1
|
Sun T, Korolev N, Minhas V, Mirzoev A, Lyubartsev AP, Nordenskiöld L. Multiscale modeling reveals the ion-mediated phase separation of nucleosome core particles. Biophys J 2024; 123:1414-1434. [PMID: 37915169 PMCID: PMC11163297 DOI: 10.1016/j.bpj.2023.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Due to the vast length scale inside the cell nucleus, multiscale models are required to understand chromatin folding, structure, and dynamics and how they regulate genomic activities such as DNA transcription, replication, and repair. We study the interactions and structure of condensed phases formed by the universal building block of chromatin, the nucleosome core particle (NCP), using bottom-up multiscale coarse-grained (CG) simulations with a model extracted from all-atom MD simulations. In the presence of the multivalent cations Mg(H2O)62+ or CoHex3+, we analyze the internal structures of the NCP aggregates and the contributions of histone tails and ions to the aggregation patterns. We then derive a "super" coarse-grained (SCG) NCP model to study the macroscopic scale phase separation of NCPs. The SCG simulations show the formation of NCP aggregates with Mg(H2O)62+ concentration-dependent densities and sizes. Variation of the CoHex3+ concentrations results in highly ordered lamellocolumnar and hexagonal columnar phases in agreement with experimental data. The results give detailed insights into nucleosome interactions and for understanding chromatin folding in the cell nucleus.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Vishal Minhas
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Mirzoev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
2
|
Imre L, Niaki EF, Bosire R, Nanasi P, Nagy P, Bacso Z, Hamidova N, Pommier Y, Jordan A, Szabo G. Nucleosome destabilization by polyamines. Arch Biochem Biophys 2022; 722:109184. [PMID: 35395253 PMCID: PMC10572104 DOI: 10.1016/j.abb.2022.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
Abstract
The roles and molecular interactions of polyamines (PAs) in the nucleus are not fully understood. Here their effect on nucleosome stability, a key regulatory factor in eukaryotic gene control, is reported, as measured in agarose embedded nuclei of H2B-GFP expressor HeLa cells. Nucleosome stability was assessed by quantitative microscopy [1,2] in situ, in close to native state of chromatin, preserving the nucleosome constrained topology of the genomic DNA. A robust destabilizing effect was observed in the millimolar concentration range in the case of spermine, spermidine as well as putrescine, which was strongly pH and salt concentration-dependent, and remained significant also at neutral pH. The integrity of genomic DNA was not affected by PA treatment, excluding DNA break-elicited topological relaxation as a factor in destabilization. The binding of PAs to DNA was demonstrated by the displacement of ethidium bromide, both from deproteinized nuclear halos and from plasmid DNA. The possibility that DNA methylation patterns may be influenced by PA levels is contemplated in the context of gene expression and DNA methylation correlations identified in the NCI-60 panel-based CellMiner database: methylated loci in subsets of high-ODC1 cell lines and the dependence of PER3 DNA methylation on PA metabolism.
Collapse
Affiliation(s)
- Laszlo Imre
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Peter Nanasi
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Nubar Hamidova
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Yves Pommier
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4255, USA
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, 08028, Spain
| | - Gabor Szabo
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary.
| |
Collapse
|
3
|
Daban JR. Soft-matter properties of multilayer chromosomes. Phys Biol 2021; 18. [PMID: 34126606 DOI: 10.1088/1478-3975/ac0aff] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
This perspective aims to identify the relationships between the structural and dynamic properties of chromosomes and the fundamental properties of soft-matter systems. Chromatin is condensed into metaphase chromosomes during mitosis. The resulting structures are elongated cylinders having micrometer-scale dimensions. Our previous studies, using transmission electron microscopy, atomic force microscopy, and cryo-electron tomography, suggested that metaphase chromosomes have a multilayered structure, in which each individual layer has the width corresponding to a mononucleosome sheet. The self-assembly of multilayer chromatin plates from small chromatin fragments suggests that metaphase chromosomes are self-organized hydrogels (in which a single DNA molecule crosslinks the whole structure) with an internal liquid-crystal order produced by the stacking of chromatin layers along the chromosome axis. This organization of chromatin was unexpected, but the spontaneous assembly of large structures has been studied in different soft-matter systems and, according to these studies, the self-organization of chromosomes could be justified by the interplay between weak interactions of repetitive nucleosome building blocks and thermal fluctuations. The low energy of interaction between relatively large building blocks also justifies the easy deformation and structural fluctuations of soft-matter structures and the changes of phase caused by diverse external factors. Consistent with these properties of soft matter, different experimental results show that metaphase chromosomes are easily deformable. Furthermore, at the end of mitosis, condensed chromosomes undergo a phase transition into a more fluid structure, which can be correlated to the decrease in the Mg2+concentration and to the dissociation of condensins from chromosomes. Presumably, the unstacking of layers and chromatin fluctuations driven by thermal energy facilitate gene expression during interphase.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193-Bellaterra (Barcelona), Spain
