1
|
Sharma K, Rai P, Maurya SK, Tapadia MG. Anti-diabetic drug pioglitazone reduces Islet amyloid aggregation overload in the Drosophila neuronal cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6031-6041. [PMID: 39636405 DOI: 10.1007/s00210-024-03632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Amyloid-proteinopathy is observed in type 2 diabetes, where Islet amyloid polypeptide is secreted atypically and impedes cellular homeostasis. The thiazolidinediones family is reported to influence amyloid-beta aggregations. However, research on drug-based stimulation of insulin signaling to alleviate Islet amyloid aggregations is lacking. To understand the impact of pioglitazone on islet amyloid aggregation, we conducted an in vivo and in silico analysis. For in vivo analysis, we generated a transgenic Drosophila harboring the preproform of human Islet amyloid polypeptide (IAPP) that can be ectopically expressed in a spatio-temporal manner. We show that the unprocessed form of IAPP also has the propensity to form aggregates and cause degeneration. Pioglitazone feeding effectively reduces the burden of Islet amyloid aggregations in the larval brain. In silico analysis shows that there is a higher protein-ligand binding energy for IAPP with pioglitazone than amyloid-beta. These results suggests that pioglitazone might be repurposed as a drug to cure islet amyloidogenesis.
Collapse
Affiliation(s)
- Khushboo Sharma
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pooja Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Madhu G Tapadia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
López-García P, Tejero-Ojeda MM, Vaquero ME, Carrión-Vázquez M. Current amyloid inhibitors: Therapeutic applications and nanomaterial-based innovations. Prog Neurobiol 2025; 247:102734. [PMID: 40024279 DOI: 10.1016/j.pneurobio.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Amyloid proteins have long been in the spotlight for being involved in many degenerative diseases including Alzheimer´s, Parkinson´s or type 2 diabetes, which currently cannot be prevented and for which there is no effective treatment or cure. Here we provide a comprehensive review of inhibitors that act directly on the amyloidogenic pathway (at the monomer, oligomer or fibril level) of key pathological amyloids, focusing on the most representative amyloid-related diseases. We discuss the latest advances in preclinical and clinical trials, focusing on cutting-edge developments, particularly on nanomaterials-based inhibitors, which offer unprecedented opportunities to address the complexity of protein misfolding disorders and are revolutionizing the landscape of anti-amyloid therapeutics. Notably, nanomaterials are impacting critical areas such as bioavailability, penetrability and functionality of compounds currently used in biomedicine, paving the way for more specific therapeutic solutions tailored to various amyloid-related diseases. Finally, we highlight the window of opportunity opened by comparative analysis with so-called functional amyloids for the development of innovative therapeutic approaches for these devastating diseases.
Collapse
|
3
|
Hong S, Baravkar SB, Lu Y, Masoud AR, Zhao Q, Zhou W. Molecular Modification of Queen Bee Acid and 10-Hydroxydecanoic Acid with Specific Tripeptides: Rational Design, Organic Synthesis, and Assessment for Prohealing and Antimicrobial Hydrogel Properties. Molecules 2025; 30:615. [PMID: 39942719 PMCID: PMC11819776 DOI: 10.3390/molecules30030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Royal jelly and medical grade honey are traditionally used in treating wounds and infections, although their effectiveness is often variable and insufficient. To overcome their limitations, we created novel amphiphiles by modifying the main reparative and antimicrobial components, queen bee acid (hda) and 10-hydroxyl-decanoic acid (hdaa), through peptide bonding with specific tripeptides. Our molecular design incorporated amphiphile targets as being biocompatible in wound healing, biodegradable, non-toxic, hydrogelable, prohealing, and antimicrobial. The amphiphilic molecules were designed in a hda(hdaa)-aa1-aa2-aa3 structural model with rational selection criteria for each moiety, prepared via Rink/Fmoc-tBu-based solid-phase peptide synthesis, and structurally verified by NMR and LC-MS/MS. We tested several amphiphiles among those containing moieties of hda or hdaa and isoleucine-leucine-aspartate (ILD-amidated) or IL-lysine (ILK-NH2). These tests were conducted to evaluate their prohealing and antimicrobial hydrogel properties. Our observation of their hydrogelation and hydrogel-rheology showed that they can form hydrogels with stable elastic moduli and injectable shear-thinning properties, which are suitable for cell and tissue repair and regeneration. Our disc-diffusion assay demonstrated that hdaa-ILK-NH2 markedly inhibited Staphylococcus aureus. Future research is needed to comprehensively evaluate the prohealing and antimicrobial properties of these novel molecules modified from hda and hdaa with tripeptides.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA
| | - Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70115, USA;
| | - Weilie Zhou
- Department of Physics and AMRI, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
4
|
Unnikrishnan AC, Das BK, Saveri P, Mani E, Deshpande AP, Shanmugam G. Efficiency Enhancement in Peptide Hydrogelators: The Crucial Role of Side Chain Hydrogen Bonding Over Aromatic π-π Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24405-24418. [PMID: 39446343 DOI: 10.1021/acs.langmuir.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Short peptide assemblies that form supramolecular hydrogels are stabilized by both intermolecular noncovalent interactions among amino acid side chains and hydrogen bonding between peptide backbone amides. Previous research has emphasized the inclusion of aromatic amino acids in short peptide sequences, positing that aromatic π-π interactions contribute significantly to inducing efficient hydrogelation i.e., at low minimum gelation concentrations (MGCs). However, herein, we demonstrate that additional hydrogen bonding interactions from amino acid side chains play a more pivotal role in the efficiency of peptide hydrogelation compared to aromatic π-π interactions. We investigated two sets of Fluorenylmethoxycarbonyl (Fmoc)-functionalized α-synuclein and human islet amyloid peptide fragments [Fmoc-NVGGAVVT (Syn-N) and Fmoc-NFGAIL (IAP-N)], substituting asparagine (N) with phenylalanine (Syn-F/IAP-F), alanine (Syn-A/IAP-A), and glutamine (Syn-Q/IAP-Q). This allowed us to explore the effects of aromatic (π-system), aliphatic (hydrophobic), and hydrogen bonding effects with varying chain lengths on hydrogel formation. Our results reveal that Syn-N and Syn-Q exhibit MGC of 0.03 and 0.05 wt %, respectively, classifying them as super hydrogelators (MGC < 0.1 wt %). These values are 4.0-6.6-fold lower than Syn-F and Syn-A, with Syn-N demonstrating greater efficiency than Syn-Q. Similarly, IAP-N exhibited a substantial decrease in MGC by 8.75, 3.75, and 2.5 folds compared to IAP-A, IAP-F, and IAP-Q, respectively. Experimental evidence and molecular dynamic simulation suggest that -CO-NH2 of asparagine side chains effectively engaged in hydrogen bonding, thereby immobilizing water molecules at low gelator concentrations. Although glutamine shares similar -CO-NH2 functionality, its hydrogelation efficiency is less pronounced compared to asparagine, likely due to its longer alkyl chain, which may hinder the formation of a hydrogen bonding network in the self-assembled structure compared to asparagine-containing peptides. These findings offer valuable insights for designing efficient peptide hydrogelators or lowering MGCs by substituting amino acids with asparagine/glutamine in peptide sequences. Additionally, modifying peptide properties through asparagine/glutamine substitution could optimize hydrogel properties for specific applications.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic and Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bratin Kumar Das
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Puchalapalli Saveri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Ethayaraja Mani
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India
| | - Ganesh Shanmugam
- Organic and Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Cai J, Zhao J, Bin Y, Xia J, Zheng C. iAmyP: A Multi-view Learning for Amyloidogenic Hexapeptides Identification Based on Sequence Least Squares Programming. Interdiscip Sci 2024:10.1007/s12539-024-00666-3. [PMID: 39546159 DOI: 10.1007/s12539-024-00666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
The development of peptide drug is hindered by the risk of amyloidogenic aggregation; if peptides tend to aggregate in this manner, they may be unsuitable for drug design. Computational methods aimed at predicting amyloidogenic sequences often face challenges in extracting high-quality features, and their predictive performance can be enchanced. To surmount these challenges, iAmyP was introduced as a specialized computational tool designed for predicting amyloidogenic hexapeptides. Utilizing multi-view learning, iAmyP incorporated sequence, structural, and evolutionary features, performing feature selection and feature fusion through recursive feature elimination and attention mechanisms. This amalgamation of features and subsequent feature selection and fusion lead to optimal performance facilitated by an optimization algorithm based on sequence least squares programming. Notably, iAmyP exhibited robust generalization for peptides with lengths of 7-10 amino acids. The role of hydrophobic amino acids in the aggregation process is critical, and a thorough analysis have significantly enhanced our insight into their significance in amyloidogenic hexapeptides. This tool represented an advancement in the development of peptide therapeutics by providing an understanding of amyloidogenic aggregation, establishing itself as a valuable framework for assessing amyloidogenic sequences. The data and code can be freely accessed at https://github.com/xialab-ahu/iAmyP .
Collapse
Affiliation(s)
- Jinling Cai
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, China
| | - Jianping Zhao
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, China.
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and School of Artificial Intelligence, Anhui University, Hefei, 230601, China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Junfeng Xia
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Chunhou Zheng
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and School of Artificial Intelligence, Anhui University, Hefei, 230601, China.
| |
Collapse
|
6
|
Bilog M, Vedad J, Capadona C, Profit AA, Desamero RZB. Key charged residues influence the amyloidogenic propensity of the helix-1 region of serum amyloid A. Biochim Biophys Acta Gen Subj 2024; 1868:130690. [PMID: 39117048 PMCID: PMC11547331 DOI: 10.1016/j.bbagen.2024.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1-13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1-13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1-13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.
