1
|
Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, Prajapati KP, Kar K, Anand BG. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci 2024; 331:103205. [PMID: 38875805 DOI: 10.1016/j.cis.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-β-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.
Collapse
Affiliation(s)
- Sindhujit Roy
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Venkat Ramanan Srinivasan
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subash Arunagiri
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran P Shejale
- Dept. of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India..
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India..
| |
Collapse
|
2
|
Ooka K, Arai M. Accurate prediction of protein folding mechanisms by simple structure-based statistical mechanical models. Nat Commun 2023; 14:6338. [PMID: 37857633 PMCID: PMC10587348 DOI: 10.1038/s41467-023-41664-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/10/2023] [Indexed: 10/21/2023] Open
Abstract
Recent breakthroughs in highly accurate protein structure prediction using deep neural networks have made considerable progress in solving the structure prediction component of the 'protein folding problem'. However, predicting detailed mechanisms of how proteins fold into specific native structures remains challenging, especially for multidomain proteins constituting most of the proteomes. Here, we develop a simple structure-based statistical mechanical model that introduces nonlocal interactions driving the folding of multidomain proteins. Our model successfully predicts protein folding processes consistent with experiments, without the limitations of protein size and shape. Furthermore, slight modifications of the model allow prediction of disulfide-oxidative and disulfide-intact protein folding. These predictions depict details of the folding processes beyond reproducing experimental results and provide a rationale for the folding mechanisms. Thus, our physics-based models enable accurate prediction of protein folding mechanisms with low computational complexity, paving the way for solving the folding process component of the 'protein folding problem'.
Collapse
Affiliation(s)
- Koji Ooka
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Munehito Arai
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
3
|
Brass O, Claudy P, Grenier E. Reliable Stability Prediction to Manage Research or Marketed Vaccines and Pharmaceutical Products. “Avoid any doubt for the end-user of vaccine compliance at time of administration”. Int J Pharm 2022; 618:121604. [DOI: 10.1016/j.ijpharm.2022.121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
|
4
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
5
|
|
6
|
Salinas-Garcia MC, Plaza-Garrido M, Alba-Elena D, Camara-Artigas A. Major conformational changes in the structure of lysozyme obtained from a crystal with a very low solvent content. Acta Crystallogr F Struct Biol Commun 2019; 75:687-696. [PMID: 31702582 PMCID: PMC6839823 DOI: 10.1107/s2053230x19013189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
A new crystal form of lysozyme with a very low solvent content (26.35%) has been obtained in the orthorhombic space group P212121 (with unit-cell parameters a = 30.04, b = 51.68, c = 61.53 Å). The lysozyme structure obtained from these crystals does not show the typical overall fold. Instead, major conformational changes take place in some elements of the secondary structure and in the hydrophobic core of the protein. At the end of the central α-helix (α2), Glu35 is usually buried in the catalytic site and shows an abnormally high pKa value, which is key to the activity of the enzyme. The high pKa value of this glutamate residue is favoured by the hydrophobic environment, particularly by its neighbour Trp108, which is important for structural stability and saccharide binding. In this new structure, Trp108 shows a 90° rotation of its side chain, which results in the rearrangement of the hydrophobic core. Conformational changes also result in the exposure of Glu35 to the solvent, which impairs the catalytic site by increasing the distance between Glu35 and Asp52 and lowering the pKa value of the glutamate. Altogether, this new lysozyme structure reveals major conformational changes in the hydrophobic core and catalytic site that might play a role in the folding and bactericidal function of the protein.
Collapse
Affiliation(s)
- M. Carmen Salinas-Garcia
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Marina Plaza-Garrido
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Daniel Alba-Elena
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Ana Camara-Artigas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
7
|
Gupta A, Mahalakshmi R. Helix-strand interaction regulates stability and aggregation of the human mitochondrial membrane protein channel VDAC3. J Gen Physiol 2019; 151:489-504. [PMID: 30674561 PMCID: PMC6445588 DOI: 10.1085/jgp.201812272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/02/2019] [Indexed: 11/25/2022] Open
Abstract
Human mitochondrial VDACs bind amyloidogenic proteins, but do not intrinsically aggregate. Gupta and Mahalakshmi find that an interaction between the N-terminal α-helix and strands β7–β9 regulates VDAC aggregation and stability, providing a plausible mechanism for VDAC coaggregation in cells. Voltage-dependent anion channels (VDACs) are β-sheet–rich transmembrane β-barrels that are vital for metabolite transport across the mitochondrial membrane. Under cellular stress, human VDACs hetero-oligomerize and coaggregate with proteins that can form amyloidogenic and neurodegenerative deposits, implicating a role for VDACs in proteotoxicity. However, whether VDACs possess intrinsic interaction sites that can lead to protein aggregation is not known. Here, we couple a systematic thiol replacement strategy with far-UV circular dichroism spectropolarimetry and UV scattering spectroscopy to map aggregation-prone regions of human VDACs, using isoform 3 as our model VDAC. We show that the region comprising strands β7–β9 is highly aggregation prone. Further, we find that an α1–β7–β9 interaction (involving the hVDAC3 N-terminal α1 helix) can lower protein aggregation, whereas perturbations of this interaction promote VDAC aggregation. We also show that hVDAC3 aggregation proceeds via a partially unfolded structure. Our findings allow us to propose a plausible mechanism for the role of human VDACs in forming proteotoxic aggregates in the cell. The key target sites on VDACs—strands β7–β9—may be useful for developing VDAC aggregation inhibitors.
Collapse
Affiliation(s)
- Ankit Gupta
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
8
|
Rutin attenuates negatively charged surfactant (SDS)-induced lysozyme aggregation/amyloid formation and its cytotoxicity. Int J Biol Macromol 2018; 120:45-58. [PMID: 30081131 DOI: 10.1016/j.ijbiomac.2018.07.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Amyloid fibrils are highly ordered protein assemblies known to contribute to the pathology of a variety of genetic and aging-associated diseases. Here, we have investigated the aggregation propensity of lysozyme in the presence of a negatively charged surfactant (SDS) and evaluated the anti-aggregation activity of rutin. Multiple approaches such as turbidity measurements, dye binding assays, intrinsic fluorescence, circular dichroism (CD), transmission electron microscopy (TEM), MTT and comet assays have been used for this purpose. We inferred that SDS induces aggregation of lysozyme in 0.2-0.6 mM concentration range while at higher concentration range (0.8-1.0 mM), it leads to solubilization/stabilization of protein. Intrinsic/extrinsic fluorescence and CD analysis confirmed significant conformational changes in lysozyme at 0.2 mM SDS. Thioflavin T (ThT), congo red binding and TEM analysis further reaffirmed the formation of lysozyme fibrils. Moreover, MTT assay demonstrated cytotoxicity of these fibrils towards neuroblastoma cell lines (SH-SY5Y) and their attenuation by rutin. Comet assay supported the cytotoxicity mechanism via DNA damage. Molecular docking results also advocate a strong interaction between lysozyme and rutin. The current study indicates a mechanistic approach assuming structural constraints and specific aromatic interactions of rutin with HEWL aggregates.
