1
|
Alu RNA Modulates the Expression of Cell Cycle Genes in Human Fibroblasts. Int J Mol Sci 2019; 20:ijms20133315. [PMID: 31284509 PMCID: PMC6651528 DOI: 10.3390/ijms20133315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Alu retroelements, whose retrotransposition requires prior transcription by RNA polymerase III to generate Alu RNAs, represent the most numerous non-coding RNA (ncRNA) gene family in the human genome. Alu transcription is generally kept to extremely low levels by tight epigenetic silencing, but it has been reported to increase under different types of cell perturbation, such as viral infection and cancer. Alu RNAs, being able to act as gene expression modulators, may be directly involved in the mechanisms determining cellular behavior in such perturbed states. To directly address the regulatory potential of Alu RNAs, we generated IMR90 fibroblasts and HeLa cell lines stably overexpressing two slightly different Alu RNAs, and analyzed genome-wide the expression changes of protein-coding genes through RNA-sequencing. Among the genes that were upregulated or downregulated in response to Alu overexpression in IMR90, but not in HeLa cells, we found a highly significant enrichment of pathways involved in cell cycle progression and mitotic entry. Accordingly, Alu overexpression was found to promote transition from G1 to S phase, as revealed by flow cytometry. Therefore, increased Alu RNA may contribute to sustained cell proliferation, which is an important factor of cancer development and progression.
Collapse
|
2
|
Hamdi HK, Reddy S, Laz N, Eltaher R, Kandell Z, Mahmud T, Alenazi L, Haroun B, Hassan M, Ragavendra R. A human specific Alu DNA cassette is found flanking the genes of transcription factor AP2. BMC Res Notes 2019; 12:222. [PMID: 30975199 PMCID: PMC6458609 DOI: 10.1186/s13104-019-4247-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/01/2019] [Indexed: 12/01/2022] Open
Abstract
Objective Alu elements are retroposons that invaded the primate genome and shaped its biology. Some Alus inserted recently and are polymorphic in the human population. It is these Alus that are being sought after in disease association studies and regulatory biology. Discovering polymorphic Alus in the human genome can open areas of new research in these fields. Results Using the polymerase chain reaction on genomic DNA, we identified a polymorphic Alu in the flanking region of the TFAP2B and TFAP2D genes. The new insert was found in higher frequency in Europeans (0.4) and Asians (0.38) and lower frequency in Africans (0.25). We also show this Alu to be part of a 3 Alu cassette that is human specific. The TFAP2B and TFAP2D genes encode members of the transcription factor AP-2, which plays a role in organ development. The insertion of this Alu cassette flanking the transcription factor genes distinguishes humans from the primates. This cassette can possibly affect the regulation of both genes or alternately provoke genomic deletions, which we have shown in this study. Its presence in such a location is intriguing and unquestionably opens an investigational window in disease association studies and in the field of gene regulation. Electronic supplementary material The online version of this article (10.1186/s13104-019-4247-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamdi K Hamdi
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia.
| | - Siddana Reddy
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Nada Laz
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Renad Eltaher
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Zahraa Kandell
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Teif Mahmud
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Lamia Alenazi
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Basheer Haroun
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Mohanad Hassan
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| | - Raju Ragavendra
- Basic Medical Sciences Dept., College of Dentistry, Almustqbal University, PO Box 156, Buraida, Qassim, 51411, Saudi Arabia
| |
Collapse
|
3
|
Kellner M, Makałowski W. Transposable elements significantly contributed to the core promoters in the human genome. SCIENCE CHINA-LIFE SCIENCES 2019; 62:489-497. [DOI: 10.1007/s11427-018-9449-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/18/2018] [Indexed: 01/27/2023]
|
4
|
Wang X, Ma Z, Kong X, Lv Z. Effects of RNAs on chromatin accessibility and gene expression suggest RNA-mediated activation. Int J Biochem Cell Biol 2016; 79:24-32. [PMID: 27497987 DOI: 10.1016/j.biocel.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023]
Abstract
The study of the interaction between RNA and DNA sequences in activating genes has important significance for understanding the mechanisms of RNA-mediated activation. Here, we used in vitro chromatin reconstitution approach to observe whether RNAs increase DNase I digestion, plasmid transfection to observe whether RNAs promote gene expression, and bioinformatics analysis to predict the binding ability of RNAs to centromere DNA (constitutive heterochromatin). Synthetic RNAs (23nt) that were complementary to mouse albumin gene and total liver RNA increased DNase I digestion sensitivity of mouse albumin gene, suggesting that RNAs can increase chromatin accessibility. Transcribed sense-antisense tandem Alu elements activated an enhanced green fluorescent protein reporter gene after stable transfection. Bioinformatics analysis showed that the binding strength of RNA population to centromere DNAs is significantly lower than that of their flanking sequences, which suggests that the centromere is not easily affected by RNAs produced from other transcribed regions and may be the reason why centromeres consist of constitutive heterochromatin. The results in this paper illustrate that RNAs complementary to DNA sequences play roles in activating genes. Since RNA is mainly produced from the cell's own DNA, the work presented in this paper suggests that RNAs transcribed from DNA create feedback that activates DNA transcription.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China.
