1
|
Yu G, Duan Q, Cui T, Jiang C, Li X, Li Y, Fu J, Zhang Y, Wang H, Luan J. Development of a bacterial gene transcription activating strategy based on transcriptional activator positive feedback. J Adv Res 2024; 66:155-164. [PMID: 38123018 PMCID: PMC11674765 DOI: 10.1016/j.jare.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Transcription of biological nitrogen fixation (nif) genes is activated by the NifA protein which recognizes specific activating sequences upstream of σ54-dependent nif promoters. The large quantities of nitrogenase which can make up 20% of the total proteins in the cell indicates high transcription activating efficiency of NifA and high transcription level of nifHDK nitrogenase genes. OBJECTIVES Development of an efficient gene transcription activating strategy in bacteria based on positive transcription regulatory proteins and their regulating DNA sequences. METHODS We designed a highly efficient gene transcription activating strategy in which the nifA gene was placed directly downstream of its regulating sequences. The NifA protein binds its regulating sequences and stimulates transcription of itself and downstream genes. Overexpressed NifA causes transcription activation by positive reinforcement. RESULTS When this gene transcription activating strategy was used to overexpress NifA in Pseudomonas stutzeri DSM4166 containing the nif gene cluster, the nitrogenase activity was increased by 368 folds which was 16 times higher than that obtained by nifA driven by the strongest endogenous constitutive promoter. When this strategy was used to activate transcription of exogenous biosynthetic genes for the plant auxin indole-3-acetic acid and the antitumor alkaloid pigment prodigiosin in DSM4166, both of them resulted in better performance than the strongest endogenous constitutive promoter and the highest reported productions in heterologous hosts to date. Finally, we demonstrated the universality of this strategy using the positive transcriptional regulator of the psp operon, PspF, in E. coli and the pathway-specific positive transcription regulator of the polyene antibiotic salinomycin biosynthesis, SlnR, in Streptomyces albus. CONCLUSION Many positive transcription regulatory proteins and their regulating DNA sequences have been identified in bacteria. The gene transcription activating strategy developed in this study will have broad applications in molecular biology and biotechnology.
Collapse
Affiliation(s)
- Guangle Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Qiuyue Duan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Yutong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Bacterial Enhancer Binding Proteins-AAA + Proteins in Transcription Activation. Biomolecules 2020; 10:biom10030351. [PMID: 32106553 PMCID: PMC7175178 DOI: 10.3390/biom10030351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/24/2023] Open
Abstract
Bacterial enhancer-binding proteins (bEBPs) are specialised transcriptional activators. bEBPs are hexameric AAA+ ATPases and use ATPase activities to remodel RNA polymerase (RNAP) complexes that contain the major variant sigma factor, σ54 to convert the initial closed complex to the transcription competent open complex. Earlier crystal structures of AAA+ domains alone have led to proposals of how nucleotide-bound states are sensed and propagated to substrate interactions. Recently, the structure of the AAA+ domain of a bEBP bound to RNAP-σ54-promoter DNA was revealed. Together with structures of the closed complex, an intermediate state where DNA is partially loaded into the RNAP cleft and the open promoter complex, a mechanistic understanding of how bEBPs use ATP to activate transcription can now be proposed. This review summarises current structural models and the emerging understanding of how this special class of AAA+ proteins utilises ATPase activities to allow σ54-dependent transcription initiation.
Collapse
|
3
|
Nie X, Yang B, Zhang L, Gu Y, Yang S, Jiang W, Yang C. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ54control cellobiose utilization inClostridium acetobutylicum. Mol Microbiol 2016; 100:289-302. [DOI: 10.1111/mmi.13316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoqun Nie
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Bin Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Lei Zhang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Yang Gu
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Chen Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
4
|
Southern SJ, Male A, Milne T, Sarkar-Tyson M, Tavassoli A, Oyston PCF. Evaluating the role of phage-shock protein A in Burkholderia pseudomallei. MICROBIOLOGY-SGM 2015; 161:2192-203. [PMID: 26374246 PMCID: PMC5452601 DOI: 10.1099/mic.0.000175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phage-shock protein (Psp) response is an extracytoplasmic response system that is vital for maintenance of the cytoplasmic membrane when the cell encounters stressful conditions. The paradigm of the Psp response has been established in Escherichia coli. The response has been shown to be important for survival during the stationary phase, maintenance of the proton motive force across membranes and implicated in virulence. In this study, we identified a putative PspA homologue in Burkholderia pseudomallei, annotated as BPSL2105. Similar to the induction of PspA in E. coli, the expression of B. pseudomallei BPSL2105 was induced by heat shock. Deletion of BPSL2105 resulted in a survival defect in the late stationary phase coincident with dramatic changes in the pH of the culture medium. The B. pseudomallei BPSL2105 deletion mutant also displayed reduced survival in macrophage infection – the first indication that the Psp response plays a role during intracellular pathogenesis in this species. The purified protein formed large oligomeric structures similar to those observed for the PspA protein of E. coli, and PspA homologues in Bacillus, cyanobacteria and higher plants, providing further evidence to support the identification of BPSL2105 as a PspA-like protein in B. pseudomallei.
Collapse
Affiliation(s)
- Stephanie J Southern
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Abigail Male
- 2Department of Chemistry, University of Southampton, Southampton, UK
| | - Timothy Milne
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Mitali Sarkar-Tyson
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK 3University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ali Tavassoli
- 2Department of Chemistry, University of Southampton, Southampton, UK 4The Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Petra C F Oyston
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| |
Collapse
|
5
|
Zhou Y, Asahara H, Schneider N, Dranchak P, Inglese J, Chong S. Engineering bacterial transcription regulation to create a synthetic in vitro two-hybrid system for protein interaction assays. J Am Chem Soc 2014; 136:14031-8. [PMID: 25188838 PMCID: PMC4195380 DOI: 10.1021/ja502512g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcriptional activation of σ(54)-RNA polymerase holoenzyme (σ(54)-RNAP) in bacteria is dependent on a cis-acting DNA element (bacterial enhancer), which recruits the bacterial enhancer-binding protein to contact the holoenzyme via DNA looping. Using a constructive synthetic biology approach, we recapitulated such process of transcriptional activation by recruitment in a reconstituted cell-free system, assembled entirely from a defined number of purified components. We further engineered the bacterial enhancer-binding protein PspF to create an in vitro two-hybrid system (IVT2H), capable of carrying out gene regulation in response to expressed protein interactions. Compared with genetic systems and other in vitro methods, IVT2H not only allows detection of different types of protein interactions in just a few hours without involving cells but also provides a general correlation of the relative binding strength of the protein interaction with the IVT2H signal. Due to its reconstituted nature, IVT2H provides a biochemical assay platform with a clean and defined background. We demonstrated the proof-of-concept of using IVT2H as an alternative assay for high throughput screening of small-molecule inhibitors of protein-protein interaction.
Collapse
Affiliation(s)
- Ying Zhou
- New England Biolabs, Inc. 240 County Road, Ipswich, Massachusetts 01938, United States
| | | | | | | | | | | |
Collapse
|
6
|
Determination of the self-association residues within a homomeric and a heteromeric AAA+ enhancer binding protein. J Mol Biol 2014; 426:1692-710. [PMID: 24434682 DOI: 10.1016/j.jmb.2014.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/17/2013] [Accepted: 01/06/2014] [Indexed: 11/24/2022]
Abstract
The σ(54)-dependent transcription in bacteria requires specific activator proteins, bacterial enhancer binding protein (bEBP), members of the AAA+ (ATPases Associated with various cellular Activities) protein family. The bEBPs usually form oligomers in order to hydrolyze ATP and make open promoter complexes. The bEBP formed by HrpR and HrpS activates transcription from the σ(54)-dependent hrpL promoter responsible for triggering the Type Three Secretion System in Pseudomonas syringae pathovars. Unlike other bEBPs that usually act as homohexamers, HrpR and HrpS operate as a highly co-dependent heterohexameric complex. To understand the organization of the HrpRS complex and the HrpR and HrpS strict co-dependence, we have analyzed the interface between subunits using the random and directed mutagenesis and available crystal structures of several closely related bEBPs. We identified key residues required for the self-association of HrpR (D32, E202 and K235) with HrpS (D32, E200 and K233), showed that the HrpR D32 and HrpS K233 residues form interacting pairs directly involved in an HrpR-HrpS association and that the change in side-chain length at position 233 in HrpS affects self-association and interaction with the HrpR and demonstrated that the HrpS D32, E200 and K233 are not involved in negative regulation imposed by HrpV. We established that the equivalent residues K30, E200 and E234 in a homo-oligomeric bEBP, PspF, are required for the subunit communication and formation of an oligomeric lock that cooperates with the ATP γ-phosphate sensing PspF residue R227, providing insights into their roles in the heteromeric HrpRS co-complex.
