1
|
Del Val E, Nasser W, Abaibou H, Reverchon S. Design and comparative characterization of RecA variants. Sci Rep 2021; 11:21106. [PMID: 34702889 PMCID: PMC8548320 DOI: 10.1038/s41598-021-00589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
RecA plays a central role in DNA repair and is a main actor involved in recombination and activation of the SOS response. It is also used in the context of biotechnological applications in recombinase polymerase isothermal amplification (RPA). In this work, we studied the biological properties of seven RecA variants, in particular their recombinogenic activity and their ability to induce the SOS response, to better understand the structure-function relationship of RecA and the effect of combined mutations. We also investigated the biochemical properties of RecA variants that may be useful for the development of biotechnological applications. We showed that Dickeya dadantii RecA (DdRecA) had an optimum strand exchange activity at 30 °C and in the presence of a dNTP mixture that inhibited Escherichia coli RecA (EcRecA). The differences between the CTD and C-tail of the EcRecA and DdRecA domains could explain the altered behaviour of DdRecA. D. radiodurans RecA (DrRecA) was unable to perform recombination and activation of the SOS response in an E. coli context, probably due to its inability to interact with E. coli recombination accessory proteins and SOS LexA repressor. DrRecA strand exchange activity was totally inhibited in the presence of chloride ions but worked well in acetate buffer. The overproduction of Pseudomonas aeruginosa RecA (PaRecA) in an E. coli context was responsible for a higher SOS response and defects in cellular growth. PaRecA was less inhibited by the dNTP mixture than EcRecA. Finally, the study of three variants, namely, EcPa, EcRecAV1 and EcRecAV2, that contained a combination of mutations that, taken independently, are described as improving recombination, led us to raise new hypotheses on the structure-function relationship and on the monomer-monomer interactions that perturb the activity of the protein as a whole.
Collapse
Affiliation(s)
- Elsa Del Val
- UMR5240, Microbiologie, Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, 11 Avenue Jean Capelle, 69621, Villeurbanne, France
- Molecular Innovation Unit, Centre Christophe Mérieux, bioMérieux, 5 Rue des Berges, 38024, Grenoble Cedex 01, France
| | - William Nasser
- UMR5240, Microbiologie, Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, 11 Avenue Jean Capelle, 69621, Villeurbanne, France
| | - Hafid Abaibou
- Molecular Innovation Unit, Centre Christophe Mérieux, bioMérieux, 5 Rue des Berges, 38024, Grenoble Cedex 01, France.
| | - Sylvie Reverchon
- UMR5240, Microbiologie, Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, 11 Avenue Jean Capelle, 69621, Villeurbanne, France.
| |
Collapse
|
2
|
Reitz D, Chan YL, Bishop DK. How strand exchange protein function benefits from ATP hydrolysis. Curr Opin Genet Dev 2021; 71:120-128. [PMID: 34343922 PMCID: PMC8671154 DOI: 10.1016/j.gde.2021.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Members of the RecA family of strand exchange proteins carry out the central reaction in homologous recombination. These proteins are DNA-dependent ATPases, although their ATPase activity is not required for the key functions of homology search and strand exchange. We review the literature on the role of the intrinsic ATPase activity of strand exchange proteins. We also discuss the role of ATP-hydrolysis-dependent motor proteins that serve as strand exchange accessory factors, with an emphasis on the eukaryotic Rad54 family of double strand DNA-specific translocases. The energy from ATP allows recombination events to progress from the strand exchange stage to subsequent stages. ATP hydrolysis also functions to corrects DNA binding errors, including particularly detrimental binding to double strand DNA.
Collapse
Affiliation(s)
- Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Yuen-Ling Chan
- Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, IL, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, IL, USA.
| |
Collapse
|
3
|
Yuan Z, Yu F, Zhang D, Wang H. Profiling of the assembly of RecA nucleofilaments implies a potential target for environmental factors to disturb DNA repair. J Environ Sci (China) 2021; 102:283-290. [PMID: 33637254 DOI: 10.1016/j.jes.2020.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/12/2023]
Abstract
Double-strand breaks (DSBs), one class of the most harmful DNA damage forms that bring elevated health risks, need to be repaired timely and effectively. However, an increasing number of environmental pollutants have been identified to impair DSB repair from various mechanisms. Our previous work indicated that the formation of unsaturated RecA nucleofilaments plays an essential role in homology recombination (HR) pathway which can accurately repair DSBs. In this study, by developing a benzonase cutting protection assay and combining it with traditional electrophoretic mobility shift assay (EMSA) analysis, we further investigated the assembly patterns of four RecA mutants that display differential DSB repair ability and ATPase activity. We observed that the mutants (G204S and S69G) possessing both ATP hydrolysis and DSB repair activities form unsaturated nucleofilaments similar to that formed by the wild type RecA, whereas the other two ATP hydrolysis-deficient mutants (K72R and E96D) that fail to mediate HR form more compacted nucleofilaments in the presence of ATP. These results establish a coupling of ATPase activity and effective DSB repair ability via the assembly status of RecA nucleofilaments. This linkage provides a potential target for environmental factors to disturb the essential HR pathway for DSB repair by suppressing the ATPase activity and altering the assembly pattern of nucleofilaments.