Collapse
Affiliation(s)
- Marvin Bilog
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States; PhD Programs in Biochemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States
| | - Jayson Vedad
- PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States; Chemistry and Biochemistry Department, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York, 11210, United States
| | - Charisse Capadona
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States
| | - Adam A Profit
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States; PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States; PhD Programs in Biochemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States
| | - Ruel Z B Desamero
- Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States; PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States; PhD Programs in Biochemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States.
| |
Collapse
|
7
|
Diaferia C, Gallo E, Cimmino L, Laurenzi V, De Marco A, Morelli G, Stornaiuolo M, Accardo A. Fluorescence of Aggregated Aromatic Peptides for Studying the Kinetics of Aggregation and Hardening of Amyloid-like Structures. Chemistry 2024; 30:e202401998. [PMID: 38962903 DOI: 10.1002/chem.202401998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The capability of amyloid-like peptide fibers to emit intrinsic-fluorescence enables the study of their formation, stability and hardening through time-resolved fluorescence analysis, without the need for additional intercalating dyes. This approach allows the monitoring of amyloid-like peptides aggregation kinetics using minimal sample volumes, and the simultaneous testing of numerous experimental conditions and analytes, offering rapid and reproducible results. The analytical procedure applied to the aromatic hexapeptide F6, alone or derivatized with PEG (polyethylene glycol) moiety of different lengths, suggests that aggregation into large anisotropic structures negatively correlates with initial monomer concentration and relies on the presence of charged N- and C-termini. PEGylation reduces the extent of aggregates hardening, possibly by retaining water, and overall impacts the final structural properties of the aggregates.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, Naples, 80143, Italy
| | - Luca Cimmino
- IRCCS SYNLAB SDN, Via Gianturco 113, Naples, 80143, Italy
| | - Valentina Laurenzi
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| | - Agostino De Marco
- Department of Industrial Engineering - Aerospace Division, University of Naples "Federico II", Via Claudio 21, 80125, Napoli, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| |
Collapse
|
8
|
Dai Z, Ben-Younis A, Vlachaki A, Raleigh D, Thalassinos K. Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry. Biophys Chem 2024; 312:107285. [PMID: 38941872 PMCID: PMC11260546 DOI: 10.1016/j.bpc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Zijie Dai
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Aisha Ben-Younis
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Anna Vlachaki
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Daniel Raleigh
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States.
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
9
|
Sawazaki T, Sasaki D, Sohma Y. Catalysis driven by an amyloid-substrate complex. Proc Natl Acad Sci U S A 2024; 121:e2314704121. [PMID: 38691589 PMCID: PMC11087796 DOI: 10.1073/pnas.2314704121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Amine modification through nucleophilic attack of the amine functionality is a very common chemical transformation. Under biorelevant conditions using acidic-to-neutral pH buffer, however, the nucleophilic reaction of alkyl amines (pKa ≈ 10) is not facile due to the generation of ammonium ions lacking nucleophilicity. Here, we disclose a unique molecular transformation system, catalysis driven by amyloid-substrate complex (CASL), that promotes amine modifications in acidic buffer. Ammonium ions attached to molecules with amyloid-binding capability were activated through deprotonation due to the close proximity to the amyloid catalyst formed by Ac-Asn-Phe-Gly-Ala-Ile-Leu-NH2 (NL6), derived from islet amyloid polypeptide (IAPP). Under the CASL conditions, alkyl amines underwent various modifications, i.e., acylation, arylation, cyclization, and alkylation, in acidic buffer. Crystallographic analysis and chemical modification studies of the amyloid catalysts suggested that the carbonyl oxygen of the Phe-Gly amide bond of NL6 plays a key role in activating the substrate amine by forming a hydrogen bond. Using CASL, selective conversion of substrates possessing equivalently reactive amine functionalities was achieved in catalytic reactions using amyloids. CASL provides a unique method for applying nucleophilic conversion reactions of amines in diverse fields of chemistry and biology.
Collapse
Affiliation(s)
- Taka Sawazaki
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Daisuke Sasaki
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Youhei Sohma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| |
Collapse
|
10
|
Liang X, Andrikopoulos N, Tang H, Wang Y, Ding F, Ke PC. Nanoplastic Stimulates the Amyloidogenesis of Parkinson's Alpha-Synuclein NACore. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308753. [PMID: 37988678 PMCID: PMC10994764 DOI: 10.1002/smll.202308753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Environmental plastic wastes are potential health hazards due to their prevalence as well as their versatility in initiating physical, chemical, and biological interactions and transformations. Indeed, recent research has implicated the adverse effects of micro- and nano-plastics, including their neurotoxicity, yet how plastic particulates may impact the aggregation pathway and toxicity of amyloid proteins pertinent to the pathologies of neurological diseases remains unknown. Here, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) is employed to reveal the polymorphic oligomerization of NACore, a surrogate of alpha-synuclein that is associated with the pathogenesis of Parkinson's disease. These data indicate that the production rate and population of the NACore oligomers are modulated by their exposure to a polystyrene nanoplastic, and these cellular assays further reveal an elevated NACore toxicity in microglial cells elicited by the nanoplastic. These simulations confirm that the nanoplastic-NACore association is promoted by their hydrophobic interactions. These findings are corroborated by an impairment in zebrafish hatching, survival, and development in vivo upon their embryonic exposure to the nanoplastic. Together, this study has uncovered the dynamics and mechanism of amyloidogenesis elevated by a nanoplastic trigger, shedding a new light on the neurological burden of plastic pollution.
Collapse
Affiliation(s)
- Xiufang Liang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Yue Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
11
|
Sharma M, Choudhury S, Babu A, Gupta V, Sengupta D, Ali SA, Dhokne MD, Datusalia AK, Mandal D, Panda JJ. Futuristic Alzheimer's therapy: acoustic-stimulated piezoelectric nanospheres for amyloid reduction. Biomater Sci 2024; 12:1801-1821. [PMID: 38407241 DOI: 10.1039/d3bm01688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The degeneration of neurons due to the accumulation of misfolded amyloid aggregates in the central nervous system (CNS) is a fundamental neuropathology of Alzheimer's disease (AD). It is believed that dislodging/clearing these amyloid aggregates from the neuronal tissues could lead to a potential cure for AD. In the present work, we explored biocompatible polydopamine-coated piezoelectric polyvinylidene fluoride (DPVDF) nanospheres as acoustic stimulus-triggered anti-fibrillating and anti-amyloid agents. The nanospheres were tested against two model amyloidogenic peptides, including the reductionist model-based amyloidogenic dipeptide, diphenylalanine, and the amyloid polypeptide, amyloid beta (Aβ42). Our results revealed that DPVDF nanospheres could effectively disassemble the model peptide-derived amyloid fibrils under suitable acoustic stimulation. In vitro studies also showed that the stimulus activated DPVDF nanospheres could efficiently alleviate the neurotoxicity of FF fibrils as exemplified in neuroblastoma, SHSY5Y, cells. Studies carried out in animal models further validated that the nanospheres could dislodge amyloid aggregates in vivo and also help the animals regain their cognitive behavior. Thus, these acoustic stimuli-activated nanospheres could serve as a novel class of disease-modifying nanomaterials for non-invasive electro-chemotherapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Samraggi Choudhury
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Anand Babu
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Varun Gupta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Dipanjan Sengupta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli-226002, UP, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli-226002, UP, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli-226002, UP, India
| | - Dipankar Mandal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-140306, Punjab, India.
| |
Collapse
|
12
|
Zhou W, O’Neill CL, Ding T, Zhang O, Rudra JS, Lew MD. Resolving the Nanoscale Structure of β-Sheet Peptide Self-Assemblies Using Single-Molecule Orientation-Localization Microscopy. ACS NANO 2024; 18:8798-8810. [PMID: 38478911 PMCID: PMC11025465 DOI: 10.1021/acsnano.3c11771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Synthetic peptides that self-assemble into cross-β fibrils are versatile building blocks for engineered biomaterials due to their modularity and biocompatibility, but their structural and morphological similarities to amyloid species have been a long-standing concern for their translation. Further, their polymorphs are difficult to characterize by using spectroscopic and imaging techniques that rely on ensemble averaging to achieve high resolution. Here, we utilize Nile red (NR), an amyloidophilic fluorogenic probe, and single-molecule orientation-localization microscopy (SMOLM) to characterize fibrils formed by the designed amphipathic enantiomers KFE8L and KFE8D and the pathological amyloid-beta peptide Aβ42. Importantly, NR SMOLM reveals the helical (bilayer) ribbon structure of both KFE8 and Aβ42 and quantifies the precise tilt of the fibrils' inner and outer backbones in relevant buffer conditions without the need for covalent labeling or sequence mutations. SMOLM also distinguishes polymorphic branched and curved morphologies of KFE8, whose backbones exhibit much more heterogeneity than those of typical straight fibrils. Thus, SMOLM is a powerful tool to interrogate the structural differences and polymorphism between engineered and pathological cross-β-rich fibrils.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Conor L. O’Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Tianben Ding
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Jai S. Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| |
Collapse
|
13
|
Sawazaki T, Sohma Y. Modular synthetic strategy for N/C-terminal protected amyloidogenic peptides. J Pept Sci 2024; 30:e3546. [PMID: 37704427 DOI: 10.1002/psc.3546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
N/C-terminal protected amyloidogenic peptides are valuable biomaterials. Optimization of the protective structures at both termini is, however, synthetically laborious because a linear sequence of solid-phase peptide synthesis protocol (on-resin peptide assembly/peptide removal from resin/high-performance liquid chromatography purification) is required for the peptides each time the protective group is modified. In this study, we demonstrate a modular synthetic strategy for the purpose of rapidly deriving the N/C-terminal structures of amyloidogenic peptides. The precursor sequences that can be easily synthesized due to a non-amyloidogenic property were stocked as the synthetic intermediates. Condensation of the intermediates with N/C-terminal units in a liquid phase followed by high-performance liquid chromatography purification gave the desired peptides P1-P8. The amyloidogenic peptides that have various N/C-terminal protective structures were therefore synthesized in a labor-effective manner. This method is suggested to be useful for synthesizing amyloidogenic peptides possessing divergent protective structures at the N/C-terminus.
