1
|
Laracuente XE, Delfing BM, Luo X, Olson A, Jeffries W, Bowers SR, Foreman KW, Lee KH, Paige M, Kehn-Hall K, Lockhart C, Klimov DK. Applying Absolute Free Energy Perturbation Molecular Dynamics to Diffusively Binding Ligands. J Chem Theory Comput 2025; 21:4286-4298. [PMID: 40189800 DOI: 10.1021/acs.jctc.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
We have developed and tested an absolute free energy perturbation (FEP) protocol, which combines all-atom molecular dynamics, replica exchange with solute tempering (REST) enhanced sampling, and a spherical harmonic restraint applied to a ligand. Our objective was to compute the binding free energy together with the underlying binding mechanism for a ligand, which binds diffusively to a protein. Such ligands represent nearly impossible targets for traditional FEP simulations. To test our FEP/REST protocol, we selected a conserved motif peptide KKPK termed minNLS from the nuclear localization signal sequence of the Venezuelan equine encephalitis virus capsid protein. This peptide fragment binds diffusively to importin-α transport protein without forming well-defined poses. Our FEP/REST simulations with a spherical restraint provided a converged estimate of minNLS binding free energy. We found that minNLS binds with moderate affinity to importin-α utilizing an unusual, purely entropic mechanism in which binding free energy is determined by favorable entropic gain. For this cationic minNLS peptide, a favorable binding entropic gain is primarily associated with the release of water from the solvation shells of charged amino acids. We demonstrated that FEP/REST simulations sample the KKPK bound ensemble well, allowing us to characterize the distribution of bound structures, binding interactions, and locations on the importin-α surface. Analysis of experimental studies offered support to our rationale behind the KKPK entropic binding mechanism.
Collapse
Affiliation(s)
- Xavier E Laracuente
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Bryan M Delfing
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Xingyu Luo
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Audrey Olson
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - William Jeffries
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Steven R Bowers
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Kenneth W Foreman
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
| | - Kyung Hyeon Lee
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
- Center for Molecular Engineering, George Mason University, Manassas, Virginia 20110, United States
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
- Center for Molecular Engineering, George Mason University, Manassas, Virginia 20110, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
2
|
Li P, Zhang M, Huang Y. Structural characterization of the ABC transporter DppABCDF in Escherichia coli reveals insights into dipeptide acquisition. PLoS Biol 2025; 23:e3003026. [PMID: 40053564 DOI: 10.1371/journal.pbio.3003026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/17/2025] [Accepted: 01/20/2025] [Indexed: 03/09/2025] Open
Abstract
The prokaryote-specific ATP-binding cassette (ABC) peptide transporters are involved in various physiological processes and plays an important role in transporting naturally occurring antibiotics across the membrane to their intracellular targets. The dipeptide transporter DppABCDF in Gram-negative bacteria is composed of five distinct subunits, yet its assembly and underlying peptide import mechanism remain elusive. Here, we report the cryo-EM structures of the DppBCDF translocator from Escherichia coli in both its apo form and in complexes bound to nonhydrolyzable or slowly hydrolyzable ATP analogs (AMPPNP and ATPγS), as well as the ATPγS-bound DppABCDF full transporter. Unlike the reported heterotrimeric Mycobacterium tuberculosis DppBCD translocator, the E. coli DppBCDF translocator is a heterotetramer, with a [4Fe-4S] cluster at the C-terminus of each ATPase subunit. Structural studies reveal that ATPγS/AMPPNP-bound DppBCDF adopts an inward-facing conformation, similar to that of apo-DppBCDF, with only one ATPγS or AMPPNP molecule bound to DppF. By contrast, ATPγS-bound DppABCDF adopts an outward-facing conformation, with two ATPγS molecules glueing DppD and DppF at the interface. Consistent with structural observations, ATPase activity assays show that the DppBCDF translocator itself is inactive and its activation requires concurrent binding of DppA and ATP. In addition, bacterial complementation experiments imply that a unique periplasmic scoop motif in DppB may play important roles in ensuring dipeptide substrates import across the membrane, presumably by preventing dipeptide back-and-forth binding to DppA and avoiding dipeptides escaping into the periplasm upon being released from DppA.
Collapse
Affiliation(s)
- Panpan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Manfeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Scott DJ, Winzor DJ. Extreme enthalpy‒entropy compensation in the dimerization of small solutes in aqueous solution. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:373-384. [PMID: 39404853 PMCID: PMC11561121 DOI: 10.1007/s00249-024-01722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 11/14/2024]
Abstract
This communication summarizes findings from the earliest encounters with extreme enthalpy‒entropy compensation, a phenomenon first detected in the 1950s by a reappraisal of isopiestic and calorimetric measurements on aqueous urea solutions in terms of solute self-association. Because concurrent studies of carboxylic acid association were confined to measurement of the equilibrium constant by conductance, IR spectrophotometry or potentiometric titration measurements, temperature-independence of the dimerization constant was mistakenly taken to signify a value of zero for Δ H o instead of (Δ H o ‒ TΔ S o ). In those studies of small-solute self-association the extreme enthalpy‒entropy compensation was reflecting the action of water as a reactant whose hydroxyl groups were competing for the solute carbonyl involved in self-association. Such action gives rise to a positive temperature dependence of Δ H o that could well be operating in concert with that responsible for the commonly observed negative dependence for protein‒ligand interactions exhibiting extreme enthalpy‒entropy compensation, where the solvent contribution to the energetics reflects changes in the extent of ordered water structure in hydrophobic environments.
Collapse
Affiliation(s)
- David J Scott
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OC11 OFA, UK.
| | - Donald J Winzor
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
4
|
Rivera K, Tanaka KJ, Buechel ER, Origel O, Harrison A, Mason KM, Pinkett HW. Antimicrobial Peptide Recognition Motif of the Substrate Binding Protein SapA from Nontypeable Haemophilus influenzae. Biochemistry 2024; 63:294-311. [PMID: 38189237 PMCID: PMC10851439 DOI: 10.1021/acs.biochem.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with respiratory diseases, including otitis media and exacerbations of chronic obstructive pulmonary disease. NTHi exhibits resistance to killing by host antimicrobial peptides (AMPs) mediated by SapA, the substrate binding protein of the sensitivity to antimicrobial peptides (Sap) transporter. However, the specific mechanisms by which SapA selectively binds various AMPs such as defensins and cathelicidin are unknown. In this study, we report mutational analyses of both defensin AMPs and the SapA binding pocket to define the specificity of AMP recognition. Bactericidal assays revealed that NTHi lacking SapA are more susceptible to human beta defensins and LL-37, while remaining highly resistant to a human alpha defensin. In contrast to homologues, our research underscores the distinct specificity of NTHi SapA, which selectively recognizes and binds to peptides containing the charged-hydrophobic motif PKE and RRY. These findings provide valuable insight into the divergence of SapA among bacterial species and NTHi SapA's ability to selectively interact with specific AMPs to mediate resistance.
Collapse
Affiliation(s)
- Kristen
G. Rivera
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kari J. Tanaka
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan R. Buechel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Octavio Origel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Alistair Harrison
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Kevin M. Mason
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Heather W. Pinkett
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Liu Y, Zhang Y, Kang C, Tian D, Lu H, Xu B, Xia Y, Kashiwagi A, Westermann M, Hoischen C, Xu J, Yomo T. Comparative genomics hints at dispensability of multiple essential genes in two Escherichia coli L-form strains. Biosci Rep 2023; 43:BSR20231227. [PMID: 37819245 PMCID: PMC10600066 DOI: 10.1042/bsr20231227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
Despite the critical role of bacterial cell walls in maintaining cell shapes, certain environmental stressors can induce the transition of many bacterial species into a wall-deficient state called L-form. Long-term induced Escherichia coli L-forms lose their rod shape and usually hold significant mutations that affect cell division and growth. Besides this, the genetic background of L-form bacteria is still poorly understood. In the present study, the genomes of two stable L-form strains of E. coli (NC-7 and LWF+) were sequenced and their gene mutation status was determined and compared with their parental strains. Comparative genomic analysis between two L-forms reveals both unique adaptions and common mutated genes, many of which belong to essential gene categories not involved in cell wall biosynthesis, indicating that L-form genetic adaptation impacts crucial metabolic pathways. Missense variants from L-forms and Lenski's long-term evolution experiment (LTEE) were analyzed in parallel using an optimized DeepSequence pipeline to investigate predicted mutation effects (α) on protein functions. We report that the two L-form strains analyzed display a frequency of 6-10% (0% for LTEE) in mutated essential genes where the missense variants have substantial impact on protein functions (α<0.5). This indicates the emergence of different survival strategies in L-forms through changes in essential genes during adaptions to cell wall deficiency. Collectively, our results shed light on the detailed genetic background of two E. coli L-forms and pave the way for further investigations of the gene functions in L-form bacterial models.