Collapse
Affiliation(s)
- Zheng Yuan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhi Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 430056, China.
| |
Collapse
|
4
|
Reitz D, Grubb J, Bishop DK. A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability. PLoS Genet 2019; 15:e1008217. [PMID: 31790385 PMCID: PMC6907854 DOI: 10.1371/journal.pgen.1008217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/12/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
During meiosis, homologous recombination repairs programmed DNA double-stranded breaks. Meiotic recombination physically links the homologous chromosomes (“homologs”), creating the tension between them that is required for their segregation. The central recombinase in this process is Dmc1. Dmc1’s activity is regulated by its accessory factors including the heterodimeric protein Mei5-Sae3 and Rad51. We use a gain-of-function dmc1 mutant, dmc1-E157D, that bypasses Mei5-Sae3 to gain insight into the role of this accessory factor and its relationship to mitotic recombinase Rad51, which also functions as a Dmc1 accessory protein during meiosis. We find that Mei5-Sae3 has a role in filament formation and stability, but not in the bias of recombination partner choice that favors homolog over sister chromatids. Analysis of meiotic recombination intermediates suggests that Mei5-Sae3 and Rad51 function independently in promoting filament stability. In spite of its ability to load onto single-stranded DNA and carry out recombination in the absence of Mei5-Sae3, recombination promoted by the Dmc1 mutant is abnormal in that it forms foci in the absence of DNA breaks, displays unusually high levels of multi-chromatid and intersister joint molecule intermediates, as well as high levels of ectopic recombination products. We use super-resolution microscopy to show that the mutant protein forms longer foci than those formed by wild-type Dmc1. Our data support a model in which longer filaments are more prone to engage in aberrant recombination events, suggesting that filament lengths are normally limited by a regulatory mechanism that functions to prevent recombination-mediated genome rearrangements. During meiosis, two rounds of division follow a single round of DNA replication to create the gametes for biparental reproduction. The first round of division requires that the homologous chromosomes become physically linked to one another to create the tension that is necessary for their segregation. This linkage is achieved through DNA recombination between the two homologous chromosomes, followed by resolution of the recombination intermediate into a crossover. Central to this process is the meiosis-specific recombinase Dmc1, and its accessory factors, which provide important regulatory functions to ensure that recombination is accurate, efficient, and occurs predominantly between homologous chromosomes, and not sister chromatids. To gain insight into the regulation of Dmc1 by its accessory factors, we mutated Dmc1 such that it was no longer dependent on its accessory factor Mei5-Sae3. Our analysis reveals that Dmc1 accessory factors Mei5-Sae3 and Rad51 have independent roles in stabilizing Dmc1 filaments. Furthermore, we find that although Rad51 is required for promoting recombination between homologous chromosomes, Mei5-Sae3 is not. Lastly, we show that our Dmc1 mutant forms abnormally long filaments, and high levels of aberrant recombination intermediates and products. These findings suggest that filaments are actively maintained at short lengths to prevent deleterious genome rearrangements.
Collapse
Affiliation(s)
- Diedre Reitz
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Douglas K. Bishop
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lin YH, Chu CC, Fan HF, Wang PY, Cox MM, Li HW. A 5'-to-3' strand exchange polarity is intrinsic to RecA nucleoprotein filaments in the absence of ATP hydrolysis. Nucleic Acids Res 2019; 47:5126-5140. [PMID: 30916331 PMCID: PMC6547424 DOI: 10.1093/nar/gkz189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023] Open
Abstract
RecA is essential to recombinational DNA repair in which RecA filaments mediate the homologous DNA pairing and strand exchange. Both RecA filament assembly and the subsequent DNA strand exchange are directional. Here, we demonstrate that the polarity of DNA strand exchange is embedded within RecA filaments even in the absence of ATP hydrolysis, at least over short DNA segments. Using single-molecule tethered particle motion, we show that successful strand exchange in the presence of ATP proceeds with a 5′-to-3′ polarity, as demonstrated previously. RecA filaments prepared with ATPγS also exhibit a 5′-to-3′ progress of strand exchange, suggesting that the polarity is not determined by RecA disassembly and/or ATP hydrolysis. RecAΔC17 mutants, lacking a C-terminal autoregulatory flap, also promote strand exchange in a 5′-to-3′ polarity in ATPγS, a polarity that is largely lost with this RecA variant when ATP is hydrolyzed. We propose that there is an inherent strand exchange polarity mediated by the structure of the RecA filament groove, associated by conformation changes propagated in a polar manner as DNA is progressively exchanged. ATP hydrolysis is coupled to polar strand exchange over longer distances, and its contribution to the polarity requires an intact RecA C-terminus.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Chia-Chieh Chu
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 11221 Taiwan
| | - Pang-Yen Wang
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin, Madison, 53706, USA
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| |
Collapse
|
6
|
Gataulin DV, Carey JN, Li J, Shah P, Grubb JT, Bishop DK. The ATPase activity of E. coli RecA prevents accumulation of toxic complexes formed by erroneous binding to undamaged double stranded DNA. Nucleic Acids Res 2018; 46:9510-9523. [PMID: 30137528 PMCID: PMC6182174 DOI: 10.1093/nar/gky748] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
The Escherichia coli RecA protein catalyzes the central step of homologous recombination using its homology search and strand exchange activity. RecA is a DNA-dependent ATPase, but its homology search and strand exchange activities are largely independent of its ATPase activity. ATP hydrolysis converts a high affinity DNA binding form, RecA-ATP, to a low affinity form RecA-ADP, thereby supporting an ATP hydrolysis-dependent dynamic cycle of DNA binding and dissociation. We provide evidence for a novel function of RecA's dynamic behavior; RecA's ATPase activity prevents accumulation of toxic complexes caused by direct binding of RecA to undamaged regions of dsDNA. We show that a mutant form of RecA, RecA-K250N, previously shown to be toxic to E. coli, is a loss-of-function ATPase-defective mutant. We use a new method for detecting RecA complexes involving nucleoid surface spreading and immunostaining. The method allows detection of damage-induced RecA foci; STED microscopy revealed these to typically be between 50 and 200 nm in length. RecA-K250N, and other toxic variants of RecA, form spontaneous DNA-bound complexes that are independent of replication and of accessory proteins required to load RecA onto tracts of ssDNA in vivo, supporting the hypothesis that RecA's expenditure of ATP serves an error correction function.