| |
Collapse
|
4
|
Daban JR. Supramolecular multilayer organization of chromosomes: possible functional roles of planar chromatin in gene expression and DNA replication and repair. FEBS Lett 2020; 594:395-411. [PMID: 31879954 DOI: 10.1002/1873-3468.13724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023]
Abstract
Experimental evidence indicates that the chromatin filament is self-organized into a multilayer planar structure that is densely stacked in metaphase and unstacked in interphase. This chromatin organization is unexpected, but it is shown that diverse supramolecular assemblies, including dinoflagellate chromosomes, are multilayered. The mechanical strength of planar chromatin protects the genome integrity, even when double-strand breaks are produced. Here, it is hypothesized that the chromatin filament in the loops and topologically associating domains is folded within the thin layers of the multilaminar chromosomes. It is also proposed that multilayer chromatin has two states: inactive when layers are stacked and active when layers are unstacked. Importantly, the well-defined topology of planar chromatin may facilitate DNA replication without entanglements and DNA repair by homologous recombination.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
5
|
Eltsov M, Grewe D, Lemercier N, Frangakis A, Livolant F, Leforestier A. Nucleosome conformational variability in solution and in interphase nuclei evidenced by cryo-electron microscopy of vitreous sections. Nucleic Acids Res 2019; 46:9189-9200. [PMID: 30053160 PMCID: PMC6158616 DOI: 10.1093/nar/gky670] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023] Open
Abstract
In Eukaryotes, DNA is wound around the histone octamer forming the basic chromatin unit, the nucleosome. Atomic structures have been obtained from crystallography and single particle cryo-electron microscopy (cryoEM) of identical engineered particles. But native nucleosomes are dynamical entities with diverse DNA sequence and histone content, and little is known about their conformational variability, especially in the cellular context. Using cryoEM and tomography of vitreous sections we analyse native nucleosomes, both in vitro, using purified particles solubilized at physiologically relevant concentrations (25–50%), and in situ, within interphase nuclei. We visualize individual nucleosomes at a level of detail that allows us to measure the distance between the DNA gyres wrapped around. In concentrated solutions, we demonstrate a salt-dependent transition, with a high salt compact conformation resembling the canonical nucleosome and an open low salt one, closer to nuclear nucleosomes. Although further particle characterization and cartography are needed to understand the relationship between this conformational variability and chromatin functional states, this work opens a route to chromatin exploration in situ.
Collapse
Affiliation(s)
- Mikhail Eltsov
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Diana Grewe
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Nicolas Lemercier
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| | - Achilleas Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Françoise Livolant
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| | - Amélie Leforestier
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| |
Collapse
|
6
|
Abstract
Nucleosomes and chromatin control eukaryotic genome accessibility and thereby regulate DNA processes, including transcription, replication, and repair. Conformational dynamics within the nucleosome and chromatin structure play a key role in this regulatory function. Structural fluctuations continuously expose internal DNA sequences and nucleosome surfaces, thereby providing transient access for the nuclear machinery. Progress in structural studies of nucleosomes and chromatin has provided detailed insight into local chromatin organization and has set the stage for recent in-depth investigations of the structural dynamics of nucleosomes and chromatin fibers. Here, we discuss the dynamic processes observed in chromatin over different length scales and timescales and review current knowledge about the biophysics of distinct structural transitions.
Collapse
Affiliation(s)
- Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael G. Poirier
- Department of Physics, Biophysics Graduate Program, Ohio State Biochemistry Graduate Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210-1117, USA
| |
Collapse
|
7
|
Chicano A, Crosas E, Otón J, Melero R, Engel BD, Daban JR. Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. EMBO J 2019; 38:embj.201899769. [PMID: 30609992 DOI: 10.15252/embj.201899769] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Cryo-electron tomography and small-angle X-ray scattering were used to investigate the chromatin folding in metaphase chromosomes. The tomographic 3D reconstructions show that frozen-hydrated chromatin emanated from chromosomes is planar and forms multilayered plates. The layer thickness was measured accounting for the contrast transfer function fringes at the plate edges, yielding a width of ~ 7.5 nm, which is compatible with the dimensions of a monolayer of nucleosomes slightly tilted with respect to the layer surface. Individual nucleosomes are visible decorating distorted plates, but typical plates are very dense and nucleosomes are not identifiable as individual units, indicating that they are tightly packed. Two layers in contact are ~ 13 nm thick, which is thinner than the sum of two independent layers, suggesting that nucleosomes in the layers interdigitate. X-ray scattering of whole chromosomes shows a main scattering peak at ~ 6 nm, which can be correlated with the distance between layers and between interdigitating nucleosomes interacting through their faces. These observations support a model where compact chromosomes are composed of many chromatin layers stacked along the chromosome axis.