Collapse
Affiliation(s)
- Yunfei Liu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Yueyue Zhang
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Chen Kang
- School of Software Engineering, East China Normal University, Shanghai 200062, PR China
| | - Di Tian
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Hui Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Boying Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yang Xia
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Martin Westermann
- Center for Electron Microscopy, Medical Faculty, Friedrich–Schiller–University Jena, Ziegelmühlenweg 1, D-07743 Jena, Germany
| | - Christian Hoischen
- CF Imaging, Leibniz Institute On Aging, Fritz–Lipmann–Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| |
Collapse
|
6
|
Omori A, Sasaki S, Kikukawa T, Shimono K, Miyauchi S. Elucidation of a Thermodynamical Feature Attributed to Substrate Binding to the Prokaryotic H +/Oligopeptide Cotransporter YdgR with Calorimetric Analysis: The Substrate Binding Driven by the Change in Entropy Implies the Release of Bound Water Molecules from the Binding Pocket. Biochemistry 2023. [PMID: 37163674 DOI: 10.1021/acs.biochem.2c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we have elucidated the substrate recognition mechanism by a prokaryotic H+/oligopeptide cotransporter, YdgR, using isothermal titration calorimetry. Under acidic conditions (pH 6.0), the binding of a dipeptide, Val-Ala, to YdgR elicited endothermic enthalpy, which compensated for the increase in entropy due to dipeptide binding. A series of dipeptides were used in the binding titration. The dipeptides represent Val-X and X-Val, where X is Ala, Ser, Val, Tyr, or Phe. Most dipeptides revealed endothermic enthalpy, which was completely compensated by the increase in entropy due to dipeptide binding. The change in enthalpy due to binding correlated well with the change in entropy, whereas the Gibbs free energy involved in the binding of the dipeptide to YdgR remained unchanged irrespective of dipeptide sequences, implying that the binding reaction was driven by entropy, that is, the release of bound water molecules in the binding pocket. It is also important to clarify that, based on the prediction of water molecules in the ligand-binding pocket of YdgR, the release of three bound water molecules in the putative substrate binding pocket occurred through binding to YdgR. In the comparison of Val-X and X-Val dipeptides, the N-terminal region of the binding pocket might contain more bound water molecules than the C-terminal region. In light of these findings, we suggest that bound water molecules might play an important role in substrate recognition and binding by YdgR.
Collapse
Affiliation(s)
- Akiko Omori
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shotaro Sasaki
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazumi Shimono
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda Nishi-ku, Kumamoto 860-0082, Japan
| | - Seiji Miyauchi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
7
|
Hughes AM, Darby JF, Dodson EJ, Wilson SJ, Turkenburg JP, Thomas GH, Wilkinson AJ. Peptide transport in Bacillus subtilis - structure and specificity in the extracellular solute binding proteins OppA and DppE. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748525 DOI: 10.1099/mic.0.001274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Peptide transporters play important nutritional and cell signalling roles in Bacillus subtilis, which are pronounced during stationary phase adaptations and development. Three high-affinity ATP-binding cassette (ABC) family transporters are involved in peptide uptake - the oligopeptide permease (Opp), another peptide permease (App) and a less well-characterized dipeptide permease (Dpp). Here we report crystal structures of the extracellular substrate binding proteins, OppA and DppE, which serve the Opp and Dpp systems, respectively. The structure of OppA was determined in complex with endogenous peptides, modelled as Ser-Asn-Ser-Ser, and with the sporulation-promoting peptide Ser-Arg-Asn-Val-Thr, which bind with K d values of 0.4 and 2 µM, respectively, as measured by isothermal titration calorimetry. Differential scanning fluorescence experiments with a wider panel of ligands showed that OppA has highest affinity for tetra- and penta-peptides. The structure of DppE revealed the unexpected presence of a murein tripeptide (MTP) ligand, l-Ala-d-Glu-meso-DAP, in the peptide binding groove. The mode of MTP binding in DppE is different to that observed in the murein peptide binding protein, MppA, from Escherichia coli, suggesting independent evolution of these proteins from an OppA-like precursor. The presence of MTP in DppE points to a role for Dpp in the uptake and recycling of cell wall peptides, a conclusion that is supported by analysis of the genomic context of dpp, which revealed adjacent genes encoding enzymes involved in muropeptide catabolism in a gene organization that is widely conserved in Firmicutes.
Collapse
Affiliation(s)
- Adam M Hughes
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - John F Darby
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Eleanor J Dodson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Samuel J Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Johan P Turkenburg
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
8
|
Chai HH, Ham JS, Kim TH, Lim D. Identifying ligand-binding specificity of the oligopeptide receptor OppA from Bifidobacterium longum KACC91563 by structure-based molecular modeling. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Kim H, Wu K, Lee C. Stress-Responsive Periplasmic Chaperones in Bacteria. Front Mol Biosci 2021; 8:678697. [PMID: 34046432 PMCID: PMC8144458 DOI: 10.3389/fmolb.2021.678697] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
Periplasmic proteins are involved in a wide range of bacterial functions, including motility, biofilm formation, sensing environmental cues, and small-molecule transport. In addition, a wide range of outer membrane proteins and proteins that are secreted into the media must travel through the periplasm to reach their final destinations. Since the porous outer membrane allows for the free diffusion of small molecules, periplasmic proteins and those that travel through this compartment are more vulnerable to external environmental changes, including those that result in protein unfolding, than cytoplasmic proteins are. To enable bacterial survival under various stress conditions, a robust protein quality control system is required in the periplasm. In this review, we focus on several periplasmic chaperones that are stress responsive, including Spy, which responds to envelope-stress, DegP, which responds to temperature to modulate chaperone/protease activity, HdeA and HdeB, which respond to acid stress, and UgpB, which functions as a bile-responsive chaperone.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, South Korea
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kevin Wu
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| |
Collapse
|
10
|
Stefan A, Gentilucci L, Piaz FD, D'Alessio F, Santino F, Hochkoeppler A. Purification from Deinococcus radiodurans of a 66 kDa ABC transporter acting on peptides containing at least 3 amino acids. Biochem Biophys Res Commun 2020; 529:869-875. [PMID: 32819591 DOI: 10.1016/j.bbrc.2020.06.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 11/24/2022]
Abstract
Deinococcus radiodurans is a Gram positive bacterium the capability of which to withstand high doses of ionizing radiations is well known. Physiologically speaking, D. radiodurans is a proteolytic prokaryote able to express and secrete quite a number of proteases, and to use amino acids as an energy source. When considering this, it is surprising that little information is available on the biochemical components responsible for the uptake of peptides in D. radiodurans. Here we report on the purification and characterization of an ABC peptide transporter, isolated from D. radiodurans cells grown in tryptone-glucose-yeast extract (TGY) medium. In particular, we show here that the action of this transporter (denoted DR1571, SwissProt data bank accession number Q9RU24 UF71_DEIRA) is exerted on peptides containing at least 3 amino acids. Further, using tetra-peptides as model systems, we were able to observe that the DR1571 protein does not bind to peptides containing phenylalanine or valine, but associates with high efficiency to tetra-glycine, and with moderate affinity to tetra-peptides containing arginine or aspartate.
Collapse
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy
| | - Luca Gentilucci
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Federico D'Alessio
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Federica Santino
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, (FI), Italy.
| |
Collapse
|
11
|
Lee C, Betschinger P, Wu K, Żyła DS, Glockshuber R, Bardwell JC. A metabolite binding protein moonlights as a bile-responsive chaperone. EMBO J 2020; 39:e104231. [PMID: 32882062 DOI: 10.15252/embj.2019104231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022] Open
Abstract
Bile salts are secreted into the gastrointestinal tract to aid in the absorption of lipids. In addition, bile salts show potent antimicrobial activity in part by mediating bacterial protein unfolding and aggregation. Here, using a protein folding sensor, we made the surprising discovery that the Escherichia coli periplasmic glycerol-3-phosphate (G3P)-binding protein UgpB can serve, in the absence of its substrate, as a potent molecular chaperone that exhibits anti-aggregation activity against bile salt-induced protein aggregation. The substrate G3P, which is known to accumulate in the later compartments of the digestive system, triggers a functional switch between UgpB's activity as a molecular chaperone and its activity as a G3P transporter. A UgpB mutant unable to bind G3P is constitutively active as a chaperone, and its crystal structure shows that it contains a deep surface groove absent in the G3P-bound wild-type UgpB. Our work illustrates how evolution may be able to convert threats into signals that first activate and then inactivate a chaperone at the protein level in a manner that bypasses the need for ATP.