Collapse
Affiliation(s)
- Daniil V Gataulin
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Jeffrey N Carey
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Junya Li
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Parisha Shah
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Jennifer T Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| |
Collapse
|
7
|
Irazoki O, Aranda J, Zimmermann T, Campoy S, Barbé J. Molecular Interaction and Cellular Location of RecA and CheW Proteins in Salmonella enterica during SOS Response and Their Implication in Swarming. Front Microbiol 2016; 7:1560. [PMID: 27766091 PMCID: PMC5052270 DOI: 10.3389/fmicb.2016.01560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.
Collapse
Affiliation(s)
- Oihane Irazoki
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Jesús Aranda
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Timo Zimmermann
- Advanced Light Microscopy Unit, Center for Genomic Regulation Barcelona, Spain
| | - Susana Campoy
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Jordi Barbé
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Sarkar P, Sardesai AA, Murakami KS, Chatterji D. Inactivation of the bacterial RNA polymerase due to acquisition of secondary structure by the ω subunit. J Biol Chem 2013; 288:25076-25087. [PMID: 23843456 DOI: 10.1074/jbc.m113.468520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The widely conserved ω subunit encoded by rpoZ is the smallest subunit of Escherichia coli RNA polymerase (RNAP) but is dispensable for bacterial growth. Function of ω is known to be substituted by GroEL in ω-null strain, which thus does not exhibit a discernable phenotype. In this work, we report isolation of ω variants whose expression in vivo leads to a dominant lethal phenotype. Studies show that in contrast to ω, which is largely unstructured, ω mutants display substantial acquisition of secondary structure. By detailed study with one of the mutants, ω6 bearing N60D substitution, the mechanism of lethality has been deciphered. Biochemical analysis reveals that ω6 binds to β' subunit in vitro with greater affinity than that of ω. The reconstituted RNAP holoenzyme in the presence of ω6 in vitro is defective in transcription initiation. Formation of a faulty RNAP in the presence of mutant ω results in death of the cell. Furthermore, lethality of ω6 is relieved in cells expressing the rpoC2112 allele encoding β'2112, a variant β' bearing Y457S substitution, immediately adjacent to the β' catalytic center. Our results suggest that the enhanced ω6-β' interaction may perturb the plasticity of the RNAP active center, implicating a role for ω and its flexible state.
Collapse
Affiliation(s)
- Paramita Sarkar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Abhijit A Sardesai
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India, and
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Dipankar Chatterji
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India,.
| |
Collapse
|
9
|
Bakhlanova IV, Dudkina AV, Baitin DM. Enzymatic control of homologous recombination and hyperrecombination in Escherichia coli. Mol Biol 2013. [DOI: 10.1134/s0026893313020039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Fagerburg MV, Schauer GD, Thickman KR, Bianco PR, Khan SA, Leuba SH, Anand SP. PcrA-mediated disruption of RecA nucleoprotein filaments--essential role of the ATPase activity of RecA. Nucleic Acids Res 2012; 40:8416-24. [PMID: 22743269 PMCID: PMC3458574 DOI: 10.1093/nar/gks641] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The essential DNA helicase, PcrA, regulates recombination by displacing the recombinase RecA from the DNA. The nucleotide-bound state of RecA determines the stability of its nucleoprotein filaments. Using single-molecule fluorescence approaches, we demonstrate that RecA displacement by a translocating PcrA requires the ATPase activity of the recombinase. We also show that in a ‘head-on collision’ between a polymerizing RecA filament and a translocating PcrA, the RecA K72R ATPase mutant, but not wild-type RecA, arrests helicase translocation. Our findings demonstrate that translocation of PcrA is not sufficient to displace RecA from the DNA and assigns an essential role for the ATPase activity of RecA in helicase-mediated disruption of its filaments.
Collapse
Affiliation(s)
- Matt V Fagerburg
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Deletion of glucose-inhibited division (gidA) gene alters the morphological and replication characteristics of Salmonella enterica Serovar typhimurium. Arch Microbiol 2011; 194:405-12. [PMID: 22109813 DOI: 10.1007/s00203-011-0769-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/15/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
Salmonella is an important food-borne pathogen that continues to plague the United States food industry. Characterization of bacterial factors involved in food-borne illnesses could help develop new ways to control salmonellosis. We have previously shown that deletion of glucose-inhibited division gene (gidA) significantly altered the virulence potential of Salmonella in both in vitro and in vivo models of infection. Most importantly, the gidA mutant cells displayed a filamentous morphology compared to the wild-type Salmonella cells. In our current study, we investigated the role of GidA in Salmonella cell division using fluorescence and electron microscopy, transcriptional, and proteomic assays. Scanning electron microscopy data indicated a filamentous morphology with few constrictions in the gidA mutant cells. The filamentation of the gidA mutant cells is most likely due to the defect in chromosome segregation, with little to no sign of septa formation observed using fluorescence and transmission electron microscopy. Furthermore, deletion of gidA altered the expression of many genes and proteins responsible for cell division and chromosome segregation as indicated by global transcriptional profiling and semi-quantitative western blot analysis. Taken together, our data indicate GidA as a potential regulator of Salmonella cell division genes.