Collapse
|
9
|
Ulicna K, Bednarikova Z, Hsu WT, Holztragerova M, Wu JW, Hamulakova S, Wang SSS, Gazova Z. Lysozyme amyloid fibrillization in presence of tacrine/acridone-coumarin heterodimers. Colloids Surf B Biointerfaces 2018; 166:108-118. [DOI: 10.1016/j.colsurfb.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
10
|
Ponikova S, Kubackova J, Bednarikova Z, Marek J, Demjen E, Antosova A, Musatov A, Gazova Z. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine. Biochim Biophys Acta Gen Subj 2017; 1861:2934-2943. [DOI: 10.1016/j.bbagen.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
|
11
|
Zhang H, Yang J, Wu S, Gong W, Chen C, Perrett S. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response. J Biol Chem 2016; 291:6967-81. [PMID: 26823468 PMCID: PMC4807281 DOI: 10.1074/jbc.m115.673608] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/27/2022] Open
Abstract
DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria.
Collapse
Affiliation(s)
- Hong Zhang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Jie Yang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, University of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China, and
| | - Si Wu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Weibin Gong
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chang Chen
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China,
| |
Collapse
|
12
|
Okur A, Roe DR, Cui G, Hornak V, Simmerling C. Improving Convergence of Replica-Exchange Simulations through Coupling to a High-Temperature Structure Reservoir. J Chem Theory Comput 2015; 3:557-68. [PMID: 26637035 DOI: 10.1021/ct600263e] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parallel tempering or replica-exchange molecular dynamics (REMD) significantly increases the efficiency of conformational sampling for complex molecular systems. However, obtaining converged data with REMD remains challenging, especially for large systems with complex topologies. We propose a new variant to REMD where the replicas are also permitted to exchange with an ensemble of structures that have been generated in advance using high-temperature MD simulations, similar in spirit to J-walking methods. We tested this approach on two non-trivial model systems, a β-hairpin and a 3-stranded β-sheet and compared the results to those obtained from very long (>100 ns) standard REMD simulations. The resulting ensembles were indistinguishable, including relative populations of different conformations on the unfolded state. The use of the reservoir is shown to significantly reduce the time required for convergence.
Collapse
Affiliation(s)
- Asim Okur
- Department of Chemistry and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Daniel R Roe
- Department of Chemistry and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Guanglei Cui
- Department of Chemistry and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Viktor Hornak
- Department of Chemistry and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| | - Carlos Simmerling
- Department of Chemistry and Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794, and Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
13
|
Ozer G, Valeev EF, Quirk S, Hernandez R. Adaptive Steered Molecular Dynamics of the Long-Distance Unfolding of Neuropeptide Y. J Chem Theory Comput 2015; 6:3026-38. [PMID: 26616767 DOI: 10.1021/ct100320g] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) has been found to adopt two stable conformations in vivo: (1) a monomeric form called the PP-fold in which a polyproline tail is folded onto an α-helix via a β-turn and (2) a dimeric form of the unfolded proteins in which the α-helices interact with each other via side chains. The transition pathway and rates between the two conformations remain unknown and are important to the nature of the binding of the protein. Toward addressing this question, the present work suggests that the unfolding of the PP-fold is too slow to play a role in NPY monomeric binding unless the receptor catalyzes it to do so. Specifically, the dynamics and structural changes of the unfolding of a monomeric NPY protein have been investigated in this work. Temperature accelerated molecular dynamics (MD) simulations at 500 K under constant (N,V,E) conditions suggests a hinge-like unraveling of the tail rather than a random unfolding. The free energetics of the proposed unfolding pathway have been described using an adaptive steered MD (SMD) approach at various temperatures. This approach generalizes the use of Jarzynski's equality through a series of stages that allows for better convergence along nonlinear and long-distance pathways. Results acquired using this approach provide a potential of mean force (PMF) with narrower error bars and are consistent with some of the earlier reports on the qualitative behavior of NPY binding.
Collapse
Affiliation(s)
- Gungor Ozer
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, and Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199
| | - Edward F Valeev
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, and Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199
| | - Stephen Quirk
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, and Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199
| | - Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, and Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199
| |
Collapse
|
14
|
Subbian E, Williamson DM, Shinde U. Protein Folding Mediated by an Intramolecular Chaperone: Energy Landscape for Unimolecular Pro-Subtilisin E Maturation. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.62008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 2014; 157:922-934. [PMID: 24813614 DOI: 10.1016/j.cell.2014.03.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 11/23/2022]
Abstract
The GroEL/ES chaperonin system functions as a protein folding cage. Many obligate substrates of GroEL share the (βα)8 TIM-barrel fold, but how the chaperonin promotes folding of these proteins is not known. Here, we analyzed the folding of DapA at peptide resolution using hydrogen/deuterium exchange and mass spectrometry. During spontaneous folding, all elements of the DapA TIM barrel acquire structure simultaneously in a process associated with a long search time. In contrast, GroEL/ES accelerates folding more than 30-fold by catalyzing segmental structure formation in the TIM barrel. Segmental structure formation is also observed during the fast spontaneous folding of a structural homolog of DapA from a bacterium that lacks GroEL/ES. Thus, chaperonin independence correlates with folding properties otherwise enforced by protein confinement in the GroEL/ES cage. We suggest that folding catalysis by GroEL/ES is required by a set of proteins to reach native state at a biologically relevant timescale, avoiding aggregation or degradation.
Collapse
|
16
|
Saluja A, Sadineni V, Mungikar A, Nashine V, Kroetsch A, Dahlheim C, Rao VM. Significance of Unfolding Thermodynamics for Predicting Aggregation Kinetics: A Case Study on High Concentration Solutions of a Multi-Domain Protein. Pharm Res 2014; 31:1575-87. [DOI: 10.1007/s11095-013-1263-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
|
17
|
Retinol binding to β-lactoglobulin or phosphocasein micelles under high pressure: Effects of isostatic high-pressure on structural and functional integrity. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Gao MT, Dong XY, Sun Y. Interactions betweenl-arginine/l-arginine derivatives and lysozyme and implications to their inhibition effects on protein aggregation. Biotechnol Prog 2013; 29:1316-24. [DOI: 10.1002/btpr.1766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/29/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Ming-Tao Gao
- Dept. of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Xiao-Yan Dong
- Dept. of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Yan Sun
- Dept. of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| |
Collapse
|
19
|
Wang W, Roberts CJ. Non-Arrhenius protein aggregation. AAPS JOURNAL 2013; 15:840-51. [PMID: 23615748 DOI: 10.1208/s12248-013-9485-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/02/2013] [Indexed: 01/31/2023]
Abstract
Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.