Collapse
Affiliation(s)
- Changhan Lee
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Patrick Betschinger
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Wu
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Dawid S Żyła
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - James Ca Bardwell
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Hahn DF, König G, Hünenberger PH. Overcoming Orthogonal Barriers in Alchemical Free Energy Calculations: On the Relative Merits of λ-Variations, λ-Extrapolations, and Biasing. J Chem Theory Comput 2020; 16:1630-1645. [DOI: 10.1021/acs.jctc.9b00853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David F. Hahn
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Gerhard König
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Yoshida T, Yasui N, Kusakabe Y, Ito C, Akamatsu M, Yamashita A. Differential scanning fluorimetric analysis of the amino-acid binding to taste receptor using a model receptor protein, the ligand-binding domain of fish T1r2a/T1r3. PLoS One 2019; 14:e0218909. [PMID: 31584955 PMCID: PMC6777825 DOI: 10.1371/journal.pone.0218909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022] Open
Abstract
Taste receptor type 1 (T1r) is responsible for the perception of essential nutrients, such as sugars and amino acids, and evoking sweet and umami (savory) taste sensations. T1r receptors recognize many of the taste substances at their extracellular ligand-binding domains (LBDs). In order to detect a wide array of taste substances in the environment, T1r receptors often possess broad ligand specificities. However, the entire ranges of chemical spaces and their binding characteristics to any T1rLBDs have not been extensively analyzed. In this study, we exploited the differential scanning fluorimetry (DSF) to medaka T1r2a/T1r3LBD, a current sole T1rLBD heterodimer amenable for recombinant preparation, and analyzed their thermal stabilization by adding various amino acids. The assay showed that the agonist amino acids induced thermal stabilization and shifted the melting temperatures (Tm) of the protein. An agreement between the DSF results and the previous biophysical assay was observed, suggesting that DSF can detect ligand binding at the orthosteric-binding site in T1r2a/T1r3LBD. The assay further demonstrated that most of the tested l-amino acids, but no d-amino acid, induced Tm shifts of T1r2a/T1r3LBD, indicating the broad l-amino acid specificities of the proteins probably with several different manners of recognition. The Tm shifts by each amino acid also showed a fair correlation with the responses exhibited by the full-length receptor, verifying the broad amino-acid binding profiles at the orthosteric site in LBD observed by DSF.
Collapse
Affiliation(s)
- Takashi Yoshida
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Norihisa Yasui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Yuko Kusakabe
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Chiaki Ito
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Miki Akamatsu
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
- * E-mail:
| |
Collapse
|
14
|
Molecular Basis of Unexpected Specificity of ABC Transporter-Associated Substrate-Binding Protein DppA from Helicobacter pylori. J Bacteriol 2019; 201:JB.00400-19. [PMID: 31358613 DOI: 10.1128/jb.00400-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
The gastric pathogen Helicobacter pylori has limited ability to use carbohydrates as a carbon source, relying instead on exogenous amino acids and peptides. Uptake of certain peptides by H. pylori requires an ATP binding cassette (ABC) transporter annotated dipeptide permease (Dpp). The transporter specificity is determined by its cognate substrate-binding protein DppA, which captures ligands in the periplasm and delivers them to the permease. Here, we show that, unlike previously characterized DppA proteins, H. pylori DppA binds, with micromolar affinity, peptides of diverse amino acid sequences ranging between two and eight residues in length. We present analysis of the 1.45-Å-resolution crystal structure of its complex with the tetrapeptide STSA, which provides a structural rationale for the observed broad specificity. Analysis of the molecular surface revealed a ligand-binding pocket that is large enough to accommodate peptides of up to nine residues in length. The structure suggests that H. pylori DppA is able to recognize a wide range of peptide sequences by forming interactions primarily with the peptide main chain atoms. The loop that terminates the peptide-binding pocket in DppAs from other bacteria is significantly shorter in the H. pylori protein, providing an explanation for its ability to bind longer peptides. The subsites accommodating the two N-terminal residues of the peptide ligand make the greatest contribution to the protein-ligand binding energy, in agreement with the observation that dipeptides bind with affinity close to that of longer peptides.IMPORTANCE The World Health Organization listed Helicobacter pylori as a high-priority pathogen for antibiotic development. The potential of using peptide transporters in drug design is well recognized. We discovered that the substrate-binding protein of the ABC transporter for peptides, termed dipeptide permease, is an unusual member of its family in that it directly binds peptides of diverse amino acid sequences, ranging between two and eight residues in length. We also provided a structural rationale for the observed broad specificity. Since the ability to import peptides as a source of carbon is critical for H. pylori, our findings will inform drug design strategies based on inhibition or fusion of membrane-impermeant antimicrobials with peptides.
Collapse
|
15
|
Horváth I, Jeszenői N, Bálint M, Paragi G, Hetényi C. A Fragmenting Protocol with Explicit Hydration for Calculation of Binding Enthalpies of Target-Ligand Complexes at a Quantum Mechanical Level. Int J Mol Sci 2019; 20:ijms20184384. [PMID: 31489952 PMCID: PMC6770515 DOI: 10.3390/ijms20184384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Optimization of the enthalpy component of binding thermodynamics of drug candidates is a successful pathway of rational molecular design. However, the large size and missing hydration structure of target-ligand complexes often hinder such optimizations with quantum mechanical (QM) methods. At the same time, QM calculations are often necessitated for proper handling of electronic effects. To overcome the above problems, and help the QM design of new drugs, a protocol is introduced for atomic level determination of hydration structure and extraction of structures of target-ligand complex interfaces. The protocol is a combination of a previously published program MobyWat, an engine for assigning explicit water positions, and Fragmenter, a new tool for optimal fragmentation of protein targets. The protocol fostered a series of fast calculations of ligand binding enthalpies at the semi-empirical QM level. Ligands of diverse chemistry ranging from small aromatic compounds up to a large peptide helix of a molecular weight of 3000 targeting a leukemia protein were selected for systematic investigations. Comparison of various combinations of implicit and explicit water models demonstrated that the presence of accurately predicted explicit water molecules in the complex interface considerably improved the agreement with experimental results. A single scaling factor was derived for conversion of QM reaction heats into binding enthalpy values. The factor links molecular structure with binding thermodynamics via QM calculations. The new protocol and scaling factor will help automated optimization of binding enthalpy in future molecular design projects.
Collapse
Affiliation(s)
- István Horváth
- Chemistry Doctoral School, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary.
| | - Norbert Jeszenői
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| | - Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, Dóm tér 8, 6720 Szeged, Hungary.
- Institute of Physics, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary.
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| |
Collapse
|
16
|
Maurer M, Oostenbrink C. Water in protein hydration and ligand recognition. J Mol Recognit 2019; 32:e2810. [PMID: 31456282 PMCID: PMC6899928 DOI: 10.1002/jmr.2810] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
This review describes selected basics of water in biomolecular recognition. We focus on a qualitative understanding of the most important physical aspects, how these change in magnitude between bulk water and protein environment, and how the roles that water plays for proteins arise from them. These roles include mechanical support, thermal coupling, dielectric screening, mass and charge transport, and the competition with a ligand for the occupation of a binding site. The presence or absence of water has ramifications that range from the thermodynamic binding signature of a single ligand up to cellular survival. The large inhomogeneity in water density, polarity and mobility around a solute is hard to assess in experiment. This is a source of many difficulties in the solvation of protein models and computational studies that attempt to elucidate or predict ligand recognition. The influence of water in a protein binding site on the experimental enthalpic and entropic signature of ligand binding is still a point of much debate. The strong water‐water interaction in enthalpic terms is counteracted by a water molecule's high mobility in entropic terms. The complete arrest of a water molecule's mobility sets a limit on the entropic contribution of a water displacement process, while the solvent environment sets limits on ligand reactivity.
Collapse
Affiliation(s)
- Manuela Maurer
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
17
|
Norcross S, Sunderraj A, Tantama M. pH- and Temperature-Dependent Peptide Binding to the Lactococcus lactis Oligopeptide-Binding Protein A Measured with a Fluorescence Anisotropy Assay. ACS OMEGA 2019; 4:2812-2822. [PMID: 30842982 PMCID: PMC6396125 DOI: 10.1021/acsomega.8b02427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/22/2019] [Indexed: 05/03/2023]
Abstract
Bacterial ATP-binding cassette transporters are a superfamily of transport systems involved in the import of various molecules including amino acids, ions, sugars, and peptides. In the lactic acid bacteria Lactococcus lactis, the oligopeptide-binding protein A (OppA) binds peptides for import to support nitrogen metabolism and cell growth. The OppA protein is of great interest because it can bind peptides over a broad variety of lengths and sequences; however, current methods to study peptide binding have employed low throughput, endpoint, or low dynamic range techniques. Therefore, in this study, we developed a fluorescence anisotropy-based peptide-binding assay that can be readily employed to quantify OppA function. To test the utility of our assay, we characterized the pH dependence of oligopeptide binding because L. lactis is commonly used in fermentation and often must survive in low pH environments caused by lactic acid export. We determined that OppA affinity increases as pH or temperature decreases, and circular dichroism spectroscopy further indicated that acidic conditions increase the thermal stability of the protein, increasing the unfolding transition temperature by 10 °C from pH 8 to pH 6. Thus, our fluorescence anisotropy assay provides an easy technique to measure peptide binding, and it can be used to understand molecular aspects of OppA function under stress conditions experienced during fermentation and other biotechnology applications.