Collapse
|
7
|
Mehta P, Jovanovic G, Lenn T, Bruckbauer A, Engl C, Ying L, Buck M. Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nat Commun 2013; 4:1997. [PMID: 23764692 PMCID: PMC3709507 DOI: 10.1038/ncomms2997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/09/2013] [Indexed: 12/02/2022] Open
Abstract
Bacterial enhancer-dependent transcription systems support major adaptive responses and offer a singular paradigm in gene control analogous to complex eukaryotic systems. Here we report new mechanistic insights into the control of one-membrane stress-responsive bacterial enhancer-dependent system. Using millisecond single-molecule fluorescence microscopy of live cells we determine the localizations, two-dimensional diffusion dynamics and stoichiometries of complexes of the bacterial enhancer-binding ATPase PspF during its action at promoters as regulated by inner membrane interacting negative controller PspA. We establish that a stable repressive PspF–PspA complex is located in the nucleoid, transiently communicating with the inner membrane via PspA. The PspF as a hexamer stably binds only one of the two psp promoters at a time, suggesting that psp promoters will fire asynchronously and cooperative interactions of PspF with the basal transcription complex influence dynamics of the PspF hexamer–DNA complex and regulation of the psp promoters. Cellular adaptive responses require temporal and spatial control of key regulatory protein complexes. Mehta et al. describe the dynamic interaction of a transcriptional activator mediating membrane stress response in E. coli with its negative regulator, the cell membrane and the transcription machinery.
Collapse
Affiliation(s)
- Parul Mehta
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhang N, Gordiyenko Y, Joly N, Lawton E, Robinson CV, Buck M. Subunit dynamics and nucleotide-dependent asymmetry of an AAA(+) transcription complex. J Mol Biol 2013; 426:71-83. [PMID: 24055699 DOI: 10.1016/j.jmb.2013.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/21/2013] [Accepted: 08/24/2013] [Indexed: 01/22/2023]
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcription activators that belong to the AAA(+) protein family. They form higher-order self-assemblies to regulate transcription initiation at stress response and pathogenic promoters. The precise mechanism by which these ATPases utilize ATP binding and hydrolysis energy to remodel their substrates remains unclear. Here we employed mass spectrometry of intact complexes to investigate subunit dynamics and nucleotide occupancy of the AAA(+) domain of one well-studied bEBP in complex with its substrate, the σ(54) subunit of RNA polymerase. Our results demonstrate that the free AAA(+) domain undergoes significant changes in oligomeric states and nucleotide occupancy upon σ(54) binding. Such changes likely correlate with one transition state of ATP and are associated with an open spiral ring formation that is vital for asymmetric subunit function and interface communication. We confirmed that the asymmetric subunit functionality persists for open promoter complex formation using single-chain forms of bEBP lacking the full complement of intact ATP hydrolysis sites. Outcomes reconcile low- and high-resolution structures and yield a partial sequential ATP hydrolysis model for bEBPs.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Yuliya Gordiyenko
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Nicolas Joly
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Batiment Buffon, 15 rue Helene Brion, 75205 Paris Cedex 13, France
| | - Edward Lawton
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Martin Buck
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
9
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
10
|
VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J Bacteriol 2011; 193:6471-82. [PMID: 21949076 DOI: 10.1128/jb.05414-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative bacterium Vibrio cholerae is the etiological agent of cholera, a disease characterized by the release of high volumes of watery diarrhea. Many medically important proteobacteria, including V. cholerae, carry one or multiple copies of the gene cluster that encodes the bacterial type VI secretion system (T6SS) to confer virulence or interspecies competitiveness. Structural similarity and sequence homology between components of the T6SS and the cell-puncturing device of T4 bacteriophage suggest that the T6SS functions as a molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Although our understanding of how the structural T6SS apparatus assembles is developing, little is known about how this system is regulated. Here, we report on the contribution of the activator of the alternative sigma factor 54, VasH, as a global regulator of the V. cholerae T6SS. Using bioinformatics and mutational analyses, we identified domains of the VasH polypeptide that are essential for its ability to initiate transcription of T6SS genes and established a universal role for VasH in endemic and pandemic V. cholerae strains.
Collapse
|
11
|
Huvet M, Toni T, Sheng X, Thorne T, Jovanovic G, Engl C, Buck M, Pinney J, Stumpf M. The evolution of the phage shock protein response system: interplay between protein function, genomic organization, and system function. Mol Biol Evol 2011; 28:1141-55. [PMID: 21059793 PMCID: PMC3041696 DOI: 10.1093/molbev/msq301] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Sensing the environment and responding appropriately to it are key capabilities for the survival of an organism. All extant organisms must have evolved suitable sensors, signaling systems, and response mechanisms allowing them to survive under the conditions they are likely to encounter. Here, we investigate in detail the evolutionary history of one such system: The phage shock protein (Psp) stress response system is an important part of the stress response machinery in many bacteria, including Escherichia coli K12. Here, we use a systematic analysis of the genes that make up and regulate the Psp system in E. coli in order to elucidate the evolutionary history of the system. We compare gene sharing, sequence evolution, and conservation of protein-coding as well as noncoding DNA sequences and link these to comparative analyses of genome/operon organization across 698 bacterial genomes. Finally, we evaluate experimentally the biological advantage/disadvantage of a simplified version of the Psp system under different oxygen-related environments. Our results suggest that the Psp system evolved around a core response mechanism by gradually co-opting genes into the system to provide more nuanced sensory, signaling, and effector functionalities. We find that recruitment of new genes into the response machinery is closely linked to incorporation of these genes into a psp operon as is seen in E. coli, which contains the bulk of genes involved in the response. The organization of this operon allows for surprising levels of additional transcriptional control and flexibility. The results discussed here suggest that the components of such signaling systems will only be evolutionarily conserved if the overall functionality of the system can be maintained.
Collapse
Affiliation(s)
- M. Huvet
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - T. Toni
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- Institute of Mathematical Sciences, Imperial College London, London, United Kingdom
| | - X. Sheng
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - T. Thorne
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- Institute of Mathematical Sciences, Imperial College London, London, United Kingdom
| | - G. Jovanovic
- Division of Biology, Imperial College London, London, United Kingdom
| | - C. Engl
- Division of Biology, Imperial College London, London, United Kingdom
| | - M. Buck
- Division of Biology, Imperial College London, London, United Kingdom
| | - J.W. Pinney
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - M.P.H. Stumpf
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- Institute of Mathematical Sciences, Imperial College London, London, United Kingdom
- Centre for Integrative Systems Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010; 34:797-827. [PMID: 20636484 DOI: 10.1111/j.1574-6976.2010.00240.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, South Kensington, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nadratowska-Wesołowska B, Słomińska-Wojewódzka M, Łyzeń R, Wegrzyn A, Szalewska-Pałasz A, Wegrzyn G. Transcription regulation of the Escherichia coli pcnB gene coding for poly(A) polymerase I: roles of ppGpp, DksA and sigma factors. Mol Genet Genomics 2010; 284:289-305. [PMID: 20700605 PMCID: PMC2939334 DOI: 10.1007/s00438-010-0567-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 07/24/2010] [Indexed: 12/27/2022]
Abstract
Poly(A) polymerase I (PAP I), encoded by the pcnB gene, is a major enzyme responsible for RNA polyadenylation in Escherichia coli, a process involved in the global control of gene expression in this bacterium through influencing the rate of transcript degradation. Recent studies have suggested a complicated regulation of pcnB expression, including a complex promoter region, a control at the level of translation initiation and dependence on bacterial growth rate. In this report, studies on transcription regulation of the pcnB gene are described. Results of in vivo and in vitro experiments indicated that (a) there are three σ70-dependent (p1, pB, and p2) and two σS-dependent (pS1 and pS2) promoters of the pcnB gene, (b) guanosine tetraphosphate (ppGpp) and DksA directly inhibit transcription from pB, pS1 and pS2, and (c) pB activity is drastically impaired at the stationary phase of growth. These results indicate that regulation of the pcnB gene transcription is a complex process, which involves several factors acting to ensure precise control of PAP I production. Moreover, inhibition of activities of pS1 and pS2 by ppGpp and DksA suggests that regulation of transcription from promoters requiring alternative σ factors by these effectors of the stringent response might occur according to both passive and active models.