| | - Zhihong Ma
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China; Clinical Laboratory, The Second Hospital of Tangshan, 21 North Jianshe Road, Tangshan, Hebei Province, China.
| | - Xianglong Kong
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China; Clinical Laboratory, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, Hebei Province, China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
5
|
Bailey J. Monkey-based research on human disease: the implications of genetic differences. Altern Lab Anim 2016; 42:287-317. [PMID: 25413291 DOI: 10.1177/026119291404200504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society (NEAVS), Boston, MA, USA
| |
Collapse
|
6
|
Dynamic Alu methylation during normal development, aging, and tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:784706. [PMID: 25243180 PMCID: PMC4163490 DOI: 10.1155/2014/784706] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/16/2014] [Indexed: 12/15/2022]
Abstract
DNA methylation primarily occurs on CpG dinucleotides and plays an important role in transcriptional regulations during tissue development and cell differentiation. Over 25% of CpG dinucleotides in the human genome reside within Alu elements, the most abundant human repeats. The methylation of Alu elements is an important mechanism to suppress Alu transcription and subsequent retrotransposition. Decades of studies revealed that Alu methylation is highly dynamic during early development and aging. Recently, many environmental factors were shown to have a great impact on Alu methylation. In addition, aberrant Alu methylation has been documented to be an early event in many tumors and Alu methylation levels have been associated with tumor aggressiveness. The assessment of the Alu methylation has become an important approach for early diagnosis and/or prognosis of cancer. This review focuses on the dynamic Alu methylation during development, aging, and tumor genesis. The cause and consequence of Alu methylation changes will be discussed.
Collapse
|
7
|
El Hajj N, Pliushch G, Schneider E, Dittrich M, Müller T, Korenkov M, Aretz M, Zechner U, Lehnen H, Haaf T. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes 2013; 62:1320-8. [PMID: 23209187 PMCID: PMC3609586 DOI: 10.2337/db12-0289] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic processes are primary candidates when searching for mechanisms that can stably modulate gene expression and metabolic pathways according to early life conditions. To test the effects of gestational diabetes mellitus (GDM) on the epigenome of the next generation, cord blood and placenta tissue were obtained from 88 newborns of mothers with dietetically treated GDM, 98 with insulin-dependent GDM, and 65 without GDM. Bisulfite pyrosequencing was used to compare the methylation levels of seven imprinted genes involved in prenatal and postnatal growth, four genes involved in energy metabolism, one anti-inflammatory gene, one tumor suppressor gene, one pluripotency gene, and two repetitive DNA families. The maternally imprinted MEST gene, the nonimprinted glucocorticoid receptor NR3C1 gene, and interspersed ALU repeats showed significantly decreased methylation levels (4-7 percentage points for MEST, 1-2 for NR3C1, and one for ALUs) in both GDM groups, compared with controls, in both analyzed tissues. Significantly decreased blood MEST methylation (3 percentage points) also was observed in adults with morbid obesity compared with normal-weight controls. Our results support the idea that intrauterine exposure to GDM has long-lasting effects on the epigenome of the offspring. Specifically, epigenetic malprogramming of MEST may contribute to obesity predisposition throughout life.
Collapse
Affiliation(s)
- Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Galyna Pliushch
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | | | - Melanie Aretz
- Department of Gynecology and Obstetrics, Municipal Clinics, Moenchengladbach, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Harald Lehnen
- Department of Gynecology and Obstetrics, Municipal Clinics, Moenchengladbach, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- Corresponding author: Thomas Haaf,
| |
Collapse
|
8
|
Ray DA, Batzer MA. Reading TE leaves: new approaches to the identification of transposable element insertions. Genome Res 2011; 21:813-20. [PMID: 21632748 PMCID: PMC3106314 DOI: 10.1101/gr.110528.110] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transposable elements (TEs) are a tremendous source of genome instability and genetic variation. Of particular interest to investigators of human biology and human evolution are retrotransposon insertions that are recent and/or polymorphic in the human population. As a consequence, the ability to assay large numbers of polymorphic TEs in a given genome is valuable. Five recent manuscripts each propose methods to scan whole human genomes to identify, map, and, in some cases, genotype polymorphic retrotransposon insertions in multiple human genomes simultaneously. These technologies promise to revolutionize our ability to analyze human genomes for TE-based variation important to studies of human variability and human disease. Furthermore, the approaches hold promise for researchers interested in nonhuman genomic variability. Herein, we explore the methods reported in the manuscripts and discuss their applications to aspects of human biology and the biology of other organisms.