Collapse
Affiliation(s)
- Wei Wang
- Pfizer Inc., BioTherapeutics Pharmaceutical Sciences, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA.
| | | |
Collapse
|
20
|
Esquembre R, Sanz JM, Wall JG, del Monte F, Mateo CR, Ferrer ML. Thermal unfolding and refolding of lysozyme in deep eutectic solvents and their aqueous dilutions. Phys Chem Chem Phys 2013; 15:11248-56. [DOI: 10.1039/c3cp44299c] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Antosova A, Gazova Z, Fedunova D, Valusova E, Bystrenova E, Valle F, Daxnerova Z, Biscarini F, Antalik M. Anti-amyloidogenic activity of glutathione-covered gold nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.07.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Tomoyori K, Nakamura T, Makabe K, Maki K, Saeki K, Kuwajima K. Sequential four-state folding/unfolding of goat α-lactalbumin and its N-terminal variants. Proteins 2012; 80:2191-206. [PMID: 22577070 DOI: 10.1002/prot.24109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/11/2012] [Accepted: 04/25/2012] [Indexed: 11/09/2022]
Abstract
Equilibria and kinetics of folding/unfolding of α-lactalbumin and its two N-terminal variants were studied by circular dichroism spectroscopy. The two variants were wild-type recombinant and Glu1-deletion (E1M) variants expressed in Escherichia coli. The presence of an extra methionine at the N terminus in recombinant α-lactalbumin destabilized the protein by 2 kcal/mol, while the stability was recovered in the E1M variant in which Glu1 was replaced by Met1. Kinetic folding/unfolding reactions of the proteins, induced by stopped-flow concentration jumps of guanidine hydrochloride, indicated the presence of a burst-phase in refolding, and gave chevron plots with significant curvatures in both the folding and unfolding limbs. The folding-limb curvature was interpreted in terms of accumulation of the burst-phase intermediate. However, there was no burst phase observed in the unfolding kinetics to interpret the unfolding-limb curvature. We thus assumed a sequential four-state mechanism, in which the folding from the burst-phase intermediate takes place via two transition states separated by a high-energy intermediate. We estimated changes in the free energies of the burst-phase intermediate and two transition states, caused by the N-terminal variations and also by the presence of stabilizing calcium ions. The Φ values at the N terminus and at the Ca(2+)-binding site thus obtained increased successively during folding, demonstrating the validity of the sequential mechanism. The stability and the folding behavior of the E1M variant were essentially identical to those of the authentic protein, allowing us to use this variant as a pseudo-wild-type α-lactalbumin in future studies.
Collapse
Affiliation(s)
- Katsuaki Tomoyori
- Department of Physics, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Popa I, Fernández JM, Garcia-Manyes S. Direct quantification of the attempt frequency determining the mechanical unfolding of ubiquitin protein. J Biol Chem 2011; 286:31072-9. [PMID: 21768096 PMCID: PMC3173078 DOI: 10.1074/jbc.m111.264093] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/05/2011] [Indexed: 11/06/2022] Open
Abstract
Understanding protein dynamics requires a comprehensive knowledge of the underlying potential energy surface that governs the motion of each individual protein molecule. Single molecule mechanical studies have provided the unprecedented opportunity to study the individual unfolding pathways along a well defined coordinate, the end-to-end length of the protein. In these experiments, unfolding requires surmounting an energy barrier that separates the native from the extended state. The calculation of the absolute value of the barrier height has traditionally relied on the assumption of an attempt frequency, υ(‡). Here we used single molecule force-clamp spectroscopy to directly determine the value of υ(‡) for mechanical unfolding by measuring the unfolding rate of the small protein ubiquitin at varying temperatures. Our experiments demonstrate a significant effect of the temperature on the mechanical rate of unfolding. By extrapolating the unfolding rate in the absence of force for different temperatures, varying within the range spanning from 5 to 45 °C, we measured a value for the activation barrier of ΔG(‡) = 71 ± 5 kJ/mol and an exponential prefactor υ(‡) ∼4 × 10(9) s(-1). Although the measured prefactor value is 3 orders of magnitude smaller than the value predicted by the transition state theory (∼6 × 10(12) s(-1)), it is 400-fold higher than that encountered in analogous experiments studying the effect of temperature on the reactivity of a protein-embedded disulfide bond (∼10(7) M(-1) s(-1)). This approach will allow quantitative characterization of the complete energy landscape of a folding polypeptide from highly extended states, of capital importance for proteins with elastic function.
Collapse
Affiliation(s)
- Ionel Popa
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Julio M. Fernández
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Sergi Garcia-Manyes
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
24
|
Luo JJ, Wu FG, Yu JS, Wang R, Yu ZW. Denaturation Behaviors of Two-State and Non-Two-State Proteins Examined by an Interruption–Incubation Protocol. J Phys Chem B 2011; 115:8901-9. [DOI: 10.1021/jp200296v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun-Jie Luo
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ji-Sheng Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Rui Wang
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
25
|
D'Amico M, Raccosta S, Cannas M, Martorana V, Manno M. Existence of metastable intermediate lysozyme conformation highlights the role of alcohols in altering protein stability. J Phys Chem B 2011; 115:4078-87. [PMID: 21425817 DOI: 10.1021/jp106748g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcohols have a manifold effect on the conformational and thermodynamic stability of native proteins. Here, we study the effect of moderate concentrations of trifluoroethanol (TFE) on the thermal stability of hen egg-white lysozyme (HEWL), by far-UV circular dichroism and by steady-state and time-resolved photoluminescence of intrinsic tryptophans. Our results highlight that TFE affects lysozyme stability by preferential solvation of the protein molecule. Furthermore, we discovered the existence at 20% TFE of an equilibrium partially folded state of lysozyme, intermediate between the native and the unfolded state. A three-state model is therefore used to interpolate the thermal denaturation data. Our analysis explains how the stabilization of the intermediate conformation enhances the entropic contribution to unfolding, and thus decreases the unfolding temperature, while, at the same time, TFE enhances the conformational stability of the native fold at room temperature. Eventually, we challenged the ability of these intermediate structures to form supramolecular aggregates by heating experiments at different TFE concentrations.