Collapse
Affiliation(s)
- Taka Sawazaki
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Youhei Sohma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
14
|
Thurber KR, Yau WM, Tycko R. Structure of Amyloid Peptide Ribbons Characterized by Electron Microscopy, Atomic Force Microscopy, and Solid-State Nuclear Magnetic Resonance. J Phys Chem B 2024; 128:1711-1723. [PMID: 38348474 PMCID: PMC11423861 DOI: 10.1021/acs.jpcb.3c07867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Polypeptides often self-assemble to form amyloid fibrils, which contain cross-β structural motifs and are typically 5-15 nm in width and micrometers in length. In many cases, short segments of longer amyloid-forming protein or peptide sequences also form cross-β assemblies but with distinctive ribbon-like morphologies that are characterized by a well-defined thickness (on the order of 5 nm) in one lateral dimension and a variable width (typically 10-100 nm) in the other. Here, we use a novel combination of data from solid-state nuclear magnetic resonance (ssNMR), dark-field transmission electron microscopy (TEM), atomic force microscopy (AFM), and cryogenic electron microscopy (cryoEM) to investigate the structures within amyloid ribbons formed by residues 14-23 and residues 11-25 of the Alzheimer's disease-associated amyloid-β peptide (Aβ14-23 and Aβ11-25). The ssNMR data indicate antiparallel β-sheets with specific registries of intermolecular hydrogen bonds. Mass-per-area values are derived from dark-field TEM data. The ribbon thickness is determined from AFM images. For Aβ14-23 ribbons, averaged cryoEM images show a periodic spacing of β-sheets. The combined data support structures in which the amyloid ribbon growth direction is the direction of intermolecular hydrogen bonds between β-strands, the ribbon thickness corresponds to the width of one β-sheet (i.e., approximately the length of one molecule), and the variable ribbon width is a variable multiple of the thickness of one β-sheet (i.e., a multiple of the repeat distance in a stack of β-sheets). This architecture for a cross-β assembly may generally exist within amyloid ribbons.
Collapse
Affiliation(s)
- Kent R. Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| |
Collapse
|
15
|
Mukherjee S, Sundarapandian A, Ayyadurai N, Shanmugam G. Collagen Mimicry with a Short Collagen Model Peptide. Macromol Rapid Commun 2024; 45:e2300573. [PMID: 37924252 DOI: 10.1002/marc.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Mimicking triple helix and fibrillar network of collagen through collagen model peptide(CMP) with short GPO tripeptide repeats is a great challenge. Herein, a minimalistic CMP comprising only five GPO repeats [(GPO)5 ] is presented. This novel approach involves the fusion of ultrashort peptide with the synergetic power of π-system and β-sheet formation to short CMP (GPO)5 . Accordingly, a hydrogel-forming, fluorenylmethoxycarbonyl (Fmoc)-functionalized ultrashort peptide (NFGAIL) is fused at the N-terminus and phenylalanine at the C-terminus of (GPO)5 (Fmoc-NFGAIL-(GPO)5 -F-COOH, FmP-5GPO). At room temperature, it forms a robust triple helix in aqueous buffer solution and has a relatively high melting point of 35 °C. The fluorenyl motif stabilizes the triple helix by aromatic π-π interactions as in its absence, triple helix is not formed. NFGAIL, which forms a β-sheet, also aids in triple helix stabilization via intermolecular hydrogen bonding and hydrophobic interactions. FmP-5GPO forms highly entangled nanofibrils with a micrometer length, which have excellent cell viability. The achievement of stable triple helix and fibrils in such a short CMP(FmP-5GPO) sequence is a challenging feat, and its significance in CMP-based biomaterials is undeniable. The present strategy highlights the potential for developing new CMP sequences through intelligent tuning of fusion peptides and GPO repeats.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashokraj Sundarapandian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Niraikulam Ayyadurai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
16
|
Samui S, Biswas S, Basak S, Ghosh S, Muniyappa K, Naskar J. De novo designed aliphatic and aromatic peptides assemble into amyloid-like cytotoxic supramolecular nanofibrils. RSC Adv 2024; 14:4382-4388. [PMID: 38304566 PMCID: PMC10831423 DOI: 10.1039/d3ra07869h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Peptides are very interesting biomolecules that upon self-association form a variety of thermodynamically stable supramolecular structures of nanometric dimension e.g. nanotubes, nanorods, nanovesicles, nanofibrils, nanowires and many others. Herein, we report six peptide molecules having a general chemical structure, H-Gaba-X-X-OH (Gaba: γ-aminobutyric acid, X: amino acid). Out of these six peptides, three are aromatic and the others are aliphatic. Atomic force microscopic (AFM) studies reveal that except peptide 6 (H-Gaba-Trp-Trp-OH), all the reported peptides adopt nanofibrillar morphology upon aggregation in aqueous medium. These supramolecular assemblies can recognize amyloid-specific molecular probe congo red (CR) and thioflavine t (ThT) and exhibit all the characteristic properties of amyloids. The MTT cell viability assay reveals that the toxicity of both aliphatic and aromatic peptides increases with increasing concentration of the peptides to both cancer (HeLa) and non-cancer (HEK 293) cells. Of note, the aromatic peptides show a slightly higher cytotoxic effect compared to the aliphatic peptides. Overall, the studies highlight the self-assembling nature of the de novo designed aliphatic and aromatic peptides and pave the way towards elucidating the intricacies of pathogenic amyloid assemblies.
Collapse
Affiliation(s)
- Satyabrata Samui
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - Soumi Biswas
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - Shubhanwita Basak
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - Shreya Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science Bangalore Karnataka 560 012 India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| |
Collapse
|
17
|
Baravkar SB, Lu Y, Masoud AR, Zhao Q, He J, Hong S. Development of a Novel Covalently Bonded Conjugate of Caprylic Acid Tripeptide (Isoleucine-Leucine-Aspartic Acid) for Wound-Compatible and Injectable Hydrogel to Accelerate Healing. Biomolecules 2024; 14:94. [PMID: 38254694 PMCID: PMC10813153 DOI: 10.3390/biom14010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Third-degree burn injuries pose a significant health threat. Safer, easier-to-use, and more effective techniques are urgently needed for their treatment. We hypothesized that covalently bonded conjugates of fatty acids and tripeptides can form wound-compatible hydrogels that can accelerate healing. We first designed conjugated structures as fatty acid-aminoacid1-amonoacid2-aspartate amphiphiles (Cn acid-AA1-AA2-D), which were potentially capable of self-assembling into hydrogels according to the structure and properties of each moiety. We then generated 14 novel conjugates based on this design by using two Fmoc/tBu solid-phase peptide synthesis techniques; we verified their structures and purities through liquid chromatography with tandem mass spectrometry and nuclear magnetic resonance spectroscopy. Of them, 13 conjugates formed hydrogels at low concentrations (≥0.25% w/v), but C8 acid-ILD-NH2 showed the best hydrogelation and was investigated further. Scanning electron microscopy revealed that C8 acid-ILD-NH2 formed fibrous network structures and rapidly formed hydrogels that were stable in phosphate-buffered saline (pH 2-8, 37 °C), a typical pathophysiological condition. Injection and rheological studies revealed that the hydrogels manifested important wound treatment properties, including injectability, shear thinning, rapid re-gelation, and wound-compatible mechanics (e.g., moduli G″ and G', ~0.5-15 kPa). The C8 acid-ILD-NH2(2) hydrogel markedly accelerated the healing of third-degree burn wounds on C57BL/6J mice. Taken together, our findings demonstrated the potential of the Cn fatty acid-AA1-AA2-D molecular template to form hydrogels capable of promoting the wound healing of third-degree burns.
Collapse
Affiliation(s)
- Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Jibao He
- Microscopy Laboratory, Tulane University, New Orleans, LA 70118, USA
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| |
Collapse
|
18
|
Shrimali PC, Chen S, Das A, Dreher R, Howard MK, Ryan JJ, Buck J, Kim D, Sprunger ML, Rudra JS, Jackrel ME. Amyloidogenic propensity of self-assembling peptides and their adjuvant potential for use as DNA vaccines. Acta Biomater 2023; 169:464-476. [PMID: 37586449 DOI: 10.1016/j.actbio.2023.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
De novo designed peptides that self-assemble into cross-β rich fibrillar biomaterials have been pursued as an innovative platform for the development of adjuvant- and inflammation-free vaccines. However, they share structural and morphological properties similar to amyloid species implicated in neurodegenerative diseases, which has been a long-standing concern for their successful translation. Here, we comprehensively characterize the amyloidogenic character of the amphipathic self-assembling cross-β peptide KFE8, compared to pathological amyloid and amyloid-like proteins α-synuclein (α-syn) and TDP-43. Further, we developed plasmid-based DNA vaccines with the KFE8 backbone serving as a scaffold for delivery of a GFP model antigen. We find that expression of tandem repeats of KFE8 is non-toxic and efficiently cleared by autophagy. We also demonstrate that preformed KFE8 fibrils do not cross-seed amyloid formation of α-syn in mammalian cells compared to α-syn preformed fibrils. In mice, vaccination with plasmids encoding the KFE32-GFP fusion protein elicited robust immune responses, inducing production of significantly higher levels of anti-GFP antibodies compared to soluble GFP. Antigen-specific CD8+T cells were also detected in the spleens of vaccinated mice and cytokine profiles from antigen recall assays indicate a balanced Th1/Th2 response. These findings illustrate that cross-β-rich peptide nanofibers have distinct physicochemical properties from those of pathological amyloidogenic proteins, and are an attractive platform for the development of DNA vaccines with self-adjuvanting properties and improved safety profiles. STATEMENT OF SIGNIFICANCE: Biomaterials comprised of self-assembling peptides hold great promise for the development of new vaccines that do not require use of adjuvants. However, these materials have safety concerns, as they self-assemble into cross-β rich fibrils that are structurally similar to amyloid species implicated in disease. Here, we comprehensively study the properties of these biomaterials. We demonstrate that they have distinct properties from pathological proteins. They are non-toxic and do not trigger amyloidogenesis. Vaccination of these materials in mice elicited a robust immune response. Most excitingly, our work suggests that this platform could be used to develop DNA-based vaccines, which have few storage requirements. Further, due to their genetic encoding, longer sequences can be generated and the vaccines will be amenable to modification.
