyr)-containing sequences through its Src homology 2 (SH2) domain. Agents that bind to the Grb2 SH2 domain and prevent its normal function could disrupt associated PTK signaling and serve as alternatives to kinase-directed inhibitors. Starting from the X-ray crystal structure of a lead peptide bound to the Grb2 SH2 domain, this review will summarize important contributions to these efforts. The presentation will be thematically arranged according to the region of peptide modified, proceeding from the N-terminus to the C-terminus, with a special section devoted to aspects of conformational constraint.
Collapse
|
25
|
Dharmawardana PG, Peruzzi B, Giubellino A, Burke TR, Bottaro DP. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs 2006; 17:13-20. [PMID: 16317285 DOI: 10.1097/01.cad.0000185180.72604.ac] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.
Collapse
Affiliation(s)
- Pathirage G Dharmawardana
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1107, USA
| | | | | | | | | |
Collapse
|
26
|
Phan J, Shi ZD, Burke TR, Waugh DS. Crystal Structures of a High-affinity Macrocyclic Peptide Mimetic in Complex with the Grb2 SH2 Domain. J Mol Biol 2005; 353:104-15. [PMID: 16165154 DOI: 10.1016/j.jmb.2005.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/15/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
The high-affinity binding of the growth factor receptor-bound protein 2 (Grb2) SH2 domain to tyrosine-phosphorylated cytosolic domains of receptor tyrosine kinases (RTKs) is an attractive target for therapeutic intervention in many types of cancer. We report here two crystal forms of a complex between the Grb2 SH2 domain and a potent non-phosphorus-containing macrocyclic peptide mimetic that exhibits significant anti-proliferative effects against erbB-2-dependent breast cancers. This agent represents a "second generation" inhibitor with greatly improved binding affinity and bio-availability compared to its open-chain counterpart. The structures were determined at 2.0A and 1.8A with one and two domain-swapped dimers per asymmetric unit, respectively. The mode of binding and specific interactions between the protein and the inhibitor provide insight into the high potency of this class of macrocylic compounds and may aid in further optimization as part of the iterative rational drug design process.
Collapse
Affiliation(s)
- Jason Phan
- Macromolecular Crystallography Laboratory Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
27
|
Ivancic M, Spuches AM, Guth EC, Daugherty MA, Wilcox DE, Lyons BA. Backbone nuclear relaxation characteristics and calorimetric investigation of the human Grb7-SH2/erbB2 peptide complex. Protein Sci 2005; 14:1556-69. [PMID: 15930003 PMCID: PMC2253377 DOI: 10.1110/ps.041102305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20%-30% of breast cancers. Grb7 binds to erbB2 and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In a prior study, we reported the solution structure of the Grb7-SH2/erbB2 peptide complex. In this study, T(1), T(2), and steady-state NOE measurements were performed on the Grb7-SH2 domain, and the backbone relaxation behavior of the domain is discussed with respect to the potential function of an insert region present in all three members of this protein family. Isothermal titration calorimetry (ITC) studies were completed measuring the thermodynamic parameters of the binding of a 10-residue phosphorylated peptide representative of erbB2 to the SH2 domain. These measurements are compared to calorimetric studies performed on other SH2 domain/phosphorylated peptide complexes available in the literature.
Collapse
Affiliation(s)
- Monika Ivancic
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington 05405, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat Methods 2005; 2:201-6. [PMID: 15782189 DOI: 10.1038/nmeth739] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 01/20/2005] [Indexed: 01/08/2023]
Abstract
We report a method of photo-cross-linking proteins in mammalian cells, which is based on site-specific incorporation of a photoreactive amino acid, p-benzoyl-L-phenylalanine (pBpa), through the use of an expanded genetic code. To analyze the cell signaling interactions involving the adaptor protein Grb2, pBpa was incorporated in its Src homology 2 (SH2) domain. The human GRB2 gene with an amber codon was introduced into Chinese hamster ovary (CHO) cells, together with the genes for the Bacillus stearothermophilus suppressor tRNA(Tyr) and a pBpa-specific variant of Escherichia coli tyrosyl-tRNA synthetase (TyrRS). The Grb2 variant with pBpa in the amber position was synthesized when pBpa was included in the growth medium. Upon exposure of cells to 365-nm light, protein variants containing pBpa in the positions proximal to the ligand-binding pocket were cross-linked with the transiently expressed epidermal growth factor (EGF) receptor in the presence of an EGF stimulus. Cross-linked complexes with endogenous proteins were also detected. In vivo photo-cross-linking with pBpa incorporated in proteins will be useful for studying protein-protein interactions in mammalian cells.