Collapse
Affiliation(s)
- Michele D'Amico
- Institute of Biophysics at Palermo (IBF), National Research Council of Italy (CNR), via U. La Malfa 153, I-90146 Palermo, Italy
| | | | | | | | | |
Collapse
|
26
|
Kayser V, Chennamsetty N, Voynov V, Helk B, Forrer K, Trout BL. Evaluation of a non-Arrhenius model for therapeutic monoclonal antibody aggregation. J Pharm Sci 2011; 100:2526-42. [PMID: 21268027 DOI: 10.1002/jps.22493] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 12/23/2010] [Accepted: 01/03/2011] [Indexed: 02/02/2023]
Abstract
Understanding antibody aggregation is of great significance for the pharmaceutical industry. We studied the aggregation of five different therapeutic monoclonal antibodies (mAbs) with size-exclusion chromatography-high-performance liquid chromatography (SEC-HPLC), fluorescence spectroscopy, electron microscopy, and light scattering methods at various temperatures with the aim of gaining insight into the aggregation process and developing models of it. In particular, we find that the kinetics can be described by a second-order model and are non-Arrhenius. Thus, we develop a non-Arrhenius model to connect accelerated aggregation experiments at high temperature to long-term storage experiments at low temperature. We evaluate our model by predicting mAb aggregation and comparing it with long-term behavior. Our results suggest that the number of monomers and mAb conformations within aggregates vary with the size and age of the aggregates, and that only certain sizes of aggregates are populated in the solution. We also propose a kinetic model based on conformational changes of proteins and monomer peak loss kinetics from SEC-HPLC. This model could be employed for a detail analysis of mAb aggregation kinetics.
Collapse
Affiliation(s)
- Veysel Kayser
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
27
|
Paul BK, Guchhait N. A spectral deciphering of the binding interaction of an intramolecular charge transfer fluorescence probe with a cationic protein: thermodynamic analysis of the binding phenomenon combined with blind docking study. Photochem Photobiol Sci 2011; 10:980-91. [DOI: 10.1039/c0pp00309c] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Di Paolo A, Balbeur D, De Pauw E, Redfield C, Matagne A. Rapid collapse into a molten globule is followed by simple two-state kinetics in the folding of lysozyme from bacteriophage λ. Biochemistry 2010; 49:8646-57. [PMID: 20806781 DOI: 10.1021/bi101126f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stopped-flow fluorescence and circular dichroism spectroscopy have been used in combination with quenched-flow hydrogen exchange labeling, monitored by two-dimensional NMR and electrospray ionization mass spectrometry, to investigate the folding kinetics of lysozyme from bacteriophage λ (λ lysozyme) at pH 5.6, 20 °C. The first step in the folding of λ lysozyme occurs very rapidly (τ < 1 ms) after refolding is initiated and involves both hydrophobic collapse and formation of a high content of secondary structure but only weak protection from (1)H/(2)H exchange and no fixed tertiary structure organization. This early folding step is reflected in the dead-time events observed in the far-UV CD and ANS fluorescence experiments. Following accumulation of this kinetic molten globule species, the secondary structural elements are stabilized and the majority (ca. 88%) of refolding molecules acquire native-like properties in a highly cooperative two-state process, with τ = 0.15 ± 0.03 s. This is accompanied by the acquisition of substantial native-like protection from hydrogen exchange. A double-mixing experiment and the absence of a denaturant effect reveal that slow (τ = 5 ± 1 s) folding of the remaining (ca. 12%) molecules is rate limited by the cis/trans isomerization of prolines that are trans in the folded enzyme. In addition, native state hydrogen exchange and classical denaturant unfolding experiments have been used to characterize the thermodynamic properties of the enzyme. In good agreement with previous crystallographic evidence, our results show that λ lysozyme is a highly dynamic protein, with relatively low conformational stability (ΔG°(N-U) = 25 ± 2 kJ·mol(-1)).
Collapse
Affiliation(s)
- Alexandre Di Paolo
- Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | | | | | | | | |
Collapse
|
29
|
Vandenameele J, Lejeune A, Di Paolo A, Brans A, Frère JM, Schmid FX, Matagne A. Folding of Class A β-Lactamases Is Rate-Limited by Peptide Bond Isomerization and Occurs via Parallel Pathways. Biochemistry 2010; 49:4264-75. [DOI: 10.1021/bi100369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julie Vandenameele
- Laboratoire d’Enzymologie et Repliement des Protéines, Centre d’Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Annabelle Lejeune
- Laboratoire d’Enzymologie et Repliement des Protéines, Centre d’Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Alexandre Di Paolo
- Laboratoire d’Enzymologie et Repliement des Protéines, Centre d’Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Alain Brans
- Laboratoire d’Enzymologie et Repliement des Protéines, Centre d’Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Jean-Marie Frère
- Laboratoire d’Enzymologie et Repliement des Protéines, Centre d’Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Franz X. Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - André Matagne
- Laboratoire d’Enzymologie et Repliement des Protéines, Centre d’Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| |
Collapse
|
30
|
Di Paolo A, Duval V, Matagne A, Redfield C. Backbone 1H, 13C, and 15N resonance assignments for lysozyme from bacteriophage lambda. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:111-114. [PMID: 20300891 PMCID: PMC2862172 DOI: 10.1007/s12104-010-9219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/02/2010] [Indexed: 05/29/2023]
Abstract
Lysozyme from lambda bacteriophage (lambda lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, lambda lysozyme consists of two structural domains connected by a helix, and has its catalytic residues located at the interface between these two domains. An interesting feature of lambda lysozyme, when compared to the well-characterised hen egg-white lysozyme, is its lack of disulfide bridges; this makes lambda lysozyme an interesting system for studies of protein folding. A comparison of the folding properties of lambda lysozyme and hen lysozyme will provide important insights into the role that disulfide bonds play in the refolding pathway of the latter protein. Here we report the (1)H, (13)C and (15)N backbone resonance assignments for lambda lysozyme by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for detailed investigation of the refolding pathway using pulse-labelling hydrogen/deuterium exchange experiments monitored by NMR.