Collapse
|
12
|
Britt RL, Chitteni-Pattu S, Page AN, Cox MM. RecA K72R filament formation defects reveal an oligomeric RecA species involved in filament extension. J Biol Chem 2011; 286:7830-7840. [PMID: 21193798 PMCID: PMC3048670 DOI: 10.1074/jbc.m110.194407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/21/2010] [Indexed: 11/06/2022] Open
Abstract
Using an ensemble approach, we demonstrate that an oligomeric RecA species is required for the extension phase of RecA filament formation. The RecA K72R mutant protein can bind but not hydrolyze ATP or dATP. When mixed with other RecA variants, RecA K72R causes a drop in the rate of ATP hydrolysis and has been used to study disassembly of hydrolysis-proficient RecA protein filaments. RecA K72R filaments do not form in the presence of ATP but do so when dATP is provided. We demonstrate that in the presence of ATP, RecA K72R is defective for extension of RecA filaments on DNA. This defect is partially rescued when the mutant protein is mixed with sufficient levels of wild type RecA protein. Functional extension complexes form most readily when wild type RecA is in excess of RecA K72R. Thus, RecA K72R inhibits hydrolysis-proficient RecA proteins by interacting with them in solution and preventing the extension phase of filament assembly.
Collapse
Affiliation(s)
- Rachel L Britt
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Sindhu Chitteni-Pattu
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Asher N Page
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael M Cox
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
13
|
Amitani I, Liu B, Dombrowski CC, Baskin RJ, Kowalczykowski SC. Watching individual proteins acting on single molecules of DNA. Methods Enzymol 2010; 472:261-91. [PMID: 20580968 DOI: 10.1016/s0076-6879(10)72007-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In traditional biochemical experiments, the behavior of individual proteins is obscured by ensemble averaging. To better understand the behavior of proteins that bind to and/or translocate on DNA, we have developed instrumentation that uses optical trapping, microfluidic solution delivery, and fluorescent microscopy to visualize either individual proteins or assemblies of proteins acting on single molecules of DNA. The general experimental design involves attaching a single DNA molecule to a polystyrene microsphere that is then used as a microscopic handle to manipulate individual DNA molecules with a laser trap. Visualization is achieved by fluorescently labeling either the DNA or the protein of interest, followed by direct imaging using high-sensitivity fluorescence microscopy. We describe the sample preparation and instrumentation used to visualize the interaction of individual proteins with single molecules of DNA. As examples, we describe the application of these methods to the study of proteins involved in recombination-mediated DNA repair, a process essential for the maintenance of genomic integrity.
Collapse
Affiliation(s)
- Ichiro Amitani
- Department of Microbiology, University of California, Davis, California, USA
| | | | | | | | | |
Collapse
|
14
|
Britt RL, Haruta N, Lusetti SL, Chitteni-Pattu S, Inman RB, Cox MM. Disassembly of Escherichia coli RecA E38K/DeltaC17 nucleoprotein filaments is required to complete DNA strand exchange. J Biol Chem 2009; 285:3211-26. [PMID: 19910465 DOI: 10.1074/jbc.m109.028951] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disassembly of RecA protein subunits from a RecA filament has long been known to occur during DNA strand exchange, although its importance to this process has been controversial. An Escherichia coli RecA E38K/DeltaC17 double mutant protein displays a unique and pH-dependent mutational separation of DNA pairing and extended DNA strand exchange. Single strand DNA-dependent ATP hydrolysis is catalyzed by this mutant protein nearly normally from pH 6 to 8.5. It will also form filaments on DNA and promote DNA pairing. However, below pH 7.3, ATP hydrolysis is completely uncoupled from extended DNA strand exchange. The products of extended DNA strand exchange do not form. At the lower pH values, disassembly of RecA E38K/DeltaC17 filaments is strongly suppressed, even when homologous DNAs are paired and available for extended DNA strand exchange. Disassembly of RecA E38K/DeltaC17 filaments improves at pH 8.5, whereas complete DNA strand exchange is also restored. Under these sets of conditions, a tight correlation between filament disassembly and completion of DNA strand exchange is observed. This correlation provides evidence that RecA filament disassembly plays a major role in, and may be required for, DNA strand exchange. A requirement for RecA filament disassembly in DNA strand exchange has a variety of ramifications for the current models linking ATP hydrolysis to DNA strand exchange.
Collapse
Affiliation(s)
- Rachel L Britt
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The bacterial RecA protein participates in a remarkably diverse set of functions, all of which are involved in the maintenance of genomic integrity. RecA is a central component in both the catalysis of recombinational DNA repair and the regulation of the cellular SOS response. Despite the mechanistic differences of its functions, all require formation of an active RecA/ATP/DNA complex. RecA is a classic allosterically regulated enzyme, and ATP binding results in a dramatic increase in DNA binding affinity and a cooperative assembly of RecA subunits to form an ordered, helical nucleoprotein filament. The molecular events that underlie this ATP-induced structural transition are becoming increasingly clear. This review focuses on descriptions of our current understanding of the molecular design and allosteric regulation of RecA. We present a comprehensive list of all published recA mutants and use the results of various genetic and biochemical studies, together with available structural information, to develop ideas regarding the design of RecA functional domains and their catalytic organization.