Collapse
Affiliation(s)
- Paresh C Shrimali
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Sheng Chen
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Anirban Das
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Rachel Dreher
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Matthew K Howard
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy J Ryan
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy Buck
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Darren Kim
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
19
|
Zhou W, O’Neill CL, Ding T, Zhang O, Rudra JS, Lew MD. Resolving the nanoscale structure of β-sheet assemblies using single-molecule orientation-localization microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557571. [PMID: 37745382 PMCID: PMC10515885 DOI: 10.1101/2023.09.13.557571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Synthetic peptides that self-assemble into cross-β fibrils have remarkable utility as engineered biomaterials due to their modularity and biocompatibility, but their structural and morphological similarity to amyloid species has been a long-standing concern for their translation. Further, their polymorphs are difficult to characterize using spectroscopic and imaging techniques that rely on ensemble averaging to achieve high resolution. Here, we utilize single-molecule orientation-localization microscopy (SMOLM) to characterize fibrils formed by the designed amphipathic enantiomers, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. SMOLM reveals that the orientations of Nile red, as it transiently binds to both KFE8 and Aβ42, are consistent with a helical (bilayer) ribbon structure and convey the precise tilt of the fibrils' inner and outer backbones. SMOLM also finds polymorphic branched and curved morphologies of KFE8 whose backbones exhibit much more heterogeneity than those of more typical straight fibrils. Thus, SMOLM is a powerful tool to interrogate the structural differences and polymorphism between engineered and pathological cross β-rich fibrils.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Conor L. O’Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Tianben Ding
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Jai S. Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| |
Collapse
|
20
|
Unnikrishnan AC, Balamurugan K, Shanmugam G. Structural Insights into the Amyloid Fibril Polymorphism Using an Isotope-Edited Vibrational Circular Dichroism Study at the Amino Acid Residue Level. J Phys Chem B 2023; 127:7674-7684. [PMID: 37667494 DOI: 10.1021/acs.jpcb.3c03437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Polymorphism is common in both in vitro and in vivo amyloid fibrils formed by the same peptide/protein. However, the differences in their self-assembled structures at the amino acid level remain poorly understood. In this study, we utilized isotope-edited vibrational circular dichroism (VCD) on a well-known amyloidogenic peptide fragment (N22FGAIL27) of human islet amyloid polypeptide (IAPf) to investigate the structural polymorphism. Two individual isotope-labeled IAPf peptides were used, with a 13C label on the carbonyl group of phenylalanine (IAPf-F) and glycine (IAPf-G). We compared the amyloid-like nanofibril of IAPf induced by solvent casting (fibril B) with our previous report on the same IAPf peptide fibril but with a different fibril morphology (fibril A) formed in an aqueous buffer solution. Fibril B consisted of entangled, laterally fused amyloid-like nanofibrils with a relatively shorter diameter (15-50 nm) and longer length (several microns), while fibril A displayed nanofibrils with a higher diameter (30-60 nm) and shorter length (500 nm-2 μm). The isotope-edited VCD analysis indicated that fibrils B consisted of anti-parallel β-sheet arrangements with glycine residues in the registry and phenylalanine residues out of the registry, which was significantly different from fibrils A, where a mixture of parallel β-sheet and turn structure with the registry at phenylalanine and glycine residues was observed. The VCD analysis, therefore, suggests that polymorphism in amyloid-like fibrils can be attributed to the difference in the packing/arrangement of the individual β-strands in the β-sheet and the difference in the amino acid registry. Our findings provide insights into the structural aspects of fibril polymorphism related to various amyloid diseases and may aid in designing amyloid fibril inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanagasabai Balamurugan
- Centre for High Computing, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Muñoz-Gutiérrez C, Adasme-Carreño F, Alzate-Morales J, Ireta J. Effect of strand register in the stability and reactivity of crystals from peptides forming amyloid fibrils. Phys Chem Chem Phys 2023; 25:23885-23893. [PMID: 37642522 DOI: 10.1039/d3cp01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Amyloids are cytotoxic protein aggregates that deposit in human tissues, leading to several health disorders. Their aggregates can also exhibit catalytic properties, and they have been used as candidates for the development of functional biomaterials. Despite being polymorphic, amyloids often assemble as cross-β fibrils formed by in-register β sheet layers. Recent studies of some amyloidogenic protein segments revealed that they crystallize as antiparallel out-of-register β sheets. Such arrangement has been proposed to be responsible for the cytotoxicity in amyloid diseases, however, there is still no consensus on the molecular mechanism. Interestingly, two amyloidogenic peptide segments, NFGAILS and FGAILSS, arrange into out-of-register and in-register β sheets, respectively, even though they solely differ by one aminoacid residue at both termini. In this work, we used density functional theory (DFT) to address how the strand register contributes into the packing and molecular properties of the NFGAILS and FGAILSS crystals. Our results show that the out-of-register structure is substantially more stable, at 0 K, than the in-register one due to stronger inter-strand contacts. Based on an analysis of the electrostatic potential of the crystal slabs, it is suggested that the out-of-register may potentially interact with negatively charged groups, like those found in cell membranes. Moreover, calculated reactivity descriptors indicate a similar outcome, where only the out-of-register peptide exhibits intrinsic reactive surface sites at the exposed amine and carboxylic groups. It is therefore suggested that the out-of-register arrangement may indeed be crucial for amyloid cytotoxicity. The findings presented here could help to further our understanding of amyloid aggregation, function, and toxicity.
Collapse
Affiliation(s)
- Camila Muñoz-Gutiérrez
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Box 721, Talca, Chile
| | - Francisco Adasme-Carreño
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480112, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480112, Chile
| | - Jans Alzate-Morales
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Box 721, Talca, Chile
| | - Joel Ireta
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, Ciudad de México 09340, Mexico.
| |
Collapse
|
22
|
Kaur A, Goyal B. In silico design and identification of new peptides for mitigating hIAPP aggregation in type 2 diabetes. J Biomol Struct Dyn 2023; 42:10006-10021. [PMID: 37691445 DOI: 10.1080/07391102.2023.2254411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
The aberrant misfolding and self-aggregation of human islet amyloid polypeptide (hIAPP or amylin) into cytotoxic aggregates are implicated in the pathogenesis of type 2 diabetes (T2D). Among various inhibitors, short peptides derived from the amyloidogenic regions of hIAPP have been employed as hIAPP aggregation inhibitors due to their low immunogenicity, biocompatibility, and high chemical diversity. Recently, hIAPP fragment HSSNN18-22 was identified as an amyloidogenic sequence and displayed higher antiproliferative activity to RIN-5F cells. Various hIAPP aggregation inhibitors have been designed by chemical modifications of the highly amyloidogenic sequence (NFGAIL) of hIAPP. In this work, a library of pentapeptides based on fragment HSSNN18-22 was designed and assessed for their efficacy in blocking hIAPP aggregation using an integrated computational screening approach. The binding free energy calculations by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method identified HSSQN and HSSNQ that bind to hIAPP monomer with a binding affinity of -21.25 ± 4.90 and -19.73 ± 3.10 kcal/mol, respectively, which is notably higher as compared to HSSNN (-11.90 ± 4.12 kcal/mol). The sampling of the non aggregation-prone helical conformation was notably increased from 23.5 ± 3.0 in the hIAPP monomer to 38.1 ± 3.6, and 33.8 ± 3.0% on the incorporation of HSSQN, and HSSNQ, respectively, which indicate reduced aggregation propensity of hIAPP monomer. The pentapeptides, HSSQN and HSSNQ, identified as hIAPP aggregation inhibitors in this work can be further conjugated with various metal chelating peptides to yield more efficacious and clinically relevant multifunctional modulators for targeting various pathological hallmarks of T2D.
Collapse
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
23
|
Wales DJ. Energy Landscapes and Heat Capacity Signatures for Monomers and Dimers of Amyloid-Forming Hexapeptides. Int J Mol Sci 2023; 24:10613. [PMID: 37445791 DOI: 10.3390/ijms241310613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Amyloid formation is a hallmark of various neurodegenerative disorders. In this contribution, energy landscapes are explored for various hexapeptides that are known to form amyloids. Heat capacity (CV) analysis at low temperature for these hexapeptides reveals that the low energy structures contributing to the first heat capacity feature above a threshold temperature exhibit a variety of backbone conformations for amyloid-forming monomers. The corresponding control sequences do not exhibit such structural polymorphism, as diagnosed via end-to-end distance and a dihedral angle defined for the monomer. A similar heat capacity analysis for dimer conformations obtained using basin-hopping global optimisation shows clear features in end-to-end distance versus dihedral correlation plots, where amyloid-forming sequences exhibit a preference for larger end-to-end distances and larger positive dihedrals. These results hold true for sequences taken from tau, amylin, insulin A chain, a de novo designed peptide, and various control sequences. While there is a little overall correlation between the aggregation propensity and the temperature at which the low-temperature CV feature occurs, further analysis suggests that the amyloid-forming sequences exhibit the key CV feature at a lower temperature compared to control sequences derived from the same protein.