Collapse
Affiliation(s)
- Stevie Norcross
- Department
of Chemistry, Institute for Integrative Neuroscience, and Institute for
Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive Box 68, West Lafayette, Indiana 47907, United States
| | - Ashwin Sunderraj
- Department
of Chemistry, Institute for Integrative Neuroscience, and Institute for
Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive Box 68, West Lafayette, Indiana 47907, United States
| | - Mathew Tantama
- Department
of Chemistry, Institute for Integrative Neuroscience, and Institute for
Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive Box 68, West Lafayette, Indiana 47907, United States
- E-mail: . Phone: 765-494-5312
| |
Collapse
|
18
|
Insights into the Molecular Mechanisms of Protein-Ligand Interactions by Molecular Docking and Molecular Dynamics Simulation: A Case of Oligopeptide Binding Protein. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:3502514. [PMID: 30627209 PMCID: PMC6305025 DOI: 10.1155/2018/3502514] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023]
Abstract
Protein-ligand interactions are a necessary prerequisite for signal transduction, immunoreaction, and gene regulation. Protein-ligand interaction studies are important for understanding the mechanisms of biological regulation, and they provide a theoretical basis for the design and discovery of new drug targets. In this study, we analyzed the molecular interactions of protein-ligand which was docked by AutoDock 4.2 software. In AutoDock 4.2 software, we used a new search algorithm, hybrid algorithm of random drift particle swarm optimization and local search (LRDPSO), and the classical Lamarckian genetic algorithm (LGA) as energy optimization algorithms. The best conformations of each docking algorithm were subjected to molecular dynamic (MD) simulations to further analyze the molecular mechanisms of protein-ligand interactions. Here, we analyze the binding energy between protein receptors and ligands, the interactions of salt bridges and hydrogen bonds in the docking region, and the structural changes during complex unfolding. Our comparison of these complexes highlights differences in the protein-ligand interactions between the two docking methods. It also shows that salt bridge and hydrogen bond interactions play a crucial role in protein-ligand stability. The present work focuses on extracting the deterministic characteristics of docking interactions from their dynamic properties, which is important for understanding biological functions and determining which amino acid residues are crucial to docking interactions.
Collapse
|
19
|
Ochoa R, Soler MA, Laio A, Cossio P. Assessing the capability of in silico mutation protocols for predicting the finite temperature conformation of amino acids. Phys Chem Chem Phys 2018; 20:25901-25909. [PMID: 30289133 DOI: 10.1039/c8cp03826k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutation protocols are a key tool in computational biophysics for modelling unknown side chain conformations. In particular, these protocols are used to generate the starting structures for molecular dynamics simulations. The accuracy of the initial side chain and backbone placement is crucial to obtain a stable and quickly converging simulation. In this work, we assessed the performance of several mutation protocols in predicting the most probable conformer observed in finite temperature molecular dynamics simulations for a set of protein-peptide crystals differing only by single-point mutations in the peptide sequence. Our results show that several programs which predict well the crystal conformations fail to predict the most probable finite temperature configuration. Methods relying on backbone-dependent rotamer libraries have, in general, a better performance, but even the best protocol fails in predicting approximately 30% of the mutations.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia.
| | | | | | | |
Collapse
|
20
|
Maurer M, Hansen N, Oostenbrink C. Comparison of free-energy methods using a tripeptide-water model system. J Comput Chem 2018; 39:2226-2242. [PMID: 30280398 PMCID: PMC6220940 DOI: 10.1002/jcc.25537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 11/24/2022]
Abstract
We investigate the ability of several free-energy calculation methods to combine two alchemical changes. We use Bennett acceptance ratio (BAR), thermodynamic integration (TI), extended TI (X-TI), and enveloping distribution sampling (EDS) to perturb a water molecule, which is restrained to an amino acid that is also being perturbed. In addition to these pairwise methods, we present two two-dimensional approaches, EDS-TI and two-dimensional TI (2D-TI). We compare feasibility, efficiency and usability of these methods in regard to our simple model system, which mimics the displacement of a water molecule in the active site of a protein on residue mutation. The correct treatment of structural water has been shown to greatly aid binding affinity calculations in some cases that remained elusive otherwise. This is of broad interest in, for example, drug design, and we conclude that thus far, the pairwise method BAR and also the newer X-TI remain the most suitable methods to treat this problem as long as few end states are involved. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manuela Maurer
- Department of Material Sciences and Process EngineeringInstitute of Molecular Modeling and Simulation, University of Natural Resources and Life SciencesMuthgasse 18, A‐1190, ViennaAustria
| | - Niels Hansen
- Department of Energy‐, Process‐ and Bio‐Engineering, University of StuttgartInstitute of Thermodynamics and Thermal Process EngineeringPfaffenwaldring 9, 70569, StuttgartGermany
| | - Chris Oostenbrink
- Department of Material Sciences and Process EngineeringInstitute of Molecular Modeling and Simulation, University of Natural Resources and Life SciencesMuthgasse 18, A‐1190, ViennaAustria
| |
Collapse
|
21
|
Minhas GS, Bawdon D, Herman R, Rudden M, Stone AP, James AG, Thomas GH, Newstead S. Structural basis of malodour precursor transport in the human axilla. eLife 2018; 7:e34995. [PMID: 29966586 PMCID: PMC6059767 DOI: 10.7554/elife.34995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/23/2018] [Indexed: 01/10/2023] Open
Abstract
Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.
Collapse
Affiliation(s)
- Gurdeep S Minhas
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Daniel Bawdon
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Reyme Herman
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Andrew P Stone
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Gavin H Thomas
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Simon Newstead
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
22
|
Kuenzl T, Li-Blatter X, Srivastava P, Herdewijn P, Sharpe T, Panke S. Mutant Variants of the Substrate-Binding Protein DppA from Escherichia coli Enhance Growth on Nonstandard γ-Glutamyl Amide-Containing Peptides. Appl Environ Microbiol 2018; 84:e00340-18. [PMID: 29728377 PMCID: PMC6007095 DOI: 10.1128/aem.00340-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
The import of nonnatural molecules is a recurring problem in fundamental and applied aspects of microbiology. The dipeptide permease (Dpp) of Escherichia coli is an ABC-type multicomponent transporter system located in the cytoplasmic membrane, which is capable of transporting a wide range of di- and tripeptides with structurally and chemically diverse amino acid side chains into the cell. Given this low degree of specificity, Dpp was previously used as an entry gate to deliver natural and nonnatural cargo molecules into the cell by attaching them to amino acid side chains of peptides, in particular, the γ-carboxyl group of glutamate residues. However, the binding affinity of the substrate-binding protein dipeptide permease A (DppA), which is responsible for the initial binding of peptides in the periplasmic space, is significantly higher for peptides consisting of standard amino acids than for peptides containing side-chain modifications. Here, we used adaptive laboratory evolution to identify strains that utilize dipeptides containing γ-substituted glutamate residues more efficiently and linked this phenotype to different mutations in DppA. In vitro characterization of these mutants by thermal denaturation midpoint shift assays and isothermal titration calorimetry revealed significantly higher binding affinities of these variants toward peptides containing γ-glutamyl amides, presumably resulting in improved uptake and therefore faster growth in media supplemented with these nonstandard peptides.IMPORTANCE Fundamental and synthetic biology frequently suffer from insufficient delivery of unnatural building blocks or substrates for metabolic pathways into bacterial cells. The use of peptide-based transport vectors represents an established strategy to enable the uptake of such molecules as a cargo. We expand the scope of peptide-based uptake and characterize in detail the obtained DppA mutant variants. Furthermore, we highlight the potential of adaptive laboratory evolution to identify beneficial insertion mutations that are unlikely to be identified with existing directed evolution strategies.
Collapse
Affiliation(s)
- Tilmann Kuenzl
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Puneet Srivastava
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Timothy Sharpe
- Biophysics Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Sven Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
23
|
Aronica PGA, Fox SJ, Verma CS. Comparison of Charge Derivation Methods Applied to Amino Acid Parameterization. ACS OMEGA 2018; 3:4664-4673. [PMID: 31458687 PMCID: PMC6641686 DOI: 10.1021/acsomega.8b00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/13/2018] [Indexed: 06/10/2023]
Abstract
When using non-natural amino acids in computational simulations of proteins, it is necessary to ensure appropriate parameterization of the new amino acids toward the creation of appropriate input files. In particular, the charges on the atoms may have to be derived de novo and ad hoc for the new species. As there are many variables in the charge derivation process, an investigation was devised to compare different approaches and determine their effect on simulations. This was done with the purpose to identify the methods which produced results compatible with the existing parameters. It was found in this study that all analyzed charge derivation methods reproduce with sufficient accuracy the literature values and can be used with confidence when parameterizing novel species.