Collapse
|
14
|
Critzer FJ, D'Souza DH, Saxton AM, Golden DA. Increased transcription of the phosphate-specific transport system of Escherichia coli O157:H7 after exposure to sodium benzoate. J Food Prot 2010; 73:819-24. [PMID: 20501031 DOI: 10.4315/0362-028x-73.5.819] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sodium benzoate is a widely used food antimicrobial in drinks and fruit juices. A microarray study was conducted to determine the transcriptional response of Escherichia coli O157:H7 to 0.5% (wt/vol) sodium benzoate. E. coli O157:H7 grown in 150 ml of Luria-Bertani broth was exposed to 0% (control) and 0.5% sodium benzoate. Each treatment was duplicated and sampled at 0 (immediately after exposure), 5, 15, 30, and 60 min. Total RNA was extracted and analyzed with E. coli 2.0 Gene Chips. Significant ontology categories affected by sodium benzoate exposure were determined with JProGO software. The phosphate-specific transport (Pst) system transports inorganic phosphate into bacterial cells, under phosphate-limited conditions. The Pst system was found to be highly upregulated. Increased expression of the Pst system was observed after the short 5 min of exposure to sodium benzoate; pstS, pstA, pstB, and pstC genes were upregulated more than twofold (linear scale) at 5, 15, 30, and 60 min. Increased expression of several other efflux systems, such as AcrAB-TolC, was also observed. The Pst system may act as an efflux pump under these stress-adapted conditions, as well as increase transport of phosphorus to aid in DNA, RNA, ATP, and phospholipid production. Understanding adaptations of Escherichia coli O157:H7 under antimicrobial exposure is essential to better understand and implement methods to inhibit or control its survival in foods.
Collapse
Affiliation(s)
- Faith J Critzer
- Department of Food Science and Technology, The University of Tennessee, Knoxville, Tennessee 37996-4591, USA
| | | | | | | |
Collapse
|
15
|
Joly N, Burrows PC, Engl C, Jovanovic G, Buck M. A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA(+) transcription activator protein PspF for negative regulation. J Mol Biol 2009; 394:764-75. [PMID: 19804784 PMCID: PMC3128695 DOI: 10.1016/j.jmb.2009.09.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/22/2009] [Indexed: 12/02/2022]
Abstract
To survive and colonise their various environments, including those used during infection, bacteria have developed a variety of adaptive systems. Amongst these is phage shock protein (Psp) response, which can be induced in Escherichia coli upon filamentous phage infection (specifically phage secretin pIV) and by other membrane-damaging agents. The E. coli Psp system comprises seven proteins, of which PspA is the central component. PspA is a bifunctional protein that is directly involved in (i) the negative regulation of the psp-specific transcriptional activator PspF and (ii) the maintenance of membrane integrity in a mechanism proposed to involve the formation of a 36-mer ring complex. Here we established that the PspA negative regulation of PspF ATPase activity is the result of a cooperative inhibition. We present biochemical evidence showing that an inhibitory PspA–PspF regulatory complex, which has significantly reduced PspF ATPase activity, is composed of around six PspF subunits and six PspA subunits, suggesting that PspA exists in at least two different oligomeric assemblies. We now establish that all four putative helical domains of PspA are critical for the formation of the 36-mer. In contrast, not all four helical domains are required for the formation of the inhibitory PspA–PspF complex. Since a range of initial PspF oligomeric states permit formation of the apparent PspA–PspF dodecameric assembly, we conclude that PspA and PspF demonstrate a strong propensity to self-assemble into a single defined heteromeric regulatory complex.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
16
|
Hassani AS, Amirmozafari N, Ghaemi A. Virulence Increasing of Salmonella typhimurium in Balb/c Mice After Heat-Stress Induction of Phage Shock Protein A. Curr Microbiol 2009; 59:446-50. [DOI: 10.1007/s00284-009-9458-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/06/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
17
|
Phage Shock Protein G, a Novel Ethanol-Induced Stress Protein in Salmonella typhimurium. Curr Microbiol 2008; 58:239-44. [DOI: 10.1007/s00284-008-9314-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 08/23/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
|
18
|
Schumacher J, Joly N, Claeys-Bouuaert IL, Aziz SA, Rappas M, Zhang X, Buck M. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase. J Mol Biol 2008; 381:1-12. [PMID: 18599077 DOI: 10.1016/j.jmb.2008.05.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/16/2022]
Abstract
AAA(+) proteins are ubiquitous mechanochemical ATPases that use energy from ATP hydrolysis to remodel their versatile substrates. The AAA(+) characteristic hexameric ring assemblies raise important questions about if and how six often identical subunits coordinate hydrolysis and associated motions. The PspF AAA(+) domain, PspF(1-275), remodels the bacterial sigma(54)-RNA polymerase to activate transcription. Analysis of ATP substrate inhibition kinetics on ATP hydrolysis in hexameric PspF(1-275) indicates negative homotropic effects between subunits. Functional determinants required for allosteric control identify: (i) an important link between the ATP bound ribose moiety and the SensorII motif that would allow nucleotide-dependent *-helical */beta subdomain dynamics; and (ii) establishes a novel regulatory role for the SensorII helix in PspF, which may apply to other AAA(+) proteins. Consistent with functional data, homotropic control appears to depend on nucleotide state-dependent subdomain angles imposing dynamic symmetry constraints in the AAA(+) ring. Homotropic coordination is functionally important to remodel the sigma(54) promoter. We propose a structural symmetry-based model for homotropic control in the AAA(+) characteristic ring architecture.
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Joly N, Burrows PC, Buck M. An intramolecular route for coupling ATPase activity in AAA+ proteins for transcription activation. J Biol Chem 2008; 283:13725-35. [PMID: 18326037 DOI: 10.1074/jbc.m800801200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AAA+ proteins (ATPases associated with various cellular activities) contribute to many cellular processes and typically function as higher order oligomers permitting the coordination of nucleotide hydrolysis for functional output, which leads to substrate remodeling. The precise mechanisms that enable the relay of nucleotide hydrolysis to their specific functional outputs are largely unknown. Here we use PspF, a specialized AAA+ protein required for enhancer-dependent transcription activation in Escherichia coli, as a model system to address this question. We demonstrate that a conserved asparagine is involved in internal organization of the oligomeric ring, regulation of ATPase activity by "trans" factors, and optimizing substrate remodeling. We provide evidence that the spatial relationship between the asparagine residue and the Walker B motif is one key element in the conformational signaling pathway that leads to substrate remodeling. Such functional organization most likely applies to other AAA+ proteins, including Ltag (simian virus 40), Rep40 (Adeno-associated virus-2), and p97 (Mus musculus) in which the asparagine to Walker B motif relationship is conserved.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
20
|
Novel arrangement of enhancer sequences for NifA-dependent activation of the hydrogenase gene promoter in Rhizobium leguminosarum bv. viciae. J Bacteriol 2008; 190:3185-91. [PMID: 18310336 DOI: 10.1128/jb.00107-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activation of the NifA-dependent sigma(54) promoter of the Rhizobium leguminosarum hydrogenase structural genes hupSL (P(1)) has been studied through gel retardation analysis and detailed mutagenesis. Gel retardation analysis indicated the existence of a physical interaction between NifA and the promoter. Extensive mutagenesis followed by in vivo expression analysis showed that three sequences of 4 bases each (-170 ACAA -167, -161 ACAA -158, and -145 TTGT -142) are required for maximal stimulation of in vivo transcription of the P(1) promoter. The arrangement of these upstream activating sequences (ACAA N(5) ACAA N(12) TTGT) differs from the canonical 5'ACA N(10) TGT 3' UAS structure involved in NifA-dependent activation of nif/fix genes. Mutant promoter analysis indicated that the relative contribution of each of these sequences to P(1) promoter activity increases with its proximity to the transcription start site. Analysis of double mutants altered in two out of the three enhancer sequences suggests that each of these sequences functions in NifA-dependent activation of the P(1) promoter in an independent but cooperative mode. The similarities and differences between cis elements of hup and nif/fix promoters suggest that the structure of the P(1) promoter has adapted to activation by NifA in order to coexpress hydrogenase and nitrogenase activities in legume nodules.
Collapse
|
21
|
Bose D, Joly N, Pape T, Rappas M, Schumacher J, Buck M, Zhang X. Dissecting the ATP hydrolysis pathway of bacterial enhancer-binding proteins. Biochem Soc Trans 2008; 36:83-8. [PMID: 18208391 DOI: 10.1042/bst0360083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
bEBPs (bacterial enhancer-binding proteins) are AAA+ (ATPase associated with various cellular activities) transcription activators that activate gene transcription through a specific bacterial sigma factor, sigma(54). Sigma(54)-RNAP (RNA polymerase) binds to promoter DNA sites and forms a stable closed complex, unable to proceed to transcription. The closed complex must be remodelled using energy from ATP hydrolysis provided by bEBPs to melt DNA and initiate transcription. Recently, large amounts of structural and biochemical data have produced insights into how ATP hydrolysis within the active site of bEBPs is coupled to the re-modelling of the closed complex. In the present article, we review some of the key nucleotides, mutations and techniques used and how they have contributed towards our understanding of the function of bEBPs.