Collapse
Affiliation(s)
- Alexandre Di Paolo
- Laboratoire d’Enzymologie et Repliement des protéines, Centre d’Ingénierie des Protéines, Institut de Chimie B6, Université de Liège, B4000 Liège (Sart-Tilman), Belgium
| | - Valérie Duval
- Laboratoire d’Enzymologie et Repliement des protéines, Centre d’Ingénierie des Protéines, Institut de Chimie B6, Université de Liège, B4000 Liège (Sart-Tilman), Belgium
| | - André Matagne
- Laboratoire d’Enzymologie et Repliement des protéines, Centre d’Ingénierie des Protéines, Institut de Chimie B6, Université de Liège, B4000 Liège (Sart-Tilman), Belgium
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU United Kingdom
| |
Collapse
|
31
|
Pethica BA. The thermodynamics of protein folding: a critique of widely used quasi-thermodynamic interpretations and a restatement based on the Gibbs–Duhem relation and consistent with the Phase Rule. Phys Chem Chem Phys 2010; 12:7445-56. [DOI: 10.1039/b920960c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Comparison of the thermodynamic landscapes of unfolding and formation of the energy dissipative state in the isolated light harvesting complex II. Biophys J 2009; 97:1188-97. [PMID: 19686667 DOI: 10.1016/j.bpj.2009.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/23/2022] Open
Abstract
In biochemistry and cell biology, understanding the molecular mechanisms by which physiological processes are regulated is regarded as an ultimate goal. In higher plants, one of the most widely investigated regulatory processes occurs in the light harvesting complexes (LHCII) of the chloroplast thylakoid membranes. Under limiting photon flux densities, LHCII harvests sunlight with high efficiency. When the intensity of incident radiation reaches levels close to the saturation of the photosynthesis, the efficiency of light harvesting is decreased by a process referred to as nonphotochemical quenching (NPQ), which enhances the singlet-excited state deactivation via nonradiative dissipative processes. Conformational rearrangements in LHCII are known to be crucial in promoting and controlling NPQ in vitro and in vivo. In this article, we address the thermodynamic nature of the conformational rearrangements promoting and controlling NPQ in isolated LHCII. A combined, linear reaction scheme in which the folded, quenched state represents a stable intermediate on the unfolding pathway was employed to describe the temperature dependence of the spectroscopic signatures associated with the chlorophyll fluorescence quenching and the loss of secondary structure motifs in LHCII. The thermodynamic model requires considering the temperature dependence of Gibbs free energy difference between the quenched and the unquenched states, as well as the unfolded and quenched states, of LHCII. Even though the same reaction scheme is adequate to describe the quenching and the unfolding processes in LHCII monomers and trimers, their thermodynamic characteristics were found to be markedly different. The results of the thermodynamic analysis shed light on the physiological importance of the trimeric state of LHCII in stabilizing the efficient light harvesting mode as well as preventing the quenched conformation of the protein from unfolding. Moreover, the transition to the quenched conformation in trimers reveals a larger degree of cooperativity than in monomers, explained by a small characteristic entropy (DeltaH(q) = 85 +/- 3 kJ mol(-1) compared to 125 +/- 5 kJ mol(-1) in monomers), which enables the fine-tuning of nonphotochemical quenching in vivo.
Collapse
|
33
|
Abstract
Amide hydrogen/deuterium (H/D) exchange of proteins monitored by mass spectrometry has established itself as a powerful method for probing protein conformational dynamics and protein interactions. The method uses isotope labeling to probe the rate at which protein backbone amide hydrogens undergo exchange. Backbone amide hydrogen exchange rates are particularly sensitive to hydrogen bonding; hydrogen bonding slows the exchange rates dramatically. Exchange rates reflect on the conformational mobility, hydrogen bonding strength, and solvent accessibility in protein structure. Mass spectrometric techniques are used to monitor the exchange events as mass shifts that arise through the incorporation of deuterium into the protein. Global conformational information can be deduced by monitoring the exchange profiles over time. Combining the labeling experiment with proteolysis under conditions that preserve the exchange information allows for localizing exchange events to distinct regions of the protein backbone and thus, the study of protein conformation with medium spatial resolution. Over the past decade, H/D exchange mass spectrometry has evolved into a versatile technique for investigating conformational dynamics and interactions in proteins, protein-ligand and protein-protein complexes.
Collapse
Affiliation(s)
- Xuguang Yan
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
34
|
Cho TY, Byrne N, Moore DJ, Pethica BA, Austen Angell C, Debenedetti PG. Structure–energy relations in hen egg white lysozyme observed during refolding from a quenched unfolded state. Chem Commun (Camb) 2009:4441-3. [DOI: 10.1039/b907656e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
|
36
|
Torrent J, Marchal S, Ribó M, Vilanova M, Georges C, Dupont Y, Lange R. Distinct unfolding and refolding pathways of ribonuclease a revealed by heating and cooling temperature jumps. Biophys J 2008; 94:4056-65. [PMID: 18234832 PMCID: PMC2367170 DOI: 10.1529/biophysj.107.123893] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/21/2007] [Indexed: 11/18/2022] Open
Abstract
Heating and cooling temperature jumps (T-jumps) were performed using a newly developed technique to trigger unfolding and refolding of wild-type ribonuclease A and a tryptophan-containing variant (Y115W). From the linear Arrhenius plots of the microscopic folding and unfolding rate constants, activation enthalpy (DeltaH(#)), and activation entropy (DeltaS(#)) were determined to characterize the kinetic transition states (TS) for the unfolding and refolding reactions. The single TS of the wild-type protein was split into three for the Y115W variant. Two of these transition states, TS1 and TS2, characterize a slow kinetic phase, and one, TS3, a fast phase. Heating T-jumps induced protein unfolding via TS2 and TS3; cooling T-jumps induced refolding via TS1 and TS3. The observed speed of the fast phase increased at lower temperature, due to a strongly negative DeltaH(#) of the folding-rate constant. The results are consistent with a path-dependent protein folding/unfolding mechanism. TS1 and TS2 are likely to reflect X-Pro(114) isomerization in the folded and unfolded protein, respectively, and TS3 the local conformational change of the beta-hairpin comprising Trp(115). A very fast protein folding/unfolding phase appears to precede both processes. The path dependence of the observed kinetics is suggestive of a rugged energy protein folding funnel.
Collapse
Affiliation(s)
- Joan Torrent
- Université Montpellier 2, UMR-S710, and INSERM Unit 710, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Moosavi-Movahedi AA, Pirzadeh P, Hashemnia S, Ahmadian S, Hemmateenejad B, Amani M, Saboury AA, Ahmad F, Shamsipur M, Hakimelahi GH, Tsai FY, Alijanvand HH, Yousefi R. Fibril formation of lysozyme upon interaction with sodium dodecyl sulfate at pH 9.2. Colloids Surf B Biointerfaces 2007; 60:55-61. [PMID: 17616361 DOI: 10.1016/j.colsurfb.2007.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 05/25/2007] [Accepted: 05/25/2007] [Indexed: 11/26/2022]
Abstract
Fibril formation seems to be a general property of all proteins. Its occurrence in hen or human lysozyme depends on certain conditions, namely acidic pHs or the presence of some additives. This paper studies the interaction of lysozyme with sodium dodecyl sulfate (SDS) at pH 9.2, using UV-visible spectrophotometry, circular dichroism (CD) spectropolarimetry, electron microscopy (EM) and chemometry. Based on observations such as the strange increase in absorbance at 650nm (pH 9.2) and the presence of intermediates, it is assumed that lysozyme fibrils have been formed at pH 9.2 in the presence of SDS as an anionic surfactant. Thioflavin T emission fluorescence and an EM image confirmed this assumption. beta-cyclodextrin was then used as a turbidity inhibitor to establish its effect on the distribution of intermediates that participate in fibril formation.