Collapse
Affiliation(s)
- Andrea Chicano
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Crosas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,NCD Beamline, ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - Joaquín Otón
- National Center of Biotechnology (CSIC), Campus Univ. Autónoma de Madrid, Madrid, Spain
| | - Roberto Melero
- National Center of Biotechnology (CSIC), Campus Univ. Autónoma de Madrid, Madrid, Spain
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Berezhnoy NV, Liu Y, Allahverdi A, Yang R, Su CJ, Liu CF, Korolev N, Nordenskiöld L. The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles. Biophys J 2017; 110:1720-1731. [PMID: 27119633 DOI: 10.1016/j.bpj.2016.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/04/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
The nucleosome core particle (NCP) is the basic building block of chromatin. Nucleosome-nucleosome interactions are instrumental in chromatin compaction, and understanding NCP self-assembly is important for understanding chromatin structure and dynamics. Recombinant NCPs aggregated by multivalent cations form various ordered phases that can be studied by x-ray diffraction (small-angle x-ray scattering). In this work, the effects on the supramolecular structure of aggregated NCPs due to lysine histone H4 tail acetylations, histone H2A mutations (neutralizing the acidic patch of the histone octamer), and the removal of histone tails were investigated. The formation of ordered mainly hexagonal columnar NCP phases is in agreement with earlier studies; however, the highly homogeneous recombinant NCP systems used in this work display a more compact packing. The long-range order of the NCP columnar phase was found to be abolished or reduced by acetylation of the H4 tails, acidic patch neutralization, and removal of the H3 and H2B tails. Loss of nucleosome stacking upon removal of the H3 tails in combination with other tails was observed. In the absence of the H2A tails, the formation of an unknown highly ordered phase was observed.
Collapse
Affiliation(s)
- Nikolay V Berezhnoy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ying Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Abdollah Allahverdi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Renliang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
9
|
Daban JR. The energy components of stacked chromatin layers explain the morphology, dimensions and mechanical properties of metaphase chromosomes. J R Soc Interface 2014; 11:20131043. [PMID: 24402918 PMCID: PMC3899872 DOI: 10.1098/rsif.2013.1043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/11/2013] [Indexed: 12/17/2022] Open
Abstract
The measurement of the dimensions of metaphase chromosomes in different animal and plant karyotypes prepared in different laboratories indicates that chromatids have a great variety of sizes which are dependent on the amount of DNA that they contain. However, all chromatids are elongated cylinders that have relatively similar shape proportions (length to diameter ratio approx. 13). To explain this geometry, it is considered that chromosomes are self-organizing structures formed by stacked layers of planar chromatin and that the energy of nucleosome-nucleosome interactions between chromatin layers inside the chromatid is approximately 3.6 × 10(-20) J per nucleosome, which is the value reported by other authors for internucleosome interactions in chromatin fibres. Nucleosomes in the periphery of the chromatid are in contact with the medium; they cannot fully interact with bulk chromatin within layers and this generates a surface potential that destabilizes the structure. Chromatids are smooth cylinders because this morphology has a lower surface energy than structures having irregular surfaces. The elongated shape of chromatids can be explained if the destabilizing surface potential is higher in the telomeres (approx. 0.16 mJ m(-2)) than in the lateral surface (approx. 0.012 mJ m(-2)). The results obtained by other authors in experimental studies of chromosome mechanics have been used to test the proposed supramolecular structure. It is demonstrated quantitatively that internucleosome interactions between chromatin layers can justify the work required for elastic chromosome stretching (approx. 0.1 pJ for large chromosomes). The high amount of work (up to approx. 10 pJ) required for large chromosome extensions is probably absorbed by chromatin layers through a mechanism involving nucleosome unwrapping.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
10
|
Self-assembly of thin plates from micrococcal nuclease-digested chromatin of metaphase chromosomes. Biophys J 2013; 103:567-575. [PMID: 22947873 DOI: 10.1016/j.bpj.2012.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional organization of the enormously long DNA molecules packaged within metaphase chromosomes has been one of the most elusive problems in structural biology. Chromosomal DNA is associated with histones and different structural models consider that the resulting long chromatin fibers are folded forming loops or more irregular three-dimensional networks. Here, we report that fragments of chromatin fibers obtained from human metaphase chromosomes digested with micrococcal nuclease associate spontaneously forming multilaminar platelike structures. These self-assembled structures are identical to the thin plates found previously in partially denatured chromosomes. Under metaphase ionic conditions, the fragments that are initially folded forming the typical 30-nm chromatin fibers are untwisted and incorporated into growing plates. Large plates can be self-assembled from very short chromatin fragments, indicating that metaphase chromatin has a high tendency to generate plates even when there are many discontinuities in the DNA chain. Self-assembly at 37°C favors the formation of thick plates having many layers. All these results demonstrate conclusively that metaphase chromatin has the intrinsic capacity to self-organize as a multilayered planar structure. A chromosome structure consistent of many stacked layers of planar chromatin avoids random entanglement of DNA, and gives compactness and a high physical consistency to chromatids.