Collapse
Affiliation(s)
- Daniel Bose
- Division of Molecular Bioscience, Faculty of Natural Sciences, Imperial College London, South Kensington, London, SW7 2AZ, U.K
| | | | | | | | | | | | | |
Collapse
|
22
|
Joly N, Rappas M, Wigneshweraraj SR, Zhang X, Buck M. Coupling nucleotide hydrolysis to transcription activation performance in a bacterial enhancer binding protein. Mol Microbiol 2007; 66:583-95. [PMID: 17883390 DOI: 10.1111/j.1365-2958.2007.05901.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial enhancer binding proteins (bEBP) are members of the AAA+ protein family and have a highly conserved 'DE' Walker B motif thought to be involved in the catalytic function of the protein with an active role in nucleotide hydrolysis. Based on detailed structural data, we analysed the functionality of the conserved 'DE' Walker B motif of a bEBP model, phage shock protein F (PspF), to investigate the role of these residues in the sigma(54)-dependent transcription activation process. We established their role in the regulation of PspF self-association and in the relay of the ATPase activity to the remodelling of an RNA polymerase.promoter complex (Esigma(54).DNA). Specific substitutions of the conserved glutamate (E) allowed the identification of new functional ATP.bEBP.Esigma(54) complexes which are stable and transcriptionally competent, providing a new tool to study the initial events of the sigma(54)-dependent transcription activation process. In addition, we show the importance of this glutamate residue in sigma(54).DNA conformation sensing, permitting the identification of new intermediate stages within the transcription activation pathway.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
23
|
Janaszak A, Majczak W, Nadratowska B, Szalewska-Palasz A, Konopa G, Taylor A. A sigma54-dependent promoter in the regulatory region of the Escherichia coli rpoH gene. MICROBIOLOGY-SGM 2007; 153:111-23. [PMID: 17185540 DOI: 10.1099/mic.0.2006/000463-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Escherichia coli rpoH gene is transcribed from four known and differently regulated promoters: P1, P3, P4 and P5. This study demonstrates that the conserved consensus sequence of the sigma54 promoter in the regulatory region of the rpoH gene, described previously, is a functional promoter, P6. The evidence for this conclusion is: (i) the specific binding of the sigma54-RNAP holoenzyme to P6, (ii) the location of the transcription start site at the predicted position (C, 30 nt upstream of ATG) and (iii) the dependence of transcription on sigma54 and on an ATP-dependent activator. Nitrogen starvation, heat shock, ethanol and CCCP treatment did not activate transcription from P6 under the conditions examined. Two activators of sigma54 promoters, PspF and NtrC, were tested but neither of them acted specifically. Therefore, PspFDeltaHTH, a derivative of PspF, devoid of DNA binding capability but retaining its ATPase activity, was used for transcription in vitro, taking advantage of the relaxed specificity of ATP-dependent activators acting in solution. In experiments in vivo overexpression of PspFDeltaHTH from a plasmid was employed. Thus, the sigma54-dependent transcription capability of the P6 promoter was demonstrated both in vivo and in vitro, although the specific conditions inducing initiation of the transcription remain to be elucidated. The results clearly indicate that the closed sigma54-RNAP-promoter initiation complex was formed in vitro and in vivo and needed only an ATP-dependent activator to start transcription.
Collapse
Affiliation(s)
- Anna Janaszak
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
24
|
Schumacher J, Joly N, Rappas M, Bradley D, Wigneshweraraj SR, Zhang X, Buck M. Sensor I threonine of the AAA+ ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase. J Biol Chem 2007; 282:9825-9833. [PMID: 17242399 DOI: 10.1074/jbc.m611532200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional initiation invariably involves the transition from a closed RNA polymerase (RNAP) promoter complex to a transcriptional competent open complex. Activators of the bacterial sigma(54)-RNAP are AAA+ proteins that couple ATP hydrolysis to restructure the sigma(54)-RNAP promoter complex. Structures of the sigma(54) activator PspF AAA+ domain (PspF(1-275)) bound to sigma(54) show two loop structures proximal to sigma(54) as follows: the sigma(54) contacting the GAFTGA loop 1 structure and loop 2 that classifies sigma(54) activators as pre-sensor 1 beta-hairpin AAA+ proteins. We report activities for PspF(1-275) mutated in the AAA+ conserved sensor I threonine/asparagine motif (PspF(1-275)(T148A), PspF(1-275)(N149A), and PspF(1-275)(N149S)) within the second region of homology. We show that sensor I asparagine plays a direct role in ATP hydrolysis. However, low hydrolysis rates are sufficient for functional output in vitro. In contrast, PspF(1-275)(T148A) has severe defects at the distinct step of sigma(54) promoter restructuring. This defect is not because of the failure of PspF(1-275)(T148A) to stably engage with the closed sigma(54) promoter, indicating (i) an important role in ATP hydrolysis-associated motions during energy coupling for remodeling and (ii) distinguishing PspF(1-275)(T148A) from PspF(1-275) variants involved in signaling to the GAFTGA loop 1, which fail to stably engage with the promoter. Activities of loop 2 PspF(1-275) variants are similar to those of PspF(1-275)(T148A) suggesting a functional signaling link between Thr(148) and loop 2. In PspF(1-275) this link relies on the conserved nucleotide state-dependent interaction between the Walker B residue Glu(108) and Thr(148). We propose that hydrolysis is relayed via Thr(148) to loop 2 creating motions that provide mechanical force to the GAFTGA loop 1 that contacts sigma(54).
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Nicolas Joly
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mathieu Rappas
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dominic Bradley
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Xiaodong Zhang
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin Buck
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
25
|
Dago AE, Wigneshweraraj SR, Buck M, Morett E. A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation. J Biol Chem 2007; 282:1087-97. [PMID: 17090527 DOI: 10.1074/jbc.m608715200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription from sigma54-dependent bacterial promoters can be regarded as a second paradigm for bacterial gene transcription. The initial sigma54-RNA polymerase (RNAP).promoter complex, the closed complex, is transcriptionally silent. The transcriptionally proficient sigma54-RNAP.promoter complex, the open complex, is formed upon remodeling of the closed complex by actions of a specialized activator protein that belongs to the AAA (ATPases associated with various cellular activities) protein family in an ATP hydrolysis-dependent reaction. The integrity of a highly conserved signature motif in the AAA activator (known as the GAFTGA motif) is important for the remodeling activity of the AAA activator and for open complex formation. We now provide evidence that the invariant threo-nine residue of the GAFTGA motif plays a role in sensing the DNA downstream of the sigma54-RNAP-binding site and in coupling this information to sigma54-RNAP via the conserved regulatory Region I domain of sigma54 during open complex formation.
Collapse
Affiliation(s)
- Angel Ernesto Dago
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62210, México
| | | | | | | |
Collapse
|
26
|
Leach RN, Gell C, Wigneshweraraj S, Buck M, Smith A, Stockley PG. Mapping ATP-dependent activation at a sigma54 promoter. J Biol Chem 2006; 281:33717-26. [PMID: 16926155 DOI: 10.1074/jbc.m605731200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma(54) promoter specificity factor is distinct from other bacterial RNA polymerase (RNAP) sigma factors in that it forms a transcriptionally silent closed complex upon promoter binding. Transcriptional activation occurs through a nucleotide-dependent isomerization of sigma(54), mediated via its interactions with an enhancer-binding activator protein that utilizes the energy released in ATP hydrolysis to effect structural changes in sigma(54) and core RNA polymerase. The organization of sigma(54)-promoter and sigma(54)-RNAP-promoter complexes was investigated by fluorescence resonance energy transfer assays using sigma(54) single cysteine-mutants labeled with an acceptor fluorophore and donor fluorophore-labeled DNA sequences containing mismatches that mimic nifH early- and late-melted promoters. The results show that sigma(54) undergoes spatial rearrangements of functionally important domains upon closed complex formation. sigma(54) and sigma(54)-RNAP promoter complexes reconstituted with the different mismatched DNA constructs were assayed by the addition of the activator phage shock protein F in the presence or absence of ATP and of non-hydrolysable analogues. Nucleotide-dependent alterations in fluorescence resonance energy transfer efficiencies identify different functional states of the activator-sigma(54)-RNAP-promoter complex that exist throughout the mechano-chemical transduction pathway of transcriptional activation, i.e. from closed to open promoter complexes. The results suggest that open complex formation only occurs efficiently on replacement of a repressive fork junction with down-stream melted DNA.