Collapse
|
38
|
Wang T, Wade RC. On the Use of Elevated Temperature in Simulations To Study Protein Unfolding Mechanisms. J Chem Theory Comput 2007; 3:1476-83. [DOI: 10.1021/ct700063c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting Wang
- Molecular and Cellular Modeling Group, EML Research, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, EML Research, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
| |
Collapse
|
39
|
Xu M, Shashilov VA, Ermolenkov VV, Fredriksen L, Zagorevski D, Lednev IK. The first step of hen egg white lysozyme fibrillation, irreversible partial unfolding, is a two-state transition. Protein Sci 2007; 16:815-32. [PMID: 17400924 PMCID: PMC2206649 DOI: 10.1110/ps.062639307] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 01/25/2007] [Accepted: 02/04/2007] [Indexed: 12/27/2022]
Abstract
Amyloid fibril depositions are associated with many neurodegenerative diseases as well as amyloidosis. The detailed molecular mechanism of fibrillation is still far from complete understanding. In our previous study of in vitro fibrillation of hen egg white lysozyme, an irreversible partially unfolded intermediate was characterized. A similarity of unfolding kinetics found for the secondary and tertiary structure of lysozyme using deep UV resonance Raman (DUVRR) and tryptophan fluorescence spectroscopy leads to a hypothesis that the unfolding might be a two-state transition. In this study, chemometric analysis, including abstract factor analysis (AFA), target factor analysis (TFA), evolving factor analysis (EFA), multivariate curve resolution-alternating least squares (ALS), and genetic algorithm, was employed to verify that only two principal components contribute to the DUVRR and fluorescence spectra of soluble fraction of lysozyme during the fibrillation process. However, a definite conclusion on the number of conformers cannot be made based solely on the above spectroscopic data although chemometric analysis suggested the existence of two principal components. Therefore, electrospray ionization mass spectrometry (ESI-MS) was also utilized to address the hypothesis. The protein ion charge state distribution (CSD) envelopes of the incubated lysozyme were well fitted with two principal components. Based on the above analysis, the partial unfolding of lysozyme during in vitro fibrillation was characterized quantitatively and proven to be a two-state transition. The combination of ESI-MS and Raman and fluorescence spectroscopies with advanced statistical analysis was demonstrated to be a powerful methodology for studying protein structural transformations.
Collapse
Affiliation(s)
- Ming Xu
- Department of Chemistry, University at Albany, SUNY, Albany, New York 12222, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nazari K, Mahmoudi A, Esmaeili N, Sadeghian L, Moosavi-Movahedi AA, Khodafarin R. Denaturation of jack-bean urease by sodium n-dodecyl sulphate: A kinetic study below the critical micelle concentration. Colloids Surf B Biointerfaces 2006; 53:139-48. [PMID: 17010576 DOI: 10.1016/j.colsurfb.2006.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Kinetics of urease denaturation by anionic surfactant (sodium n-dodecyl sulphate, SDS) at concentrations below the critical micelle concentration (CMC) is investigated spectrophotometrically at neutral pH and the corresponding two-phase kinetic parameters of the process are estimated from a three-state reversible process using a binomial exponential relation based on the relaxation time method as: Using a prepared computer program, the experimental data are properly fitted into a binomial exponential relation, considering a two-phase denaturation pathway including a kinetically stable folded intermediate formed at SDS concentration of 1.1 mM. Forward and backward rate constants are estimated as: k(1)=0.2141+/-4.5 x 10(-3), k(2)=5.173 x 10(-3)+/-8.3 x 10(-5), k(-1)=0.09432+/-3.6 x 10(-4) and k(-2)=2.079 x 10(-3)+/-5.6 x 10(-5)s(-1) for the proposed mechanism. The rate-limiting step as well as the reaction coordinates in the denaturation mechanism are established. The mechanism involves formation of a kinetically stable folded native like intermediate through the electrostatic interactions. The intermediate was found to be more stable even than the native form (by about 9 kJmol(-1)) and still hexamer, because no loss of amplitude was observed. Electrophoresis experiments on the native and surfactant/urease complexes indicated a higher mobility for the kinetically folded native like intermediate.
Collapse
Affiliation(s)
- K Nazari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
41
|
Two-dimensional correlation infrared spectroscopic study on the conformational changes occurring in the thermally induced pretransition of ribonuclease A. J Mol Struct 2006. [DOI: 10.1016/j.molstruc.2006.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Zhang Y, Trabbic-Carlson K, Albertorio F, Chilkoti A, Cremer PS. Aqueous two-phase system formation kinetics for elastin-like polypeptides of varying chain length. Biomacromolecules 2006; 7:2192-9. [PMID: 16827587 DOI: 10.1021/bm060254y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of aqueous two-phase system (ATPS) formation for elastin-like polypeptides (ELP) with defined chemical composition and chain length was investigated by dark field microscopy in an on-chip format with a linear temperature gradient. Scattering intensities from peptide solutions in the presence and absence of sodium dodecyl sulfate (SDS) were recorded as a function of temperature and time, simultaneously. It was found that the formation of the ATPS for three ELPs of different molecular weights (36 075, 59 422, and 129 856 Da) in the absence of SDS followed a coalescence mechanism, and the rate constant and activation energy were independent of chain length. With the introduction of SDS into the ELP solutions, the rate constants were attenuated more strongly with increasing chain length. Moreover, the coalescence process in the presence of SDS showed non-Arrhenius kinetics as a function of temperature. For the two shorter ELPs, ATPS formation occurred via coalescence at all SDS concentrations and temperatures investigated. On the other hand, the coalescence process was greatly suppressed for the longest ELP at elevated temperatures and higher SDS concentrations. Under these circumstances, ATPS formation was forced to proceed via a mixed Ostwald ripening and coalescence mechanism.