Collapse
Affiliation(s)
- David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
24
|
Moore SJ, Deplazes E, Mancera RL. Influence of force field choice on the conformational landscape of rat and human islet amyloid polypeptide. Proteins 2023; 91:338-353. [PMID: 36163697 PMCID: PMC10092333 DOI: 10.1002/prot.26432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) is a naturally occurring, intrinsically disordered protein (IDP) whose abnormal aggregation into toxic soluble oligomers and insoluble amyloid fibrils is a pathological feature in type-2 diabetes. Rat IAPP (rIAPP) differs from hIAPP by only six amino acids yet has a reduced tendency to aggregate or form fibrils. The structures of the monomeric forms of IAPP are difficult to characterize due to their intrinsically disordered nature. Molecular dynamics simulations can provide a detailed characterization of the monomeric forms of rIAPP and hIAPP in near-physiological conditions. In this work, the conformational landscapes of rIAPP and hIAPP as a function of secondary structure content were predicted using well-tempered bias exchange metadynamics simulations. Several combinations of commonly used biomolecular force fields and water models were tested. The predicted conformational preferences of both rIAPP and hIAPP are typical of IDPs, exhibiting dominant random coil structures but showing a low propensity for transient α-helical conformations. Predicted nuclear magnetic resonance Cα chemical shifts reveal different preferences with each force field towards certain conformations, with AMBERff99SBnmr2/TIP4Pd showing the best agreement with the experiment. Comparisons of secondary structure content demonstrate residue-specific differences between hIAPP and rIAPP that may reflect their different aggregation propensities.
Collapse
Affiliation(s)
- Sandra J Moore
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, Perth, Western Australia, Australia
| | - Evelyne Deplazes
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, Perth, Western Australia, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
25
|
Unnikrishnan AC, Sushana Thennarasu A, Saveri P, Pandurangan S, Deshpande AP, Ayyadurai N, Shanmugam G. π-System Functionalization Transforms Amyloidogenic Peptide Fragment of Human Islet Amyloid Polypeptide into a Super Hydrogelator. Chem Asian J 2023; 18:e202201235. [PMID: 36567257 DOI: 10.1002/asia.202201235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
While a considerable number of ultra-short/short amyloid peptides have been reported to form 3D supramolecular hydrogels, they all possess high minimum gelation concentration (MGC) (≥1 wt%), which preclude their applications. In this context, we demonstrate that functionalisation of a well-known amyloidogenic ultra-short peptide fragment NFGAIL (IAPf) of human Islet amyloid polypeptide with a π-system (Fluorenyl, Fm) at the N-terminus of the peptide (Fm-IAPf) yield not only highly thermostable hydrogel at physiological pH but also exhibited super gelator nature as the MGC (0.08 wt%) falls below 0.1 wt%. Various experimental results confirmed that aromatic π-π interactions from fluorenyl moieties and hydrogen bonding interactions between the IAPf drive the self-assembly/fibril formation. Fm-IAPf is the first super hydrogelator derived from amyloid-based ultra-short peptides, to the best of our knowledge. We strongly believe that this report, i. e., functionalization of an amyloid peptide with π-system, provides a lead to develop super hydrogelators from other amyloid-forming peptide fragments for their potential applications.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abinaya Sushana Thennarasu
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Puchalapalli Saveri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, 600036, Chennai, India
| | - Suryalakshmi Pandurangan
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, 600036, Chennai, India
| | - Niraikulam Ayyadurai
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
26
|
Unnikrishnan AC, Shanmugam G. Isotope-edited vibrational circular dichroism study reveals a flexible N-terminal structure of islet amyloid peptide (NFGAIL) in amyloid fibril form: A site-specific local structural analysis. J Struct Biol 2022; 214:107910. [PMID: 36273786 DOI: 10.1016/j.jsb.2022.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
The short peptide fragment NFGAIL (IAPf) is a well-known amyloidogenic peptide (22-27), derived from human islet amyloid polypeptide(hIAPP), whose fibrillar structure is often used to better understand the wild-type hIAPP amyloid fibrils, associated with type II diabetes. Despite an extensive study, the fibrillar structure of IAPf at the amino acid residue level is still unclear. Herein, the vibrational circular dichroism(VCD) spectroscopic technique coupled with isotope labelling strategy has been used to study the site-specific local structure of IAPf amyloid fibrils. Two 13C labeled IAPfs were designed and used along with unlabelled IAPf to achieve this. The 13C labelled (on -C=O) glycine(IAPf-G) and phenylalanine (IAPf-F) residues were introduced into the IAPf sequence separately by replacing natural glycine (residue 24) and phenylalanine (residue 23), respectively. VCD spectral analysis on IAPf-G suggests that IAPf fibrils adopt parallel β-sheet conformation with glycine residues are part of β-sheet and in-register. Unlike IAPf-G, VCD analysis on IAPf-F reveals that phenylalanine residues exist in the turn/hairpin conformation rather than β-sheet region. Both VCD results thus suggest that IAPf amyloid fibril consists of a mixture of β-sheet as a major conformation involving GAIL and turn/hairpin as a minor conformation involving NF rather than an idealized β-sheet involving all the amino acids. While previous studies speculated that the full NFGAIL sequence could participate in the β-sheet formation, the present site-specific structural analysis of IAPf amyloid fibrils at residue level using isotope-edited VCD has gained significant attention. Such residue level information has important implications for understanding the role of NFGAIL sequence in the amyloid fibrillation of hIAPP.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India.
| |
Collapse
|
27
|
Jayawardena BM, Peacey L, Gamsjaeger R, Jones CE. Essential Role of Histidine for Rapid Copper(II)-Mediated Disassembly of Neurokinin B Amyloid. Biomolecules 2022; 12:biom12111585. [PMID: 36358935 PMCID: PMC9687585 DOI: 10.3390/biom12111585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
Neurokinin B is a tachykinin peptide involved in a diverse range of neuronal functions. It rapidly forms an amyloid, which is considered physiologically important for efficient packing into dense core secretory vesicles within hypothalamic neurons. Disassembly of the amyloid is thought to require the presence of copper ions, which interact with histidine at the third position in the peptide sequence. However, it is unclear how the histidine is involved in the amyloid structure and why copper coordination can trigger disassembly. In this work, we demonstrate that histidine contributes to the amyloid structure via π-stacking interactions with nearby phenylalanine residues. The ability of neurokinin B to form an amyloid is dependent on any aromatic residue at the third position in the sequence; however, only the presence of histidine leads to both amyloid formation and rapid copper-induced disassembly.
Collapse
|
28
|
Sarkar D, Maity NC, Shome G, Varnava KG, Sarojini V, Vivekanandan S, Sahoo N, Kumar S, Mandal AK, Biswas R, Bhunia A. Mechanistic insight into functionally different human islet polypeptide (hIAPP) amyloid: the intrinsic role of the C-terminal structural motifs. Phys Chem Chem Phys 2022; 24:22250-22262. [PMID: 36098073 DOI: 10.1039/d2cp01650h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeting amyloidosis requires high-resolution insight into the underlying mechanisms of amyloid aggregation. The sequence-specific intrinsic properties of a peptide or protein largely govern the amyloidogenic propensity. Thus, it is essential to delineate the structural motifs that define the subsequent downstream amyloidogenic cascade of events. Additionally, it is important to understand the role played by extrinsic factors, such as temperature or sample agitation, in modulating the overall energy barrier that prompts divergent nucleation events. Consequently, these changes can affect the fibrillation kinetics, resulting in structurally and functionally distinct amyloidogenic conformers associated with disease pathogenesis. Here, we have focused on human Islet Polypeptide (hIAPP) amyloidogenesis for the full-length peptide along with its N- and C-terminal fragments, under different temperatures and sample agitation conditions. This helped us to gain a comprehensive understanding of the intrinsic role of specific functional epitopes in the primary structure of the peptide that regulates amyloidogenesis and subsequent cytotoxicity. Intriguingly, our study involving an array of biophysical experiments and ex vivo data suggests a direct influence of external changes on the C-terminal fibrillating sequence. Furthermore, the observations indicate a possible collaborative role of this segment in nucleating hIAPP amyloidogenesis in a physiological scenario, thus making it a potential target for future therapeutic interventions.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| | - Narayan Chandra Maity
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Kolkata 700 091, India
| | - Kyriakos Gabriel Varnava
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas, 78539, USA
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Kolkata 700 091, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| |
Collapse
|
29
|
Huang H, Kiick KL. Peptide-based assembled nanostructures that can direct cellular responses. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac92b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Natural originated materials have been well-studied over the past several decades owing to their higher biocompatibility compared to the traditional polymers. Peptides, consisting of amino acids, are among the most popular programable building blocks, which is becoming a growing interest in nanobiotechnology. Structures assembled using those biomimetic peptides allow the exploration of chemical sequences beyond those been routinely used in biology. In this Review, we discussed the most recent experimental discoveries on the peptide-based assembled nanostructures and their potential application at the cellular level such as drug delivery. In particular, we explored the fundamental principles of peptide self-assembly and the most recent development in improving their interactions with biological systems. We believe that as the fundamental knowledge of the peptide assemblies evolves, the more sophisticated and versatile nanostructures can be built, with promising biomedical applications.