Collapse
Affiliation(s)
- David A. Ray
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
9
|
Harris EE. Nonadaptive processes in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 143 Suppl 51:13-45. [PMID: 21086525 DOI: 10.1002/ajpa.21439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Evolutionary biology has tended to focus on adaptive evolution by positive selection as the primum mobile of evolutionary trajectories in species while underestimating the importance of nonadaptive evolutionary processes. In this review, I describe evidence that suggests that primate and human evolution has been strongly influenced by nonadaptive processes, particularly random genetic drift and mutation. This is evidenced by three fundamental effects: a relative relaxation of selective constraints (i.e., purifying selection), a relative increase in the fixation of slightly deleterious mutations, and a general reduction in the efficacy of positive selection. These effects are observed in protein-coding, regulatory regions, and in gene expression data, as well as in an augmentation of fixation of large-scale mutations, including duplicated genes, mobile genetic elements, and nuclear mitochondrial DNA. The evidence suggests a general population-level explanation such as a reduction in effective population size (N(e)). This would have tipped the balance between the evolutionary forces of natural selection and random genetic drift toward genetic drift for variants having small selective effects. After describing these proximate effects, I describe the potential consequences of these effects for primate and human evolution. For example, an increase in the fixation of slightly deleterious mutations could potentially have led to an increase in the fixation rate of compensatory mutations that act to suppress the effects of slightly deleterious substitutions. The potential consequences of compensatory evolution for the evolution of novel gene functions and in potentially confounding the detection of positively selected genes are explored. The consequences of the passive accumulation of large-scale genomic mutations by genetic drift are unclear, though evidence suggests that new gene copies as well as insertions of transposable elements into genes can potentially lead to adaptive phenotypes. Finally, because a decrease in selective constraint at the genetic level is expected to have effects at the morphological level, I review studies that compare rates of morphological change in various mammalian and island populations where N(e) is reduced. Furthermore, I discuss evidence that suggests that craniofacial morphology in the Homo lineage has shifted from an evolutionary rate constrained by purifying selection toward a neutral evolutionary rate.
Collapse
Affiliation(s)
- Eugene E Harris
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, Bayside, NY 10364, USA.
| |
Collapse
|
10
|
Cui F, Sirotin MV, Zhurkin VB. Impact of Alu repeats on the evolution of human p53 binding sites. Biol Direct 2011; 6:2. [PMID: 21208455 PMCID: PMC3032802 DOI: 10.1186/1745-6150-6-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/06/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs) reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs) remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. RESULTS We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. CONCLUSIONS The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu transcription, which, in turn, influences expression of the host genes.
Collapse
Affiliation(s)
- Feng Cui
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Michael V Sirotin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
El Hajj N, Zechner U, Schneider E, Tresch A, Gromoll J, Hahn T, Schorsch M, Haaf T. Methylation Status of Imprinted Genes and Repetitive Elements in Sperm DNA from Infertile Males. Sex Dev 2011; 5:60-9. [DOI: 10.1159/000323806] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2010] [Indexed: 01/19/2023] Open
|
12
|
Tanaka Y, Yamashita R, Suzuki Y, Nakai K. Effects of Alu elements on global nucleosome positioning in the human genome. BMC Genomics 2010; 11:309. [PMID: 20478020 PMCID: PMC2878307 DOI: 10.1186/1471-2164-11-309] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/17/2010] [Indexed: 11/14/2022] Open
Abstract
Background Understanding the genome sequence-specific positioning of nucleosomes is essential to understand various cellular processes, such as transcriptional regulation and replication. As a typical example, the 10-bp periodicity of AA/TT and GC dinucleotides has been reported in several species, but it is still unclear whether this feature can be observed in the whole genomes of all eukaryotes. Results With Fourier analysis, we found that this is not the case: 84-bp and 167-bp periodicities are prevalent in primates. The 167-bp periodicity is intriguing because it is almost equal to the sum of the lengths of a nucleosomal unit and its linker region. After masking Alu elements, these periodicities were greatly diminished. Next, using two independent large-scale sets of nucleosome mapping data, we analyzed the distribution of nucleosomes in the vicinity of Alu elements and showed that (1) there are one or two fixed slot(s) for nucleosome positioning within the Alu element and (2) the positioning of neighboring nucleosomes seems to be in phase, more or less, with the presence of Alu elements. Furthermore, (3) these effects of Alu elements on nucleosome positioning are consistent with inactivation of promoter activity in Alu elements. Conclusions Our discoveries suggest that the principle governing nucleosome positioning differs greatly across species and that the Alu family is an important factor in primate genomes.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Medical Genome Sciences, University of Tokyo, Minato-ku, Japan
| | | | | | | |
Collapse
|
13
|
Alu and b1 repeats have been selectively retained in the upstream and intronic regions of genes of specific functional classes. PLoS Comput Biol 2009; 5:e1000610. [PMID: 20019790 PMCID: PMC2784220 DOI: 10.1371/journal.pcbi.1000610] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 11/13/2009] [Indexed: 11/20/2022] Open
Abstract
Alu and B1 repeats are mobile elements that originated in an initial duplication of the 7SL RNA gene prior to the primate-rodent split about 80 million years ago and currently account for a substantial fraction of the human and mouse genome, respectively. Following the primate-rodent split, Alu and B1 elements spread independently in each of the two genomes in a seemingly random manner, and, according to the prevailing hypothesis, negative selection shaped their final distribution in each genome by forcing the selective loss of certain Alu and B1 copies. In this paper, contrary to the prevailing hypothesis, we present evidence that Alu and B1 elements have been selectively retained in the upstream and intronic regions of genes belonging to specific functional classes. At the same time, we found no evidence for selective loss of these elements in any functional class. A subset of the functional links we discovered corresponds to functions where Alu involvement has actually been experimentally validated, whereas the majority of the functional links we report are novel. Finally, the unexpected finding that Alu and B1 elements show similar biases in their distribution across functional classes, despite having spread independently in their respective genomes, further supports our claim that the extant instances of Alu and B1 elements are the result of positive selection. Despite their fundamental role in cell regulation, genes account for less than 1% of the human genome. Recent studies have shown that non-genic regions of our DNA may also play an important functional role in human cells. In this paper, we study Alu and B elements, a specific class of such non-genic elements that account for ∼10% of the human genome and ∼7% of the mouse genome respectively. We show that, contrary to the prevailing hypothesis, Alu and B elements have been preferentially retained in the proximity of genes that perform specific functions in the cell. In contrast, we found no evidence for selective loss of these elements in any functional class. Several of the functional classes that we have linked to Alu and B elements are central to the proper working of the cell, and their disruption has previously been shown to lead to the onset of disease. Interestingly, the DNA sequences of Alu and B elements differ substantially between human and mouse, thus hinting at the existence of a potentially large number of non-conserved regulatory elements.