Collapse
Affiliation(s)
- Robert N Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
27
|
Joly N, Schumacher J, Buck M. Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator. J Biol Chem 2006; 281:34997-5007. [PMID: 16973614 DOI: 10.1074/jbc.m606628200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic AAA+ domain (PspF1-275) of an enhancer-binding protein is necessary and sufficient to contact sigma54-RNA polymerase holoenzyme (Esigma54), remodel it, and in so doing catalyze open promoter complex formation. Whether ATP binding and hydrolysis is coordinated between subunits of PspF and the precise nature of the nucleotide(s) bound to the oligomeric forms responsible for substrate remodeling are unknown. We demonstrate that ADP stimulates the intrinsic ATPase activity of PspF1-275 and propose that this heterogeneous nucleotide occupancy in a PspF1-275 hexamer is functionally important for specific activity. Binding of ADP and ATP triggers the formation of functional PspF1-275 hexamers as shown by a gain of specific activity. Furthermore, ATP concentrations congruent with stoichiometric ATP binding to PspF1-275 inhibit ATP hydrolysis and Esigma54-promoter open complex formation. Demonstration of a heterogeneous nucleotide-bound state of a functional PspF1-275.Esigma54 complex provides clear biochemical evidence for heterogeneous nucleotide occupancy in this AAA+ protein. Based on our data, we propose a stochastic nucleotide binding and a coordinated hydrolysis mechanism in PspF1-275 hexamers.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
28
|
Poggio S, Osorio A, Dreyfus G, Camarena L. The flagellar hierarchy of Rhodobacter sphaeroides is controlled by the concerted action of two enhancer-binding proteins. Mol Microbiol 2006; 58:969-83. [PMID: 16262784 DOI: 10.1111/j.1365-2958.2005.04900.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of the bacterial flagellar genes follows a hierarchical pattern. In Rhodobacter sphaeroides the flagellar genes encoding the hook and basal body proteins are expressed from sigma54-dependent promoters. This type of promoters is always regulated by transcriptional activators that belong to the family of the enhancer-binding proteins (EBPs). We searched for possible EBPs in the genome of R. sphaeroides and mutagenized two open reading frames (ORFs) (fleQ and fleT), which are in the vicinity of flagellar genes. The resulting mutants were non-motile and could only be complemented by the wild-type copy of the mutagenized gene. Transcriptional fusions showed that all the flagellar sigma54-dependent promoters with exception of fleTp, required both transcriptional activators for their expression. Interestingly, transcription of the fleT operon is only dependent on FleQ, and FleT has a negative effect. Both activators were capable of hydrolysing ATP, and were capable of promoting transcription from the flagellar promoters at some extent. Electrophoretic mobility shift assays suggest that only FleQ interacts with DNA whereas FleT improves binding of FleQ to DNA. A four-tiered flagellar transcriptional hierarchy and a regulatory mechanism based on the intracellular concentration of both activators and differential enhancer affinities are proposed.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México D. F., México
| | | | | | | |
Collapse
|
29
|
Huo YX, Tian ZX, Rappas M, Wen J, Chen YC, You CH, Zhang X, Buck M, Wang YP, Kolb A. Protein-induced DNA bending clarifies the architectural organization of the sigma54-dependent glnAp2 promoter. Mol Microbiol 2006; 59:168-80. [PMID: 16359326 DOI: 10.1111/j.1365-2958.2005.04943.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sigma54-RNA polymerase (Esigma54) predominantly contacts one face of the DNA helix in the closed promoter complex, and interacts with the upstream enhancer-bound activator via DNA looping. Up to date, the precise face of Esigma54 that contacts the activator to convert the closed complex to an open one remains unclear. By introducing protein-induced DNA bends at precise locations between upstream enhancer sequences and the core promoter of the sigma54-dependent glnAp2 promoter without changing the distance in-between, we observed a strong enhanced or decreased promoter activity, especially on linear DNA templates in vitro. The relative positioning and orientations of Esigma54, DNA bending protein and enhancer-bound activator on linear DNA were determined by in vitro footprinting analysis. Intriguingly, the locations from which the DNA bending protein exerted its optimal stimulatory effects were all found on the opposite face of the DNA helix compared with the DNA bound Esigma54 in the closed complex. Therefore, these results provide evidence that the activator must approach the Esigma54 closed complexes from the unbound face of the promoter DNA helix to catalyse open complex formation. This proposal is further supported by the modelling of activator-promoter DNA-Esigma54 complex.
Collapse
Affiliation(s)
- Yi-Xin Huo
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Maxson ME, Darwin AJ. Multiple promoters control expression of the Yersinia enterocolitica phage-shock-protein A (pspA) operon. MICROBIOLOGY (READING, ENGLAND) 2006; 152:1001-1010. [PMID: 16549664 PMCID: PMC1550779 DOI: 10.1099/mic.0.28714-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The widely conserved phage-shock-protein A (pspA) operon encodes an extracytoplasmic stress response system that is essential for virulence in Yersinia enterocolitica, and has been linked to other important phenotypes in Escherichia coli, Salmonella enterica and Shigella flexneri. Regulation of pspA operon expression is mediated through a promoter upstream of pspA that depends on sigma factor RpoN (sigma(54)) and the enhancer binding protein PspF. PspA, PspB and PspC, encoded within the pspA operon, also regulate expression by participating in a putative signal transduction pathway that probably serves to modulate PspF activity. All of this suggests that appropriate expression of the pspA operon is critical. Previous genetic analysis of the Y. enterocolitica pspA operon suggested that an additional level of complexity might be mediated by PspF/RpoN-independent expression of some psp genes. Here, an rpoN null mutation and interposon analysis were used to confirm that PspF/RpoN-independent gene expression does originate within the psp locus. Molecular genetic approaches were used to systematically analyse the two large non-coding regions within the psp locus. Primer extension, control region deletion and site-directed mutagenesis experiments led to the identification of RpoN-independent promoters both upstream and downstream of pspA. The precise location of the PspF/RpoN-dependent promoter upstream of pspA was also determined. The discovery of these RpoN-independent promoters reveals yet another level of transcriptional complexity for the Y. enterocolitica pspA operon that may function to allow low-level constitutive expression of psp genes and/or additional regulation under some conditions.
Collapse
Affiliation(s)
| | - Andrew J. Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
31
|
Schumacher J, Joly N, Rappas M, Zhang X, Buck M. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J Struct Biol 2006; 156:190-9. [PMID: 16531068 DOI: 10.1016/j.jsb.2006.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/16/2006] [Accepted: 01/19/2006] [Indexed: 11/29/2022]
Abstract
Initiation of transcription is a major point of transcriptional regulation and invariably involves the transition from a closed to an open RNA polymerase (RNAP) promoter complex. In the case of the sigma(54)-RNAP, this multi step process requires energy, provided by ATP hydrolysis occurring within the AAA+ domain of enhancer binding proteins (EBPs). Typically, EBPs have an N-terminal regulatory domain, a central AAA+ domain that directly contacts sigma(54) and a C-terminal DNA binding domain. The following AAA+ EBP crystal structures have recently become available: heptameric AAA+ domains of NtrC1 and dimeric NtrC1 with its regulatory domain, hexameric AAA+ domains of ZraR with DNA binding domains, apo and nucleotide bound forms of the AAA+ domain of PspF as well as a cryo-EM structure of the AAA+ domain of PspF complexed with sigma(54). These AAA+ domains reveal the structural conservation between EBPs and other AAA+ domains. EBP specific structural features involved in substrate remodelling are located proximal to the pore of the hexameric ring. Parallels with the substrate binding elements near the central pore of other AAA+ members are drawn. We propose a structural model of EBPs in complex with a sigma(54)-RNAP-promoter complex.
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
32
|
Dutton RJ, Xu Z, Gober JW. Linking structural assembly to gene expression: a novel mechanism for regulating the activity of a σ54transcription factor. Mol Microbiol 2005; 58:743-57. [PMID: 16238624 DOI: 10.1111/j.1365-2958.2005.04857.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Caulobacter crescentus, the temporal and spatial expression of late flagellar genes is regulated by the sigma54 transcriptional activator, FlbD. Genetic experiments have indicated that the trans-acting factor FliX regulates FlbD in response to the progression of flagellar assembly, repressing FlbD activity until an early flagellar basal body structure is assembled. Following assembly of this structure, FliX is thought to function as an activator of FlbD. Here we have investigated the mechanism of FliX-mediated regulation of FlbD activity. In vitro transcription experiments showed that purified FliX could function as a repressor of FlbD-activated transcription. Transcription activated by a gain-of-function mutant of FlbD (FlbD-1204) that is active in vivo in the absence of an early flagellar structure, was resistant to the repressive effects of FliX. DNA binding studies showed that FliX inhibited the interaction of wild-type FlbD with enhancer DNA but did not effect FlbD-catalysed ATPase activity. DNA binding activity of FlbD-1204 was relatively unaffected by FliX indicating that this mutant protein bypasses the transcriptional requirement for early flagellar assembly by escaping FliX-mediated negative regulation. Gel filtration and co-immunoprecipitation experiments indicated that FliX formed a stable complex with FlbD. These experiments demonstrate that regulation of FlbD activity is unusual among the well-studied sigma54 transcriptional activators, apparently combining a two-component receiver domain with additional control imposed via interaction with a partner protein, FliX.