Collapse
|
11
|
Daban JR. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Micron 2011; 42:733-50. [PMID: 21703860 DOI: 10.1016/j.micron.2011.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/01/2011] [Indexed: 11/26/2022]
Abstract
The folding of the chromatin filament and, in particular, the organization of genomic DNA within metaphase chromosomes has attracted the interest of many laboratories during the last five decades. This review discusses our current understanding of chromatin higher-order structure based on results obtained with transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and different atomic force microscopy (AFM) techniques. Chromatin isolated from different cell types in buffers without cations form extended filaments with nucleosomes visible as separated units. In presence of low concentrations of Mg(2+), chromatin filaments are folded into fibers having a diameter of ∼ 30 nm. Highly compact fibers were obtained with isolated chromatin fragments in solutions containing 1-2mM Mg(2+). The high density of these fibers suggested that the successive turns of the chromatin filament are interdigitated. Similar results were obtained with reconstituted nucleosome arrays under the same ionic conditions. This led to the proposal of compact interdigitated solenoid models having a helical pitch of 4-5 nm. These findings, together with the observation of columns of stacked nucleosomes in different liquid crystal phases formed by aggregation of nucleosome core particles at high concentration, and different experimental evidences obtained using other approaches, indicate that face-to-face interactions between nucleosomes are very important for the formation of dense chromatin structures. Chromatin fibers were observed in metaphase chromosome preparations in deionized water and in buffers containing EDTA, but chromosomes in presence of the Mg(2+) concentrations found in metaphase (5-22 mM) are very compact, without visible fibers. Moreover, a recent cryo-electron microscopy analysis of vitreous sections of mitotic cells indicated that chromatin has a disordered organization, which does not support the existence of 30-nm fibers in condensed chromosomes. TEM images of partially denatured chromosomes obtained using different procedures that maintain the ionic conditions of metaphase showed that bulk chromatin in chromosomes is organized forming multilayered plate-like structures. The structure and mechanical properties of these plates were studied using cryo-EM, electron tomography, AFM imaging in aqueous media, and AFM-based nanotribology and force spectroscopy. The results obtained indicated that the chromatin filament forms a flexible two-dimensional network, in which DNA is the main component responsible for the mechanical strength observed in friction force measurements. The discovery of this unexpected structure based on a planar geometry has opened completely new possibilities for the understanding of chromatin folding in metaphase chromosomes. It was proposed that chromatids are formed by many stacked thin chromatin plates oriented perpendicular to the chromatid axis. Different experimental evidences indicated that nucleosomes in the plates are irregularly oriented, and that the successive layers are interdigitated (the apparent layer thickness is 5-6 nm), allowing face-to-face interactions between nucleosomes of adjacent layers. The high density of this structure is in agreement with the high concentration of DNA observed in metaphase chromosomes of different species, and the irregular orientation of nucleosomes within the plates make these results compatible with those obtained with mitotic cell cryo-sections. The multilaminar chromatin structure proposed for chromosomes allows an easy explanation of chromosome banding and of the band splitting observed in stretched chromosomes.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
12
|
Sundaresan N, Thomas T, Thomas TJ, Pillai CKS. Investigations on the spermine provoked liquid crystalline phase behavior of high molecular weight DNA in the presence of alkali and alkaline earth metal ions. Polym Chem 2011. [DOI: 10.1039/c1py00302j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Castro-Hartmann P, Milla M, Daban JR. Irregular Orientation of Nucleosomes in the Well-Defined Chromatin Plates of Metaphase Chromosomes. Biochemistry 2010; 49:4043-50. [DOI: 10.1021/bi100125f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Pablo Castro-Hartmann
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Maria Milla
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
14
|
Dense chromatin plates in metaphase chromosomes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:503-22. [DOI: 10.1007/s00249-008-0401-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/11/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
15
|
Cinacchi G, La Penna G, Perico A. Anisotropic Internucleosome Interactions and Geometrical Constraints in the Organization of Chromatin. Macromolecules 2007. [DOI: 10.1021/ma071343l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giorgio Cinacchi