Collapse
|
14
|
Gombart AF, Saito T, Koeffler HP. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics 2009; 10:321. [PMID: 19607716 PMCID: PMC2716374 DOI: 10.1186/1471-2164-10-321] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 07/16/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND About 45% of the human genome is comprised of mobile transposable elements or "junk DNA". The exaptation or co-option of these elements to provide important cellular functions is hypothesized to have played a powerful force in evolution; however, proven examples are rare. An ancient primate-specific Alu short interspersed element (SINE) put the human CAMP gene under the regulation of the vitamin D pathway by providing a perfect vitamin D receptor binding element (VDRE) in its promoter. Subsequent studies demonstrated that the vitamin D-cathelicidin pathway may be a key component of a novel innate immune response of human to infection. The lack of evolutionary conservation in non-primate mammals suggested that this is a primate-specific adaptation. Evidence for evolutionary conservation of this regulation in additional primate lineages would provide strong evidence that the TLR2/1-vitamin D-cathelicidin pathway evolved as a biologically important immune response mechanism protecting human and non-human primates against infection. RESULTS PCR-based amplification of the Alu SINE from human and non-human primate genomic DNA and subsequent sequence analysis, revealed perfect structural conservation of the VDRE in all primates examined. Reporter gene studies and induction of the endogenous CAMP gene in Rhesus macaque peripheral blood mononuclear cells demonstrated that the VDREs were conserved functionally. In addition, New World monkeys (NWMs) have maintained additional, functional steroid-hormone receptor binding sites in the AluSx SINE that confer retinoic acid responsiveness and provide potential thyroid hormone receptor binding sites. These sites were less well-conserved during human, ape and Old World monkey (OWM) evolution and the human CAMP gene does not respond to either retinoic acid or thyroid hormone. CONCLUSION We demonstrated that the VDRE in the CAMP gene originated from the exaptation of an AluSx SINE in the lineage leading to humans, apes, OWMs and NWMs and remained under purifying selection for the last 55-60 million years. We present convincing evidence of an evolutionarily fixed, Alu-mediated divergence in steroid hormone nuclear receptor gene regulation between humans/primates and other mammals. Evolutionary selection to place the primate CAMP gene under regulation of the vitamin D pathway potentiates the innate immune response and may counter the anti-inflammatory properties of vitamin D.
Collapse
Affiliation(s)
- Adrian F Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Tsuyako Saito
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - H Phillip Koeffler
- Department of Medicine, Division of Hematology/Oncology, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
15
|
Farcas R, Schneider E, Frauenknecht K, Kondova I, Bontrop R, Bohl J, Navarro B, Metzler M, Zischler H, Zechner U, Daser A, Haaf T. Differences in DNA methylation patterns and expression of the CCRK gene in human and nonhuman primate cortices. Mol Biol Evol 2009; 26:1379-1389. [PMID: 19282513 DOI: 10.1093/molbev/msp046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Changes in DNA methylation patterns during embryo development and differentiation processes are linked to the transcriptional plasticity of our genome. However, little is known about the evolutionary conservation of DNA methylation patterns and the evolutionary impact of epigenetic differences between closely related species. Here we compared the methylation patterns of CpG islands (CGIs) in the promoter regions of seven genes in humans and chimpanzees. We identified a block of CpGs in the cell cycle-related kinase (CCRK) gene that is more methylated in the adult human cortex than in the chimpanzee cortex and, in addition, it exhibits considerable intraspecific variation both in humans and chimpanzees. The species-specifically methylated region (SMR) lies between the almost completely methylated 5' region and the completely demethylated 3' region of the presumed CCRK CGI promoter. It is part of an Alu-Sg1 repeat that has been integrated into the promoter region in a common ancestor of humans and New World monkeys. This SMR is relatively hypomethylated in the rhesus monkey cortex and more or less completely methylated in the baboon cortex, indicating extraordinary methylation dynamics during primate evolution. The mRNA expression level of CCRK has also changed during the course of primate evolution. CCRK is expressed at much higher levels in human and baboon cortices, which display an average SMR methylation of 70% and 100%, respectively, than in chimpanzee and rhesus macaque cortices with an average SMR methylation of 35% and 40%, respectively. The observed evolutionary dynamics suggests a possibility that CCRK has been important for evolution of the primate brain.