Collapse
Affiliation(s)
- Dharia A McGrew
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
16
|
Cox JM, Li H, Wood EA, Chitteni-Pattu S, Inman RB, Cox MM. Defective dissociation of a "slow" RecA mutant protein imparts an Escherichia coli growth defect. J Biol Chem 2008; 283:24909-21. [PMID: 18603529 PMCID: PMC2529011 DOI: 10.1074/jbc.m803934200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/03/2008] [Indexed: 11/06/2022] Open
Abstract
The RecA and some related proteins possess a simple motif, called (KR)X(KR), that (in RecA) consists of two lysine residues at positions 248 and 250 at the subunit-subunit interface. This study and previous work implicate this RecA motif in the following: (a) catalyzing ATP hydrolysis in trans,(b) coordinating the ATP hydrolytic cycles of adjacent subunits, (c) governing the rate of ATP hydrolysis, and (d) coupling the ATP hydrolysis to work (in this case DNA strand exchange). The conservative K250R mutation leaves RecA nucleoprotein filament formation largely intact. However, ATP hydrolysis is slowed to less than 15% of the wild-type rate. DNA strand exchange is also slowed commensurate with the rate of ATP hydrolysis. The results reinforce the idea of a tight coupling between ATP hydrolysis and DNA strand exchange. When a plasmid-borne RecA K250R protein is expressed in a cell otherwise lacking RecA protein, the growth of the cells is severely curtailed. The slow growth defect is alleviated in cells lacking RecFOR function, suggesting that the defect reflects loading of RecA at stalled replication forks. Suppressors occur as recA gene alterations, and their properties indicate that limited dissociation by RecA K250R confers the slow growth phenotype. Overall, the results suggest that recombinational DNA repair is a common occurrence in cells. RecA protein plays a sufficiently intimate role in the bacterial cell cycle that its properties can limit the growth rate of a bacterial culture.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
53706-1544
| |
Collapse
|
17
|
Gruenig MC, Renzette N, Long E, Chitteni-Pattu S, Inman RB, Cox MM, Sandler SJ. RecA-mediated SOS induction requires an extended filament conformation but no ATP hydrolysis. Mol Microbiol 2008; 69:1165-79. [PMID: 18627467 PMCID: PMC2538424 DOI: 10.1111/j.1365-2958.2008.06341.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R (recA2201) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo. We have combined the K72R variant of RecA with another mutation, RecA E38K (recA730). In vitro, the double mutant RecA E38K/K72R (recA730,2201) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro.
Collapse
Affiliation(s)
- Marielle C. Gruenig
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Nicholas Renzette
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Edward Long
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Ross B. Inman
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Michael M. Cox
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Steven J. Sandler
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts at Amherst, Amherst, MA 01003
| |
Collapse
|
18
|
Chen Z, Yang H, Pavletich NP. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 2008; 453:489-4. [PMID: 18497818 DOI: 10.1038/nature06971] [Citation(s) in RCA: 536] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/04/2008] [Indexed: 02/02/2023]
Abstract
The RecA family of ATPases mediates homologous recombination, a reaction essential for maintaining genomic integrity and for generating genetic diversity. RecA, ATP and single-stranded DNA (ssDNA) form a helical filament that binds to double-stranded DNA (dsDNA), searches for homology, and then catalyses the exchange of the complementary strand, producing a new heteroduplex. Here we have solved the crystal structures of the Escherichia coli RecA-ssDNA and RecA-heteroduplex filaments. They show that ssDNA and ATP bind to RecA-RecA interfaces cooperatively, explaining the ATP dependency of DNA binding. The ATP gamma-phosphate is sensed across the RecA-RecA interface by two lysine residues that also stimulate ATP hydrolysis, providing a mechanism for DNA release. The DNA is underwound and stretched globally, but locally it adopts a B-DNA-like conformation that restricts the homology search to Watson-Crick-type base pairing. The complementary strand interacts primarily through base pairing, making heteroduplex formation strictly dependent on complementarity. The underwound, stretched filament conformation probably evolved to destabilize the donor duplex, freeing the complementary strand for homology sampling.
Collapse
Affiliation(s)
- Zhucheng Chen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
19
|
Renzette N, Sandler SJ. Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli. Mol Microbiol 2008; 67:1347-59. [PMID: 18298444 DOI: 10.1111/j.1365-2958.2008.06130.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RecA is essential for recombination, DNA repair and SOS induction in Escherichia coli. ATP hydrolysis is known to be important for RecA's roles in recombination and DNA repair. In vitro reactions modelling SOS induction minimally require ssDNA and non-hydrolyzable ATP analogues. This predicts that ATP hydrolysis will not be required for SOS induction in vivo. The requirement of ATP binding and hydrolysis for SOS induction in vivo is tested here through the study of recA4159 (K72A) and recA2201 (K72R). RecA4159 is thought to have reduced affinity for ATP. RecA2201 binds, but does not hydrolyse ATP. Neither mutant was able to induce SOS expression after UV irradiation. RecA2201, unlike RecA4159, could form filaments on DNA and storage structures as measured with RecA-GFP. RecA2201 was able to form hybrid filaments and storage structures and was either recessive or dominant to RecA(+), depending on the ratio of the two proteins. RecA4159 was unable to enter RecA(+) filaments on DNA or storage structures and was recessive to RecA(+). It is concluded that ATP hydrolysis is essential for SOS induction. It is proposed that ATP binding is essential for storage structure formation and ability to interact with other RecA proteins in a filament.