Collapse
Affiliation(s)
- Rachel J Dutton
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
33
|
Muir RE, Gober JW. Regulation of FlbD activity by flagellum assembly is accomplished through direct interaction with the trans-acting factor, FliX. Mol Microbiol 2005; 54:715-30. [PMID: 15491362 DOI: 10.1111/j.1365-2958.2004.04298.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The temporal and spatial transcription of late flagellar genes in Caulobacter crescentus is regulated by the sigma54 transcriptional activator, FlbD. One requirement for FlbD activity is the assembly of a structure encoded by early, class II flagellar genes. In this report, we show that the trans-acting factor FliX predominantly functions as a negative regulator of FlbD activity in the absence of the class II-encoded flagellar structure. In contrast, a mutant FliX that bypasses the transcriptional requirement for early flagellar assembly is incapable of repressing FlbD in a class II flagellar mutant. Expression of this mutant allele, fliX1, does not alter the temporal pattern of FlbD-dependent transcription. Remarkably, this mutation confers the correct cell cycle timing of hook operon transcription in a strain that cannot assemble the flagellum, indicating that the progression of flagellar assembly is a minor influence on temporal gene expression. Using a two-hybrid assay, we present evidence that FliX regulates FlbD through a direct interaction, a novel mechanism for this class of sigma54 transcriptional activator. Furthermore, increasing the cellular levels of FliX results in an increase in the concentration of FlbD, and a corresponding increase in FlbD-activated transcription, suggesting that FliX and FlbD form a stable complex in Caulobacter. FliX and FlbD homologues are present in several polar-flagellated bacteria, indicating that these proteins constitute an evolutionarily conserved regulatory pair in organisms where flagellar biogenesis is likely to be under control of the cell division cycle.
Collapse
Affiliation(s)
- Rachel E Muir
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
34
|
Elderkin S, Bordes P, Jones S, Rappas M, Buck M. Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF. J Bacteriol 2005; 187:3238-48. [PMID: 15838051 PMCID: PMC1082823 DOI: 10.1128/jb.187.9.3238-3248.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli phage shock protein system (pspABCDE operon and pspG gene) is induced by numerous stresses related to the membrane integrity state. Transcription of the psp genes requires the RNA polymerase containing the sigma(54) subunit and the AAA transcriptional activator PspF. PspF belongs to an atypical class of sigma(54) AAA activators in that it lacks an N-terminal regulatory domain and is instead negatively regulated by another regulatory protein, PspA. PspA therefore represses its own expression. The PspA protein is distributed between the cytoplasm and the inner membrane fraction. In addition to its transcriptional inhibitory role, PspA assists maintenance of the proton motive force and protein export. Several lines of in vitro evidence indicate that PspA-PspF interactions inhibit the ATPase activity of PspF, resulting in the inhibition of PspF-dependent gene expression. In this study, we characterize sequences within PspA and PspF crucial for the negative effect of PspA upon PspF. Using a protein fragmentation approach, we show that the integrity of the three putative N-terminal alpha-helical domains of PspA is crucial for the role of PspA as a negative regulator of PspF. A bacterial two-hybrid system allowed us to provide clear evidence for an interaction in E. coli between PspA and PspF in vivo, which strongly suggests that PspA-directed inhibition of PspF occurs via an inhibitory complex. Finally, we identify a single PspF residue that is a binding determinant for PspA.
Collapse
Affiliation(s)
- Sarah Elderkin
- Imperial College London, Department of Biological Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
35
|
Bordes P, Wigneshweraraj SR, Chaney M, Dago AE, Morett E, Buck M. Communication between Esigma(54) , promoter DNA and the conserved threonine residue in the GAFTGA motif of the PspF sigma-dependent activator during transcription activation. Mol Microbiol 2005; 54:489-506. [PMID: 15469519 DOI: 10.1111/j.1365-2958.2004.04280.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conversion of Esigma(54) closed promoter complexes to open promoter complexes requires specialized activators which are members of the AAA (ATPases Associated with various cellular Activities) protein family. The ATP binding and hydrolysis activity of Esigma(54) activators is used in an energy coupling reaction to remodel the Esigma(54) closed promoter complex and to overcome the sigma(54)-imposed block on open complex formation. The remodelling target for the AAA activator within the Esigma(54) closed complex includes a complex interface contributed to by Region I of sigma(54), core RNA polymerase and a promoter DNA fork junction structure, comprising the Esigma(54) regulatory centre. One sigma(54) binding surface on Esigma(54) activators is a conserved sequence known as the GAFTGA motif. Here, we present a detailed characterization of the interaction between Region I of sigma(54) and the Escherichia coli AAA sigma(54) activator Phage shock protein F. Using Esigma(54) promoter complexes that mimic different conformations adopted by the DNA during open complex formation, we investigated the contribution of the conserved threonine residue in the GAFTGA motif to transcription activation. Our results suggest that the organization of the Esigma(54) regulatory centre, and in particular the conformation adopted by the sigma(54) Region I and the DNA fork junction structure during open complex formation, is communicated to the AAA activator via the conserved T residue of the GAFTGA motif.
Collapse
Affiliation(s)
- Patricia Bordes
- Imperial College London, Department of Biological Sciences, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ, UK
| | | | | | | | | | | |
Collapse
|
36
|
Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X, Buck M. The second paradigm for activation of transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:339-69. [PMID: 16096032 DOI: 10.1016/s0079-6603(04)79007-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S R Wigneshweraraj
- Department of Biological Sciences and Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu H, Kelly MT, Nixon BT, Hoover TR. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation. Mol Microbiol 2004; 54:32-44. [PMID: 15458403 DOI: 10.1111/j.1365-2958.2004.04246.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sinorhizobium meliloti DctD is an activator of sigma(54)-RNA polymerase holoenzyme and member of the AAA+ superfamily of ATPases. DctD uses energy released from ATP hydrolysis to stimulate the isomerization of a closed promoter complex to an open complex. DctD binds to upstream activation sequences (UAS) and contacts the closed complex through DNA looping to activate transcription, but the UAS is not essential for activation if DctD is expressed at higher than normal levels. Introduction of specific substitutions within or near the conserved ESELFG motif in the C3 region of a truncated, constitutively active form of DctD produced several mutant forms of the protein that had increased dependence on the UAS for activation. Removing the DNA-binding domain from one UAS-dependent mutant and from one activation-deficient mutant significantly increased transcriptional activation, indicating that the DNA-binding domain interfered with the activities of these mutant proteins. A UAS-dependent mutant with a P315L substitution in the C6 region was identified from a genetic screen. Alanine scanning mutagenesis of conserved amino acid residues around Pro-315 produced two additional UAS-dependent mutants as well as several mutants that failed to activate transcription but retained ATPase activity. In contrast to the two mutant proteins with substitutions in the C3 region, removal of the DNA-binding domain from the mutant proteins with substitutions in the C6 region did not stimulate their activity. The residues in the C6 region that were altered are in a probable hinge region between the alpha/beta and alpha-helical subdomains of the AAA+ domain. The alpha-helical subdomain contains the sensor II helix that has been implicated in other AAA+ proteins as sensing changes in the nucleotide during the hydrolysis cycle. Substitutions in the hinge region may have abolished nucleotide sensing by interfering with subdomain interactions, altering the relative orientation of the sensor II helix or interfering with oligomerization of the protein.
Collapse
Affiliation(s)
- Hao Xu
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The Yersinia enterocolitica phage shock protein (Psp) system is induced when the Ysc type III secretion system is produced or when only the YscC secretin component is synthesized. Some psp null mutants have a growth defect when YscC is produced and a severe virulence defect in animals. The Y. enterocolitica psp locus is made up of two divergently transcribed cistrons, pspF and pspABCDycjXF. pspA operon expression is dependent on RpoN (sigma(54)) and the enhancer-binding protein PspF. Previous data indicated that PspF also controls at least one gene that is not part of the psp locus. In this study we describe the identification of pspG, a new member of the PspF regulon. Predicted RpoN-binding sites upstream of the pspA genes from different bacteria have a common divergence from the consensus sequence, which may be a signature of PspF-dependent promoters. The Y. enterocolitica pspG gene was identified because its promoter also has this signature. Like the pspA operon, pspG is positively regulated by PspF, negatively regulated by PspA, and induced in response to the production of secretins. Purified His(6)-PspF protein specifically interacts with the pspA and pspG control regions. A pspA operon deletion mutant has a growth defect when the YscC secretin is produced and a virulence defect in a mouse model of infection. These phenotypes were exacerbated by a pspG null mutation. Therefore, PspG is the missing component of the Y. enterocolitica Psp regulon that was previously predicted to exist.