Collapse
Affiliation(s)
- Ruxandra Farcas
- Institute for Human Genetics, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Duan K, Ding X, Zhang Q, Zhu H, Pan A, Huang J. AtCopeg1, the unique gene originated from AtCopia95 retrotransposon family, is sensitive to external hormones and abiotic stresses. PLANT CELL REPORTS 2008; 27:1065-73. [PMID: 18309491 DOI: 10.1007/s00299-008-0520-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/03/2008] [Accepted: 02/17/2008] [Indexed: 05/08/2023]
Abstract
Retrotransposons, the important component of eukaryotic genome, are seeds of evolution and play great role in creating new genes. The compact Arabidopsis genome harbors over 200 Copia-like retrotransposons, but mostly silent. Here we isolated an expressed gene AtCopeg1 (Copia evolved gene 1), which shows higher than 90% identity to AtCopia95_I, the consensus sequence encoding AtCopia95 polyprotein. AtCopeg1 is the unique gene evolved from AtCopia95 family. It is an intron-containing gene with two alternative 3' ends. The transcript accumulation of AtCopeg1 is tissue-specific, also significantly affected by external hormones and abiotic stresses. The presence of regulatory elements in its promoter region (originating from AtCopia95_I and AtCopia95 long terminal repeat), is adequate for conferring its essential expression feature. Thus, AtCopeg1 is a versatile functional gene involved in many developmental and adaptive processes probably including the signaling crosstalk of hormone and nutrient stress. Our work highlighted the role of transposable elements in creating new functional genes, and will incite the enthusiasm for isolation and functional characterization of plant genes evolved from those previously considered as selfish and junk DNA.
Collapse
Affiliation(s)
- Ke Duan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Biological Technique, Shanghai Academy of Agricultural Sciences, 2901 Bei Di Road, Shanghai 201106, China.
| | | | | | | | | | | |
Collapse
|
17
|
Urrutia AO, Ocaña LB, Hurst LD. Do Alu repeats drive the evolution of the primate transcriptome? Genome Biol 2008; 9:R25. [PMID: 18241332 PMCID: PMC2374697 DOI: 10.1186/gb-2008-9-2-r25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/02/2008] [Accepted: 02/01/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Of all repetitive elements in the human genome, Alus are unusual in being enriched near to genes that are expressed across a broad range of tissues. This has led to the proposal that Alus might be modifying the expression breadth of neighboring genes, possibly by providing CpG islands, modifying transcription factor binding, or altering chromatin structure. Here we consider whether Alus have increased expression breadth of genes in their vicinity. RESULTS Contrary to the modification hypothesis, we find that those genes that have always had broad expression are richest in Alus, whereas those that are more likely to have become more broadly expressed have lower enrichment. This finding is consistent with a model in which Alus accumulate near broadly expressed genes but do not affect their expression breadth. Furthermore, this model is consistent with the finding that expression breadth of mouse genes predicts Alu density near their human orthologs. However, Alus were found to be related to some alternative measures of transcription profile divergence, although evidence is contradictory as to whether Alus associate with lowly or highly diverged genes. If Alu have any effect it is not by provision of CpG islands, because they are especially rare near to transcriptional start sites. Previously reported Alu enrichment for genes serving certain cellular functions, suggested to be evidence of functional importance of Alus, appears to be partly a byproduct of the association with broadly expressed genes. CONCLUSION The abundance of Alu near broadly expressed genes is better explained by their preferential preservation near to housekeeping genes rather than by a modifying effect on expression of genes.
Collapse
Affiliation(s)
- Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath, BA4 7AY, UK.
| | | | | |
Collapse
|
18
|
Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB. Mobile DNA elements in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 45:2-19. [PMID: 18046749 DOI: 10.1002/ajpa.20722] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful for answering phylogenetic questions. We demonstrate how they have been used to help resolve a number of questions in primate phylogeny, including the human-chimpanzee-gorilla trichotomy and New World primate phylogeny. Alu and LINE1 element insertion polymorphisms have also been analyzed in human populations to test hypotheses about human evolution and population affinities and to address forensic issues. Finally, these elements have had impacts on the genome itself. We review how they have influenced fundamental ongoing processes like nonhomologous recombination, genomic deletion, and X chromosome inactivation.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
19
|
Tsuritani K, Irie T, Yamashita R, Sakakibara Y, Wakaguri H, Kanai A, Mizushima-Sugano J, Sugano S, Nakai K, Suzuki Y. Distinct class of putative "non-conserved" promoters in humans: comparative studies of alternative promoters of human and mouse genes. Genome Res 2007; 17:1005-14. [PMID: 17567985 PMCID: PMC1899111 DOI: 10.1101/gr.6030107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although recent studies have revealed that the majority of human genes are subject to regulation of alternative promoters, the biological relevance of this phenomenon remains unclear. We have also demonstrated that roughly half of the human RefSeq genes examined contain putative alternative promoters (PAPs). Here we report large-scale comparative studies of PAPs between human and mouse counterpart genes. Detailed sequence comparison of the 17,245 putative promoter regions (PPRs) in 5463 PAP-containing human genes revealed that PPRs in only a minor fraction of genes (807 genes) showed clear evolutionary conservation as one or more pairs. Also, we found that there were substantial qualitative differences between conserved and non-conserved PPRs, with the latter class being AT-rich PPRs of relative minor usage, enriched in repetitive elements and sometimes producing transcripts that encode small or no proteins. Systematic luciferase assays of these PPRs revealed that both classes of PPRs did have promoter activity, but that their strength ranges were significantly different. Furthermore, we demonstrate that these characteristic features of the non-conserved PPRs are shared with the PPRs of previously discovered putative non-protein coding transcripts. Taken together, our data suggest that there are two distinct classes of promoters in humans, with the latter class of promoters emerging frequently during evolution.