Collapse
Affiliation(s)
- Pietro G. A. Aronica
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street, #07-01 Matrix, 138671, Singapore
| | - Stephen J. Fox
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street, #07-01 Matrix, 138671, Singapore
| | - Chandra S. Verma
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street, #07-01 Matrix, 138671, Singapore
- Department
of Biological Sciences, National University
of Singapore, 16 Science
Drive, 117558, Singapore
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang
Drive, 637551, Singapore
| |
Collapse
|
24
|
Kulikova-Borovikova D, Lisi S, Dauss E, Alamae T, Buzzini P, Hallsworth JE, Rapoport A. Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events. Fungal Biol 2018; 122:613-620. [PMID: 29801806 DOI: 10.1016/j.funbio.2018.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/26/2022]
Abstract
Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, the activity of the Agt1 transporter decreased by 10-15 %. This indicates that functionality of this trans-membrane and relatively hydrophobic protein depends on water. Notably, however, levels of cell viability were retained. Prior incubation in the stress protectant xylitol increased stability of the plasma membrane but not Agt1. Studies were carried out using a comparator yeast which was highly resistant to dehydration-rehydration (S. cerevisiae strain 77). By contrast to S. cerevisiae strain 14, there was no significant reduction of Agt1 activity in S. cerevisiae strain 77 cells. These findings have implications for the ecophysiology of S. cerevisiae strains in natural and industrial systems.
Collapse
Affiliation(s)
- Diana Kulikova-Borovikova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Silvia Lisi
- Department of Agricultural, Food and Environmental Science & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, I-06121, Perugia, Italy
| | - Edgars Dauss
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Tiina Alamae
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, I-06121, Perugia, Italy
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia.
| |
Collapse
|
25
|
Perez AC, Johnson A, Chen Z, Wilding GE, Malkowski MG, Murphy TF. Mapping Protective Regions on a Three-Dimensional Model of the Moraxella catarrhalis Vaccine Antigen Oligopeptide Permease A. Infect Immun 2018; 86:e00652-17. [PMID: 29203544 PMCID: PMC5820933 DOI: 10.1128/iai.00652-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/25/2017] [Indexed: 11/20/2022] Open
Abstract
A vaccine against Moraxella catarrhalis would reduce tremendous morbidity, mortality, and financial burden by preventing otitis media in children and exacerbations of chronic obstructive pulmonary disease (COPD) in adults. Oligopeptide permease A (OppA) is a candidate vaccine antigen that is (i) a nutritional virulence factor expressed on the bacterial cell surface during infection, (ii) widely conserved among strains, (iii) highly immunogenic, and (iv) a protective antigen based on its capacity to induce protective responses in immunized animals. In the present study, we show that the antibodies to OppA following vaccination mediate accelerated clearance in animals after pulmonary challenge. To identify regions of OppA that bind protective antibodies, truncated constructs of OppA were engineered and studied to map regions of OppA with surface-accessible epitopes that bind high-avidity antibodies following vaccination. Protective epitopes were located in the N and C termini of the protein. Immunization of mice with constructs corresponding to these regions (T5 and T8) induced protective responses. Studies of overlapping peptide libraries of constructs T5 and T8 with OppA immune serum identified two discrete regions on each construct. These potentially protective regions were mapped on a three-dimensional computational model of OppA, where regions with solvent-accessible amino acids were identified as three potentially protective epitopes. In all, these studies revealed two regions with three specific epitopes in OppA that induce potentially protective antibody responses following vaccination. Detection of antibodies to these regions could serve to guide vaccine formulation and as a diagnostic tool for monitoring development of protective responses during clinical trials.
Collapse
Affiliation(s)
- Antonia C Perez
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Antoinette Johnson
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Ziqiang Chen
- Department of Biostatistics, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Gregory E Wilding
- Department of Biostatistics, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Michael G Malkowski
- Department of Structural Biology, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Department of Microbiology, University at Buffalo, the State University of New York, Buffalo, New York, USA
| |
Collapse
|
26
|
Peptide Uptake Is Essential for Borrelia burgdorferi Viability and Involves Structural and Regulatory Complexity of its Oligopeptide Transporter. mBio 2017; 8:mBio.02047-17. [PMID: 29259089 PMCID: PMC5736914 DOI: 10.1128/mbio.02047-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Borrelia burgdorferi is an extreme amino acid (AA) auxotroph whose genome encodes few free AA transporters and an elaborate oligopeptide transport system (B. burgdorferi Opp [BbOpp]). BbOpp consists of five oligopeptide-binding proteins (OBPs), two heterodimeric permeases, and a heterodimeric nucleotide-binding domain (NBD). Homology modeling based on the crystal structure of liganded BbOppA4 revealed that each OBP likely binds a distinct range of peptides. Transcriptional analyses demonstrated that the OBPs are differentially and independently regulated whereas the permeases and NBDs are constitutively expressed. A conditional NBD mutant failed to divide in the absence of inducer and replicated in an IPTG (isopropyl-β-d-thiogalactopyranoside) concentration-dependent manner. NBD mutants grown without IPTG exhibited an elongated morphotype lacking division septa, often with flattening at the cell center due to the absence of flagellar filaments. Following cultivation in dialysis membrane chambers, NBD mutants recovered from rats not receiving IPTG also displayed an elongated morphotype. The NBD mutant was avirulent by needle inoculation, but infectivity was partially restored by oral administration of IPTG to infected mice. We conclude that peptides are a major source of AAs for B. burgdorferi both in vitro and in vivo and that peptide uptake is essential for regulation of morphogenesis, cell division, and virulence. Borrelia burgdorferi, the causative agent of Lyme disease, is an extreme amino acid (AA) auxotroph with a limited repertoire of annotated single-AA transporters. A major issue is how the spirochete meets its AA requirements as it transits between its arthropod vector and mammalian reservoir. While previous studies have confirmed that the B. burgdorferi oligopeptide transport (opp) system is capable of importing peptides, the importance of the system for viability and pathogenesis has not been established. Here, we evaluated the opp system structurally and transcriptionally to elucidate its ability to import a wide range of peptides during the spirochete’s enzootic cycle. Additionally, using a novel mutagenesis strategy to abrogate opp transporter function, we demonstrated that peptide uptake is essential for bacterial viability, morphogenesis, and infectivity. Our studies revealed a novel link between borrelial physiology and virulence and suggest that peptide uptake serves an intracellular signaling function regulating morphogenesis and division.
Collapse
|
27
|
Spyrakis F, Ahmed MH, Bayden AS, Cozzini P, Mozzarelli A, Kellogg GE. The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. J Med Chem 2017; 60:6781-6827. [PMID: 28475332 DOI: 10.1021/acs.jmedchem.7b00057] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The value of thoroughly understanding the thermodynamics specific to a drug discovery/design study is well known. Over the past decade, the crucial roles of water molecules in protein structure, function, and dynamics have also become increasingly appreciated. This Perspective explores water in the biological environment by adopting its point of view in such phenomena. The prevailing thermodynamic models of the past, where water was seen largely in terms of an entropic gain after its displacement by a ligand, are now known to be much too simplistic. We adopt a set of terminology that describes water molecules as being "hot" and "cold", which we have defined as being easy and difficult to displace, respectively. The basis of these designations, which involve both enthalpic and entropic water contributions, are explored in several classes of biomolecules and structural motifs. The hallmarks for characterizing water molecules are examined, and computational tools for evaluating water-centric thermodynamics are reviewed. This Perspective's summary features guidelines for exploiting water molecules in drug discovery.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via Pietro Giuria 9, 10125 Torino, Italy
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| | - Alexander S Bayden
- CMD Bioscience , 5 Science Park, New Haven, Connecticut 06511, United States
| | - Pietro Cozzini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Modellistica Molecolare, Università degli Studi di Parma , Parco Area delle Scienze 59/A, 43121 Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Biochimica, Università degli Studi di Parma , Parco Area delle Scienze 23/A, 43121 Parma, Italy.,Istituto di Biofisica, Consiglio Nazionale delle Ricerche , Via Moruzzi 1, 56124 Pisa, Italy
| | - Glen E Kellogg
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| |
Collapse
|
28
|
Muñoz-Escobar J, Matta-Camacho E, Cho C, Kozlov G, Gehring K. Bound Waters Mediate Binding of Diverse Substrates to a Ubiquitin Ligase. Structure 2017; 25:719-729.e3. [PMID: 28392261 DOI: 10.1016/j.str.2017.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/03/2017] [Accepted: 03/09/2017] [Indexed: 11/16/2022]
Abstract
The N-end rule pathway controls the half-life of proteins based on their N-terminal residue. Positively charged type 1 N-degrons are recognized by a negatively charged pocket on the Zn finger named the UBR box. Here, we show that the UBR box is rigid, but bound water molecules in the pocket provide the structural plasticity required to bind different positively charged amino acids. Ultra-high-resolution crystal structures of arginine, histidine, and methylated arginine reveal that water molecules mediate the binding of N-degron peptides. Using a high-throughput binding assay and isothermal titration calorimetry, we demonstrate that the UBR box is able to bind methylated arginine and lysine peptides with high affinity and measure the preference for hydrophobic residues in the second position in the N-degron peptide. Finally, we show that the V122L mutation present in Johanson-Blizzard syndrome patients changes the specificity for the second position due to occlusion of the secondary pocket.