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35, 56126 Pisa, Italy
| | - Giovanni La Penna
- Consiglio Nazionale delle Ricerche, Istituto per la Chimica dei Composti Organo-Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Angelo Perico
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio delle Macromolecole, Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
16
|
Bertin A, Mangenot S, Renouard M, Durand D, Livolant F. Structure and phase diagram of nucleosome core particles aggregated by multivalent cations. Biophys J 2007; 93:3652-63. [PMID: 17693471 PMCID: PMC2072050 DOI: 10.1529/biophysj.107.108365] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The degree of compaction of the eukaryotic chromatin in vivo and in vitro is highly sensitive to the ionic environment. We address the question of the effect of multivalent ions on the interactions and mutual organization of the chromatin structural units, the nucleosome core particles (NCPs). Conditions of precipitation of NCPs in the presence of 10 mM Tris buffer and various amounts of either magnesium (Mg(2+)) or spermidine (Spd(3+)) are explored, compared, and discussed in relation to theoretical models. In addition, the structure of the aggregates is analyzed by complementary techniques: freeze-fracture electron microscopy, cryoelectron microscopy, and x-ray diffraction. In Mg(2+)-NCP aggregates, NCPs tend to stack on top of one another to form columns that are not long-range organized. In the presence of Spd(3+), NCPs precipitate to form a dense isotropic phase, a disordered phase of columns, a two-dimensional columnar hexagonal phase, or a three-dimensional crystal. The more ordered phases (two-dimensional or three-dimensional hexagonal) are found close to the precipitation line, where the number of positive charges carried by cations is slightly larger than the number of available negative charges of the NCPs. All ordered phases coexist with the dense isotropic phases. Formation of hexagonal and columnar phases is prevented by an excess of polycations.
Collapse
Affiliation(s)
- Aurélie Bertin
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Orsay-Sud, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Cherstvy AG, Winkler RG. Complexation of semiflexible chains with oppositely charged cylinder. J Chem Phys 2006; 120:9394-400. [PMID: 15267879 DOI: 10.1063/1.1707015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the complexation of long thin semiflexible polymer chains with an oppositely charged cylinder. Starting from the linear Poisson-Boltzmann equation, we calculate the electrostatic potential and the energy of such a charge distribution. We find that sufficiently flexible chains prefer to wrap around the cylinder in a helical manner, when their charge density is smaller than that of the cylinder. The optimal value of the helical pitch is found by minimization of the sum of electrostatic and bending energies. The dependence of the pitch on the number of chains, their rigidity, and salt concentration in solution is analyzed. We discuss our results in the light of recent experiments on DNA complexation with cylindrical dendronized polymers.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institut für Festkörperforschung, Theorie-II, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | |
Collapse
|
18
|
Livolant F, Mangenot S, Leforestier A, Bertin A, Frutos MD, Raspaud E, Durand D. Are liquid crystalline properties of nucleosomes involved in chromosome structure and dynamics? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2006; 364:2615-33. [PMID: 16973479 DOI: 10.1098/rsta.2006.1843] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nucleosome core particles correspond to the structural units of eukaryotic chromatin. They are charged colloids, 101 Angstrom in diameter and 55 Angstrom in length, formed by the coiling of a 146/147 bp DNA fragment (50 nm) around the histone protein octamer. Solutions of these particles can be concentrated, under osmotic pressure, up to the concentrations found in the nuclei of living cells. In the presence of monovalent cations (Na(+)), nucleosomes self-assemble into crystalline or liquid crystalline phases. A lamello-columnar phase is observed at 'low salt' concentrations, while a two-dimensional hexagonal phase and a three-dimensional quasi-hexagonal phase form at 'high salt' concentrations. We followed the formation of these phases from the dilute isotropic solutions to the ordered phases by combining cryoelectron microscopy and X-ray diffraction analyses. The phase diagram is presented as a function of the monovalent salt concentration and applied osmotic pressure. An alternative method to condense nucleosomes is to induce their aggregation upon addition of divalent or multivalent cations (Mg(2+), spermidine(3+) and spermine(4+)). Ordered phases are also found in the aggregates. We also discuss whether these condensed phases of nucleosomes may be relevant from a biological point of view.