Collapse
Affiliation(s)
- Nobumasa Hino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Machida K, Mayer BJ. The SH2 domain: versatile signaling module and pharmaceutical target. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1747:1-25. [PMID: 15680235 DOI: 10.1016/j.bbapap.2004.10.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/29/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
The Src homology 2 (SH2) domain is the most prevalent protein binding module that recognizes phosphotyrosine. This approximately 100-amino-acid domain is highly conserved structurally despite being found in a wide variety proteins. Depending on the nature of neighboring protein module(s), such as catalytic domains and other protein binding domains, SH2-containing proteins play many different roles in cellular protein tyrosine kinase (PTK) signaling pathways. Accumulating evidence indicates SH2 domains are highly versatile and exhibit considerable flexibility in how they bind to their ligands. To illustrate this functional versatility, we present three specific examples: the SAP, Cbl and SOCS families of SH2-containing proteins, which play key roles in immune responses, termination of PTK signaling, and cytokine responses. In addition, we highlight current progress in the development of SH2 domain inhibitors designed to antagonize or modulate PTK signaling in human disease. Inhibitors of the Grb2 and Src SH2 domains have been extensively studied, with the aim of targeting the Ras pathway and osteoclastic bone resorption, respectively. Despite formidable difficulties in drug design due to the lability and poor cell permeability of negatively charged phosphorylated SH2 ligands, a variety of structure-based strategies have been used to reduce the size, charge and peptide character of such ligands, leading to the development of high-affinity lead compounds with potent cellular activities. These studies have also led to new insights into molecular recognition by the SH2 domain.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA.
| | | |
Collapse
|
30
|
Shao H, Xu X, Mastrangelo MAA, Jing N, Cook RG, Legge GB, Tweardy DJ. Structural Requirements for Signal Transducer and Activator of Transcription 3 Binding to Phosphotyrosine Ligands Containing the YXXQ Motif. J Biol Chem 2004; 279:18967-73. [PMID: 14966128 DOI: 10.1074/jbc.m314037200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stat3 is an Src homology (SH)2-containing protein constitutively activated in a wide variety of human cancers following its recruitment to YXXQ-containing motifs, which results in resistance to apoptosis. Despite resolution of the crystal structure of Stat3 homodimer bound to DNA, the structural basis for the unique specificity of Stat3 SH2 for YXXQ-containing phosphopeptides remains unresolved. We tested three models of this interaction based on computational analysis of available structures and sequence alignments, two of which assumed an extended peptide configuration and one in which the peptide had a beta-turn. By using peptide immunoblot affinity assays and mirror resonance affinity analysis, we demonstrated that only phosphotyrosine (Tyr(P)) peptides containing +3 Gln (not Leu, Met, Glu, or Arg) bound to wild type Stat3. Examination of a series of wild type and mutant Stat3 proteins demonstrated loss of binding to pYXXQ-containing peptides only in Stat3 mutated at Lys-591 or Arg-609, whose side chains interact with the Tyr(P) residue, and Stat3 mutated at Glu-638, whose amide hydrogen bonds with oxygen within the +3 Gln side chain when the peptide ligand assumes a beta-turn. These findings support a model for Stat3 SH2 interactions that could form the basis for anticancer drugs that specifically target Stat3.
Collapse
Affiliation(s)
- Huang Shao
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Suenaga A, Hatakeyama M, Ichikawa M, Yu X, Futatsugi N, Narumi T, Fukui K, Terada T, Taiji M, Shirouzu M, Yokoyama S, Konagaya A. Molecular dynamics, free energy, and SPR analyses of the interactions between the SH2 domain of Grb2 and ErbB phosphotyrosyl peptides. Biochemistry 2003; 42:5195-200. [PMID: 12731860 DOI: 10.1021/bi034113h] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the interactions between the SH2 domain of growth factor receptor binding protein 2 (Grb2) and ErbB receptor-derived phosphotyrosyl peptides using molecular dynamics, free energy calculations, and surface plasmon resonance (SPR) analysis. Binding free energies for nine phosphotyrosyl peptides were calculated using the MM-PBSA continuum solvent method, and excellent qualitative agreement with the SPR experimental data, with a correlation coefficient of 0.92, was obtained. Consistent with previous experimental findings, phosphotyrosyl peptides with the consensus sequence pYXNX showed favorable binding affinity for the Grb2. Unexpectedly, phosphotyrosyl peptides with the consensus sequence pYQQD, which had not shown any specific binding affinity for the Grb2 in earlier studies, also showed favorable binding affinity for the Grb2 in our experimental and computational analyses. Component analysis of the calculated binding free energies revealed that van der Waals interaction between the Grb2 and the phosphotyrosyl peptide was the dominant factor for specificity and binding affinity. These results indicate that current methods of estimating binding free energies are efficient for obtaining important information about protein-protein interactions, which are essential for the transmission of signals in cellular signaling pathways.