Collapse
Affiliation(s)
- Juliana Muñoz-Escobar
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Edna Matta-Camacho
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Cordelia Cho
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Guennadi Kozlov
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Kalle Gehring
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
29
|
Kuenzl T, Sroka M, Srivastava P, Herdewijn P, Marlière P, Panke S. Overcoming the membrane barrier: Recruitment of γ-glutamyl transferase for intracellular release of metabolic cargo from peptide vectors. Metab Eng 2017; 39:60-70. [DOI: 10.1016/j.ymben.2016.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022]
|
30
|
Graf MMH, Maurer M, Oostenbrink C. Free-energy calculations of residue mutations in a tripeptide using various methods to overcome inefficient sampling. J Comput Chem 2016; 37:2597-605. [PMID: 27634475 PMCID: PMC5082540 DOI: 10.1002/jcc.24488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 01/19/2023]
Abstract
Previous free-energy calculations have shown that the seemingly simple transformation of the tripeptide KXK to KGK in water holds some unobvious challenges concerning the convergence of the forward and backward thermodynamic integration processes (i.e., hysteresis). In the current study, the central residue X was either alanine, serine, glutamic acid, lysine, phenylalanine, or tyrosine. Interestingly, the transformation from alanine to glycine yielded the highest hysteresis in relation to the extent of the chemical change of the side chain. The reason for that could be attributed to poor sampling of φ2 /ψ2 dihedral angles along the transformation. Altering the nature of alanine's Cβ atom drastically improved the sampling and at the same time led to the identification of high energy barriers as cause for it. Consequently, simple strategies to overcome these barriers are to increase simulation time (computationally expensive) or to use enhanced sampling techniques such as Hamiltonian replica exchange molecular dynamics and one-step perturbation. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael M H Graf
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, AT-1190, Vienna, Austria
| | - Manuela Maurer
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, AT-1190, Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, AT-1190, Vienna, Austria.
| |
Collapse
|
31
|
The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity. Biochem Soc Trans 2016; 43:1011-7. [PMID: 26517916 DOI: 10.1042/bst20150135] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ATP-binding cassette (ABC) transporters, although being ubiquitous in biology, often feature a subunit that is limited primarily to bacteria and archaea. This subunit, the substrate-binding protein (SBP), is a key determinant of the substrate specificity and high affinity of ABC uptake systems in these organisms. Most prokaryotes have many SBP-dependent ABC transporters that recognize a broad range of ligands from metal ions to amino acids, sugars and peptides. Herein, we review the structure and function of a number of more unusual SBPs, including an ABC transporter involved in the transport of rare furanose forms of sugars and an SBP that has evolved to specifically recognize the bacterial cell wall-derived murein tripeptide (Mtp). Both these examples illustrate that subtle changes in binding-site architecture, including changes in side chains not directly involved in ligand co-ordination, can result in significant alteration of substrate range in novel and unpredictable ways.
Collapse
|
32
|
Morozenko A, Stuchebrukhov AA. Dowser++, a new method of hydrating protein structures. Proteins 2016; 84:1347-57. [PMID: 27273373 DOI: 10.1002/prot.25081] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/30/2022]
Abstract
A new method of hydrating protein structures, which we call Dowser++, is presented. The method is based on a semi-empirical modification of a popular program for protein hydration Dowser, and the usage of protocols AutoDock Vina, and WaterDock. The positions of water molecules predicted by Dowser++ were compared with experimental data for a set of 14 high-resolution crystal structures of oligopeptide-binding protein (OppA) containing a large number of resolved internal water molecules, as well as for the D- and K-channels of cytochrome c oxidase, and the recent data on PSII. Comparison is also made with the predictions of the original Dowser, and its improved version, Dowser+, described in our previous publication. We also present a model for quantitative estimation of the quality of water molecules placement made by a program, which includes an assumption of possible false negative data from the crystallographic analysis. The comparison of predictions made by Dowser++, Dowser and Dowser+ demonstrates significant improvement of predictive power of the new method. Proteins 2016; 84:1347-1357. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Morozenko
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California, 95616.
| | - A A Stuchebrukhov
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California, 95616.
| |
Collapse
|
33
|
Shiver AL, Osadnik H, Kritikos G, Li B, Krogan N, Typas A, Gross CA. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S. PLoS Genet 2016; 12:e1006124. [PMID: 27355376 PMCID: PMC4927156 DOI: 10.1371/journal.pgen.1006124] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens. Bacterial species differ in their susceptibility to antibiotics but the reason for these differences remains an open question. Understanding the genetic basis of antibiotic susceptibility will be critical for predicting the efficacy of new antibiotics and possibly finding new antibiotic targets. Here we report a large-scale study that connects bacterial genes to antibiotics, using a set of antibiotics that were chosen to include poorly characterized compounds. We discovered genes that confer resistance to a number of neglected antibiotics, expanding our knowledge of gene function and antibiotic resistance in Escherichia coli K-12. Starting from this large-scale screen, we then investigated how two antibiotics with a common history, kasugamycin and blasticidin S, enter bacterial cells. Both mimic naturally occurring nutrients to trick E. coli into actively bringing them inside. Kasugamycin is used to control microbes that cause agricultural diseases and mutations that reduce uptake like those we describe here may be an underappreciated factor in the development of resistance to kasugamycin.
Collapse
Affiliation(s)
- Anthony L. Shiver
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - George Kritikos
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Bo Li
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nevan Krogan
- QB3, California Institute for Quantitative Biosciences, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
- Gladstone Institutes, San Francisco, California, United States of America
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- QB3, California Institute for Quantitative Biosciences, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Maurer M, de Beer SBA, Oostenbrink C. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A. Molecules 2016; 21:499. [PMID: 27092480 PMCID: PMC5881882 DOI: 10.3390/molecules21040499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/30/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.
Collapse
Affiliation(s)
- Manuela Maurer
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| | - Stephanie B A de Beer
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
35
|
Russo A, Scognamiglio PL, Hong Enriquez RP, Santambrogio C, Grandori R, Marasco D, Giordano A, Scoles G, Fortuna S. In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands. PLoS One 2015; 10:e0133571. [PMID: 26252476 PMCID: PMC4529233 DOI: 10.1371/journal.pone.0133571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/27/2015] [Indexed: 12/25/2022] Open
Abstract
Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.
Collapse
Affiliation(s)
- Anna Russo
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe, Udine, Italy
- Department of Medical Biotechnology, University of Siena, Policlinico Le Scotte, Viale Bracci, Siena, Italy
| | - Pasqualina Liana Scognamiglio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, DFM-Scarl, Naples, Italy
| | | | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, Milan, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, DFM-Scarl, Naples, Italy
- * E-mail: (SF); (DM)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine & Center for Biotechnology Temple University Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Surgery & Neuroscience University of Siena, Strada delle Scotte n. 6, Siena, Italy
| | - Giacinto Scoles
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe, Udine, Italy
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Sara Fortuna
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe, Udine, Italy
- * E-mail: (SF); (DM)
| |
Collapse
|
36
|
El Sahili A, Li SZ, Lang J, Virus C, Planamente S, Ahmar M, Guimaraes BG, Aumont-Nicaise M, Vigouroux A, Soulère L, Reader J, Queneau Y, Faure D, Moréra S. A Pyranose-2-Phosphate Motif Is Responsible for Both Antibiotic Import and Quorum-Sensing Regulation in Agrobacterium tumefaciens. PLoS Pathog 2015; 11:e1005071. [PMID: 26244338 PMCID: PMC4526662 DOI: 10.1371/journal.ppat.1005071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022] Open
Abstract
Periplasmic binding proteins (PBPs) in association with ABC transporters select and import a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84, as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for the dissemination of virulence genes through quorum-sensing. Here, we characterized the binding mode of AccA using purified agrocin 84 and synthetic agrocinopine A by X-ray crystallography at very high resolution and performed affinity measurements. Structural and affinity analyses revealed that AccA recognizes an uncommon and specific motif, a pyranose-2-phosphate moiety which is present in both imported molecules via the L-arabinopyranose moiety in agrocinopine A and the D-glucopyranose moiety in agrocin 84. We hypothesized that AccA is a gateway allowing the import of any compound possessing a pyranose-2-phosphate motif at one end. This was structurally and functionally confirmed by experiments using four synthetic compounds: agrocinopine 3'-O-benzoate, L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-glucose-2-phosphate. By combining affinity measurements and in vivo assays, we demonstrated that both L-arabinose-2-phosphate and D-glucose-2-phosphate, which are the AccF mediated degradation products of agrocinopine A and agrocin 84 respectively, interact with the master transcriptional regulator AccR and activate the quorum-sensing signal synthesis and Ti plasmid transfer in A. tumefaciens C58. Our findings shed light on the role of agrocinopine and antibiotic agrocin 84 on quorum-sensing regulation in A. tumefaciens and reveal how the PBP AccA acts as vehicle for the importation of both molecules by means of a key-recognition motif. It also opens future possibilities for the rational design of antibiotic and anti-virulence compounds against A. tumefaciens or other pathogens possessing similar PBPs.