Collapse
Affiliation(s)
- Françoise Livolant
- Laboratoire de Physique des Solides, Bât 510, Université Paris Sud, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Caño S, Caravaca JM, Martín M, Daban JR. Highly compact folding of chromatin induced by cellular cation concentrations. Evidence from atomic force microscopy studies in aqueous solution. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:495-501. [PMID: 16572269 DOI: 10.1007/s00249-006-0057-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/10/2006] [Accepted: 03/14/2006] [Indexed: 11/29/2022]
Abstract
We have performed a very extensive investigation of chromatin folding in different buffers over a wide range of ionic conditions similar to those found in eukaryotic cells. Our results show that in the presence of physiological concentrations of monovalent cations and/or low concentrations of divalent cations, small chicken erythrocyte chromatin fragments and chromatin from HeLa cells observed by transmission electron microscopy (TEM) show a compact folding, forming circular bodies of approximately 35 nm in diameter that were found previously in our laboratory in studies performed under very limited conditions. Since TEM images are obtained with dehydrated samples, we have performed atomic force microscopy (AFM) experiments to analyze chromatin structure in the presence of solutions containing different cation concentrations. The highly compact circular structures (in which individual nucleosomes are not visible as separated units) produced by small chromatin fragments in interphase ionic conditions observed by AFM are equivalent to the structures observed by TEM with chromatin samples prepared under the same ionic conditions. We have also carried out experiments of sedimentation and trypsin digestion of chromatin fragments; the results obtained confirm our AFM observations. Our results suggest that the compaction of bulk interphase chromatin in solution at room temperature is considerably higher than that generally considered in current literature. The dense chromatin folding observed in this study is consistent with the requirement of compact chromatin structures as starting elements for the building of metaphase chromosomes, but poses a difficult physical problem for gene expression during interphase.
Collapse
Affiliation(s)
- Silvia Caño
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Cherstvy AG, Winkler RG. Simple Model for Overcharging of a Sphere by a Wrapped Oppositely Charged Asymmetrically Neutralized Polyelectrolyte: Possible Effects of Helical Charge Distribution. J Phys Chem B 2005; 109:2962-9. [PMID: 16851310 DOI: 10.1021/jp0462299] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the complexation of a polyelectrolyte bendable rod with an oppositely charged spherical macroion. We take into account electrostatic bending of the rod and its asymmetric charge neutralization by sphere charges. The spontaneous curvature of the rod toward the sphere results in a substantial overcharging of such polyelectrolyte complex with a possible phase transition. Assuming a discrete helical charge distribution on the rod surface, we calculate the electrostatic energy of the helix and the electrostatic contribution to its bending and twisting elasticity. We show that the latter may change sign when the helical pitch is changed. For a DNA-relevant case, these corrections appear to be small compared to the corresponding mechanical elastic moduli. We discuss possible applications of our results to the description of overcharging of the nucleosome core particles.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | |
Collapse
|
21
|
Abstract
We review micromechanical experiments studying mechanoelastic properties of mitotic chromosomes. We discuss the history of this field, starting from the classic in vivo experiments of Nicklas (1983). We then focus on experiments where chromosomes were extracted from prometaphase cells and then studied by micromanipulation and microfluidic biochemical techniques. These experiments reveal that chromosomes have a well-behaved elastic response over a fivefold range of stretching, with an elastic modulus similar to that of a loosely tethered polymer network. Perturbation by microfluidic "spraying" of various ions reveals that the mitotic chromosome can be rapidly and reversibly decondensed or overcondensed, i.e., that the native state is not maximally compacted. We compare our results for chromosomes from cells to results of experiments by Houchmandzadeh and Dimitrov (1999) on chromatids reconstituted using Xenopus egg extracts. Remarkably, while the stretching elastic response of reconstituted chromosomes is similar to that observed for chromosomes from cells, reconstituted chromosomes are far more easily bent. This result suggests that reconstituted chromatids have a large-scale structure that is quite different from chromosomes in somatic cells. Finally, we discuss microspraying experiments of DNA-cutting enzymes, which reveal that the element that gives mitotic chromosomes their mechanical integrity is DNA itself. These experiments indicate that chromatin-condensing proteins are not organized into a mechanically contiguous "scaffold," but instead that the mitotic chromosome is best thought of as a cross-linked network of chromatin. Preliminary results from restriction enzyme digestion experiments indicate a spacing between chromatin "cross-links" of roughly 15 kb, a size similar to that inferred from classical chromatin loop isolation studies. These results suggest a general strategy for the use of micromanipulation methods for the study of chromosome structure.