Collapse
Affiliation(s)
- Atsushi Suenaga
- Bioinformatics Group, RIKEN Genomic Sciences Center, Yokohama, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li P, Peach ML, Zhang M, Liu H, Yang D, Nicklaus M, Roller PP. Structure-based design of thioether-bridged cyclic phosphopeptides binding to Grb2-SH2 domain. Bioorg Med Chem Lett 2003; 13:895-9. [PMID: 12617916 DOI: 10.1016/s0960-894x(03)00015-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of phosphotyrosine containing cyclic peptides was designed and synthesized based upon the phage library derived cyclopeptide, G1TE. Considering the type-I beta-turn feature of peptidic ligand binding to Grb2 SH2 domain, we introduce alpha,alpha-disubstituted cyclic amino acid, Ach, into the 4th position of the cyclic peptide to induce a local right handed 3(10) helical conformation. In order to stabilize the favorable binding conformation, the bulky and hydrophobic amino acids, neopentylglycine (NPG) and phenylalanine, were introduced into the 8th and 2nd positions of the peptide ligand, respectively. To facilitate the sidechain of pTyr3 reaching into the phosphotyrosine binding pocket, a less bulky alanine was preferred in position 1. Based upon these global modifications, a highly potent peptide ligand 12 was discovered with an IC(50)=1.68 nM, evaluated by ELISA binding essay. Ligand 12 is at least 10(5) more potent than the lead peptide, termed G1TE.
Collapse
Affiliation(s)
- Peng Li
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Giordanetto F, Kroemer RT. A three-dimensional model of Suppressor Of Cytokine Signalling 1 (SOCS-1). Protein Eng Des Sel 2003; 16:115-24. [PMID: 12676980 DOI: 10.1093/proeng/gzg015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Suppressor Of Cytokine Signalling 1 (SOCS-1) is one of the proteins responsible for the negative regulation of the JAK-STAT pathway triggered by many cytokines. This important inhibition involves complex formation between SOCS-1 and JAK2, which requires particular structural domains (KIR, ESS and SH2) on SOCS-1. A three-dimensional theoretical model of SOCS-1 is presented here. The model was generated by the application of different modelling techniques, including threading, structure-based modelling, surface analysis and protein docking. The structure accounts for the interactions between SOCS-1 and two other key proteins in the JAK-STAT pathway, namely JAK2 and Elongin BC. The proposed model for the interaction between SOCS-1 and JAK2 suggests that the SOCS-1 suppress the kinase activity of JAK2 by obstructing the catalytic groove of the tyrosine kinase. Subsequent interaction of the JAK-SOCS complex with Elongin BC was also modelled. A sequence and structural comparison between the SH2 domain of SOCS-1 and the SH2 domains of other proteins highlights key residues that could be responsible for SOCS-1 specificity. Currently available mutational data are evaluated. The results are consistent with the experimental data and they provide deeper insights into the inhibitory function of SOCS-1 at a molecular level.
Collapse
Affiliation(s)
- Fabrizio Giordanetto
- Department of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | |
Collapse
|
34
|
Lee K, Zhang M, Yang D, Burke TR. Design and synthesis of a beta-amino phosphotyrosyl mimetic suitably protected for peptide synthesis. Bioorg Med Chem Lett 2002; 12:3399-401. [PMID: 12419370 DOI: 10.1016/s0960-894x(02)00783-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mimetics of phosphotyrosine (pTyr) such as phosphonomethylphenylalanine (Pmp) have traditionally retained alpha-amino functionality. However, beta-amino acids represent isomeric variants, which may exhibit properties that are distinct from the parent. Reported herein is the first beta-amino pTyr mimetic (Pmp(beta)) bearing protection suitable for peptide synthesis. Preparation of Pmp(beta) was accomplished enantioselectively in 43% overall yield from commercially available 4-vinylbenzyl chloride.
Collapse
Affiliation(s)
- Kyeong Lee
- Laboratory of Medicinal Chemistry, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
35
|
Lange G, Lesuisse D, Deprez P, Schoot B, Loenze P, Bénard D, Marquette JP, Broto P, Sarubbi E, Mandine E. Principles governing the binding of a class of non-peptidic inhibitors to the SH2 domain of src studied by X-ray analysis. J Med Chem 2002; 45:2915-22. [PMID: 12086479 DOI: 10.1021/jm0110800] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A total of 11 structures of the (pp60)src SH2 domain with non-peptidic inhibitors based on the same two closely related inhibitor scaffolds were determined using X-ray crystallography. Surprisingly, the inhibitors that have an IC(50) value between 4 and 2700 nM bind in three different binding modes. Structure comparisons show that the inhibitors aim to maximize the interaction between the hydrophobic substituent and the hydrophobic pY+3 pocket. This is achieved either by an alternative binding mode of the phenyl phosphate or by including water molecules that mediate the interaction between the inhibitor scaffold and a rigid surface of the SH2 domain. The combination of the rigid pY+3 pocket and the rigid protein surface to which the scaffolds bind results in severe distance and angular restraints for putative scaffolds and their substituents. The X-ray data suggest that these restraints seem to be compensated in our system by including water molecules, thereby increasing the flexibility of the system.