Collapse
Affiliation(s)
- Katsuki Tsuritani
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minatoku, Tokyo 108-8639, Japan
| | - Takuma Irie
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Riu Yamashita
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minatoku, Tokyo 108-8639, Japan
| | - Yuta Sakakibara
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroyuki Wakaguri
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Akinori Kanai
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Junko Mizushima-Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Laboratory of Viral Infection II Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minatoku, Tokyo 108-8639, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Corresponding author.E-mail ; fax +81-4-7136-3607
| |
Collapse
|
20
|
Abstract
Mobile elements are commonly referred to as selfish repetitive DNA sequences. However, mobile elements represent a unique and underutilized group of molecular markers. Several of their characteristics make them ideally suited for use as tools in forensic genomic applications. These include their nature as essentially homoplasy-free characters, they are identical by descent, the ancestral state of any insertion is known to be the absence of the element, and many mobile element insertions are lineage specific. In this review, we provide an overview of mobile element biology and describe the application of certain mobile elements, especially the SINEs and other retrotransposons, to forensic genomics. These tools include quantitative species-specific DNA detection, analysis of complex biomaterials, and the inference of geographic origin of human DNA samples.
Collapse
Affiliation(s)
- David A Ray
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
21
|
Abstract
Mobile elements represent a unique and under-utilized set of tools for molecular ecologists. They are essentially homoplasy-free characters with the ability to be genotyped in a simple and efficient manner. Interpretation of the data generated using mobile elements can be simple compared to other genetic markers. They exist in a wide variety of taxa and are useful over a wide selection of temporal ranges within those taxa. Furthermore, their mode of evolution instills them with another advantage over other types of multilocus genotype data: the ability to determine loci applicable to a range of time spans in the history of a taxon. In this review, I discuss the application of mobile element markers, especially short interspersed elements (SINEs), to phylogenetic and population data, with an emphasis on potential applications to molecular ecology.
Collapse
Affiliation(s)
- David A Ray
- Department of Biology, West Virginia University, 53 Campus Dr, Morgantown, WV 26506, USA.
| |
Collapse
|
22
|
Kehrer-Sawatzki H, Cooper DN. Structural divergence between the human and chimpanzee genomes. Hum Genet 2006; 120:759-78. [PMID: 17066299 DOI: 10.1007/s00439-006-0270-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 09/19/2006] [Indexed: 01/17/2023]
Abstract
The structural microheterogeneity evident between the human and chimpanzee genomes is quite considerable and includes inversions and duplications as well as deletions, ranging in size from a few base-pairs up to several megabases (Mb). Insertions and deletions have together given rise to at least 150 Mb of genomic DNA sequence that is either present or absent in humans as compared to chimpanzees. Such regions often contain paralogous sequences and members of multigene families thereby ensuring that the human and chimpanzee genomes differ by a significant fraction of their gene content. There is as yet no evidence to suggest that the large chromosomal rearrangements which serve to distinguish the human and chimpanzee karyotypes have influenced either speciation or the evolution of lineage-specific traits. However, the myriad submicroscopic rearrangements in both genomes, particularly those involving copy number variation, are unlikely to represent exclusively neutral changes and hence promise to facilitate the identification of genes that have been important for human-specific evolution.
Collapse
|
23
|
Polak P, Domany E. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics 2006; 7:133. [PMID: 16740159 PMCID: PMC1513395 DOI: 10.1186/1471-2164-7-133] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 06/01/2006] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The human genome contains over one million Alu repeat elements whose distribution is not uniform. While metabolism-related genes were shown to be enriched with Alu, in structural genes Alu elements are under-represented. Such observations led researchers to suggest that Alu elements were involved in gene regulation and were selected to be present in some genes and absent from others. This hypothesis is gaining strength due to findings that indicate involvement of Alu elements in a variety of functions; for example, Alu sequences were found to contain several functional transcription factor (TF) binding sites (BSs). We performed a search for new putative BSs on Alu elements, using a database of Position Specific Score Matrices (PSSMs). We searched consensus Alu sequences as well as specific Alu elements that appear on the 5 Kbp regions upstream to the transcription start site (TSS) of about 14000 genes. RESULTS We found that the upstream regions of the TSS are enriched with Alu elements, and the Alu consensus sequences contain dozens of putative BSs for TFs. Hence several TFs have Alu-associated BSs upstream of the TSS of many genes. For several TFs most of the putative BSs reside on Alu; a few of these were previously found and their association with Alu was also reported. In four cases the fact that the identified BSs resided on Alu went unnoticed, and we report this association for the first time. We found dozens of new putative BSs. Interestingly, many of the corresponding TFs are associated with early markers of development, even though the upstream regions of development-related genes are Alu-poor, compared with translational and protein biosynthesis related genes, which are Alu-rich. Finally, we found a correlation between the mouse B1 and human Alu densities within the corresponding upstream regions of orthologous genes. CONCLUSION We propose that evolution used transposable elements to insert TF binding motifs into promoter regions. We observed enrichment of biosynthesis genes with Alu-associated BSs of developmental TFs. Since development and cell proliferation (of which biosynthesis is an essential component) were proposed to be opposing processes, these TFs possibly play inhibitory roles, suppressing proliferation during differentiation.