Collapse
Affiliation(s)
- Nicholas Renzette
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
20
|
Li X, Zhang XP, Solinger JA, Kiianitsa K, Yu X, Egelman EH, Heyer WD. Rad51 and Rad54 ATPase activities are both required to modulate Rad51-dsDNA filament dynamics. Nucleic Acids Res 2007; 35:4124-40. [PMID: 17567608 PMCID: PMC1919488 DOI: 10.1093/nar/gkm412] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.
Collapse
Affiliation(s)
- Xuan Li
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Xiao-Ping Zhang
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Jachen A. Solinger
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Konstantin Kiianitsa
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Xiong Yu
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Edward H. Egelman
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
- *To whom correspondence should be addressed. Tel.: 530 752 3001; Fax: 530 752 3011
| |
Collapse
|
21
|
Holzen TM, Shah PP, Olivares HA, Bishop DK. Tid1/Rdh54 promotes dissociation of Dmc1 from nonrecombinogenic sites on meiotic chromatin. Genes Dev 2006; 20:2593-604. [PMID: 16980587 PMCID: PMC1578681 DOI: 10.1101/gad.1447106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The meiosis-specific recombinase Dmc1 plays a critical role in DNA strand exchange in budding yeast. Tid1/Rdh54, a member of the Swi2/Snf2 family of DNA translocases, has been shown to stimulate Dmc1-dependent recombination. Tid1and its budding yeast paralog Rad54 have a variety of biochemical activities that may contribute to their biological function. Here we demonstrate that Dmc1 can associate with chromatin in the absence of DNA double-strand breaks (DSBs), and Tid1 suppresses this association. Chromatin immunoprecipitation experiments indicate that an activity shared by Tid1 and Rad54 is required for normal assembly of Dmc1 at DSB sites in preparation for recombination. These results lead to a model in which the ATP hydrolysis-dependent DNA translocase activity of Tid1 acts to promote dissociation of Dmc1 from nonreombinogenic sites on chromatin, with Rad54 being able to substitute for this function in the absence of Tid1. The tendency of Dmc1 to form unproductive interactions with chromatin is proposed to be a consequence of the mechanism of strand exchange. The results raise the possibility that ATP hydrolysis-dependent disruption of nonproductive recombinase-DNA interactions is a feature shared with other homologous recombination systems.
Collapse
Affiliation(s)
- Teresa M Holzen
- Department of Radiation and Cellular Oncology, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
22
|
Cox JM, Abbott SN, Chitteni-Pattu S, Inman RB, Cox MM. Complementation of one RecA protein point mutation by another. Evidence for trans catalysis of ATP hydrolysis. J Biol Chem 2006; 281:12968-75. [PMID: 16527806 DOI: 10.1074/jbc.m513736200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RecA residues Lys248 and Glu96 are closely opposed across the RecA subunit-subunit interface in some recent models of the RecA nucleoprotein filament. The K248R and E96D single mutant proteins of the Escherichia coli RecA protein each bind to DNA and form nucleoprotein filaments but do not hydrolyze ATP or dATP. A mixture of K248R and E96D single mutant proteins restores dATP hydrolysis to 25% of the wild type rate, with maximum restoration seen when the proteins are present in a 1:1 ratio. The K248R/E96D double mutant RecA protein also hydrolyzes ATP and dATP at rates up to 10-fold higher than either single mutant, although at a reduced rate compared with the wild type protein. Thus, the K248R mutation partially complements the inactive E96D mutation and vice versa. The complementation is not sufficient to allow DNA strand exchange. The K248R and E96D mutations originate from opposite sides of the subunit-subunit interface. The functional complementation suggests that Lys248 plays a significant role in ATP hydrolysis in trans across the subunit-subunit interface in the RecA nucleoprotein filament. This could be part of a mechanism for the long range coordination of hydrolytic cycles between subunits within the RecA filament.
Collapse
Affiliation(s)
- Julia M Cox
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | |
Collapse
|
23
|
Crampton DJ, Mukherjee S, Richardson CC. DNA-induced switch from independent to sequential dTTP hydrolysis in the bacteriophage T7 DNA helicase. Mol Cell 2006; 21:165-74. [PMID: 16427007 DOI: 10.1016/j.molcel.2005.11.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/11/2005] [Accepted: 11/23/2005] [Indexed: 11/23/2022]
Abstract
We show that the mechanisms of DNA-dependent and -independent dTTP hydrolysis by the gene 4 protein of bacteriophage T7 differ in the pathways by which these reactions are catalyzed. In the presence of dTTP, gene 4 protein monomers assemble as a ring that binds single-stranded DNA and couples the hydrolysis of dTTP to unidirectional translocation and the unwinding of duplex DNA. When mixing wild-type monomers with monomers lacking the catalytic base for the dTTPase reaction, we observe that each wild-type subunit hydrolyzes dTTP independently in the absence of single-stranded DNA. Conversely, when either these catalytically inactive monomers or altered monomers incapable of binding single-stranded DNA are mixed with wild-type monomers, a small fraction of altered to wild-type monomers causes a sharp decline in DNA-dependent dTTP hydrolysis. We propose that sequential hydrolysis of dTTP is coupled to the transfer of single-stranded DNA from subunit to adjacent subunit.