Collapse
Affiliation(s)
- Gudrun Lange
- Aventis Pharma, 102 Route de Noisy, 93235 Romainville, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nioche P, Liu WQ, Broutin I, Charbonnier F, Latreille MT, Vidal M, Roques B, Garbay C, Ducruix A. Crystal structures of the SH2 domain of Grb2: highlight on the binding of a new high-affinity inhibitor. J Mol Biol 2002; 315:1167-77. [PMID: 11827484 DOI: 10.1006/jmbi.2001.5299] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of growth factor receptors induces phosphorylation of tyrosine residues in its C-terminal part, creating binding sites for SH2 domain-containing proteins. Grb2 is a protein that recruits Sos, the exchange factor for Ras. Recruitment of Sos allows for Ras activation and subsequent signal transmission. This promotes translocation of MAP kinases into the nucleus and activation of early transcription factors. Grb2, a 25 kDa protein, is composed of one SH2 domain surrounded by two SH3 domains. The SH2 domain of Grb2 binds to class II phosphotyrosyl peptides with the consensus sequence pYXNX. Thus, Grb2 is a good example of a bifunctional adaptor protein that brings proteins into close proximity, allowing signal transduction through proteins located in different compartments. To explore the interactions between Grb2 and phosphorylated ligands, we have solved the crystal structure of complexes between the Grb2-SH2 domain and peptides corresponding to Shc-derived sequences. Two structures are described: the Grb2-SH2 domain in complex with PSpYVNVQN at 1.5 A; and the Grb2-SH2 domain in complex with mAZ*-pY-(alphaMe)pY-N-NH2 pseudo-peptide, at 2 A. Both are compared to an unliganded SH2 structure determined at 2.7 A which, interestingly enough, forms a dimer through two swapping subdomains from two symmetry-related molecules. The nanomolar affinity of the mAZ-pY-(alphaMe)pY-N-NH2 pseudo-peptide for Grb2-SH2 is related to new interactions with non- conserved residues. The design of Grb2-SH2 domain inhibitors that prevent interaction with tyrosine kinase proteins or other adaptors like Shc or IRS1 should provide a means to interrupt the Ras signaling pathway. Newly synthesized pseudo-peptides exhibit nanomolar affinities for the Grb2-SH2 domain. It will then be possible to design new inhibitors with similar affinity and simpler chemical structures.
Collapse
Affiliation(s)
- Pierre Nioche
- Laboratoire de Cristallographie et RMN biologiques; UMR 8015 CNRS, Faculté de Pharmacie, Université René Descartes, 4, Avenue de l'Observatorie, 75270 Paris cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vidal M, Gigoux V, Garbay C. SH2 and SH3 domains as targets for anti-proliferative agents. Crit Rev Oncol Hematol 2001; 40:175-86. [PMID: 11682324 DOI: 10.1016/s1040-8428(01)00142-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Src homology domains SH2 and SH3 are small modular protein motifs about 100 and 60 amino acids long, respectively. SH2 domains interact with phosphotyrosine residues, whereas SH3 domains recognize proline-rich motifs of their interacting partners. SH2 and SH3 domains are frequently found in signaling proteins such as small adaptors and in enzymes such as kinases, lipases and phosphatases, in which they differ from the catalytic motif and constitute recognition modules. SH2 and SH3 domains are also found in oncoproteins and in proteins overexpressed in deregulated signaling pathways in tumor cells. The highly folded structures of these domains have been characterized alone and complexed with the essential fragments of their targets. Therefore, based on molecular data, inhibitors of interactions with SH2 and SH3 domains are considered to be potential antitumor agents. Current results are very promising, as inhibitors with very efficient anti-proliferative activity in tumor cells have been reported. This paper describes SH2 and/or SH3 domain-containing proteins that may constitute targets for anticancer therapeutics. It also deals with the essential structural data concerning SH2 and SH3 domains, and the rational design of inhibitors. Some of the more recent pharmacological results obtained with these compounds are also discussed.
Collapse
Affiliation(s)
- M Vidal
- Dèpartement de Pharmacochimie Molèculaire et cellulaire, UMR 8638 CNRS UFR des Sciences Pharmaceutiques et Biologiques, Avenue de l'Observatoire, 75270 Cedex 06, Paris, France
| | | | | |
Collapse
|
38
|
Jain D, Kaur KJ, Salunke DM. Enhanced binding of a rationally designed peptide ligand of concanavalin a arises from improved geometrical complementarity. Biochemistry 2001; 40:12059-66. [PMID: 11580281 DOI: 10.1021/bi011254f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural basis of affinity enhancement was addressed by analyzing the interactions between concanavalin A and the carbohydrate-mimicking peptide ligands. Based on the crystal structures of concanavalin A in complex with these peptides [Jain, D., Kaur, K. J., Sundaravadivel, B., and Salunke, D. M. (2000) J. Biol. Chem. 275, 16098-16102; Jain, D., Kaur, K. J., and Salunke, D. M. (2001) Biophys. J. 80, 2912-2921], a high-affinity analogue was designed. This analogue (acetyl-MYWYPY-amide) binds to the lectin with 32-fold enhanced affinity compared to the corresponding precursor peptides. The crystal structure of concanavalin A bound to the designed peptide has been determined. A peptide molecule binds to each of the crystallographically independent monomers of the tetrameric lectin. The four bound peptide molecules exhibit two major conformations both of which are extended. Unlike in the case of other concanavalin A binding peptides, the structural variations within different conformers of this analogue are marginal. It is apparent that the deletion of the structurally variable region of the larger peptides has led to an improved complementarity and increased buried surface area in the case of the designed peptide. The crystal structure also showed the formation of two backbone hydrogen bonds between the ligand and the ligate which were not present in the complexes of the precursor peptides. The observed structural features adequately explain the enhanced binding of the designed analogue.
