1
|
Wang Y, Liu L, Gao Y, Zhao J, Liu C, Gong L, Yang Z. Development of a QM/MM(ABEEM) method for the deprotonation of neutral and cation radicals in the G-tetrad and GGX(8-oxo-G) tetrad. Phys Chem Chem Phys 2023; 26:504-516. [PMID: 38084041 DOI: 10.1039/d3cp04357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The rapid deprotonation of G˙+ in the DNA strand impedes positive charge (hole) transfer, whereas the slow deprotonation rate of G˙+ in the G-tetrad makes it a more suitable carrier for hole conduction. The QM/MM(ABEEM) combined method, which involves the integration of QM and the ABEEM polarizable force field (ABEEM PFF), was developed to investigate the deprotonation of neutral and cation free radicals in the G-tetrad and GGX(8-oxo-G) tetrad (xanthine and 8-oxoguanine dual substituted G-tetrad). By incorporating valence-state electronegativity piecewise functions χ*(r) and implementing charge local conservation conditions, QM/MM(ABEEM) possesses the advantage of accurately simulating charge transfer and polarization effect during deprotonation. The activation energy calculated by the QM method of X˙ is the lowest among other bases in the GGX(8-oxo-G) tetrad, which is supported by the computation of the average electronegativity calculated by ABEEM PFF. By utilizing QM/MM(ABEEM) with a two-way free energy perturbation method, the deprotonation activation energy of X˙ in the GGX(8-oxo-G) tetrad is determined to be 33.0 ± 2.1 kJ mol-1, while that of G˙+ in the G-tetrad is 20.7 ± 0.6 kJ mol-1, consistent with the experimental measurement of 20 ± 1.0 kJ mol-1. These results manifest that X˙ in the GGX(8-oxo-G) tetrad exhibits a slower deprotonation rate than G˙+ in the G-tetrad, suggesting that the GGX(8-oxo-G) tetrad may serve as a more favorable hole transport carrier. Furthermore, the unequal average electronegativities of bases in the GGX(8-oxo-G) tetrad impede the deprotonation rate. This study provides a potential foundation for investigating the microscopic mechanism of DNA electronic devices.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Linlin Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Yue Gao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Jiayue Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Lidong Gong
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| | - Zhongzhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.
| |
Collapse
|
2
|
Marquevielle J, De Rache A, Vialet B, Morvan E, Mergny JL, Amrane S. G-quadruplex structure of the C. elegans telomeric repeat: a two tetrads basket type conformation stabilized by a non-canonical C-T base-pair. Nucleic Acids Res 2022; 50:7134-7146. [PMID: 35736226 PMCID: PMC9262591 DOI: 10.1093/nar/gkac523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
The Caenorhabditis elegans model has greatly contributed to the understanding of the role of G-quadruplexes in genomic instability. The GGCTTA repeats of the C. elegans telomeres resemble the GGGTTA repeats of the human telomeres. However, the comparison of telomeric sequences (Homo sapiens, Tetrahymena, Oxytricha, Bombyx mori and Giardia) revealed that small changes in these repeats can drastically change the topology of the folded G-quadruplex. In the present work we determined the structure adopted by the C. elegans telomeric sequence d[GG(CTTAGG)3]. The investigated C. elegans telomeric sequence is shown to fold into an intramolecular two G-tetrads basket type G-quadruplex structure that includes a C-T base pair in the diagonal loop. This work sheds light on the telomeric structure of the widely used C. elegans animal model.
Collapse
Affiliation(s)
- Julien Marquevielle
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Aurore De Rache
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
- Department of Chemistry, UNamur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Brune Vialet
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Jean-Louis Mergny
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Samir Amrane
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA laboratory, 146 rue Léo Saignat F-33000 Bordeaux, France
- Institut Européen de Chimie et Biologie, UMS 3033 US001, CNRS-Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| |
Collapse
|
3
|
Jana J, Mohr S, Vianney YM, Weisz K. Structural motifs and intramolecular interactions in non-canonical G-quadruplexes. RSC Chem Biol 2021; 2:338-353. [PMID: 34458788 PMCID: PMC8341446 DOI: 10.1039/d0cb00211a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Guanine(G)-rich DNA or RNA sequences can assemble or intramolecularly fold into G-quadruplexes formed through the stacking of planar G·G·G·G tetrads in the presence of monovalent cations. These secondary nucleic acid structures have convincingly been shown to also exist within a cellular environment exerting important regulatory functions in physiological processes. For identifying nucleic acid segments prone to quadruplex formation, a putative quadruplex sequence motif encompassing closely spaced tracts of three or more guanosines is frequently employed for bioinformatic search algorithms. Depending on the number and type of intervening residues as well as on solution conditions, such sequences may fold into various canonical G4 topologies with continuous G-columns. On the other hand, a growing number of sequences capable of quadruplex formation feature G-deficient guanine tracts, escaping the conservative consensus motif. By folding into non-canonical quadruplex structures, they adopt unique topologies depending on their specific sequence context. These include G-columns with only two guanines, bulges, snapback loops, D- and V-shaped loops as well as interlocked structures. This review focuses on G-quadruplex species carrying such distinct structural motifs. It evaluates characteristic features of their non-conventional scaffold and highlights principles of stabilizing interactions that also allow for their folding into stable G-quadruplex structures.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of Biochemistry, Universität Greifswald Felix-Hausdorff-Str. 4 D-17487 Greifswald Germany +49 3834 420-4427 +49 3834 420-4426