Collapse
Affiliation(s)
- Rebecca C Green
- Department of Microbiology, MSB 228, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | | |
Collapse
|
39
|
Cannon WV, Schumacher J, Buck M. Nucleotide-dependent interactions between a fork junction-RNA polymerase complex and an AAA+ transcriptional activator protein. Nucleic Acids Res 2004; 32:4596-608. [PMID: 15333692 PMCID: PMC516047 DOI: 10.1093/nar/gkh755] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 07/14/2004] [Accepted: 07/21/2004] [Indexed: 11/12/2022] Open
Abstract
Enhancer-dependent transcriptional activators that act upon the sigma54 bacterial RNA polymerase holoenzyme belong to the extensive AAA+ superfamily of mechanochemical ATPases. Formation and collapse of the transition state for ATP hydrolysis engenders direct interactions between AAA+ activators and the sigma54 factor, required for RNA polymerase isomerization. A DNA fork junction structure present within closed complexes serves as a nucleation point for the DNA melting seen in open promoter complexes and restricts spontaneous activator-independent RNA polymerase isomerization. We now provide physical evidence showing that the ADP.AlF(x) bound form of the AAA+ domain of the transcriptional activator protein PspF changes interactions between sigma54-RNA polymerase and a DNA fork junction structure present in the closed promoter complex. The results suggest that one functional state of the nucleotide-bound activator serves to alter DNA binding by sigma54 and sigma54-RNA polymerase and appears to drive events that precede DNA opening. Clear evidence for a DNA-interacting activity in the AAA+ domain of PspF was obtained, suggesting that PspF may make a direct contact to the DNA component of a basal promoter complex to promote changes in sigma54-RNA polymerase-DNA interactions that favour open complex formation. We also provide evidence for two distinct closed promoter complexes with differing stabilities.
Collapse
Affiliation(s)
- W V Cannon
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | |
Collapse
|
40
|
Brahmachary P, Dashti MG, Olson JW, Hoover TR. Helicobacter pylori FlgR is an enhancer-independent activator of sigma54-RNA polymerase holoenzyme. J Bacteriol 2004; 186:4535-42. [PMID: 15231786 PMCID: PMC438555 DOI: 10.1128/jb.186.14.4535-4542.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 04/22/2004] [Indexed: 01/21/2023] Open
Abstract
Helicobacter pylori FlgR activates transcription with sigma54-RNA polymerase holoenzyme (sigma54-holoenzyme) from at least five flagellar operons. Activators of sigma54-holoenzyme generally bind enhancer sequences located >70 bp upstream of the promoter and contact sigma54-holoenzyme bound at the promoter through DNA looping to activate transcription. H. pylori FlgR lacks the carboxy-terminal DNA-binding domain present in most sigma54-dependent activators. As little as 42 bp of DNA upstream of the flaB promoter and 26 bp of DNA sequence downstream of the transcriptional start site were sufficient for efficient FlgR-mediated expression from a flaB'-'xylE reporter gene in H. pylori, indicating that FlgR does not use an enhancer to activate transcription. Other examples of sigma54-dependent activators that lack a DNA-binding domain include Chlamydia trachomatis CtcC and activators from the other Chlamydia spp. whose genomes have been sequenced. FlgR from Helicobacter hepaticus and Campylobacter jejuni, which are closely related to H. pylori, appear to have carboxy-terminal DNA-binding domains, suggesting that the loss of the DNA-binding domain from H. pylori FlgR occurred after the divergence of these bacterial species. Removal of the amino-terminal regulatory domain of FlgR resulted in a constitutively active form of the protein that activated transcription from sigma54-dependent genes in Escherichia coli. The truncated FlgR protein also activated transcription with E. coli sigma54-holoenzyme in an in vitro transcription assay.
Collapse
|
41
|
Schumacher J, Zhang X, Jones S, Bordes P, Buck M. ATP-dependent transcriptional activation by bacterial PspF AAA+protein. J Mol Biol 2004; 338:863-75. [PMID: 15111053 DOI: 10.1016/j.jmb.2004.02.071] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
Transcription activation by bacterial sigma(54)-dependent enhancer-binding proteins (EBPs) requires their tri-nucleotide hydrolysis to restructure the sigma(54) RNA polymerase (RNAP). EBPs share sequence similarity with guanine nucleotide binding-proteins and ATPases associated with various cellular activities (AAA) proteins, especially in the mononucleotide binding P-loop fold. Using the phage shock protein F (PspF) EBP, we identify P-loop residues responsible for nucleotide binding and hydrolysis, consistent with their roles in other P-loop NTPases. We show the refined low-resolution structure of an EBP, PspF, revealing a hexameric ring organisation characteristic of AAA proteins. Functioning of EBPs involves ATP binding, higher oligomer formation and ATP hydrolysis coupled to the restructuring of the RNAP. This is thought to be a highly coordinated multi-step process, but the nucleotide-driven mechanism of oligomerisation and ATP hydrolysis is little understood. Our kinetic and structural data strongly suggest that three PspF dimers assemble to form a hexamer upon nucleotide binding. During the ATP hydrolysis cycle, both ATP and ADP are bound to oligomeric PspF, in line with a sequential hydrolysis cycle. We identify a putative R-finger, and show its involvement in ATP hydrolysis. Substitution of this arginine residue results in nucleotide-independent formation of hexameric rings, structurally linking the putative R-finger and, by inference, a specific nucleotide interaction to the control of PspF oligomerisation.
Collapse
Affiliation(s)
- Jörg Schumacher
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
42
|
Xu H, Gu B, Nixon BT, Hoover TR. Purification and characterization of the AAA+ domain of Sinorhizobium meliloti DctD, a sigma54-dependent transcriptional activator. J Bacteriol 2004; 186:3499-507. [PMID: 15150237 PMCID: PMC415754 DOI: 10.1128/jb.186.11.3499-3507.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activators of sigma54-RNA polymerase holoenzyme couple ATP hydrolysis to formation of an open complex between the promoter and RNA polymerase. These activators are modular, consisting of an N-terminal regulatory domain, a C-terminal DNA-binding domain, and a central activation domain belonging to the AAA+ superfamily of ATPases. The AAA+ domain of Sinorhizobium meliloti C4-dicarboxylic acid transport protein D (DctD) is sufficient to activate transcription. Deletion analysis of the 3' end of dctD identified the minimal functional C-terminal boundary of the AAA+ domain of DctD as being located between Gly-381 and Ala-384. Histidine-tagged versions of the DctD AAA+ domain were purified and characterized. The DctD AAA+ domain was significantly more soluble than DctD(Delta(1-142)), a truncated DctD protein consisting of the AAA+ and DNA-binding domains. In addition, the DctD AAA+ domain was more homogeneous than DctD(Delta(1-142)) when analyzed by native gel electrophoresis, migrating predominantly as a single high-molecular-weight species, while DctD(Delta(1-142)) displayed multiple species. The DctD AAA+ domain, but not DctD(Delta(1-142)), formed a stable complex with sigma54 in the presence of the ATP transition state analogue ADP-aluminum fluoride. The DctD AAA+ domain activated transcription in vitro, but many of the transcripts appeared to terminate prematurely, suggesting that the DctD AAA+ domain interfered with transcription elongation. Thus, the DNA-binding domain of DctD appears to have roles in controlling the oligomerization of the AAA+ domain and modulating interactions with sigma54 in addition to its role in recognition of upstream activation sequences.
Collapse
Affiliation(s)
- Hao Xu
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
43
|
Hankamer BD, Elderkin SL, Buck M, Nield J. Organization of the AAA+ Adaptor Protein PspA Is an Oligomeric Ring. J Biol Chem 2004; 279:8862-6. [PMID: 14688274 DOI: 10.1074/jbc.m307889200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 25.3 kDa "adaptor" protein, PspA (phage shock protein A), is found in the cytoplasm and in association with the inner membrane of certain bacteria. PspA plays critical roles in negatively regulating the phage shock response and maintaining membrane integrity, especially during the export of proteins such as virulence factors. Homologues of PspA function exist for thylakoid biogenesis. Here we report the first three-dimensional reconstruction of a PspA assembly from Escherichia coli, visualized by electron microscopy and single particle analysis to a resolution of 30 Angstroms. The assembly forms a 9-fold rotationally symmetric ring with an outer diameter of 200 Angstroms, an inner diameter of 95 Angstroms, and a height of approximately 85 Angstroms. The molecular mass of the complex was calculated to be 1023 kDa by size exclusion chromatography, suggesting that each of the nine domains is likely to be composed of four PspA subunits. The functional implications of this PspA structure are discussed in terms of its interaction with the protein export machinery of the bacterial cell and its AAA(+) protein partner, PspF.