Collapse
Affiliation(s)
- D Jain
- Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | |
Collapse
|
39
|
Proudfoot JR, Betageri R, Cardozo M, Gilmore TA, Glynn S, Hickey ER, Jakes S, Kabcenell A, Kirrane TM, Tibolla AK, Lukas S, Patel UR, Sharma R, Yazdanian M, Moss N, Beaulieu PL, Cameron DR, Ferland JM, Gauthier J, Gillard J, Gorys V, Poirier M, Rancourt J, Wernic D, Llinas-Brunet M. Nonpeptidic, monocharged, cell permeable ligands for the p56lck SH2 domain. J Med Chem 2001; 44:2421-31. [PMID: 11448224 DOI: 10.1021/jm000446q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
p56lck is a member of the src family of tyrosine kinases and plays a critical role in the signal transduction events that lead to T cell activation. Ligands for the p56lck SH2 domain have the potential to disrupt the interaction of p56lck with its substrates and derail the signaling cascade that leads to the production of cytokines such as interleukin-2. Starting from the quintuply charged (at physiological pH) phosphorylated tetrapeptide, AcpYEEI, we recently disclosed (J. Med. Chem. 1999, 42, 722 and J. Med. Chem. 1999, 42, 1757) the design of the modified dipeptide 3, which carries just two charges at physiological pH. Here we present the elaboration of 3 to the nonpeptidic, monocharged compound, 9S. This molecule displays good binding affinity for the p56lck SH2 domain (K(d) 1 microM) and good cell permeation, and this combination of properties allowed us to demonstrate clear-cut inhibitory effects on a very early event in T cell activation, namely calcium mobilization.
Collapse
Affiliation(s)
- J R Proudfoot
- Boehringer Ingelheim (Canada) Ltd., Research and Development, 2100 Cunard Street, Laval, Quebec H7S 2G5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Burke TR, Yao ZJ, Gao Y, Wu JX, Zhu X, Luo JH, Guo R, Yang D. N-terminal carboxyl and tetrazole-containing amides as adjuvants to Grb2 SH2 domain ligand binding. Bioorg Med Chem 2001; 9:1439-45. [PMID: 11408162 DOI: 10.1016/s0968-0896(01)00014-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High affinity binding of peptides to Src homology 2 (SH2) domains, often requires the presence of phosphotyrosyl (pTyr) or pTyr-mimicking moieties in the N-terminal position of the binding ligand. Several reports have shown that N(alpha)-acylation of the critical pTyr residue can result in increased SH2 domain binding potency. For Grb2 SH2 domains which recognize pTyr-Xxx-Asn-NH(2) motifs, significant potency enhancement can be incurred by N(alpha)-(3-amino)Z derivatization of tripeptides such as pTyr-Ile-Asn-NH(2). Using ligands based on the high affinity pY-Ac(6)c-Asn-(naphthylpropylamide) motif, (where Ac(6)c=1-aminocyclohexanecarboxylic acid), additional reports have shown moderate potentiating effects of N(alpha)-oxalyl derivatization. The current study examined variations of the N(alpha)-oxalyl theme in the context of a Xxx-Ac(6)c-Asn-(naphthylpropylamide) platform, where Xxx=the hydrolytically stable pTyr mimetics phosphonomethyl phenylalanine (Pmp) or carboxymethyl phenylalanine (Cmf). The effects of N(alpha)-(3-amino)Z derivatization were also investigated for this platform, to ascertain whether the large binding enhancement reported for tripeptides such as pTyr-Ile-Asn-NH(2) could be observed. In ELISA-based extracellular Grb2 SH2 domain binding assays, it was found for the Pmp-based series, that extending the oxalyl carboxyl out by one methylene unit or replacing carboxyl functionality with a tetrazole isostere, resulted in binding potency greater than the parent N(alpha)-acetyl-containing compound, with enhancement approximating that observed for the N(alpha)-oxalyl derivative. When Cmf was used as the pTyr mimetic, only modest differences in IC(50) values were observed for the series. Examination of the N(alpha)-(3-amino)Z derivatized Pmp-Ac(6)c-Asn-(naphthylpropylamide), showed that binding affinity was reduced relative to the parent N(alpha)-acetyl analogue, in contrast to the reported significant enhancement of affinity observed with other peptide ligands. Treatment of MDA-453 tumor cells, which are mitogenically driven through erbB-2 tyrosine kinase-dependent pathways, with Pmp-containing inhibitors resulted in growth inhibition, with the N(alpha)-oxalyl and N(alpha)-malonyl-containing compounds exhibiting IC(50) values (4.3 and 4.6 microM, respectively) approximately five-fold lower than the parent N(alpha)-acetyl-containing compound. Tetrazole and N(alpha)-(3-amino)Z-containing inhibitors were from two- to four-fold less potent than these latter analogues in the growth inhibition assays.