| | - Swantje Mohr
- Institute of Biochemistry, Universität Greifswald Felix-Hausdorff-Str. 4 D-17487 Greifswald Germany +49 3834 420-4427 +49 3834 420-4426
| | - Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald Felix-Hausdorff-Str. 4 D-17487 Greifswald Germany +49 3834 420-4427 +49 3834 420-4426
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald Felix-Hausdorff-Str. 4 D-17487 Greifswald Germany +49 3834 420-4427 +49 3834 420-4426
| |
Collapse
|
4
|
Haase L, Dickerhoff J, Weisz K. Sugar Puckering Drives G-Quadruplex Refolding: Implications for V-Shaped Loops. Chemistry 2020; 26:524-533. [PMID: 31609483 PMCID: PMC6973071 DOI: 10.1002/chem.201904044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Indexed: 01/04/2023]
Abstract
A DNA G-quadruplex adopting a (3+1) hybrid structure was modified in two adjacent syn positions of the antiparallel strand with anti-favoring 2'-deoxy-2'-fluoro-riboguanosine (F rG) analogues. The two substitutions promoted a structural rearrangement to a topology with the 5'-terminal G residue located in the central tetrad and the two modified residues linked by a V-shaped zero-nucleotide loop. Strikingly, whereas a sugar pucker in the preferred north domain is found for both modified nucleotides, the F rG analogue preceding the V-loop is forced to adopt the unfavored syn conformation in the new quadruplex fold. Apparently, a preferred C3'-endo sugar pucker within the V-loop architecture outweighs the propensity of the F rG analogue to adopt an anti glycosidic conformation. Refolding into a V-loop topology is likewise observed for a sequence modified at corresponding positions with two riboguanosine substitutions. In contrast, 2'-F-arabinoguanosine analogues with their favored south-east sugar conformation do not support formation of the V-loop topology. Examination of known G-quadruplexes with a V-shaped loop highlights the critical role of the sugar conformation for this distinct structural motif.
Collapse
Affiliation(s)
- Linn Haase
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Jonathan Dickerhoff
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
- Present address: Department of Medicinal Chemistry and Molecular PharmacologyCollege of PharmacyPurdue UniversityWest LafayetteIN47907USA
| | - Klaus Weisz
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
5
|
Cheong VV, Heddi B, Lech CJ, Phan AT. Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G·G·X·O tetrad. Nucleic Acids Res 2015; 43:10506-14. [PMID: 26400177 PMCID: PMC4666386 DOI: 10.1093/nar/gkv826] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/28/2015] [Indexed: 01/31/2023] Open
Abstract
G-quadruplexes are four-stranded structures built from stacked G-tetrads (G·G·G·G), which are planar cyclical assemblies of four guanine bases interacting through Hoogsteen hydrogen bonds. A G-quadruplex containing a single guanine analog substitution, such as 8-oxoguanine (O) or xanthine (X), would suffer from a loss of a Hoogsteen hydrogen bond within a G-tetrad and/or potential steric hindrance. We show that a proper arrangement of O and X bases can reestablish the hydrogen-bond pattern within a G·G·X·O tetrad. Rational incorporation of G·G·X·O tetrads in a (3+1) G-quadruplex demonstrated a similar folding topology and thermal stability to that of the unmodified G-quadruplex. pH titration conducted on X·O-modified G-quadruplexes indicated a protonation-deprotonation equilibrium of X with a pKa ∼6.7. The solution structure of a G-quadruplex containing a G·G·X·O tetrad was determined, displaying the same folding topology in both the protonated and deprotonated states. A G-quadruplex containing a deprotonated X·O pair was shown to exhibit a more electronegative groove compared to that of the unmodified one. These differences are likely to manifest in the electronic properties of G-quadruplexes and may have important implications for drug targeting and DNA-protein interactions.
Collapse
Affiliation(s)
- Vee Vee Cheong
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Christopher Jacques Lech
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
6
|
Martadinata H, Phan AT. Formation of a stacked dimeric G-quadruplex containing bulges by the 5'-terminal region of human telomerase RNA (hTERC). Biochemistry 2014; 53:1595-600. [PMID: 24601523 DOI: 10.1021/bi4015727] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the structure formed by the first 18-nt of the 5'-terminal region of the human telomerase RNA (hTERC or hTR) using gel electrophoresis and UV, CD, and NMR spectroscopy. Our data suggest that this 18-nt sequence, r(GGGUUGCGGAGGGUGGGC), can form a stacked dimeric G-quadruplex in potassium solution. The two subunits, each being a three-layer parallel-stranded G-quadruplex with a cytosine bulge, are stacked at their 5'-end. The formation of this stacked dimeric G-quadruplex containing bulges could be biologically relevant for the dimerization and other interactions of the active human telomerase.