Collapse
Affiliation(s)
- Donald J Crampton
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Rajan R, Bell CE. Crystal structure of RecA from Deinococcus radiodurans: insights into the structural basis of extreme radioresistance. J Mol Biol 2005; 344:951-63. [PMID: 15544805 DOI: 10.1016/j.jmb.2004.09.087] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/27/2004] [Accepted: 09/28/2004] [Indexed: 11/15/2022]
Abstract
The resistance of Deinococcus radiodurans (Dr) to extreme doses of ionizing radiation depends on its highly efficient capacity to repair dsDNA breaks. Dr RecA, the key protein in the repair of dsDNA breaks by homologous recombination, promotes DNA strand-exchange by an unprecedented inverse pathway, in which the presynaptic filament is formed on dsDNA instead of ssDNA. In order to gain insight into the remarkable repair capacity of Dr and the novel mechanistic features of its RecA protein, we have determined its X-ray crystal structure in complex with ATPgammaS at 2.5A resolution. Like RecA from Escherichia coli, Dr RecA crystallizes as a helical filament that is closely related to its biologically relevant form, but with a more compressed pitch of 67 A. Although the overall fold of Dr RecA is similar to E.coli RecA, there is a large reorientation of the C-terminal domain, which in E.coli RecA has a site for binding dsDNA. Compared to E.coli RecA, the inner surface along the central axis of the Dr RecA filament has an increased positive electrostatic potential. Unique amino acid residues in Dr RecA cluster around a flexible beta-hairpin that has also been implicated in DNA binding.
Collapse
Affiliation(s)
- Rakhi Rajan
- Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine and Public Health, 371 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
25
|
VanLoock MS, Yu X, Yang S, Lai AL, Low C, Campbell MJ, Egelman EH. ATP-mediated conformational changes in the RecA filament. Structure 2003; 11:187-96. [PMID: 12575938 DOI: 10.1016/s0969-2126(03)00003-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The crystal structure of the E. coli RecA protein was solved more than 10 years ago, but it has provided limited insight into the mechanism of homologous genetic recombination. Using electron microscopy, we have reconstructed five different states of RecA-DNA filaments. The C-terminal lobe of the RecA protein is modulated by the state of the distantly bound nucleotide, and this allosteric coupling can explain how mutations and truncations of this C-terminal lobe enhance RecA's activity. A model generated from these reconstructions shows that the nucleotide binding core is substantially rotated from its position in the RecA crystal filament, resulting in ATP binding between subunits. This simple rotation can explain the large cooperativity in ATP hydrolysis observed for RecA-DNA filaments.
Collapse
Affiliation(s)
- Margaret S VanLoock
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Singleton SF, Simonette RA, Sharma NC, Roca AI. Intein-mediated affinity-fusion purification of the Escherichia coli RecA protein. Protein Expr Purif 2002; 26:476-88. [PMID: 12460773 DOI: 10.1016/s1046-5928(02)00571-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RecA protein of Escherichia coli plays important roles in homologous recombination, recombinational DNA repair, and SOS induction. Because its functions are conserved among the phylogenetic kingdoms, RecA investigations have provided a paradigm for understanding these biological processes. The RecA protein has been overproduced in E. coli and purified using a variety of purification schemes requiring multiple, time-intensive steps. The purification schemes share a dependence on appropriate RecA structure and/or function at one or more steps. In this report, we used a modified protein splicing element (intein) and a chitin-binding domain, fused to the C-terminus of RecA, to facilitate a one-step affinity purification of RecA protein without modification of the native protein sequence. Following the single chromatographic step, RecA protein that is greater than 95% physical purity at a concentration of greater than microM was obtained. The protein displays in vitro activities that are identical to those of protein isolated using classical procedures. The purification strategy described here promises to yield mutant RecA proteins in sufficient quantity for rigorous biophysical characterization without dependence on intrinsic RecA function.
Collapse
Affiliation(s)
- Scott F Singleton
- Department of Chemistry, Rice University, P.O. Box 1892 MS 65, Houston, TX 77251-1892, USA.
| | | | | | | |
Collapse
|
27
|
Chervyakova D, Kagansky A, Petukhov M, Lanzov V. [L29M] substitution in the interface of subunit-subunit interactions enhances Escherichia coli RecA protein properties important for its recombinogenic activity. J Mol Biol 2001; 314:923-35. [PMID: 11734008 DOI: 10.1006/jmbi.2001.5170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic analysis of RecA protein chimeras and their ancestors, RecAEc (from Escherichia coli) and RecAPa (Pseudomonas aeruginosa) had allowed us to place these proteins with respect to their recombinogenic activities in the following order: RecAPa>RecAX21>RecAX20=RecAEc. While RecAX20 differs from RecAEc in five amino acid residues with two substitutions ([S25A] and [I26V]) at the interface of subunit interactions in the RecA polymer, RecAX20 and RecAX21 differ only by a single substitution [L29M] present at the interface. Here, we present an analysis of the biochemical properties considered important for the recombinogenic activity of all four RecA proteins. While RecAX20 was very similar to RecAEc by all activities analysed, RecAX21 differed from RecAEc in several respects. These differences included an increased affinity for double-stranded DNA, a more active displacement of SSB protein from single-stranded DNA (ssDNA), a decreased end-dependent RecAX21 protein dissociation from a presynaptic complex, and a greater accumulation of intermediate products relative to the final product in the strand-exchange reaction. RecAPa was more tolerant than RecAX21 only to the end-dependent RecA protein dissociation. In addition, RecAPa was more resistant to temperature and salt concentrations in its ability to form a presynaptic RecAPa::ATP::ssDNA filament. Calculations of conformational energy revealed that the [L29M] substitution in RecAX21 polymer caused an increase in its flexibility. This led us to conclude that even a small change in the flexibility of the RecA presynaptic complex could profoundly affect its recombinogenic properties.