Collapse
Affiliation(s)
- T R Burke
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Building 376, FCRDC, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lung FD, Long YQ, Roller PP, King CR, Varady J, Wu XW, Wang S. Functional preference of the constituent amino acid residues in a phage-library-based nonphosphorylated inhibitor of the Grb2-SH2 domain. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 57:447-54. [PMID: 11437948 DOI: 10.1034/j.1399-3011.2001.00833.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A nonphosphorylated disulfide-bridged peptide, cyclo(Cys-Glu1-Leu-Tyr-Glu-Asn-Val-Gly-Met-Tyr9-Cys)-amide (termed G1) has been identified, by phage library, that binds to the Grb2-SH2 domain but not the src SH2 domain. Synthetic G1 blocks the Grb2-SH2 domain association (IC50 of 15.5 microM) with natural phosphopeptide ligands. As a new structural motif that binds to the Grb2-SH2 domain in a pTyr-independent manner, the binding affinity of G1 is contributed by the highly favored interactions of its structural elements interacting with the binding pocket of the protein. These interactions involve side-chains of amino acids Glu1, Tyr3, Glu4, Asn5, and Met8. Also a specific conformation is required for the cyclic peptide when bound to the protein. Ala scanning within G1 and molecular modeling analysis suggest a promising model in which G1 peptide binds in the phosphotyrosine binding site of the Grb2-SH2 domain in a beta-turn-like conformation. Replacement of Tyr3 or Asn5 with Ala abrogates the inhibitory activity of the peptide, indicating that G1 requires a Y-X-N consensus sequence similar to that found in natural pTyr-containing ligands, but without Tyr phosphorylation. Significantly, the Ala mutant of Glu1, i.e. the amino acid N-terminal to Y3, remarkably reduces the binding affinity. The position of the Glu1 side-chain is confirmed to provide a complementary role for pTyr3, as demonstrated by the low micromolar inhibitory activity (IC50 = 1.02 microM) of the nonphosphorylated peptide 11, G1(Gla1), in which Glu1 was replaced by gamma-carboxy-glutamic acid (Gla).
Collapse
Affiliation(s)
- F D Lung
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Frederick, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Evans DB, Traxler P, García-Echeverría C. Molecular approaches to receptors as targets for drug discovery. EXS 2001; 89:123-39. [PMID: 10997286 DOI: 10.1007/978-3-0348-8393-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Many receptors have been selected as viable drug discovery targets. One particular class of receptors that have received much interest and so far relatively good success are the receptor protein tyrosine kinases (RPTKs). Typically, RPTKs are activated following the binding of the peptide growth factor ligand to its receptor. The RPTKs play crucial roles in signal transduction pathways that regulate a number of cellular functions, such as cell differentiation and proliferation, both under normal physiological conditions as well as in a variety of pathological disorders. A variety of different tumour types have been shown to have dysfunctional RPTKs, either as a result of excess production of the growth factor, the receptor or both, or via mutations in the RPTKs structure. Irrespective of the cause, this leads to the over-activity of the particular RPTK system and in turn to the aberrant and inappropriate cellular signalling within the tumour cell. RPTKs are attractive targets in the search for therapeutic agents, not only against cancers but also against many other disease indications. Although an ever-increasing number of RPTKs have been selected as viable molecular targets for drug discovery programmes, four examples will be covered in this article. These are the epidermal growth factor receptor (EGF-R), platelet-derived growth factor receptor (PDGF-R), fibroblast growth factor receptor (FGR-R) and vascular endothelial growth factor receptor (VEGF-R), with the main emphasis of interest being on their role in oncology.