Collapse
Affiliation(s)
- Herry Martadinata
- School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371
| | | |
Collapse
|
7
|
Kuryavyi V, Cahoon LA, Seifert HS, Patel DJ. RecA-binding pilE G4 sequence essential for pilin antigenic variation forms monomeric and 5' end-stacked dimeric parallel G-quadruplexes. Structure 2012; 20:2090-102. [PMID: 23085077 PMCID: PMC3845372 DOI: 10.1016/j.str.2012.09.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/07/2012] [Accepted: 09/24/2012] [Indexed: 12/18/2022]
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that can escape immune surveillance through antigenic variation of surface structures such as pili. A G-quadruplex-forming (G4) sequence (5'-G(3)TG(3)TTG(3)TG(3)) located upstream of the N. gonorrhoeae pilin expression locus (pilE) is necessary for initiation of pilin antigenic variation, a recombination-based, high-frequency, diversity-generation system. We have determined NMR-based structures of the all parallel-stranded monomeric and 5' end-stacked dimeric pilE G-quadruplexes in monovalent cation-containing solutions. We demonstrate that the three-layered all parallel-stranded monomeric pilE G-quadruplex containing single-residue double-chain reversal loops, which can be modeled without steric clashes into the 3 nt DNA-binding site of RecA, binds and promotes E. coli RecA-mediated strand exchange in vitro. We discuss how interactions between RecA and monomeric pilE G-quadruplex could facilitate the specialized recombination reactions leading to pilin diversification.
Collapse
Affiliation(s)
- Vitaly Kuryavyi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065
| | - Laty A. Cahoon
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
8
|
Structural probes in quadruplex nucleic acid structure determination by NMR. Molecules 2012; 17:13073-86. [PMID: 23128087 PMCID: PMC6268857 DOI: 10.3390/molecules171113073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022] Open
Abstract
Traditionally, isotope-labelled DNA and RNA have been fundamental to nucleic acid structural studies by NMR. Four-stranded nucleic acid architectures studies increasingly benefit from a plethora of nucleotide conjugates for resonance assignments, the identification of hydrogen bond alignments, and improving the population of preferred species within equilibria. In this paper, we review their use for these purposes. Most importantly we identify reasons for the failure of some modifications to result in quadruplex formation.
Collapse
|
9
|
Adrian M, Heddi B, Phan AT. NMR spectroscopy of G-quadruplexes. Methods 2012; 57:11-24. [DOI: 10.1016/j.ymeth.2012.05.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 12/24/2022] Open
|
10
|
Cang X, Šponer J, Cheatham TE. Explaining the varied glycosidic conformational, G-tract length and sequence preferences for anti-parallel G-quadruplexes. Nucleic Acids Res 2011; 39:4499-512. [PMID: 21296760 PMCID: PMC3105399 DOI: 10.1093/nar/gkr031] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 01/08/2023] Open
Abstract
Guanine-rich DNA sequences tend to form four-stranded G-quadruplex structures. Characteristic glycosidic conformational patterns along the G-strands, such as the 5'-syn-anti-syn-anti pattern observed with the Oxytricha nova telomeric G-quadruplexes, have been well documented. However, an explanation for these featured glycosidic patterns has not emerged. This work presents MD simulation and free energetic analyses for simplified two-quartet [d(GG)](4) models and suggests that the four base pair step patterns show quite different relative stabilities: syn-anti > anti-anti > anti-syn > syn-syn. This suggests the following rule: when folding, anti-parallel G-quadruplexes tend to maximize the number of syn-anti steps and avoid the unfavorable anti-syn and syn-syn steps. This rule is consistent with most of the anti-parallel G-quadruplex structures in the Protein Databank (PDB). Structural polymorphisms of G-quadruplexes relate to these glycosidic conformational patterns and the lengths of the G-tracts. The folding topologies of G2- and G4-tracts are not very polymorphic because each strand tends to populate the stable syn-anti repeat. G3-tracts, on the other hand, cannot present this repeating pattern on each G-tract. This leads to smaller energy differences between different geometries and helps explain the extreme structural polymorphism of the human telomeric G-quadruplexes.