Collapse
Affiliation(s)
- Yanjie Zhang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
43
|
Pirzadeh P, Moosavi-Movahedi AA, Hemmateenejad B, Ahmad F, Shamsipur M, Saboury AA. Chemometric studies of lysozyme upon interaction with sodium dodecyl sulfate and β-cyclodextrin. Colloids Surf B Biointerfaces 2006; 52:31-8. [PMID: 16839751 DOI: 10.1016/j.colsurfb.2006.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/22/2006] [Accepted: 05/26/2006] [Indexed: 11/18/2022]
Abstract
The interaction of hen egg-white lysozyme with sodium n-dodecyl sulfate (SDS) as an anionic surfactant was investigated by UV-vis spectrophotometry at different pHs at 25 degrees C using HCl/glycine and NaOH/glycine for acidic and basic pH ranges, respectively. Analysis of the spectral data using chemometric method gave the evidence for the existence of intermediate components during the cited interaction. Results also indicated a connection between turbidity of the protein solution upon interaction with SDS and distribution of our newly found intermediates. As intermediates are important in aggregation of proteins, beta-cyclodextrin was employed as an anti-aggregation agent and the results obtained for the lysozyme-SDS-beta-cyclodextrin ternary system were compared with those obtained in the absence of beta-cyclodextrin on distribution and mole fraction of intermediates with. It is also shown that as the distribution of intermediates broadens in a range of SDS concentrations, the turbidity and aggregation state of solution are reduced.
Collapse
Affiliation(s)
- P Pirzadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
44
|
Petersen SB, Jonson V, Fojan P, Wimmer R, Pedersen S. Sorbitol prevents the self-aggregation of unfolded lysozyme leading to and up to 13 degrees C stabilisation of the folded form. J Biotechnol 2005; 114:269-78. [PMID: 15522436 DOI: 10.1016/j.jbiotec.2004.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 07/12/2004] [Accepted: 07/15/2004] [Indexed: 10/26/2022]
Abstract
We present a calorimetric investigation of stabilisation of hen egg-white lysozyme with sorbitol in the pH range 3.8-10.5. Differential scanning calorimetry and steady-state fluorescence were used to determine the denaturation temperatures of lysozyme as a function of sorbitol concentration. The fluorescence data were collected in the presence of 2M urea to lower the melting point of the protein to an observable range of the instrument. The effect of sorbitol on the activation energy of unfolding was investigated by scanrate studies. The effect of sorbitol lysozyme interaction was investigated using isothermal titration calorimetry. The titration experiments were performed with folded as well as unfolded lysozyme to investigate in more detail the nature of the interaction. The data obtained in those experiments show a remarkable stabilisation effect of sorbitol. We observed a 4.0 degrees C increase in the Tm for 1 M sorbitol in the pH range 3.8-8.5 by scanning calorimetry. The effect increases dramatically at pH 9.5 where we observe a 9.5 degrees C stabilisation. An increase in the sorbitol concentration to 2 M stabilises lysozyme by 11.3-13.4 degrees C in the pH range 9.5-10.5. In the absence of urea, no significant effects of sorbitol were observed on the activation energy for unfolding for lysozyme at pH 4.5. This indicates together with the results from the titration experiments that sorbitol may stabilise the folded form of lysozyme by destabilising the unfolded form of lysozyme. At pH values at and above lysozyme's pI (approximately 9.3), the unfolding of the protein is accompanied with a substantial amount of self-aggregation seen in the calorimetry experiments in the ratio of DeltaH(cal)/DeltaH(vH). In the presence of sorbitol, the self-aggregation was counterbalanced by higher sorbitol concentrations. These results strongly suggest a negative influence of sorbitol on the unfolded form of lysozyme and thereby stabilising the native form.
Collapse
Affiliation(s)
- Steffen B Petersen
- The Biostructure and Protein Engineering Group, Department of Life Science, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| | | | | | | | | |
Collapse
|
45
|
Liu Z, Chan HS. Desolvation is a likely origin of robust enthalpic barriers to protein folding. J Mol Biol 2005; 349:872-89. [PMID: 15893325 DOI: 10.1016/j.jmb.2005.03.084] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
Experimental data from global analyses of temperature (T) and denaturant dependence of the folding rates of small proteins led to an intrinsic enthalpic folding barrier hypothesis: to a good approximation, the T-dependence of folding rate under constant native stability conditions is Arrhenius. Furthermore, for a given protein, the slope of isostability folding rate versus 1/T is essentially independent of native stability. This hypothesis implies a simple relationship between chevron and Eyring plots of folding that is easily discernible when both sets of rates are expressed as functions of native stability. Using experimental data in the literature, we verify the predicted chevron-Eyring relationship for 14 proteins and determine their intrinsic enthalpic folding barriers, which vary approximately from 15 kcal/mol to 40 kcal/mol for different proteins. These enthalpic barriers do not appear to correlate with folding rates, but they exhibit correlation with equilibrium unfolding enthalpy at room temperature. Intrinsic enthalpic barriers with similarly high magnitudes apply as well to at least two cases of peptide-peptide and peptide-protein association, suggesting that these barriers are a hallmark of certain general and fundamental kinetic processes during folding and binding. Using a class of explicit-chain C(alpha) protein models with constant elementary enthalpic desolvation barriers between C(alpha) positions, we show that small microscopic pairwise desolvation barriers, which are a direct consequence of the particulate nature of water, can act cooperatively to give rise to a significant overall enthalpic barrier to folding. This theoretical finding provides a physical rationalization for the high intrinsic enthalpic barriers in protein folding energetics. Ramifications of entropy-enthalpy compensation in hydrophobic association for the height of enthalpic desolvation barrier are discussed.
Collapse
Affiliation(s)
- Zhirong Liu
- Protein Engineering Network of Centres of Excellence, Department of Biochemistry, Faculty of Medicine, University of Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|
46
|
Angell CA. Energy landscapes for cooperative processes: nearly ideal glass transitions, liquid-liquid transitions and folding transitions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2005; 363:415-432. [PMID: 15664891 DOI: 10.1098/rsta.2004.1500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We describe basic phenomenology in the physics of supercooling liquids at constant volume (most simulations), and at constant pressure (most laboratory experiments) before focusing attention on the exceptional cases that exhibit liquid-liquid phase transitions on constant-pressure cooling. We give evidence for point defects in glasses and liquids near T(g). Models based on defects predict transitions with density gaps in constant-pressure systems. We describe the energy landscape representation of such systems. Water, in these terms, is post-critical, and its nearly ideal glass formation can be related to nucleation-free protein 'funnel-folding'. For nucleated folding of proteins, a pseudo-gap should be present. Experimental methods of distinguishing between alternative folding scenarios are described.