Collapse
Affiliation(s)
- D B Evans
- Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
43
|
Abstract
A central theme in intracellular signaling is the regulatable interaction of proteins via the binding of specialized domains on one protein to short linear sequences on other molecules. The capability of these short sequences to mediate the required specificity and affinity for signal transduction allows for the rational design of peptide-based modulators of specific protein-protein interactions. Such inhibitors are valuable tools for elucidating the role of these interactions in cellular physiology and in targeting such interactions for potential therapeutic intervention. This approach is exemplified by the study of the role of phosphorylation of specific sites on signaling proteins. However, the difficulty of introducing large hydrophilic molecules such as phosphopeptides into cells has been a major drawback in this area. This review describes the application of recently developed cell-permeant peptide vectors in the introduction of biologically active peptides into cells, with particular emphasis on the antennapedia/penetratin, TAT, and signal-peptide based sequences. In addition, the modification of such peptides to increase uptake efficiency and affinity for their targets is discussed. Finally, the use of cell-permeant phosphopeptides to both inhibit and stimulate intracellular signaling mechanisms is described, by reference to the PLCgamma, Grb2, and PI-3 kinase pathways.
Collapse
Affiliation(s)
- D J Dunican
- Molecular Neurobiology Group, New Hunts House, 4th Floor South Wing, Guy's Campus, Kings College London, London Bridge, London SE1 9RT, UK
| | | |
Collapse
|
44
|
Schiering N, Casale E, Caccia P, Giordano P, Battistini C. Dimer formation through domain swapping in the crystal structure of the Grb2-SH2-Ac-pYVNV complex. Biochemistry 2000; 39:13376-82. [PMID: 11063574 DOI: 10.1021/bi0012336] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Src homology 2 (SH2) domains are key modules in intracellular signal transduction. They link activated cell surface receptors to downstream targets by binding to phosphotyrosine-containing sequence motifs. The crystal structure of a Grb2-SH2 domain-phosphopeptide complex was determined at 2.4 A resolution. The asymmetric unit contains four polypeptide chains. There is an unexpected domain swap so that individual chains do not adopt a closed SH2 fold. Instead, reorganization of the EF loop leads to an open, nonglobular fold, which associates with an equivalent partner to generate an intertwined dimer. As in previously reported crystal structures of canonical Grb2-SH2 domain-peptide complexes, each of the four hybrid SH2 domains in the two domain-swapped dimers binds the phosphopeptide in a type I beta-turn conformation. This report is the first to describe domain swapping for an SH2 domain. While in vivo evidence of dimerization of Grb2 exists, our SH2 dimer is metastable and a physiological role of this new form of dimer formation remains to be demonstrated.
Collapse
Affiliation(s)
- N Schiering
- Department of Structural Chemistry, Discovery Research Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy.
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Long YQ, Yao ZJ, Voigt JH, Lung FD, Luo JH, Burke TR, King CR, Yang D, Roller PP. Structural requirements for Tyr in the consensus sequence Y-E-N of a novel nonphosphorylated inhibitor to the Grb2-SH2 domain. Biochem Biophys Res Commun 1999; 264:902-8. [PMID: 10544028 DOI: 10.1006/bbrc.1999.1599] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phage library derived, nonphosphorylated and thioether-cyclized peptide, termed G1TE, cyclo(CH(2)CO-Glu(1)-Leu-Tyr(3)-Glu-Asn-Val-Gly-Met-Tyr-Cys(10))-amid e, represents a new structural motif that binds to the Grb2-SH2 domain in a pTyr-independent manner, with an IC(50) of 20 microM. The retention of binding affinity is very sensitive with respect to peptide ring-size alterations and Ala mutations. We demonstrated previously that the Glu(1) side chain and its closely related analogs partially compensate for the absence of the phosphate functionality on Tyr(3), and, based on molecular modeling, these acidic side-chains complex with the Arg67 and Arg86 side-chains of the protein in the binding cavity. In this study we judiciously altered and incorporated various natural and unnatural amino acids as Tyr replacements within the -YEN- motif, and we demonstrate the functional importance and structural requirement of Tyr(3) for effective binding of this novel non-phosphorylated ligand to the Grb2-SH2 domain. The phenyl side-chain moiety and a polar functional group with specific orientation in position Y(3) of the peptide are particularly required. Using SPR binding assays, a submicromolar inhibitor (IC(50) = 0.70 microM) was obtained when Glu(1) was replaced with alpha-aminoadipate and Tyr(3) was replaced with 4-carboxymethyl-Phe, providing peptide 14, G1TE(Adi(1), cmPhe(3)). Peptide 14 also inhibited Grb2/p185(erb)(B-2) protein association in cell homogenates of erbB-2-overexpressing MDA-MA-453 cancer cells at near one micromolar concentrations.
Collapse
Affiliation(s)
- Y Q Long
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Building 37, Room 5C02, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Long YQ, Voigt JH, Lung FD, King CR, Roller PP. Significant compensatory role of position Y-2 conferring high affinity to non-phosphorylated inhibitors of Grb2-SH2 domain. Bioorg Med Chem Lett 1999; 9:2267-72. [PMID: 10465559 DOI: 10.1016/s0960-894x(99)00379-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systematic modification of amino acid at position Y-2 of a library-derived non-phosporylated thioether-cyclized peptide, cyclo(CH2CO-Glu2-Leu-Tyr0-Glu-Asn-Val-Gly-Met-Tyr-Cys) -amide, aided by molecular modeling, demonstrates that the Glu(-2) sidechain compensates for the absence of Tyr0 phosphorylation in retaining effective binding to Grb2-SH2 domain. Replacement of Glu(-2) with gamma-carboxyglutamic acid produced a high affinity inhibitor, the first example with submicromolar affinity (IC50 = 640 nM).