Collapse
|
30
|
Hundt N, Cole D, Hantke MF, Miller JJ, Struwe WB, Kukura P. Direct observation of the molecular mechanism underlying protein polymerization. SCIENCE ADVANCES 2022; 8:eabm7935. [PMID: 36044567 PMCID: PMC9432825 DOI: 10.1126/sciadv.abm7935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Protein assembly is a main route to generating complexity in living systems. Revealing the relevant molecular details is challenging because of the intrinsic heterogeneity of species ranging from few to hundreds of molecules. Here, we use mass photometry to quantify and monitor the full range of actin oligomers during polymerization with single-molecule sensitivity. We find that traditional nucleation-based models cannot account for the observed distributions of actin oligomers. Instead, the key step of filament formation is a slow transition between distinct states of an actin filament mediated by cation exchange or ATP hydrolysis. The resulting model reproduces important aspects of actin polymerization, such as the critical concentration for filament formation and bulk growth behavior. Our results revise the mechanism of actin nucleation, shed light on the role and function of actin-associated proteins, and introduce a general and quantitative means to studying protein assembly at the molecular level.
Collapse
Affiliation(s)
- Nikolas Hundt
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Daniel Cole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Max F. Hantke
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Jack J. Miller
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PT, UK
- The PET Research Centre and The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Weston B. Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| |
Collapse
|
31
|
Designed peptides as nanomolar cross-amyloid inhibitors acting via supramolecular nanofiber co-assembly. Nat Commun 2022; 13:5004. [PMID: 36008417 PMCID: PMC9411207 DOI: 10.1038/s41467-022-32688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/10/2022] [Indexed: 01/02/2023] Open
Abstract
Amyloid self-assembly is linked to numerous devastating cell-degenerative diseases. However, designing inhibitors of this pathogenic process remains a major challenge. Cross-interactions between amyloid-β peptide (Aβ) and islet amyloid polypeptide (IAPP), key polypeptides of Alzheimer's disease (AD) and type 2 diabetes (T2D), have been suggested to link AD with T2D pathogenesis. Here, we show that constrained peptides designed to mimic the Aβ amyloid core (ACMs) are nanomolar cross-amyloid inhibitors of both IAPP and Aβ42 and effectively suppress reciprocal cross-seeding. Remarkably, ACMs act by co-assembling with IAPP or Aβ42 into amyloid fibril-resembling but non-toxic nanofibers and their highly ordered superstructures. Co-assembled nanofibers exhibit various potentially beneficial features including thermolability, proteolytic degradability, and effective cellular clearance which are reminiscent of labile/reversible functional amyloids. ACMs are thus promising leads for potent anti-amyloid drugs in both T2D and AD while the supramolecular nanofiber co-assemblies should inform the design of novel functional (hetero-)amyloid-based nanomaterials for biomedical/biotechnological applications.
Collapse
|
32
|
Dicke SS, Maj M, Fields CR, Zanni MT. Metastable intermediate during hIAPP aggregation catalyzed by membranes as detected with 2D IR spectroscopy. RSC Chem Biol 2022; 3:931-940. [PMID: 35866164 PMCID: PMC9257649 DOI: 10.1039/d2cb00028h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) into amyloid fibrils involves formation of oligomeric intermediates that are thought to be the cytotoxic species responsible for β-cell dysfunction in type 2 diabetes. hIAPP oligomers permeating or disrupting the cellular membrane may be one mechanism of toxicity and so measuring the structural kinetics of aggregation in the presence of membranes is of much interest. In this study, we use 2D IR spectroscopy and 13C18O isotope labeling to study the secondary structure of the oligomeric intermediates formed in solution and in the presence of phospholipid vesicles at sites L12A13, L16V17, G24A25 and V32G33. Pairs of labels monitor the couplings between associated polypeptides and the dihedral angles between adjacent residues. In solution, the L12A13 residues form an oligomeric β-sheet in addition to an α-helix whereas with the phospholipid vesicles they are α-helical throughout the aggregation process. In both solution and with DOPC vesicles, L16V17 and V32G33 have disordered structures until fibrils are formed. Similarly, under both conditions, G24A25 exhibits 3-state kinetics, created by an oligomeric intermediate with a well-defined β-sheet structure. Amyloid fibril formation is often thought to involve intermediates with exceedingly low populations that are difficult to detect experimentally. These experiments establish that amyloid fibril formation of hIAPP when catalyzed by membranes includes a metastable intermediate and that this intermediate has a similar structure at G24A25 in the FGAIL region as the corresponding intermediate in solution, thought to be the toxic species. 2D IR and 13C18O isotope labeling establish that amyloid formation of hIAPP catalyzed by membranes includes a metastable intermediate with a similar structure at G24A25 in the FGAIL region as the corresponding intermediate in solution.![]()
Collapse
Affiliation(s)
- Sidney S Dicke
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA .,Formally at Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Caitlyn R Fields
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
33
|
Sasidharan S, Ramakrishnan V. Aromatic interactions directing peptide nano-assembly. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:119-160. [PMID: 35534106 DOI: 10.1016/bs.apcsb.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Self-assembly is a process of spontaneous organization of molecules as a result of non-covalent interactions. Organized self-assembly at the nano level is emerging as a powerful tool in the bottom-up fabrication of functional nanostructures for targeted applications. Aromatic π-π stacking plays a significant role by facilitating the persistent supramolecular association of individual subunits to the self-assembled structures of high stability. Understanding, the supramolecular chemistry of the materials interacting through aromatic interactions, is of tremendous interest in not only constructing functional materials but also in revealing the mechanism of molecular assembly in living organisms. This chapter aims to focus on understanding the potential role of π-π interactions in directing and regulating the self-assembly of peptide nanostructures. The scope of the chapter starts with an outline of the history and mechanism of the aromatic π-π interactions. It progresses through the design strategy for the assembly of peptides containing aromatic rings, the conditions affecting the aromatic stacking interactions, their resulting nanoassemblies, properties, and applications. The properties and applications of the supramolecular materials formed through the aromatic stacking interactions are highlighted to provide an increased understanding of the role of weak interactions in the design and construction of novel functional materials.
Collapse
Affiliation(s)
- Sajitha Sasidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
34
|
Marchetti A, Pizzi A, Bergamaschi G, Demitri N, Stollberg U, Diederichsen U, Pigliacelli C, Metrangolo P. Fibril Structure Demonstrates the Role of Iodine Labelling on a Pentapeptide Self-Assembly. Chemistry 2022; 28:e202104089. [PMID: 35084787 PMCID: PMC9306938 DOI: 10.1002/chem.202104089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 12/16/2022]
Abstract
Iodination has long been employed as a successful labelling strategy to gain structural insights into proteins and other biomolecules via several techniques, including Small Angle X-ray Scattering, Inductively Coupled Plasma Mass Spectrometer (ICP-MS), and single-crystal crystallography. However, when dealing with smaller biomolecular systems, interactions driven by iodine may significantly alter their self-assembly behaviour. The engineering of amyloidogenic peptides for the development of ordered nanomaterials has greatly benefitted from this possibility. Still, to date, iodination has exclusively been applied to aromatic residues. In this work, an aliphatic bis-iodinated amino acid was synthesized and included into a custom pentapeptide, which showed enhanced fibrillogenic behaviour. Peptide single crystal X-ray structure and powder X-ray diffraction on its dried water solution demonstrated the key role of iodine atoms in promoting intermolecular interactions that drive the peptide self-assembly into amyloid fibrils. These findings enlarge the library of halogenated moieties available for directing and engineering the self-assembly of amyloidogenic peptides.
Collapse
Affiliation(s)
- Alessandro Marchetti
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Greta Bergamaschi
- Istituto di Scienze e Tecnologie ChimicheNational Research Council of ItalyVia M. Bianco 920131MilanoItaly
| | - Nicola Demitri
- Elettra – Sincrotrone TriesteS.S. 14 Km 163.5 in Area Science Park34149BasovizzaTriesteItaly
| | - Ulrike Stollberg
- Institute for Organic and Biomolecular ChemistryGeorg-August-University GöttingenTammannstr. 237077GöttingenGermany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular ChemistryGeorg-August-University GöttingenTammannstr. 237077GöttingenGermany
| | - Claudia Pigliacelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab)Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| |
Collapse
|
35
|
Sun T, Feng Y, Peng J, Hao Y, Zhang L, Liu L. Cofactors-like peptide self-assembly exhibiting the enhanced catalytic activity in the peptide-metal nanocatalysts. J Colloid Interface Sci 2022; 617:511-524. [PMID: 35299125 DOI: 10.1016/j.jcis.2022.02.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
The peptide self-assembly would be expected to be as the assistance of metallic nanocatalysts to promote the catalytic reaction, attracting limited attention, but being highly anticipated. Herein, we proposed and verified an alternative strategy for enhancing the catalytic activity of the 4-nitrophenol reduction as a model reaction, by optimizing and constructing "cofactors" inspired amyloid peptide self-assembly applied in the peptide-metal nanocatalysts as the template due to the potential superiority of substrate binding. Amyloid peptide self-assembled membrane exhibited better enhanced catalytic activity, compared to peptide nanofibers as the template in the peptide-gold nanocatalysts. The optimized amyloid peptide was designated by molecular dynamic simulation to display the relative strongest interaction with specific substrate and the relative good template effect on the enhanced catalytic activity was also proved accordingly. This work may shed light on the future design and construction of novel enzyme mimics with dramatic enhanced catalytic activity by peptide assembly-metal nanocatalysts.