Collapse
Affiliation(s)
- Xiaohui Cang
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, Brno, Czech Republic and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Jiří Šponer
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, Brno, Czech Republic and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, Brno, Czech Republic and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
11
|
Kuryavyi V, Phan AT, Patel DJ. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res 2010; 38:6757-73. [PMID: 20566478 PMCID: PMC2965254 DOI: 10.1093/nar/gkq558] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have demonstrated that nuclease hypersensitivity regions of several proto-oncogenic DNA promoters, situated upstream of transcription start sites, contain guanine-rich tracts that form intramolecular G-quadruplexes stabilized by stacked G•G•G•G tetrads in monovalent cation solution. The human c-kit oncogenic promoter, an important target in the treatment of gastrointestinal tumors, contains two such stretches of guanine-rich tracts, designated c-kit1 and c-kit2. Our previous nuclear magnetic resonance (NMR)-based studies reported on the novel G-quadruplex scaffold of the c-kit1 promoter in K(+)-containing solution, where we showed for the first time that even an isolated guanine was involved in G-tetrad formation. These NMR-based studies are now extended to the c-kit2 promoter, which adopts two distinct all-parallel-stranded conformations in slow exchange, one of which forms a monomeric G-quadruplex (form-I) in 20 mM K(+)-containing solution and the other a novel dimeric G-quadruplex (form-II) in 100 mM K(+)-containing solution. The c-kit2 promoter dimeric form-II G-quadruplex adopts an unprecedented all-parallel-stranded topology where individual c-kit2 promoter strands span a pair of three-G-tetrad-layer-containing all-parallel-stranded G-quadruplexes aligned in a 3' to 5'-end orientation, with stacking continuity between G-quadruplexes mediated by a sandwiched A•A non-canonical pair. We propose that strand exchange during recombination events within guanine-rich segments, could potentially be mediated by a synapsis intermediate involving an intergenic parallel-stranded dimeric G-quadruplex.
Collapse
Affiliation(s)
- Vitaly Kuryavyi
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
12
|
Lim KW, Amrane S, Bouaziz S, Xu W, Mu Y, Patel DJ, Luu KN, Phan AT. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 2009; 131:4301-9. [PMID: 19271707 PMCID: PMC2662591 DOI: 10.1021/ja807503g] [Citation(s) in RCA: 395] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previously, it has been reported that human telomeric DNA sequences could adopt in different experimental conditions four different intramolecular G-quadruplexes each involving three G-tetrad layers, namely, Na(+) solution antiparallel-stranded basket form, K(+) crystal parallel-stranded propeller form, K(+) solution (3 + 1) Form 1, and K(+) solution (3 + 1) Form 2. Here we present a new intramolecular G-quadruplex adopted by a four-repeat human telomeric sequence in K(+) solution (Form 3). This structure is a basket-type G-quadruplex with only two G-tetrad layers: loops are successively edgewise, diagonal, and edgewise; glycosidic conformations of guanines are syn x syn x anti x anti around each tetrad. Each strand of the core has both a parallel and an antiparallel adjacent strands; there are one narrow, one wide, and two medium grooves. Despite the presence of only two G-tetrads in the core, this structure is more stable than the three-G-tetrad intramolecular G-quadruplexes previously observed for human telomeric sequences in K(+) solution. Detailed structural elucidation of Form 3 revealed extensive base pairing and stacking in the loops capping both ends of the G-tetrad core, which might explain the high stability of the structure. This novel structure highlights the conformational heterogeneity of human telomeric DNA. It establishes a new folding principle for G-quadruplexes and suggests new loop sequences and structures for targeting in human telomeric DNA.
Collapse
Affiliation(s)
- Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Samir Amrane
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Serge Bouaziz
- Unité de Pharmacologie Chimique et Génétique, INSERM U640 — CNRS UMR 8151, Université Paris Descartes, France
| | - Weixin Xu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Kim Ngoc Luu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
13
|
Webba da Silva M. NMR methods for studying quadruplex nucleic acids. Methods 2008; 43:264-77. [PMID: 17967697 DOI: 10.1016/j.ymeth.2007.05.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy has traditionally played a central role in examining quadruplex structure, dynamics, and interactions. Here, an overview is given of the methods currently applied to structural, dynamics, thermodynamics, and kinetics studies of nucleic acid quadruplexes and associated cations.
Collapse
Affiliation(s)
- Mateus Webba da Silva
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, UK.
| |
Collapse
|
14
|
|
15
|
Patel DJ, Phan AT, Kuryavyi V. Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res 2007; 35:7429-55. [PMID: 17913750 PMCID: PMC2190718 DOI: 10.1093/nar/gkm711] [Citation(s) in RCA: 751] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Guanine-rich DNA sequences can form G-quadruplexes stabilized by stacked G–G–G–G tetrads in monovalent cation-containing solution. The length and number of individual G-tracts and the length and sequence context of linker residues define the diverse topologies adopted by G-quadruplexes. The review highlights recent solution NMR-based G-quadruplex structures formed by the four-repeat human telomere in K+ solution and the guanine-rich strands of c-myc, c-kit and variant bcl-2 oncogenic promoters, as well as a bimolecular G-quadruplex that targets HIV-1 integrase. Such structure determinations have helped to identify unanticipated scaffolds such as interlocked G-quadruplexes, as well as novel topologies represented by double-chain-reversal and V-shaped loops, triads, mixed tetrads, adenine-mediated pentads and hexads and snap-back G-tetrad alignments. The review also highlights the recent identification of guanine-rich sequences positioned adjacent to translation start sites in 5′-untranslated regions (5′-UTRs) of RNA oncogenic sequences. The activity of the enzyme telomerase, which maintains telomere length, can be negatively regulated through G-quadruplex formation at telomeric ends. The review evaluates progress related to ongoing efforts to identify small molecule drugs that bind and stabilize distinct G-quadruplex scaffolds associated with telomeric and oncogenic sequences, and outlines progress towards identifying recognition principles based on several X-ray-based structures of ligand–G-quadruplex complexes.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | |
Collapse
|
16
|
Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 2006; 34:2723-35. [PMID: 16714449 PMCID: PMC1464114 DOI: 10.1093/nar/gkl348] [Citation(s) in RCA: 923] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 04/04/2006] [Accepted: 04/19/2006] [Indexed: 11/23/2022] Open
Abstract
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. However, knowledge of the intact human telomeric G-quadruplex structure(s) formed under physiological conditions is a prerequisite for structure-based rational drug design. Here we report the folding structure of the human telomeric sequence in K+ solution determined by NMR. Our results demonstrate a novel, unprecedented intramolecular G-quadruplex folding topology with hybrid-type mixed parallel/antiparallel G-strands. This telomeric G-quadruplex structure contains three G-tetrads with mixed G-arrangements, which are connected consecutively with a double-chain-reversal side loop and two lateral loops, each consisting of three nucleotides TTA. This intramolecular hybrid-type telomeric G-quadruplex structure formed in K+ solution is distinct from those reported on the 22 nt Tel22 in Na+ solution and in crystalline state in the presence of K+, and appears to be the predominant conformation for the extended 26 nt telomeric sequence Tel26 in the presence of K+, regardless of the presence or absence of Na+. Furthermore, the addition of K+ readily converts the Na+-form conformation to the K+-form hybrid-type G-quadruplex. Our results explain all the reported experimental data on the human telomeric G-quadruplexes formed in the presence of K+, and provide important insights for understanding the polymorphism and interconversion of various G-quadruplex structures formed within the human telomeric sequence, as well as the effects of sequence and cations. This hybrid-type G-quadruplex topology suggests a straightforward pathway for the secondary structure formation with effective packing within the extended human telomeric DNA. The hybrid-type telomeric G-quadruplex is most likely to be of pharmacological relevance, and the distinct folding topology of this G-quadruplex suggests that it can be specifically targeted by G-quadruplex interactive small molecule drugs.
Collapse
Affiliation(s)
- Attila Ambrus
- College of Pharmacy, The University of Arizona1703 E. Mabel St, Tucson, AZ 85721, USA
| | - Ding Chen
- College of Pharmacy, The University of Arizona1703 E. Mabel St, Tucson, AZ 85721, USA
| | - Jixun Dai
- College of Pharmacy, The University of Arizona1703 E. Mabel St, Tucson, AZ 85721, USA
| | - Tiffanie Bialis
- Arizona Cancer Center1515 N. Campbell Avenue, Tucson, AZ 85724, USA
| | - Roger A. Jones
- Department of Chemistry and Chemical Biology, Rutgers University610 Taylor Road, Piscataway, NJ 08854, USA
| | - Danzhou Yang
- College of Pharmacy, The University of Arizona1703 E. Mabel St, Tucson, AZ 85721, USA
- Arizona Cancer Center1515 N. Campbell Avenue, Tucson, AZ 85724, USA
| |
Collapse
|
17
|
Phan AT, Kuryavyi V, Gaw HY, Patel DJ. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat Chem Biol 2005; 1:167-73. [PMID: 16408022 PMCID: PMC4690526 DOI: 10.1038/nchembio723] [Citation(s) in RCA: 426] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 06/24/2005] [Indexed: 12/29/2022]
Abstract
It has been widely accepted that DNA can adopt other biologically relevant structures beside the Watson-Crick double helix. One recent important example is the guanine-quadruplex (G-quadruplex) structure formed by guanine tracts found in the MYC (or c-myc) promoter region, which regulates the transcription of the MYC oncogene. Stabilization of this G-quadruplex by ligands, such as the cationic porphyrin TMPyP4, decreases the transcriptional level of MYC. Here, we report the first structure of a DNA fragment containing five guanine tracts from this region. An unusual G-quadruplex fold, which was derived from NMR restraints using unambiguous model-independent resonance assignment approaches, involves a core of three stacked guanine tetrads formed by four parallel guanine tracts with all anti guanines and a snapback 3'-end syn guanine. We have determined the structure of the complex formed between this G-quadruplex and TMPyP4. This structural information, combined with details of small-molecule interaction, provides a platform for the design of anticancer drugs targeting multi-guanine-tract sequences that are found in the MYC and other oncogenic promoters, as well as in telomeres.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
18
|
Escaja N, Gelpí JL, Orozco M, Rico M, Pedroso E, González C. Four-stranded DNA structure stabilized by a novel G:C:A:T tetrad. J Am Chem Soc 2003; 125:5654-62. [PMID: 12733903 DOI: 10.1021/ja0344157] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solution structure of a cyclic oligonucleotide d<pCGCTCATT> has been determined by two-dimensional NMR spectroscopy and restrained molecular dynamics. Under the appropriate experimental conditions, this molecule self-associates, forming a symmetric dimer stabilized by four intermolecular Watson-Crick base pairs. The resulting four-stranded structure consists of two G:C:A:T tetrads, formed by facing the minor groove side of the Watson-Crick base-pairs. Most probably, the association of the base-pairs is stabilized by coordinating a Na(+) cation. This is the first time that this novel G:C:A:T tetrad has been found in an oligonucleotide structure. This observation increases considerably the number of sequences that may adopt a four-stranded architecture. Overall, the three-dimensional structure is similar to those observed previously in other quadruplexes formed by minor groove alignment of Watson-Crick base pairs. This resemblance strongly suggests that we may be observing a general motif for DNA-DNA recognition.