Collapse
Affiliation(s)
- Y Q Long
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Beaulieu PL, Cameron DR, Ferland JM, Gauthier J, Ghiro E, Gillard J, Gorys V, Poirier M, Rancourt J, Wernic D, Llinas-Brunet M, Betageri R, Cardozo M, Hickey ER, Ingraham R, Jakes S, Kabcenell A, Kirrane T, Lukas S, Patel U, Proudfoot J, Sharma R, Tong L, Moss N. Ligands for the tyrosine kinase p56lck SH2 domain: discovery of potent dipeptide derivatives with monocharged, nonhydrolyzable phosphate replacements. J Med Chem 1999; 42:1757-66. [PMID: 10346928 DOI: 10.1021/jm980676t] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p56lck is a member of the src family of tyrosine kinases. Through modular binding units called SH2 domains, p56lck promotes phosphotyrosine-dependent protein-protein interactions and plays a critical role in signal transduction events that lead to T-cell activation. Starting from the phosphorylated dipeptide (2), a high-affinity ligand for the p56lck SH2 domain, we have designed novel dipeptides that contain monocharged, nonhydrolyzable phosphate group replacements and bind to the protein with KD's in the low micromolar range. Replacement of the phosphate group in phosphotyrosine-containing sequences by a (R/S)-hydroxyacetic (compound 8) or an oxamic acid (compound 10) moiety leads to hydrolytically stable, monocharged ligands, with 83- and 233-fold decreases in potency, respectively. This loss in binding affinity can be partially compensated for by incorporating large lipophilic groups at the inhibitor N-terminus. These groups provide up to 13-fold increases in potency depending on the nature of the phosphate replacement. The discovery of potent (2-3 microM), hydrolytically stable dipeptide derivatives, bearing only two charges at physiological pH, represents a significant step toward the discovery of compounds with cellular activity and the development of novel therapeutics for conditions associated with undesired T-cell proliferation.
Collapse
Affiliation(s)
- P L Beaulieu
- Boehringer Ingelheim Pharmaceuticals Inc., 175 Briar Ridge Road, Ridgefield, Connecticut 06877, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Burke TR, Luo J, Yao ZJ, Gao Y, Zhao H, Milne GW, Guo R, Voigt JH, King CR, Yang D. Monocarboxylic-based phosphotyrosyl mimetics in the design of GRB2 SH2 domain inhibitors. Bioorg Med Chem Lett 1999; 9:347-52. [PMID: 10091682 DOI: 10.1016/s0960-894x(98)00740-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Three monocarboxylic-containing analogues, O-carboxymethyltyrosine (cmT, 5), 4-(carboxymethyl)phenylalanine (cmF, 6), and 4-(carboxydifluoromethyl)phenylalanine (F2cmF, 7) were utilized as phosphotyrosyl (pTyr) replacements in a high affinity B-bend mimicking platform, where they exhibited IC50 values of 2.5 microM, 65 microM and 28 microM, respectively, in a Grb2 SH2 domain Biacore binding assay. When a terminal N(alpha)-oxalyl axillary was utilized to enhance ligand interactions with a critical SH2 domain Arg67 residue (alphaA-helix), binding potencies increased from 4- to 10-fold, resulting in submicromolar affinity for cmF (IC50 = 0.6 microM) and low micromolar affinity for F2cmF (IC50 = 2 microM). Cell lysate binding studies also showed inhibition of cognate Grb2 binding to the p185erbB-2 phosphoprotein in the same rank order of potency as observed in the Biacore assay. These results indicate the potential value of cmF and F2cmF residues as pTyr mimetics for the study of Grb2 SH2 domains and suggest new strategies for improvements in inhibitor design.
Collapse
Affiliation(s)
- T R Burke
- Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schoepfer J, Fretz H, Gay B, Furet P, García-Echeverría C, End N, Caravatti G. Highly potent inhibitors of the Grb2-SH2 domain. Bioorg Med Chem Lett 1999; 9:221-6. [PMID: 10021933 DOI: 10.1016/s0960-894x(98)00701-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Highly potent inhibitors of the Grb2-SH2 domain have been synthesized. They share the common sequence: Ac-Pmp-Ac6c-Asn-NH-(3-indolyl-propyl). Different substituents at the 3-indolyl-propylamine C-terminal group were explored to further improve the activity. This is the first example of inhibitors of SH2 domains with sub-nanomolar affinity reported to date.
Collapse
Affiliation(s)
- J Schoepfer
- Novartis Pharma Inc., Oncology Research Department, Basle, Switzerland.
| | | | | | | | | | | | | |
Collapse
|