Collapse
Affiliation(s)
- C Austen Angell
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
47
|
Mazon H, Marcillat O, Forest E, Vial C. Denaturant sensitive regions in creatine kinase identified by hydrogen/deuterium exchange. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:1461-8. [PMID: 15880663 DOI: 10.1002/rcm.1941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The GdmHCl-induced unfolding of creatine kinase (CK) has been studied by hydrogen/deuterium (H/D) exchange combined with mass spectrometry. MM-CK unfolded for various periods in different denaturant concentrations was pulsed-labeled with deuterium to identify different conformational intermediate states. For all denaturation times or GdmHCl concentrations, we observed variable proportions of only two species. The low-mass envelope of isotope peaks corresponds to a species that has gained about 10 deuteriums more than native CK, and the high-mass envelope to a completely deuterated species. To localize precisely the unfolded regions in the states highly populated during denaturation, the protein was digested with two proteases (pepsin and type XIII protease) after H/D exchange and rapid quenching of the reaction. The two sets of fragments obtained were analyzed by liquid chromatography coupled to mass spectrometry to determine the deuterium level in each fragment. Bimodal distributions of deuterium were found for most peptides, indicating that these regions were either folded or unfolded. This behavior is consistent with cooperative, localized unfolding. However, we observed a monomodal distribution of deuterium in two regions (1-12 and 162-186). We conclude that the increment of mass observed in the low-mass species of the intact protein (+10 Da) has its origin in these two segments. These regions, which are very sensitive to low GdmHCl concentrations, are involved in the monomer-monomer interface of CK and their perturbation is likely to weaken the dimeric structure. At higher denaturant concentration, this would induce dissociation of the dimer.
Collapse
Affiliation(s)
- Hortense Mazon
- UMR CNRS 5013, Biomembranes et enzymes associés, Université Claude Bernard Lyon I, 43, boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | | | | | | |
Collapse
|
48
|
Iimura S, Yagi H, Ogasahara K, Akutsu H, Noda Y, Segawa SI, Yutani K. Unusually Slow Denaturation and Refolding Processes of Pyrrolidone Carboxyl Peptidase from a Hyperthermophile Are Highly Cooperative: Real-Time NMR Studies. Biochemistry 2004; 43:11906-15. [PMID: 15362877 DOI: 10.1021/bi048762k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The refolding rate of heat-denatured cysteine-free pyrrolidone carboxyl peptidase (PCP-0SH) from Pyrococcus furiosus has been reported to be unusually slow under some conditions. To elucidate the structural basis of the unusually slow kinetics of the protein, the denaturation and refolding processes of the PCP-0SH were investigated using a real-time 2D (1)H-(15)N HSQC and CD experiments. At 2 M urea denaturation of the PCP-0SH in the acidic region, all of the native peaks in the 2D HSQC spectrum completely disappeared. The conformation of the PCP-0SH just after removal of 6 M GuHCl could be observed as a stable intermediate (D(1) state) in 2D HSQC and CD experiments, which is similar to a molten globule structure. The D(1) state of the PCP-0SH, which is the initial state of refolding, corresponded to the state at 2 M urea and seemed to be the denatured state in equilibrium with the native state under the physiological conditions. The refolding of PCP-0SH from the D(1) state to the native state could be observed to be highly cooperative without any intermediates between them, even if the refolding rate was quite slow. In the higher concentration of denaturants, PCP-0SH showed HSQC and CD spectra characteristic of completely unfolded proteins called the D(2) state. The unusually slow refolding rate was discussed as originating in the conformations in the transition state and/or the retardation of reorganization in an ensemble of nonrandom denatured structures in the D(1) state.
Collapse
Affiliation(s)
- Satoshi Iimura
- School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Mazon H, Marcillat O, Forest E, Smith DL, Vial C. Conformational Dynamics of the GdmHCl-Induced Molten Globule State of Creatine Kinase Monitored by Hydrogen Exchange and Mass Spectrometry. Biochemistry 2004; 43:5045-54. [PMID: 15109263 DOI: 10.1021/bi049965b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our understanding of the mechanism of protein folding can be improved by the characterization of folding intermediate states. Intrinsic tryptophan fluorescence measurements of equilibrium GdmHCl-induced unfolding of MM-CK allow for the construction of a "phase diagram", which shows the presence of five different conformational states, including three partially folded intermediates. However, only three states are detected by using pulsed-labeled H-D exchange analyzed by electrospray ionization mass spectrometry. One of them is the native state, and the two other species are present in proportions strongly dependent on the GdmHCl concentration and denaturation time. The low-mass peak is due to a largely exchange-incompetent state, which has gained only approximately 10 deuteriums more than the native protein. This population of MM-CK molecules has undergone a small conformational change induced by low GdmHCl concentrations. However, this limited change is in itself not sufficient to inactivate the enzyme or is easily reversible. The high-mass peak corresponds to a population of MM-CK that is fully deuterated. The comparison of fluorescence, activity, and H-D exchange measurements shows that the maximally populated intermediate at 0.8 M GdmHCl has the characteristics of a molten globule. It has no activity; it has 55% of its native alpha-helices and a maximum fluorescence emission wavelength of approximately 341 nm, and it binds ANS strongly. However, no protection against exchange is detected under the conditions used in this work. This paradox, the presence of significant residual secondary and tertiary structures detected by optical probes and the total deuteration of its amide protons detected by H-D exchange and mass spectrometry, could be explained by a highly dynamic MM-CK molten globule.
Collapse
Affiliation(s)
- Hortense Mazon
- UMR CNRS 5013, Biomembranes et enzymes associés, Université Claude Bernard Lyon I, 43, boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | | | | | |
Collapse
|
50
|
Meersman F, Heremans K. Temperature-induced dissociation of protein aggregates: accessing the denatured state. Biochemistry 2004; 42:14234-41. [PMID: 14640691 DOI: 10.1021/bi035623e] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermal denaturation of lysozyme and ribonuclease A (RNase A) under reducing and nonreducing conditions at neutral pH has been monitored by Fourier transform infrared spectroscopy. In the absence of the reductant, lysozyme and RNase A undergo apparent three- and two-state denaturation, respectively, as observed from the conformation-sensitive amide I' band. For both proteins the hydrogen-deuterium exchange takes place at lower temperatures than the main denaturation temperatures, suggesting that a transient denaturation mechanism occurs. The observed transition at 51.2 degrees C during the denaturation of lysozyme is attributed to this transient effect, rather than to the loss of tertiary structure. Under reducing conditions lysozyme aggregates during the heating phase, whereas RNase A shows only a minor aggregation, which further increases during the cooling step. The reduced stability of both proteins can be correlated with the transient denaturation behavior, which is also suggested to be involved in protein aggregation at physiologically relevant temperatures. In addition, it is shown that when the temperature is further increased, the amorphous aggregates dissociate. Comparison of the dissociated states with the denatured states obtained under nonreducing conditions indicates that these states have the same conformation. By using a two-dimensional correlation analysis we were able to show that the dissociation is preceded by a conformational change. It is argued that this extends to other types of perturbation.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | |
Collapse
|