Collapse
Affiliation(s)
- M G Poirier
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
22
|
Abstract
We present a phase diagram of the nucleosome core particle (NCP) as a function of the monovalent salt concentration and applied osmotic pressure. Above a critical pressure, NCPs stack on top of each other to form columns that further organize into multiple columnar phases. An isotropic (and in some cases a nematic) phase of columns is observed in the moderate pressure range. Under higher pressure conditions, a lamello-columnar phase and an inverse hexagonal phase form under low salt conditions, whereas a 2D hexagonal phase or a 3D orthorhombic phase is found at higher salt concentration. For intermediate salt concentrations, microphase separation occurs. The richness of the phase diagram originates from the heterogeneous distribution of charges at the surface of the NCP, which makes the particles extremely sensitive to small ionic variations of their environment, with consequences on their interactions and supramolecular organization. We discuss how the polymorphism of NCP supramolecular organization may be involved in chromatin changes in the cellular context.
Collapse
Affiliation(s)
- S Mangenot
- Laboratoire de Physique des Solides, CNRS UMR 8502, Bât 510, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
23
|
Abstract
Eukaryotic DNA is presented to the enzymatic machineries that use DNA as a template in the form of chromatin fibers. At the first level of organization, DNA is wrapped around histone octamers to form nucleosomal particles that are connected with stretches of linker DNA; this beads-on-a-string structure folds further to reach a very compact state in the nucleus. Chromatin structure is in constant flux, changing dynamically to accommodate the needs of the cell to replicate, transcribe, and repair the DNA, and to regulate all these processes in time and space. The more conventional biochemical and biophysical techniques used to study chromatin structure and dynamics have been recently complemented by an array of single-molecule approaches, in which chromatin fibers are investigated one-at-a-time. Here we describe single-molecule efforts to see nucleosomes, touch them, put them together, and then take them apart, one-at-a-time. The beginning is exciting and promising, but much more effort will be needed to take advantage of the huge potential that the new physics-based techniques offer.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Chemistry and Chemical Engineering, Polytechnic University, 6 Metro Tech Center, Brooklyn, NY 11201, USA.
| | | |
Collapse
|
24
|
Abstract
The lengths of the DNA molecules of eukaryotic genomes are much greater than the dimensions of the metaphase chromosomes in which they are contained during mitosis. From this observation it has been generally assumed that the linear packing ratio of DNA is an adequate measure of the degree of DNA compaction. This review summarizes the evidence suggesting that the local concentration of DNA is more appropriate than the linear packing ratio for the study of chromatin condensation. The DNA concentrations corresponding to most of the models proposed for the 30-40 nm chromatin fiber are not high enough for the construction of metaphase chromosomes. The interdigitated solenoid model has a higher density because of the stacking of nucleosomes in secondary helices and, after further folding into chromatids, it yields a final concentration of DNA that approaches the experimental value found for condensed chromosomes. Since recent results have shown that metaphase chromosomes contain high concentrations of the chromatin packing ions Mg2+ and Ca2+, it is discussed that dynamic rather than rigid models are required to explain the condensation of the extended fibers observed in the absence of these cations. Finally, considering the different lines of evidence demonstrating the stacking of nucleosomes in different chromatin complexes, it is suggested that the face-to-face interactions between nucleosomes may be the driving force for the formation of higher order structures with a high local concentration of DNA.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències, Universitat Autòma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
25
|
Saminathan M, Thomas T, Shirahata A, Pillai CKS, Thomas TJ. Polyamine structural effects on the induction and stabilization of liquid crystalline DNA: potential applications to DNA packaging, gene therapy and polyamine therapeutics. Nucleic Acids Res 2002; 30:3722-31. [PMID: 12202757 PMCID: PMC137425 DOI: 10.1093/nar/gkf503] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA undergoes condensation, conformational transitions, aggregation and resolubilization in the presence of polyamines, positively charged organic molecules present in all cells. Under carefully controlled environmental conditions, DNA can also transform to a liquid crystalline state in vitro. We undertook the present work to examine the ability of spermidine, N4-methylspermidine, spermine, N1-acetylspermine and a group of tetramine, pentamine and hexamine analogs of spermine to induce and stabilize liquid crystalline DNA. Liquid crystalline textures were identified under a polarizing microscope. In the absence of polyamines, calf thymus DNA assumed a diffused, planar cholesteric phase with entrapped bubbles when incubated on a glass slide at 37 degrees C. In the presence of spermidine and spermine, the characteristic fingerprint textures of the cholesteric phase, adopting a hexagonal order, were obtained. The helical pitch was 2.5 micro m. The final structures were dendrimeric and crystalline when DNA was treated with spermine homologs and bis(ethyl) derivatives. A cholesteric structure was observed when DNA was treated with a hexamine at 37 degrees C. This structure changed to a hexagonal dendrimer with fluidity on prolonged incubation. These data show a structural specificity effect of polyamines on liquid crystalline phase transitions of DNA and suggest a possible physiological function of natural polyamines.