Collapse
Affiliation(s)
- Paz Polak
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eytan Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
24
|
Thornburg BG, Gotea V, Makałowski W. Transposable elements as a significant source of transcription regulating signals. Gene 2006; 365:104-10. [PMID: 16376497 DOI: 10.1016/j.gene.2005.09.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 09/06/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes, contributing about 50% to the size of mammalian genomes. TEs serve as recombination hot spots and may acquire specific cellular functions, such as controlling protein translation and gene transcription. The latter is the subject of the analysis presented. We scanned TE sequences located in promoter regions of all annotated genes in the human genome for their content in potential transcription regulating signals. All investigated signals are likely to be over-represented in at least one TE class, which shows that TEs have an important potential to contribute to pre-transcriptional gene regulation, especially by moving transcriptional signals within the genome and thus potentially leading to new gene expression patterns. We also found that some TE classes are more likely than others to carry transcription regulating signals, which can explain why they have different retention rates in regions neighboring genes.
Collapse
Affiliation(s)
- Bartley G Thornburg
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
25
|
Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL. Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res 2005; 110:342-52. [PMID: 16093686 DOI: 10.1159/000084966] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 01/07/2004] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are present in all organisms and nearly half of the human and mouse genome is derived from ancient transpositions. This fact alone suggests that TEs have played a major role in genome organization and evolution. Studies undertaken over the last two decades or so clearly show that TEs of various kinds have played an important role in organism evolution. Here we review the impact TEs have on the evolution of gene regulation and gene function with an emphasis on humans. Understanding the mechanisms resulting in genomic change is central to our understanding of gene regulation, genetic disease and genome evolution. Full comprehension of these biological processes is not possible without an in depth knowledge of how TEs impact upon the genome.
Collapse
Affiliation(s)
- P Medstrand
- Department of Cell and Molecular Biology, Biomedical Centre, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Elucidation of complete nucleotide sequence of the human has revealed that coding sequences that store the information needed to synthesize functional proteins, occupy only 2% of the genomic region. The remaining 98%, barring few regulatory sequences, has been referred to as non-functional or junk DNA and consists of many kinds of repeat elements. In fact, human genome is the most repeat rich genome sequenced so far, in which more than half of the region is occupied by such sequences. Determination of significance of these repeats in the human genome has become the focus of many studies all over the world, especially after genome sequencing did not reveal any significant difference in coding regions between lower eukaryotes and human. In this article, we have focused on Alu repeats that are primate specific elements with many interesting biological properties. Moreover, these are the repeats with highest copy number in the human genome. We have highlighted different facets of their interaction with the genome and changing paradigms regarding their role in genome organization.
Collapse
Affiliation(s)
- Deepak Grover
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | | | | | | |
Collapse
|
27
|
Abstract
Background Alu elements are short (~300 bp) interspersed elements that amplify in primate genomes through a process termed retroposition. The expansion of these elements has had a significant impact on the structure and function of primate genomes. Approximately 10 % of the mass of the human genome is comprised of Alu elements, making them the most abundant short interspersed element (SINE) in our genome. The majority of Alu amplification occurred early in primate evolution, and the current rate of Alu retroposition is at least 100 fold slower than the peak of amplification that occurred 30–50 million years ago. Alu elements are therefore a rich source of inter- and intra-species primate genomic variation. Results A total of 153 Alu elements from the Ye subfamily were extracted from the draft sequence of the human genome. Analysis of these elements resulted in the discovery of two new Alu subfamilies, Ye4 and Ye6, complementing the previously described Ye5 subfamily. DNA sequence analysis of each of the Alu Ye subfamilies yielded average age estimates of ~14, ~13 and ~9.5 million years old for the Alu Ye4, Ye5 and Ye6 subfamilies, respectively. In addition, 120 Alu Ye4, Ye5 and Ye6 loci were screened using polymerase chain reaction (PCR) assays to determine their phylogenetic origin and levels of human genomic diversity. Conclusion The Alu Ye lineage appears to have started amplifying relatively early in primate evolution and continued propagating at a low level as many of its members are found in a variety of hominoid (humans, greater and lesser ape) genomes. Detailed sequence analysis of several Alu pre-integration sites indicated that multiple types of events had occurred, including gene conversions, near-parallel independent insertions of different Alu elements and Alu-mediated genomic deletions. A potential hotspot for Alu insertion in the Fer1L3 gene on chromosome 10 was also identified.