Collapse
Affiliation(s)
- Núria Escaja
- Departament de Química Orgànica, Universitat de Barcelona, C/, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Hovorun DM. Auxiliary elements of mammalian pre-mRNAs polyadenylation signals. ACTA ACUST UNITED AC 2002. [DOI: 10.7124/bc.00062e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - D. M. Hovorun
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|
20
|
Liu H, Kugimiya A, Sakurai T, Katahira M, Uesugi S. A comparison of the properties and the solution structure for RNA and DNA quadruplexes which contain two GGAGG sequences joined with a tetranucleotide linker. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2002; 21:785-801. [PMID: 12537021 DOI: 10.1081/ncn-120016481] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5'G(syn)-G(anti)3', and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.
Collapse
Affiliation(s)
- Hui Liu
- Department of Environment and Natural Sciences, Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | | | | | | | | |
Collapse
|
21
|
Crnugelj M, Hud NV, Plavec J. The solution structure of d(G(4)T(4)G(3))(2): a bimolecular G-quadruplex with a novel fold. J Mol Biol 2002; 320:911-24. [PMID: 12126614 DOI: 10.1016/s0022-2836(02)00569-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The G-rich 11-mer oligonucleotide d(G(4)T(4)G(3)) forms a bimolecular G-quadruplex in the presence of sodium ions with a topology that is distinct from the folds of the closely related and well-characterized sequences d(G(4)T(4)G(4)) and d(G(3)T(4)G(3)). The solution structure of d(G(4)T(4)G(3))(2) has been determined using a combination of NMR spectroscopy and restrained molecular dynamics calculations. d(G(4)T(4)G(3))(2) forms an asymmetric dimeric fold-back structure consisting of three stacked G-quartets. The two T(4) loops that span diagonally across the outer faces of the G-quartets assume different conformations. The glycosidic torsion angle conformations of the guanine bases are 5'-syn-anti-syn-anti-(T(4) loop)-anti-syn-anti in one strand and 5'-syn-anti-syn-anti-(T(4) loop)-syn-anti-syn in the other strand. The guanine bases of the two outer G-quartets exhibit a clockwise donor-acceptor hydrogen-bonding directionality, while those of the middle G-quartet exhibit the anti-clockwise directionality. The topology of this G-quadruplex, like other bimolecular fold-back structures with diagonal loops, places each strand of the G-quartet region next to a neighboring parallel and an anti-parallel strand. The two guanine residues not involved in G-quartet formation, G4 and G12 (i.e. the fourth guanine base of one strand and the first guanine base of the other strand), adopt distinct conformations. G4 is stacked on top of an adjacent G-quartet, and this base-stacking continues along with the bases of the loop residues T5 and T6. G12 is orientated away from the core of G-quartets; stacked on the T7 base and apparently involved in hydrogen-bonding interactions with the phosphodiester group of this same residue. The cation-dependent folding of the d(G(4)T(4)G(3))(2) quadruplex structure is distinct from that observed for similar sequences. While both d(G(4)T(4)G(4)) and d(G(3)T(4)G(3)) form bimolecular, diagonally looped G-quadruplex structures in the presence of Na(+), K(+) and NH(4)(+), we have observed this folding to be favored for d(G(4)T(4)G(3)) in the presence of Na(+), but not in the presence of K(+) or NH(4)(+). The structure of d(G(4)T(4)G(3))(2) exhibits a "slipped-loop" element that is similar to what has been proposed for structural intermediates in the folding pathway of some G-quadruplexes, and therefore provides support for the feasibility of these proposed transient structures in G-quadruplex formation.
Collapse
Affiliation(s)
- Martin Crnugelj
- NMR center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
22
|
Abstract
Hydrogen-bonded base pairs are an important determinant of nucleic acid structure and function. However, other interactions such as base-base stacking, base-backbone, and backbone-backbone interactions as well as effects exerted by the solvent and by metal or NH(4)(+) ions also have to be taken into account. In addition, hydrogen-bonded base complexes involving more than two bases can occur. With the rapidly increasing number and structural diversity of nucleic acid structures known at atomic detail higher-order hydrogen-bonded base complexes, base polyads, have attracted much interest. This review provides an overview on the occurrence of base polyads in nucleic acid structures and describes computational studies on these nucleic acid building blocks.
Collapse
Affiliation(s)
- J Sühnel
- Biocomputing Group, Institut für Molekulare Biotechnologie, Postfach 100813, D-07708 Jena, Germany
| |
Collapse
|
23
|
Abstract
DNA oligonucleotides that have repetitive tracts of guanine bases can form G-quadruplex structures that display an amazing polymorphism. Structures of several new G-quadruplexes have been solved recently that greatly expand the known structural motifs observed in nucleic acid quadruplexes. Base triads, base hexads, and quartets that contain cytosine have recently been identified stacked over the familiar G-quartets. The current status of the diverse array of structural features in quadruplexes is described and used to provide insight into the polymorphism and folding pathways. This review also summarizes recent progress in the techniques used to probe the structures of G-quadruplexes and discusses the role of ion binding in quadruplex formation. Several of the quadruplex structures featured in this review can be accessed in the online version of this review as CHIME representations.