Collapse
Affiliation(s)
- Abbas El Sahili
- Institute for Integrative Biology of the Cell (I2BC), Department of Biophysics, Biochemistry and Structural Biology, CNRS CEA University Paris-Sud, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, CNRS CEA University Paris-Sud, Gif-sur-Yvette, France
| | - Si-Zhe Li
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS, Université de Lyon, INSA Lyon, UMR 5246, CNRS, Université Lyon 1, INSA Lyon, CPE-Lyon, Bât J. Verne, Villeurbanne, France
| | - Julien Lang
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, CNRS CEA University Paris-Sud, Gif-sur-Yvette, France
| | - Cornelia Virus
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara Planamente
- Institute for Integrative Biology of the Cell (I2BC), Department of Biophysics, Biochemistry and Structural Biology, CNRS CEA University Paris-Sud, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, CNRS CEA University Paris-Sud, Gif-sur-Yvette, France
| | - Mohammed Ahmar
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS, Université de Lyon, INSA Lyon, UMR 5246, CNRS, Université Lyon 1, INSA Lyon, CPE-Lyon, Bât J. Verne, Villeurbanne, France
| | | | - Magali Aumont-Nicaise
- Institute for Integrative Biology of the Cell (I2BC), Protein-Protein Interaction Platform, CNRS CEA University Paris-Sud, Orsay, France
| | - Armelle Vigouroux
- Institute for Integrative Biology of the Cell (I2BC), Department of Biophysics, Biochemistry and Structural Biology, CNRS CEA University Paris-Sud, Gif-sur-Yvette, France
| | - Laurent Soulère
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS, Université de Lyon, INSA Lyon, UMR 5246, CNRS, Université Lyon 1, INSA Lyon, CPE-Lyon, Bât J. Verne, Villeurbanne, France
| | - John Reader
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yves Queneau
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS, Université de Lyon, INSA Lyon, UMR 5246, CNRS, Université Lyon 1, INSA Lyon, CPE-Lyon, Bât J. Verne, Villeurbanne, France
- * E-mail: (YQ); (DF); (SM)
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, CNRS CEA University Paris-Sud, Gif-sur-Yvette, France
- * E-mail: (YQ); (DF); (SM)
| | - Solange Moréra
- Institute for Integrative Biology of the Cell (I2BC), Department of Biophysics, Biochemistry and Structural Biology, CNRS CEA University Paris-Sud, Gif-sur-Yvette, France
- * E-mail: (YQ); (DF); (SM)
| |
Collapse
|
37
|
|
38
|
Pulido NO, Silva DA, Tellez LA, Pérez-Hernández G, García-Hernández E, Sosa-Peinado A, Fernández-Velasco DA. On the molecular basis of the high affinity binding of basic amino acids to LAOBP, a periplasmic binding protein fromSalmonella typhimurium. J Mol Recognit 2015; 28:108-16. [DOI: 10.1002/jmr.2434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Nancy O. Pulido
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
| | - Daniel-Adriano Silva
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
- Biochemistry Department; University of Washington; Seattle WA USA
| | - Luis A. Tellez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
- Department of Psychiatry; Yale University School of Medicine; New Haven CT USA
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales; Universidad Autónoma Metropolitana- Cuajimalpa; México DF Mexico
| | - Enrique García-Hernández
- Instituto de Química; Universidad Nacional Autónoma de México; Circuito Exterior, Ciudad Universitaria México 04510 DF Mexico
| | - Alejandro Sosa-Peinado
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
| |
Collapse
|
39
|
Prediction of antibiotic resistance by gene expression profiles. Nat Commun 2014; 5:5792. [PMID: 25517437 PMCID: PMC4351646 DOI: 10.1038/ncomms6792] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022] Open
Abstract
Although many mutations contributing to antibiotic resistance have been identified, the relationship between the mutations and the related phenotypic changes responsible for the resistance has yet to be fully elucidated. To better characterize phenotype–genotype mapping for drug resistance, here we analyse phenotypic and genotypic changes of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution. We demonstrate that the resistances can be quantitatively predicted by the expression changes of a small number of genes. Several candidate mutations contributing to the resistances are identified, while phenotype–genotype mapping is suggested to be complex and includes various mutations that cause similar phenotypic changes. The integration of transcriptome and genome data enables us to extract essential phenotypic changes for drug resistances. The relationship between mutations and phenotypic changes associated with drug resistance in bacteria remains unclear. Here, the authors use antibiotic-resistant E. coli strains, obtained by laboratory evolution, to show that resistance profiles can be predicted by changes in expression of a few genes.
Collapse
|
40
|
Morozenko A, Leontyev IV, Stuchebrukhov AA. Dipole Moment and Binding Energy of Water in Proteins from Crystallographic Analysis. J Chem Theory Comput 2014; 10:4618-4623. [PMID: 25328496 PMCID: PMC4196742 DOI: 10.1021/ct500358r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 12/26/2022]
Abstract
![]()
The
energetics of water molecules in proteins is studied using
the water placement software Dowser. We compared the water position
predictions for 14 high-resolution crystal structures of oligopeptide-binding
protein (OppA) containing a large number of resolved internal water
molecules. From the analysis of the outputs of Dowser with variable
parameters and comparison with experimental X-ray data, we derived
an estimate of the average dipole moment of water molecules located
in the internal cavities of the protein and their binding energies.
The water parameters thus obtained from the experimental data are
then analyzed within the framework of charge-scaling theory developed
recently by this group; the parameters are shown to be in good agreement
with the predictions that the theory makes for the dipole moment in
a protein environment. The water dipole in the protein environment
is found to be much different from that in the bulk and in such models
as SPC or TIPnP. The role of charge scaling due to electronic polarizability
of the protein is discussed.
Collapse
Affiliation(s)
- A Morozenko
- Department of Chemistry, University of California Davis , One Shields Avenue, Davis, California 95616, United States
| | - I V Leontyev
- Department of Chemistry, University of California Davis , One Shields Avenue, Davis, California 95616, United States
| | - A A Stuchebrukhov
- Department of Chemistry, University of California Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
41
|
Dupont S, Rapoport A, Gervais P, Beney L. Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 2014; 98:8821-34. [DOI: 10.1007/s00253-014-6028-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 01/08/2023]
|
42
|
Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect Immun 2014; 82:4276-91. [PMID: 25069979 DOI: 10.1128/iai.02323-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The anaerobic gastrointestinal pathogen Clostridium difficile must form a metabolically dormant spore to survive in oxygenic environments and be transmitted from host to host. The regulatory factors by which C. difficile initiates and controls the early stages of sporulation in C. difficile are not highly conserved in other Clostridium or Bacillus species. Here, we investigated the role of two conserved oligopeptide permeases, Opp and App, in the regulation of sporulation in C. difficile. These permeases are known to positively affect sporulation in Bacillus species through the import of sporulation-specific quorum-sensing peptides. In contrast to other spore-forming bacteria, we discovered that inactivating these permeases in C. difficile resulted in the earlier expression of early sporulation genes and increased sporulation in vitro. Furthermore, disruption of opp and app resulted in greater virulence and increased the amounts of spores recovered from feces in the hamster model of C. difficile infection. Our data suggest that Opp and App indirectly inhibit sporulation, likely through the activities of the transcriptional regulator SinR and its inhibitor, SinI. Taken together, these results indicate that the Opp and App transporters serve a different function in controlling sporulation and virulence in C. difficile than in Bacillus subtilis and suggest that nutrient availability plays a significant role in pathogenesis and sporulation in vivo. This study suggests a link between the nutritional status of the environment and sporulation initiation in C. difficile.