Collapse
Affiliation(s)
- Tongtong Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China.
| | - Jiali Peng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Yun Hao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Liwei Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China.
| |
Collapse
|
36
|
Zhao L, Wang S, Hu Q, Jia H, Xin Y, Luo L, Meng F. Conformation-reconstructed multivalent antibody mimic for amplified mitigation of human islet amyloid polypeptide amyloidogenesis. NANOSCALE 2022; 14:2802-2815. [PMID: 35133388 DOI: 10.1039/d1nr08090c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (IAPP) into β-sheet-enriched amyloid fibrils is linked to type 2 diabetes. Antibodies are potent inhibitors of IAPP amyloidogenesis, but their preparation is usually complicated and expensive. Here we have created a multivalent antibody mimic SPEPS@Au through conformational engineering of the complementary-determining regions (CDRs) of antibodies on gold nanoparticles (AuNPs). By immobilizing both terminals of an IAPP-recognizing CDR loop (PEP) on the surface of AuNPs, the active conformation of PEP can simply recur on the gold-based antibody mimic, significantly enhancing the binding affinity between PEP and IAPP. SPEPS@Au mitigated amyloidogenesis of IAPP at low sub-stoichiometric concentrations, even after IAPP started aggregating, and dramatically reduced the amyloidogenesis-induced toxicity and ROS production both in vitro and in vivo. The conformation-reconstructed multivalent antibody mimic not only renders a facile strategy to approach potent amyloidogenesis inhibitors, but also provides new perspectives to exploit NP-based substitutes for antibodies in various applications.
Collapse
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qigang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Kour A, Dube T, Kumar A, Panda JJ. Anti-Amyloidogenic and Fibril-Disaggregating Potency of the Levodopa-Functionalized Gold Nanoroses as Exemplified in a Diphenylalanine-Based Amyloid Model. Bioconjug Chem 2022; 33:397-410. [PMID: 35120290 DOI: 10.1021/acs.bioconjchem.2c00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The phenomenon of proteins/peptide assembly into amyloid fibrils is associated with various neurodegenerative and age-related human disorders. Inhibition of the aggregation behavior of amyloidogenic peptides/proteins or disruption of the pre-formed aggregates is a viable therapeutic option to control the progression of various protein aggregation-related disorders such as Alzheimer's disease (AD). In the current work, we investigated both the amyloid inhibition and disaggregation proclivity of levodopa-functionalized gold nanoroses (GNRs) against various peptide-based amyloid models, including the amyloid beta peptide [Aβ (1-42) and Aβ (1-40)] and the dipeptide phenylalanine-phenylalanine (FF). Our results depicted the anti-aggregation behavior of the GNR toward FF and both forms of Aβ-derived fibrils. The peptides demonstrated a variation in their fiber-like morphology and a decline in thioflavin T fluorescence after being co-incubated with the GNR. We further demonstrated the neuroprotective effects of the GNR in neuroblastoma cells against FF and Aβ (1-42) fiber-induced toxicity, exemplified both in terms of regaining cellular viability and reducing production of reactive oxygen species. Overall, these findings support the potency of the GNR as a promising platform for combating AD.
Collapse
Affiliation(s)
- Avneet Kour
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Taru Dube
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Ashwani Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| |
Collapse
|
38
|
Roy R, Paul S. hIAPP-Amyloid-Core Derived d-Peptide Prevents hIAPP Aggregation and Destabilizes Its Protofibrils. J Phys Chem B 2022; 126:822-839. [DOI: 10.1021/acs.jpcb.1c10395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| |
Collapse
|
39
|
Wahiduzzaman, Kumar V, Anjum F, Shafie A, Elasbali AM, Islam A, Ahmad F, Hassan MI. Delineating the Aggregation-Prone Hotspot Regions (Peptides) in the Human Cu/Zn Superoxide Dismutase 1. ACS OMEGA 2021; 6:33985-33994. [PMID: 34926946 PMCID: PMC8675042 DOI: 10.1021/acsomega.1c05321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/19/2021] [Indexed: 02/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, incurable neurodegenerative disease described by progressive degeneration of motor neurons. The most common familial form of ALS (fALS) has been associated with mutations in the Cu/Zn superoxide dismutase (SOD1) gene. Mutation-induced misfolding and aggregation of SOD1 is often found in ALS patients. In this work, we probe the aggregation properties of peptides derived from the SOD1. To examine the source of SOD1 aggregation, we have employed a computational algorithm to identify four peptides from the SOD1 protein sequence that aggregates into a fibril. Aided by computational algorithms, we identified four peptides likely involved in SOD1 fibrillization. These four aggregation-prone peptides were 14VQGIINFE21, 30KVWGSIKGL38, 101DSVISLS107, and 147GVIGIAQ153. In addition, the formation of fibril propensities from the identified peptides was investigated through different biophysical techniques. The atomic structures of two fibril-forming peptides from the C-terminal SOD1 showed that the steric zippers formed by 101DSVISLS107 and 147GVIGIAQ153 vary in their arrangement. We also discovered that fALS mutations in the peptide 147GVIGIAQ153 increased the fibril-forming propensity and altered the steric zipper's packing. Thus, our results suggested that the C-terminal peptides of SOD1 have a central role in amyloid formation and might be involved in forming the structural core of SOD1 aggregation observed in vivo.
Collapse
Affiliation(s)
- Wahiduzzaman
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Vijay Kumar
- Amity
Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India
| | - Farah Anjum
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alaa Shafie
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Clinical
Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
40
|
Mukherjee N, Lin L, Contreras CJ, Templin AT. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021; 11:796. [PMID: 34822454 PMCID: PMC8620854 DOI: 10.3390/metabo11110796] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Christopher J. Contreras
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew T. Templin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
The role of amyloids in Alzheimer's and Parkinson's diseases. Int J Biol Macromol 2021; 190:44-55. [PMID: 34480905 DOI: 10.1016/j.ijbiomac.2021.08.197] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022]
Abstract
With varying clinical symptoms, most neurodegenerative diseases are associated with abnormal loss of neurons. They share the same common pathogenic mechanisms involving misfolding and aggregation, and these visible aggregates of proteins are deposited in the central nervous system. Amyloid formation is thought to arise from partial unfolding of misfolded proteins leading to the exposure of hydrophobic surfaces, which interact with other similar structures and give rise to form dimers, oligomers, protofibrils, and eventually mature fibril aggregates. Accumulating evidence indicates that amyloid oligomers, not amyloid fibrils, are the most toxic species that causes Alzheimer's disease (AD) and Parkinson's disease (PD). AD has recently been recognized as the 'twenty-first century plague', with an incident rate of 1% at 60 years of age, which then doubles every fifth year. Currently, 5.3 million people in the US are afflicted with this disease, and the number of cases is expected to rise to 13.5 million by 2050. PD, a disorder of the brain, is the second most common form of dementia, characterized by difficulty in walking and movement. Keeping the above views in mind, in this review we have focused on the roles of amyloid in neurodegenerative diseases including AD and PD, the involvement of amyloid in mitochondrial dysfunction leading to neurodegeneration, are also considered in the review.
Collapse
|
42
|
Samui S, Biswas S, Muniyappa K, Naskar J. Nano‐Assemblies of a Synthetic Peptide: Illuminating Aggregation Potential, Amyloidogenicity and Cytotoxicity. ChemistrySelect 2021. [DOI: 10.1002/slct.202102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Satyabrata Samui
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Soumi Biswas
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - K. Muniyappa
- Department of Biochemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| |
Collapse
|
43
|
Sepehri A, Nepal B, Lazaridis T. Distinct Modes of Action of IAPP Oligomers on Membranes. J Chem Inf Model 2021; 61:4645-4655. [PMID: 34499498 DOI: 10.1021/acs.jcim.1c00767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Islet amyloid polypeptide (IAPP, also known as amylin) is a peptide hormone that is co-secreted with insulin by pancreatic β-cells and forms amyloid aggregates in type II diabetes. Various lines of evidence indicate that oligomers of this peptide may induce toxicity by disrupting or forming pores in cell membranes, but the structure of these pores is unknown. Here, we create models of pores for both helical and β-structured peptides using implicit membrane modeling and test their stability using multimicrosecond all-atom simulations. We find that the helical peptides behave similarly to antimicrobial peptides; they remain stably inserted in a highly tilted or partially unfolded configuration creating a narrow water channel. Parallel helix orientation creates a somewhat larger pore. An octameric β barrel of parallel β-hairpins is highly stable in the membrane, whereas the corresponding barrel made of antiparallel hairpins is not. We propose that certain experiments probe the helical pore state while others probe the β-structured pore state; this provides a possible explanation for lack of correlation that is sometimes observed between in vivo toxicity and in vitro liposome permeabilization experiments.
Collapse
Affiliation(s)
- Aliasghar Sepehri
- Department of Chemistry, City College of New York, New York, New York 10031, United States
| | - Binod Nepal
- Department of Chemistry, City College of New York, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York 10031, United States.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York, New York 10016, United States
| |
Collapse
|
44
|
Santos J, Pallarès I, Iglesias V, Ventura S. Cryptic amyloidogenic regions in intrinsically disordered proteins: Function and disease association. Comput Struct Biotechnol J 2021; 19:4192-4206. [PMID: 34527192 PMCID: PMC8349759 DOI: 10.1016/j.csbj.2021.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
The amyloid conformation is considered a fundamental state of proteins and the propensity to populate it a generic property of polypeptides. Multiple proteome-wide analyses addressed the presence of amyloidogenic regions in proteins, nurturing our understanding of their nature and biological implications. However, these analyses focused on highly aggregation-prone and hydrophobic stretches that are only marginally found in intrinsically disordered regions (IDRs). Here, we explore the prevalence of cryptic amyloidogenic regions (CARs) of polar nature in IDRs. CARs are widespread in IDRs and associated with IDPs function, with particular involvement in protein–protein interactions, but their presence is also connected to a risk of malfunction. By exploring this function/malfunction dichotomy, we speculate that ancestral CARs might have evolved into functional interacting regions playing a significant role in protein evolution at the origins of life.