Collapse
Affiliation(s)
- M A Keniry
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
24
|
Zhang N, Gorin A, Majumdar A, Kettani A, Chernichenko N, Skripkin E, Patel DJ. Dimeric DNA quadruplex containing major groove-aligned A-T-A-T and G-C-G-C tetrads stabilized by inter-subunit Watson-Crick A-T and G-C pairs. J Mol Biol 2001; 312:1073-88. [PMID: 11580251 DOI: 10.1006/jmbi.2001.5002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report on an NMR study of unlabeled and uniformly 13C,15N-labeled d(GAGCAGGT) sequence in 1 M NaCl solution, conditions under which it forms a head-to-head dimeric quadruplex containing sequentially stacked G-C-G-C, G-G-G-G and A-T-A-T tetrads. We have identified, for the first time, a slipped A-T-A-T tetrad alignment, involving recognition of Watson-Crick A-T pairs along the major groove edges of opposing adenine residues. Strikingly, both Watson-Crick G-C and A-T pairings within the direct G-C-G-C and slipped A-T-A-T tetrads, respectively, occur between rather than within hairpin subunits of the dimeric d(GAGCAGGT) quadruplex. The hairpin turns in the head-to-head dimeric quadruplex involve single adenine residues and adds to our knowledge of chain reversal involving edgewise loops in DNA quadruplexes. Our structural studies, together with those from other laboratories, definitively establish that DNA quadruplex formation is not restricted to G(n) repeat sequences, with their characteristic stacked uniform G-G-G-G tetrad architectures. Rather, the quadruplex fold is a more versatile and robust architecture, accessible to a range of mixed sequences, with the potential to facilitate G-C-G-C and A-T-A-T tetrad through major and minor groove alignment, in addition to G-G-G-G tetrad formation. The definitive experimental identification of such major groove-aligned mixed A-T-A-T and G-C-G-C tetrads within a quadruplex scaffold, has important implications for the potential alignment of duplex segments during homologous recombination.
Collapse
Affiliation(s)
- N Zhang
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
A series of DNA heptadecamers containing the DNA analogues of RNA E-like 5'-d(GXA)/(AYG)-5' motifs (X/Y is complementary T/A, A/T, C/G, or G/C pair) were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers reveal excellent resolution in NMR spectra and exhibit many unusual nuclear Overhauser effects (NOEs) that allow for good characterization of an unusual zipper-like conformation with zipper-like Watson-Crick base-pairs; the potential canonical X.Y H-bonding is not present, and the central X/Y pairs are transformed instead into inter-strand stacks that are bracketed by sheared G.A base-pairs. Such phenomenal structural change is brought about mainly through two backbone torsional angle adjustments, i.e. delta from C2'-endo to C3'-endo for the sugar puckers of unpaired residues and gamma from gauche(+) to trans for the following 3'-adenosine residues. Such motifs are analogous to the previously studied (GGA)(2) motif presumably present in the human centromeric (TGGAA)(n) tandem repeat sequence. The novel zipper-like motifs are only 4-7 deg. C less stable than the (GGA)(2) motif, suggesting that inter-strand base stacking plays an important role in stabilizing unusual nucleic acid structures. The discovery that canonical Watson-Crick G.C or A.T hydrogen-bonded pairs can be transformed into stacking pairs greatly increases the repertoire for unusual nucleic acid structural motifs.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan.
| | | |
Collapse
|
26
|
Zhang N, Gorin A, Majumdar A, Kettani A, Chernichenko N, Skripkin E, Patel DJ. V-shaped scaffold: a new architectural motif identified in an A x (G x G x G x G) pentad-containing dimeric DNA quadruplex involving stacked G(anti) x G(anti) x G(anti) x G(syn) tetrads. J Mol Biol 2001; 311:1063-79. [PMID: 11531340 DOI: 10.1006/jmbi.2001.4916] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the results of an NMR study of unlabeled and uniformly (13)C,(15)N-labeled d(G(3)AG(2)T(3)G(3)AT) in 100 mM NaCl, conditions under which it forms a dimeric quadruplex containing several new topological features. The DNA oligomer chain in each symmetry-related monomer subunit undergoes three sharp turns to form a compact domain, with all the purine bases involved in pairing alignments. The first turn is of the double chain reversal type, the second is of the edgewise type, and the third represents a new alignment, the V-shaped type. Each monomer of the dimeric quadruplex contains two stacked G(anti) x G(anti) x G(anti) x G(syn) tetrads, one of which forms a newly identified A x (G x G x G x G) pentad, through sheared G.A mismatch formation. There is a break in one of the four G-G columns that link adjacent G x G x G x G tetrads within each monomer. This architectural interruption is compensated by a new topological feature of quadruplex architecture, the V-shaped scaffold. The missing G-G column results in an opening that could facilitate insertion of planar ligands into the quadruplex. The dimeric interface contains stacked A.(G.G.G.G) pentads, with each pentad containing four bases from one monomer and a syn G1 from the partner monomer. Several potential ligand-binding pockets, positioned towards either end of the folded architecture, were identifiable in a surface view of the solution structure of the dimeric d(G(3)AG(2)T(3)G(3)AT) quadruplex.