Collapse
Affiliation(s)
- Ben D Hankamer
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
44
|
Bordes P, Wigneshweraraj SR, Schumacher J, Zhang X, Chaney M, Buck M. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54. Proc Natl Acad Sci U S A 2003; 100:2278-83. [PMID: 12601152 PMCID: PMC151331 DOI: 10.1073/pnas.0537525100] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the protein family called ATPases associated with various cellular activities (AAA(+)) play a crucial role in transforming chemical energy into biological events. AAA(+) proteins are complex molecular machines and typically form ring-shaped oligomeric complexes that are crucial for ATPase activity and mechanism of action. The Escherichia coli transcription activator phage shock protein F (PspF) is an AAA(+) mechanochemical enzyme that functions to sense and relay the energy derived from nucleoside triphosphate hydrolysis to catalyze transcription by the sigma(54)-RNA polymerase. Closed promoter complexes formed by the sigma(54)-RNA polymerase are substrates for the action of PspF. By using a protein fragmentation approach, we identify here at least one sigma(54)-binding surface in the PspF AAA(+) domain. Results suggest that ATP hydrolysis by PspF is coupled to the exposure of at least one sigma(54)-binding surface. This nucleotide hydrolysis-dependent presentation of a substrate binding surface can explain why complexes that form between sigma(54) and PspF are transient and could be part of a mechanism used generally by other AAA(+) proteins to regulate activity.
Collapse
Affiliation(s)
- Patricia Bordes
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Adams H, Teertstra W, Demmers J, Boesten R, Tommassen J. Interactions between phage-shock proteins in Escherichia coli. J Bacteriol 2003; 185:1174-80. [PMID: 12562786 PMCID: PMC142853 DOI: 10.1128/jb.185.4.1174-1180.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the pspABCDE operon of Escherichia coli is induced upon infection by filamentous phage and by many other stress conditions, including defects in protein export. Expression of the operon requires the alternative sigma factor sigma54 and the transcriptional activator PspF. In addition, PspA plays a negative regulatory role, and the integral-membrane proteins PspB and PspC play a positive one. In this study, we investigated whether the suggested protein-protein interactions implicated in this complex regulatory network can indeed be demonstrated. Antisera were raised against PspB, PspC, and PspD, which revealed, in Western blotting experiments, that PspC forms stable sodium dodecyl sulfate-resistant dimers and that the hypothetical pspD gene is indeed expressed in vivo. Fractionation experiments showed that PspD localizes as a peripherally bound inner membrane protein. Cross-linking studies with intact cells revealed specific interactions of PspA with PspB and PspC, but not with PspD. Furthermore, affinity-chromatography suggested that PspB could bind PspA only in the presence of PspC. These data indicate that regulation of the psp operon is mediated via protein-protein interactions.
Collapse
Affiliation(s)
- Hendrik Adams
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Lew CM, Gralla JD. New roles for conserved regions within a sigma 54-dependent enhancer-binding protein. J Biol Chem 2002; 277:41517-24. [PMID: 12186874 DOI: 10.1074/jbc.m206912200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
23 amino acid substitutions were made in the C7 and C3 regions of pspFDeltaHTH, a protein required to convert sigma(54) closed promoter complexes to open complexes. These mutants were assayed for transcriptional competence, for the ability to hydrolyze ATP, for their multimerization state, and for their ability to interact with sigma(54) and its holoenzyme. C7 region mutants caused the protein to assume a compact form. This property could be mimicked by the addition of ATP, implying that compaction via C7 and ATP is part of the activation process. A number of C3 mutants were important for energy coupling, as indicated previously for several members of this activator family (, ). However, a patch within C3 influenced oligomerization. The C3 region was especially important in interacting with sigma(54) during the transition state but not important in inducing sigma(54) holoenzyme to engage the nontemplate strand of the promoter. It is proposed that both regions contain deterrent functions that prevent premature activation. Overall, the results imply unexpected roles for the C7 and C3 regions of this protein family during promoter activation.
Collapse
Affiliation(s)
- Chih M Lew
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
47
|
Zhang X, Chaney M, Wigneshweraraj SR, Schumacher J, Bordes P, Cannon W, Buck M. Mechanochemical ATPases and transcriptional activation. Mol Microbiol 2002; 45:895-903. [PMID: 12180911 DOI: 10.1046/j.1365-2958.2002.03065.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activator proteins that act upon the sigma54-containing form of the bacterial RNA polymerase belong to the extensive AAA+ superfamily of ATPases, members of which are found in all three kingdoms of life and function in diverse cellular processes, often via chaperone-like activities. Formation and collapse of the transition state of ATP for hydrolysis appears to engender the interaction of the activator proteins with sigma54 and leads to the protein structural transitions needed for RNA polymerase to isomerize and engage with the DNA template strand. The common oligomeric structures of AAA+ proteins and the creation of the active site for ATP hydrolysis between protomers suggest that the critical changes in protomer structure required for productive interactions with sigma54-holoenzyme occur as a consequence of sensing the state of the gamma-phosphate of ATP. Depending upon the form of nucleotide bound, different functional states of the activator are created that have distinct substrate and chaperone-like binding activities. In particular, interprotomer ATP interactions rely upon the use of an arginine finger, a situation reminiscent of GTPase-activating proteins.
Collapse
Affiliation(s)
- X Zhang
- Imperial College Centre for Structural Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Rosen R, Ron EZ. Proteome analysis in the study of the bacterial heat-shock response. MASS SPECTROMETRY REVIEWS 2002; 21:244-265. [PMID: 12533799 DOI: 10.1002/mas.10031] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In recent years, it has become clear that, in addition to the regulation of the expression of specific genes, there are global regulatory systems that control the simultaneous expression of a large number of genes in response to a variety of environmental stresses. The first of these global control systems, and of substantial importance, is the heat-shock response. The heat-shock response is characterized by the induction of a large set of proteins (heat-shock proteins-HSPs) upon shifts to higher temperature and upon exposure to conditions in which proteins are denatured (i.e., alcohols, heavy metals). The heat-shock response is universal and many of the heat-shock proteins are highly conserved among species. In bacteria, the heat-shock response has been studied extensively in several Gram-positive bacteria (Bacillus subtilis) and in the Gram-negative bacteria (i.e., Escherichia coli, Agrobacterium tumefaciens). The first recognition of the molecular abundance of the bacterial heat-shock proteins took place with the introduction of high-resolution two-dimensional polyacrylamide gels (2D gels) to analyze complex mixtures of cellular proteins. Two-dimensional gels, followed by mass spectrometry, were used to define the heat-shock stimulons in several bacteria, and to study the regulatory elements that control the heat-shock response. Here, we review the heat-shock response and its regulation in bacteria. The review will emphasize the use of proteome analysis in the study of this response, and will point out those open questions that can be investigated with proteomics, including mass spectrometry techniques.
Collapse
Affiliation(s)
- Ran Rosen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
49
|
Elderkin S, Jones S, Schumacher J, Studholme D, Buck M. Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF. J Mol Biol 2002; 320:23-37. [PMID: 12079332 DOI: 10.1016/s0022-2836(02)00404-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The PspA protein, a negative regulator of the Escherichia coli phage shock psp operon, is produced when virulence factors are exported through secretins in many Gram-negative pathogenic bacteria and its homologue in plants, VIPP1, plays a critical role in thylakoid biogenesis, essential for photosynthesis. Activation of transcription by the enhancer-dependent bacterial sigma(54) containing RNA polymerase occurs through ATP hydrolysis-driven protein conformational changes enabled by activator proteins that belong to the large AAA(+) mechanochemical protein family. We show that PspA directly and specifically acts upon and binds to the AAA(+) domain of the PspF transcription activator. Interactions involving PspF and nucleotide are changed by the action of PspA. These changes and the complexes that form between PspF and PspA can explain how PspA exerts its negative effects upon transcription activated by PspF, and are of significance when considering how activities of other AAA(+) proteins might be controlled.
Collapse
Affiliation(s)
- Sarah Elderkin
- Department of Biological Sciences, Imperial College of Science Technology and Medicine, Biomedical Sciences Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
50
|
Wigneshweraraj SR, Nechaev S, Severinov K, Buck M. Beta subunit residues 186-433 and 436-445 are commonly used by Esigma54 and Esigma70 RNA polymerase for open promoter complex formation. J Mol Biol 2002; 319:1067-83. [PMID: 12079348 DOI: 10.1016/s0022-2836(02)00330-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During transcription initiation by DNA-dependent RNA polymerase (RNAP) promoter DNA has to be melted locally to allow the synthesis of RNA transcript. Localized melting of promoter DNA is a target for genetic regulation and is poorly understood at the molecular level. The Escherichia coli RNAP holoenzyme is a six-subunit (alpha(2)betabeta'omegasigma; Esigma) protein complex. The sigma subunit is directly responsible for promoter recognition and contributes to localized DNA melting. Mutations in the beta subunit have profound effects on promoter melting by Esigma70. The sigma54 subunit is a representative of an unrelated class of the sigma subunits. Here, we determined whether mutations in the beta subunit that affect late stages of promoter complex formation by Esigma70 also influence promoter complex formation by the enhancer-dependent Esigma54. Analyses of in vitro defects in promoter complex formation and transcription initiation exhibited by mutant Esigma54 suggest that during promoter complex formation by Esigma54 and Esigma70 a common set of beta subunit sequences is used. Late stages of promoter complex formation and localized melting of promoter DNA by Esigma70 and Esigma54 thus proceed through a common pathway.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Biomedical Sciences Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|