Collapse
|
43
|
Martin SF, Clements JH. Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes. Annu Rev Biochem 2013; 82:267-93. [PMID: 23746256 DOI: 10.1146/annurev-biochem-060410-105819] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting protein-binding affinities of small molecules, even closely related ones, is a formidable challenge in biomolecular recognition and medicinal chemistry. A thermodynamic approach to optimizing affinity in protein-ligand interactions requires knowledge and understanding of how altering the structure of a small molecule will be manifested in protein-binding enthalpy and entropy changes; however, there is a relative paucity of such detailed information. In this review, we examine two strategies commonly used to increase ligand potency. The first of these involves introducing a cyclic constraint to preorganize a small molecule in its biologically active conformation, and the second entails adding nonpolar groups to a molecule to increase the amount of hydrophobic surface that is buried upon binding. Both of these approaches are motivated by paradigms suggesting that protein-binding entropy changes should become more favorable, but paradoxes can emerge that defy conventional wisdom.
Collapse
Affiliation(s)
- Stephen F Martin
- Department of Chemistry and Biochemistry, Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
44
|
Myslinski JM, Clements JH, DeLorbe JE, Martin SF. Protein-Ligand Interactions: Thermodynamic Effects Associated with Increasing the Length of an Alkyl Chain. ACS Med Chem Lett 2013; 4. [PMID: 24349642 DOI: 10.1021/ml400211q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Thermodynamic parameters were determined for complex formation between the Grb2 SH2 domain and tripeptides of the general form Ac-pTyr-Xaa-Asn in which the Xaa residue bears a linear alkyl chain varying in length from 1-5 carbon atoms. Binding affinity increases upon adding a methylene group to the Ala derivative, but further chain extension gives no extra enhancement in potency. The thermodynamic signatures of the ethyl and n-propyl derivatives are virtually identical as are those for the n-butyl and n-pentyl analogs. Crystallographic analysis of the complexes reveals a high degree of similarity in the structure of the domain and the bound ligands with the notable exception that there is a gauche interaction in the side chains in the bound conformations of ligands having n-propyl, n-butyl, and n-pentyl groups. However, eliminating this unfavorable interaction by introducing a Z-double bond into the side chain of the n-propyl analog does not result in an increase in affinity. Increases in the amount of nonpolar surface that is buried upon ligand binding correlate with favorable changes in ΔH°, but these are usually offset by corresponding unfavorable changes in -TΔS°; there is little correlation of ΔCp with changes in the amount of buried nonpolar surface.
Collapse
Affiliation(s)
- James M. Myslinski
- Department of Chemistry and
Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| | - John H. Clements
- Department of Chemistry and
Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| | - John E. DeLorbe
- Department of Chemistry and
Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| | - Stephen F. Martin
- Department of Chemistry and
Biochemistry, The Institute of Cellular and Molecular Biology, and The Texas Institute of Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
45
|
Usha S, Selvaraj S. Structure-wise discrimination of cytosine, thymine, and uracil by proteins in terms of their nonbonded interactions. J Biomol Struct Dyn 2013; 32:1686-704. [DOI: 10.1080/07391102.2013.832384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
García-Sosa AT. Hydration Properties of Ligands and Drugs in Protein Binding Sites: Tightly-Bound, Bridging Water Molecules and Their Effects and Consequences on Molecular Design Strategies. J Chem Inf Model 2013; 53:1388-405. [DOI: 10.1021/ci3005786] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
MpaA is a murein-tripeptide-specific zinc carboxypeptidase that functions as part of a catabolic pathway for peptidoglycan-derived peptides in γ-proteobacteria. Biochem J 2013; 448:329-41. [PMID: 22970852 DOI: 10.1042/bj20121164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The murein peptide amidase MpaA is a cytoplasmic enzyme that processes peptides derived from the turnover of murein. We have purified the enzyme from Escherichia coli and demonstrated that it efficiently hydrolyses the γ-D-glutamyl-diaminopimelic acid bond in the murein tripeptide (L-Ala-γ-D-Glu-meso-Dap), with Km and kcat values of 0.41±0.05 mM and 38.3±10 s-1. However, it is unable to act on the murein tetrapeptide (L-Ala-γ-D-Glu-meso-Dap-D-Ala). E. coli MpaA is a homodimer containing one bound zinc ion per chain, as judged by mass spectrometric analysis and size-exclusion chromatography. To investigate the structure of MpaA we solved the crystal structure of the orthologous protein from Vibrio harveyi to 2.17 Å (1Å=0.1 nm). Vh_MpaA, which has identical enzymatic and biophysical properties to the E. coli enzyme, has high structural similarity to eukaryotic zinc carboxypeptidases. The structure confirms that MpaA is a dimeric zinc metalloprotein. Comparison of the structure of MpaA with those of other carboxypeptidases reveals additional structure that partially occludes the substrate-binding groove, perhaps explaining the narrower substrate specificity of the enzyme compared with other zinc carboxypeptidases. In γ-proteobacteria mpaA is often located adjacent to mppA which encodes a periplasmic transporter protein previously shown to bind murein tripeptide. We demonstrate that MppA can also bind murein tetrapeptide with high affinity. The genetic coupling of these genes and their related biochemical functions suggest that MpaA amidase and MppA transporter form part of a catabolic pathway for utilization of murein-derived peptides that operates in γ-proteobacteria in addition to the established murein recycling pathways.
Collapse
|
48
|
Audie J, Swanson J. Advances in the Prediction of Protein-Peptide Binding Affinities: Implications for Peptide-Based Drug Discovery. Chem Biol Drug Des 2012; 81:50-60. [DOI: 10.1111/cbdd.12076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Lassaux P, Peri C, Ferrer-Navarro M, Gourlay LJ, Gori A, Conchillo-Solé O, Rinchai D, Lertmemongkolchai G, Longhi R, Daura X, Colombo G, Bolognesi M. A structure-based strategy for epitope discovery in Burkholderia pseudomallei OppA antigen. Structure 2012; 21:167-175. [PMID: 23159127 DOI: 10.1016/j.str.2012.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/10/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
We present an approach integrating structural and computational biology with immunological tests to identify epitopes in the OppA antigen from the Gram-negative pathogen Burkholderia pseudomallei, the etiological agent of melioidosis. The crystal structure of OppA(Bp), reported here at 2.1 Å resolution, was the basis for a computational analysis that identified three potential epitopes. In parallel, antigen proteolysis and immunocapturing allowed us to identify three additional peptides. All six potential epitopes were synthesized as free peptides and tested for their immunoreactivity against sera from healthy seronegative, healthy seropositive, and recovered melioidosis patients. Three synthetic peptides allowed the different patient groups to be distinguished, underlining the potential of this approach. Extension of the computational analysis, including energy-based decomposition methods, allowed rationalizing results of the predictive analyses and the immunocapture epitope mapping. Our results illustrate a structure-based epitope discovery process, whose application may expand our perspectives in the diagnostic and vaccine design fields.
Collapse
Affiliation(s)
- Patricia Lassaux
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Claudio Peri
- Consiglio Nazionale delle Ricerche, Institute for Chemistry of Molecular Recognition, Department of Computational Biology, Milan 20131, Italy
| | - Mario Ferrer-Navarro
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Louise J Gourlay
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alessandro Gori
- Consiglio Nazionale delle Ricerche, Institute for Chemistry of Molecular Recognition, Department of Computational Biology, Milan 20131, Italy
| | - Oscar Conchillo-Solé
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Darawan Rinchai
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ganjana Lertmemongkolchai
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Renato Longhi
- Consiglio Nazionale delle Ricerche, Institute for Chemistry of Molecular Recognition, Department of Computational Biology, Milan 20131, Italy
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Catalan Institution for Research and Advanced Studies, Barcelona 08010, Spain
| | - Giorgio Colombo
- Consiglio Nazionale delle Ricerche, Institute for Chemistry of Molecular Recognition, Department of Computational Biology, Milan 20131, Italy.
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Milan 20133, Italy; Consiglio Nazionale delle Ricerche, Institute of Biophysics, University of Milan, Milan 20133, Italy.
| |
Collapse
|
50
|
Higgins KA, Carr CE, Maroney MJ. Specific metal recognition in nickel trafficking. Biochemistry 2012; 51:7816-32. [PMID: 22970729 DOI: 10.1021/bi300981m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering, and incorporating the metal into target enzymes and controlling the levels of nickel in cells to prevent toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.g., Escherichia coli transports nickel for hydrogenases made under anaerobic conditions, and Helicobacter pylori requires nickel for hydrogenase and urease that are essential for acid viability), the "traffic pattern" for nickel is relatively simple, and nickel trafficking therefore presents an opportunity to examine a system for the mechanisms that are used to distinguish nickel from other metals. In this review, we describe the details known for examples of uptake permeases, metallochaperones and proteins involved in metallocenter assembly, and nickel metalloregulators. We also illustrate a variety of mechanisms, including molecular recognition in the case of NikA protein and examples of allosteric regulation for HypA, NikR, and RcnR, employed to generate specific biological responses to nickel ions.
Collapse
Affiliation(s)
- Khadine A Higgins
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|