Collapse
Affiliation(s)
- N Zhang
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Kuryavyi V, Majumdar A, Shallop A, Chernichenko N, Skripkin E, Jones R, Patel DJ. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple. J Mol Biol 2001; 310:181-94. [PMID: 11419945 DOI: 10.1006/jmbi.2001.4759] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher-order DNA architectures. Further, these two small unimolecular G-quadruplexes, which are distinct from each other and from parallel-stranded G-quadruplexes, provide novel targets for ligand recognition. Our results demonstrate that the double chain reversal loop connectivity identified previously by our laboratory within the Tetrahymena telomere d(T2G4)4 quadruplex, is a robust folding topology, since it has now also been observed within the d(G2T4G2CAG2GT4G2T) quadruplex. The identification of a G-(T-T) triad and a T-T-T triple, expands on the available recognition alignments for base triads and triples.
Collapse
Affiliation(s)
- V Kuryavyi
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kettani A, Basu G, Gorin A, Majumdar A, Skripkin E, Patel DJ. A two-stranded template-based approach to G.(C-A) triad formation: designing novel structural elements into an existing DNA framework. J Mol Biol 2000; 301:129-46. [PMID: 10926497 DOI: 10.1006/jmbi.2000.3932] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have designed a DNA sequence, d(G-G-G-T-T-C-A-G-G), which dimerizes to form a 2-fold symmetric G-quadruplex in which G(syn). G(anti).G(syn).G(anti) tetrads are sandwiched between all trans G. (C-A) triads. The NMR-based solution structural analysis was greatly aided by monitoring hydrogen bond alignments across N-H...N and N-H...O==C hydrogen bonds within the triad and tetrad, in a uniformly ((13)C,(15)N)-labeled sample of the d(G-G-G-T-T-C-A-G-G) sequence. The solution structure establishes that the guanine base-pairs with the cytosine through Watson-Crick G.C pair formation and with adenine through sheared G.A mismatch formation within the G.(C-A) triad. A model of triad DNA was constructed that contains the experimentally determined G.(C-A) triad alignment as the repeating stacked unit.
Collapse
Affiliation(s)
- A Kettani
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kettani A, Gorin A, Majumdar A, Hermann T, Skripkin E, Zhao H, Jones R, Patel DJ. A dimeric DNA interface stabilized by stacked A.(G.G.G.G).A hexads and coordinated monovalent cations. J Mol Biol 2000; 297:627-44. [PMID: 10731417 DOI: 10.1006/jmbi.2000.3524] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report on the identification of an A.(G.G.G.G).A hexad pairing alignment which involves recognition of the exposed minor groove of opposing guanines within a G.G.G.G tetrad through sheared G.A mismatch formation. This unexpected hexad pairing alignment was identified for the d(G-G-A-G-G-A-G) sequence in 150 mM Na(+) (or K(+)) cation solution where four symmetry-related strands align into a novel dimeric motif. Each symmetric half of the dimeric "hexad" motif is composed of two strands and contains a stacked array of an A.(G.G.G.G).A hexad, a G.G.G.G tetrad, and an A.A mismatch. Each strand in the hexad motif contains two successive turns, that together define an S-shaped double chain reversal fold, which connects the two G-G steps aligned parallel to each other along adjacent edges of the quadruplex. Our studies also establish a novel structural transition for the d(G-G-A-G-G-A-N) sequence, N=T and G, from an "arrowhead" motif stabilized through cross-strand stacking and mismatch formation in 10 mM Na(+) solution (reported previously), to a dimeric hexad motif stabilized by extensive inter-subunit stacking of symmetry-related A.(G.G.G.G).A hexads in 150 mM Na(+) solution. Potential monovalent cation binding sites within the arrowhead and hexad motifs have been probed by a combination of Brownian dynamics and unconstrained molecular dynamics calculations. We could not identify stable monovalent cation-binding sites in the low salt arrowhead motif. By contrast, five electronegative pockets were identified in the moderate salt dimeric hexad motif. Three of these are involved in cation binding sites sandwiched between G.G.G. G tetrad planes and two others, are involved in water-mediated cation binding sites spanning the unoccupied grooves associated with the adjacent stacked A.(G.G.G.G).A hexads. Our demonstration of A.(G. G.G.G).A hexad formation opens opportunities for the design of adenine-rich G-quadruplex-interacting oligomers that could potentially target base edges of stacked G.G.G.G tetrads. Such an approach could complement current efforts to design groove-binding and intercalating ligands that target G-quadruplexes in attempts designed to block the activity of the enzyme telomerase.
Collapse
Affiliation(s)
- A Kettani
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|