Collapse
Key Words
- APR, Aggregation-prone region
- Aggregation
- Amyloid
- CARs, Cryptic amyloidogenic regions
- CD, Circular dichroism
- CR, Congo red
- Evolution
- FTIR, Fourier transform infrared
- IDPs, Intrinsically disordered proteins
- IDRs, Intrinsically disordered regions
- Intrinsically disordered proteins
- PBS, Phosphate buffer saline
- PPI, Protein-protein interactions
- Protein disorder
- Protein–protein interactions
- Rb, Retinoblastoma associated proteins
- RbC, Core region of Rb
- TEM, Transmission electron microscopy
- Th-T, Thioflavin-T
Collapse
Affiliation(s)
- Jaime Santos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
45
|
Xin Y, Wang S, Liu H, Ke H, Tian S, Cao Y, Huang Y, Shang Y, Jia H, Su L, Yang X, Meng F, Luo L. Hierarchical Vitalization of Oligotyrosine in Mitigating Islet Amyloid Polypeptide Amyloidogenesis through Multivalent Macromolecules with Conformation-Restrained Nanobody Ligands. ACS NANO 2021; 15:13319-13328. [PMID: 34293858 DOI: 10.1021/acsnano.1c03083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of inhibitors that can effectively mitigate the amyloidogenesis of human islet amyloid polypeptide (hIAPP), which is linked to type II diabetes, remains a great challenge. Oligotyrosines are intriguing candidates in that they can block the hIAPP aggregation through multiplex phenol-hIAPP interactions. However, oligotyrosines containing too many tyrosine units (larger than three) may fail to inhibit amyloidogenesis due to their increased hydrophobicity and strong self-aggregation propensity. In this work, we developed a strategy to hierarchically vitalize oligotyrosines in mitigating hIAPP amyloidogenesis. Tetratyrosine YYYY (4Y) was grafted into the third complementary-determining region (CDR3) of a parent nanobody to construct a sequence-programmed nanobody N4Y, in which the conformation of the grafted 4Y fragment was constrained for a significantly enhanced binding affinity with hIAPP. We next conjugated N4Y to a polymer to approach a secondary vitalization of 4Y through a multivalent effect. The in vitro and in vivo experiments validated that the resulting PDN4Y could completely inhibit the hIAPP amyloidogenesis at low stoichiometric concentrations and effectively suppress the generation of toxic reactive oxygen species and alleviate amyloidogenesis-mediated damage to INS-1 cells and zebrafish (Danio rerio) embryos. The hierarchical vitalization of 4Y via a synergistic conformation restraint and multivalent effect represents a strategic prototype of boosting the efficacy of peptide-based amyloidogenesis inhibitors, especially those with a high hydrophobicity and strong aggregation tendency, which holds great promise for future translational studies.
Collapse
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huichuan Ke
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanda Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunhu Shang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Su
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
46
|
Prabakaran R, Rawat P, Kumar S, Gromiha MM. Evaluation of in silico tools for the prediction of protein and peptide aggregation on diverse datasets. Brief Bioinform 2021; 22:6309925. [PMID: 34181000 DOI: 10.1093/bib/bbab240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 01/09/2023] Open
Abstract
Several prediction algorithms and tools have been developed in the last two decades to predict protein and peptide aggregation. These in silico tools aid to predict the aggregation propensity and amyloidogenicity as well as the identification of aggregation-prone regions. Despite the immense interest in the field, it is of prime importance to systematically compare these algorithms for their performance. In this review, we have provided a rigorous performance analysis of nine prediction tools using a variety of assessments. The assessments were carried out on several non-redundant datasets ranging from hexapeptides to protein sequences as well as amyloidogenic antibody light chains to soluble protein sequences. Our analysis reveals the robustness of the current prediction tools and the scope for improvement in their predictive performances. Insights gained from this work provide critical guidance to the scientific community on advantages and limitations of different aggregation prediction methods and make informed decisions about their research needs.
Collapse
Affiliation(s)
| | | | - Sandeep Kumar
- Department of Biotherapeutics Discovery in Boehringer-Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | | |
Collapse
|
47
|
Undercover Toxic Ménage à Trois of Amylin, Copper (II) and Metformin in Human Embryonic Kidney Cells. Pharmaceutics 2021; 13:pharmaceutics13060830. [PMID: 34204936 PMCID: PMC8229594 DOI: 10.3390/pharmaceutics13060830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, type 2 diabetes complications have been correlated with amylin aggregation, copper homeostasis and metformin side effects. However, each factor was analyzed separately, and only in some rare cases copper/amylin or copper/metformin complexes were considered. We demonstrate for the first time that binary metformin/amylin and tertiary copper (II)/amylin/metformin complexes of high cellular toxicity are formed and lead to the formation of aggregated multi-level lamellar structures on the cell membrane. Considering the increased concentration of amylin, copper (II) and metformin in kidneys of T2DM patients, our findings on the toxicity of amylin and its adducts may be correlated with diabetic nephropathy development.
Collapse
|
48
|
Roy R, Paul S. Potential of ATP toward Prevention of hIAPP Oligomerization and Destabilization of hIAPP Protofibrils: An In Silico Perspective. J Phys Chem B 2021; 125:3510-3526. [PMID: 33792323 DOI: 10.1021/acs.jpcb.1c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aggregation of an intrinsically disordered protein, human islet amyloid polypeptide (hIAPP), leads to one of the most prevalent endocrine disorders, type II diabetes mellitus (T2DM). Hence inhibition of hIAPP aggregation provides a possible therapeutic approach for the treatment of T2DM. In this regard, a new aspect of adenosine triphosphate (ATP), which is widely known as the energy source for biological reactions, has recently been discovered, where it can inhibit the formation of protein aggregates and simultaneously dissolve preformed aggregates at a millimolar concentration scale. In this work, we investigate the effect of ATP on the aggregation of an amyloidogenic segment of hIAPP, hIAPP22-28, and also of the full length sequence. Using all-atom classical molecular dynamics simulations, we observe that the tendency of hIAPP to oligomerize into β-sheet conformers is inhibited by ATP, due to which the peptides remain distant, loosely packed random monomers. Moreover, it can also disassemble preformed hIAPP protofibrils. ATP preferentially interacts with the hydrophobic residues of hIAPP22-28 fragment and the terminal and turn residues of the full length peptide. The hydrogen bonding, hydrophobic, π-π, and N-H-π stacking interactions are the driving forces for the ATP induced inhibition of hIAPP aggregation. Interestingly, the hydrophobic adenosine of ATP is found to be more in contact with the peptide residues than the hydrophilic triphosphate moiety. The insight into the inhibitory mechanism of ATP on hIAPP aggregation can prove to be beneficial for the design of novel amyloid inhibitors in the future.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
49
|
Keresztes L, Szögi E, Varga B, Farkas V, Perczel A, Grolmusz V. The Budapest Amyloid Predictor and Its Applications. Biomolecules 2021; 11:500. [PMID: 33810341 PMCID: PMC8067080 DOI: 10.3390/biom11040500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.
Collapse
Affiliation(s)
- László Keresztes
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary; (L.K.); (E.S.); (B.V.)
| | - Evelin Szögi
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary; (L.K.); (E.S.); (B.V.)
| | - Bálint Varga
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary; (L.K.); (E.S.); (B.V.)
| | - Viktor Farkas
- MTA-ELTE Protein Modeling Research Group, H-1117 Budapest, Hungary; (V.F.); (A.P.)
| | - András Perczel
- MTA-ELTE Protein Modeling Research Group, H-1117 Budapest, Hungary; (V.F.); (A.P.)
- Laboratory of Structural Chemistry and Biology, Eötvös University, H-1117 Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary; (L.K.); (E.S.); (B.V.)
- Uratim Ltd., H-1118 Budapest, Hungary
| |
Collapse
|
50
|
Li X, Lao Z, Zou Y, Dong X, Li L, Wei G. Mechanistic Insights into the Co-Aggregation of Aβ and hIAPP: An All-Atom Molecular Dynamic Study. J Phys Chem B 2021; 125:2050-2060. [PMID: 33616398 DOI: 10.1021/acs.jpcb.0c11132] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Patients with Alzheimer's disease (AD) have a high risk of developing Type II diabetes (T2D). The co-aggregation of the two disease-related proteins, Aβ and hIAPP, has been proposed as a potential molecular mechanism. However, the detailed Aβ-hIAPP interactions and structural characteristics of co-aggregates are mostly unknown at atomic level. Here, we explore the conformational ensembles of the Aβ-hIAPP heterodimer and Aβ or hIAPP homodimer by performing all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations show that the interaction propensity of Aβ-hIAPP in the heterodimer is comparable with that of Aβ-Aβ/hIAPP-hIAPP in the homodimer. Similar hot spot residues of Aβ/hIAPP in the homodimer and heterodimer are identified, indicating that both Aβ and hIAPP have similar molecular recognition sites for self-aggregation and co-aggregation. Aβ in the heterodimer possesses three high β-sheet probability regions: the N-terminal region E3-H6, the central hydrophobic core region K16-E22, and the C-terminal hydrophobic region I31-A41, which is highly similar to Aβ in the homodimer. More importantly, in the heterodimer, the regions E3-H6, F19-E22, and I31-M35 of Aβ and the amyloid core region N20-T30 of hIAPP display higher β-sheet probability than they do in homodimer, implying their crucial roles in the formation of β-sheet-rich co-aggregates. Our study sheds light on the co-aggregation of Aβ and hIAPP at an atomic level, which will be helpful for an in-depth understanding of the molecular mechanism for epidemiological correlation of AD and T2D.
Collapse
Affiliation(s)
- Xuhua Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China.,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zenghui Lao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310007 Zhejiang, China
| | - Xuewei Dong
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Le Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|