Collapse
Affiliation(s)
- M Saminathan
- Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | | | | | | | | |
Collapse
|
26
|
Meister WV, Hauser AL, Lindau S, Birch-Hirschfeld E, Reinhardt J, Friese K, Bohley C, Gromann U, Hoffmann S. Biomesogenic (pre)ordering phenomena and matrix reactions of nucleosides on polyuridylic acid templates studied by scanning force microscopy. SURF INTERFACE ANAL 2002. [DOI: 10.1002/sia.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Meister WV, Bohley C, Lindau S, Gromann U, Naumann S, Herrmann B, Kargov SI, Martini T, Barthel J, Hoffmann S. Mesophase-derived nucleic acid (peptide) self-organizations visualized by scanning force microscopy. SURF INTERFACE ANAL 2002. [DOI: 10.1002/sia.1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Abstract
Among the multiple effects involved in chromatin condensation and decondensation processes, interactions between nucleosome core particles are suspected to play a crucial role. We analyze them in the absence of linker DNA and added proteins, after the self-assembly of isolated nucleosome core particles under controlled ionic conditions. We describe an original lamellar mesophase forming tubules on the mesoscopic scale. High resolution imaging of cryosections of vitrified samples reveals how nucleosome core particles stack on top of one another into columns which themselves align to form bilayers that repel one another through a solvent layer. We deduce from this structural organization how the particles interact through attractive interactions between top and bottom faces and lateral polar interactions that originate in the heterogeneous charge distribution at the surface of the particle. These interactions, at work under conditions comparable with those found in the living cell, should be of importance in the mechanisms governing chromatin compaction in vivo.
Collapse
Affiliation(s)
- A Leforestier
- Laboratoire de Physique des Solides, Bât 510, Université Paris Sud, F-91405 Orsay Cedex, France
| | | | | |
Collapse
|
29
|
Lambert O, Letellier L, Gelbart WM, Rigaud JL. DNA delivery by phage as a strategy for encapsulating toroidal condensates of arbitrary size into liposomes. Proc Natl Acad Sci U S A 2000; 97:7248-53. [PMID: 10840059 PMCID: PMC16531 DOI: 10.1073/pnas.130187297] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a strategy for encapsulating and condensing DNA. When T5 phage binds to its membrane protein receptor, FhuA, its double stranded DNA (120,000 bp) is progressively released base pair after base pair in the surrounding medium. Using cryoelectron microscopy, we have visualized the structures formed after T5 phage DNA is released into neutral unilamellar proteoliposomes reconstituted with the receptor FhuA. In the presence of spermine, toroidal condensates of circumferentially wrapped DNA were formed. Most significantly, the sizes of these toroids were shown to vary, from 90 to 200 nm in their outer diameters, depending on the number of DNA stands transferred. We have also analyzed T5 DNA release in bulk solution containing the detergent-solubilized FhuA receptor. After DNA release in a spermine containing solution, huge DNA condensates with a diameter of about 300 nm were formed containing the DNAs from as many as 10-20 capsids. At alkaline pH, the condensates appeared as large hollow cylinders with a diameter of 200 nm and a height of 100-200 nm. Overall, the striking feature of our experiments is that, because of the progressive release of DNA from the phage capsid, the mechanism of toroid formation is fundamentally different from that in the classical studies in which highly dilute, "naked" DNA is condensed by direct addition of polyvalent cations; as a consequence, our method leads to toroids of arbitrary size.
Collapse
Affiliation(s)
- O Lambert
- Institut Curie, Unité Mixte de Recherche/Centre National de la Recherche Scientifique 168 et Laboratoire Recherche Correspondant/Commissariat à l'Energie Atomique 8, 11 rue Pierre et Marie Curie, 75231, Paris, France.
| | | | | | | |
Collapse
|