Collapse
Affiliation(s)
- D Chervyakova
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St. Petersburg, 188300, Russia
| | | | | | | |
Collapse
|
28
|
Griffin CS, Simpson PJ, Wilson CR, Thacker J. Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol 2000; 2:757-61. [PMID: 11025669 DOI: 10.1038/35036399] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth and development are dependent on the faithful duplication of cells. Duplication requires accurate genome replication, the repair of any DNA damage, and the precise segregation of chromosomes at mitosis; molecular checkpoints ensure the proper progression and fidelity of each stage. Loss of any of these highly conserved functions may result in genetic instability and proneness to cancer. Here we show that highly significant increases in chromosome missegregation occur in cell lines lacking the RAD51-like genes XRCC2 and XRCC3. This increased missegregation is associated with fragmentation of the centrosome, a component of the mitotic spindle, and not with loss of the spindle checkpoint. Our results show that unresolved DNA damage triggers this instability, and that XRCC2 and XRCC3 are potential tumour-suppressor genes in mammals.
Collapse
Affiliation(s)
- C S Griffin
- MRC Radiation & Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, England
| | | | | | | |
Collapse
|
29
|
Vierling S, Weber T, Wohlleben W, Muth G. Transcriptional and mutational analyses of the Streptomyces lividans recX gene and its interference with RecA activity. J Bacteriol 2000; 182:4005-11. [PMID: 10869079 PMCID: PMC94586 DOI: 10.1128/jb.182.14.4005-4011.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the 20,922-Da RecX protein and its interference with RecA activity were analyzed in Streptomyces lividans. The recX gene is located 220 bp downstream of recA. Transcriptional analysis by reverse transcriptase PCR demonstrated that recX and recA constitute an operon. While recA was transcribed at a basal level even under noninducing conditions, a recA-recX cotranscript was only detectable after induction of recA following DNA damage. The recA-recX cotranscript was less abundant than the recA transcript alone. The recX gene was inactivated by gene replacement. The resulting mutant had a clearly diminished colony size, but was not impaired in recombination activity, genetic instability, and resistance against UV irradiation. Expression of an extra copy of the S. lividans recA gene under control of the thiostrepton-inducible tipA promoter was lethal to the recX mutant, demonstrating that RecX is required to overcome the toxic effects of recA overexpression. Since inactivation of the recX gene did not influence transcription of recA, the putative function of the RecX protein might be the downregulation of RecA activity by interaction with the RecA protein or filament.
Collapse
Affiliation(s)
- S Vierling
- Mikrobiologie/Biotechnologie, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
30
|
Zaitsev EN, Kowalczykowski SC. Enhanced monomer-monomer interactions can suppress the recombination deficiency of the recA142 allele. Mol Microbiol 1999; 34:1-9. [PMID: 10540281 DOI: 10.1046/j.1365-2958.1999.01552.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RecA142 protein, in which valine is substituted for isoleucine-225, is defective for genetic recombination in vivo and for DNA strand exchange activity in vitro under conventional growth and reaction conditions respectively. However, we show that mildly acidic conditions restore both the in vitro DNA strand exchange activity and the in vivo function of RecA142 protein, suggesting that recombination function can be restored by a slight change in protein structure elicited by protonation. Indeed, we identified an intragenic suppressor of the recombination deficiency of the recA142 allele. This suppressor mutation is a substitution of leucine for glutamine at position 124. Based on the three-dimensional structure, the Q-124L substitution is predicted to make a new monomer-monomer contact with residue phenylalanine-21 of the adjacent RecA monomer. The Q-124L mutation is not allele specific, because it also suppresses the recombination deficiency of a recA deletion (Delta9), lacking nine amino acids at the amino-terminus, presumably by reinforcing the monomer-monomer interactions that are attenuated by the Delta9 deletion. Expression of RecA(Q-124L) protein is toxic to Escherichia coli, presumably because of enhanced affinity for DNA. We speculate as to how enhanced monomer-monomer interactions and acidic pH conditions can restore the recombination activity of some defective recA alleles.
Collapse
Affiliation(s)
- E N Zaitsev
- Division of Biological Sciences, Sections of Microbiology and of Molecular and Cell Biology, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
31
|
Abstract
The Escherichia coli RecA protein is the prototype of the RecA/RAD51/DMC1 family of strand transferases acting in genetic recombination. The E96D mutant was previously isolated in a screen for toxic recA mutants and was found to constitutively derepress the SOS genes and inhibit chromosome segregation in E. coli. Here, we have found that the E96D mutation lowers the RecA kcat value for ATP hydrolysis 100-fold. Use of this mutant reveals that the ATPase and branch migration activities of RecA are not necessarily required for catalyzing in vivo recombinational pairing and LexA cleavage. In addition to its effect on ATP hydrolysis, the mutation causes ATP to more strongly promote the transition to the biologically active, extended conformation of the RecA enzyme. The enhanced ATP binding is apparently the cause for a broader nucleic acid ligand specificity. The use of RNA and double-stranded DNA as cofactors for LexA cleavage could give rise to the inappropriate, constitutive derepression of the SOS genes. This underscores the need for the ATP affinity to be optimized so that RecA becomes selectively activated only during DNA repair and recombination through binding single-stranded DNA.
Collapse
Affiliation(s)
- M J Campbell
- Department of Biochemistry Beckman Center, Stanford Medical Center, 279 Campus Drive, Palo Alto, CA, 94304-5307, USA.
| | | |
Collapse
|