Collapse
|
28
|
Abstract
There are over a million Alu repetitive elements dispersed throughout the human genome, and a high level of Alu-sequence similarity ensures a strong propensity for unequal crossover events, some of which have lead to deleterious oncogenic rearrangements. Furthermore, Alu insertions introduce consensus 3' splice sites, which potentially facilitate alternative splicing. Not surprisingly, Alu-mediated defective splicing has also been associated with cancer. To investigate a possible correlation between the expansion of Alu repeats associated with primate divergence and predisposition to cancer, 4 Alu-mediated rearrangements — known to be the basis of cancer — were selected for phylogenetic analysis of the necessary genotype. In these 4 cases, it was determined that the different phylogenetic age of the oncogenic recombination-prone genotype reflected the evolutionary history of Alu repeats spreading to new genomic sites. Our data implies that the evolutionary expansion of Alu repeats to new genomic locations establishes new predispositions to cancer in various primate species.Key words: Alu repeats, evolution, cancer, primates, splicing, DNA recombination.
Collapse
Affiliation(s)
- Rosaleen Gibbons
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
29
|
Woelk CH, Ottones F, Plotkin CR, Du P, Royer CD, Rought SE, Lozach J, Sasik R, Kornbluth RS, Richman DD, Corbeil J. Interferon gene expression following HIV type 1 infection of monocyte-derived macrophages. AIDS Res Hum Retroviruses 2004; 20:1210-22. [PMID: 15588343 DOI: 10.1089/aid.2004.20.1210] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Macrophages represent one of the primary targets of HIV-1 infection. Changes in gene expression in primary human monocyte-derived macrophages following virus exposure were assessed using oligonucleotide arrays. Over a third of the 100 most modulated genes belonged to the interferon system. Upregulated interferon-stimulated genes included those essential for the innate immune response and also those involved in interferon and virus signal transduction from the cell surface. The promoter regions of a cluster of highly upregulated interferon-stimulated genes were analyzed for common regulatory elements. The nuclear factor in activated T cells (NFAT) and members of the interferon family of transcription factors appeared to be responsible for the upregulation of this set of interferon-stimulated genes following HIV-1 exposure.
Collapse
Affiliation(s)
- Christopher H Woelk
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0679, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J, Nakai K, Sugano S. Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions. Genome Res 2004; 14:1711-8. [PMID: 15342556 PMCID: PMC515316 DOI: 10.1101/gr.2435604] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Comparative sequence analysis was carried out for the regions adjacent to experimentally validated transcriptional start sites (TSSs), using 3324 pairs of human and mouse genes. We aligned the upstream putative promoter sequences over the 1-kb proximal regions and found that the sequence conservation could not be further extended at, on average, 510 bp upstream positions of the TSSs. This discontinuous manner of the sequence conservation revealed a "block" structure in about one-third of the putative promoter regions. Consistently, we also observed that G+C content and CpG frequency were significantly different inside and outside the blocks. Within the blocks, the sequence identity was uniformly 65% regardless of their length. About 90% of the previously characterized transcription factor binding sites were located within those blocks. In 46% of the blocks, the 5' ends were bounded by interspersed repetitive elements, some of which may have nucleated the genomic rearrangements. The length of the blocks was shortest in the promoters of genes encoding transcription factors and of genes whose expression patterns are brain specific, which suggests that the evolutional diversifications in the transcriptional modulations should be the most marked in these populations of genes.
Collapse
Affiliation(s)
- Yutaka Suzuki
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements. BMC Evol Biol 2004; 4:37. [PMID: 15461819 PMCID: PMC524483 DOI: 10.1186/1471-2148-4-37] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 10/04/2004] [Indexed: 11/24/2022] Open
Abstract
Background The primate-specific Alu elements, which originated 65 million years ago, exist in over a million copies in the human genome. These elements have been involved in genome shuffling and various diseases not only through retrotransposition but also through large scale Alu-Alu mediated recombination. Only a few subfamilies of Alus are currently retropositionally active and show insertion/deletion polymorphisms with associated phenotypes. Retroposition occurs by means of RNA intermediates synthesised by a RNA polymerase III promoter residing in the A-Box and B-Box in these elements. Alus have also been shown to harbour a number of transcription factor binding sites, as well as hormone responsive elements. The distribution of Alus has been shown to be non-random in the human genome and these elements are increasingly being implicated in diverse functions such as transcription, translation, response to stress, nucleosome positioning and imprinting. Results We conducted a retrospective analysis of putative functional sites, such as the RNA pol III promoter elements, pol II regulatory elements like hormone responsive elements and ligand-activated receptor binding sites, in Alus of various evolutionary ages. We observe a progressive loss of the RNA pol III transcriptional potential with concomitant accumulation of RNA pol II regulatory sites. We also observe a significant over-representation of Alus harboring these sites in promoter regions of signaling and metabolism genes of chromosome 22, when compared to genes of information pathway components, structural and transport proteins. This difference is not so significant between functional categories in the intronic regions of the same genes. Conclusions Our study clearly suggests that Alu elements, through retrotransposition, could distribute functional and regulatable promoter elements, which in the course of subsequent selection might be stabilized in the genome. Exaptation of regulatory elements in the preexisting genes through Alus could thus have contributed to evolution of novel regulatory networks in the primate genomes. With such a wide spectrum of regulatory sites present in Alus, it also becomes imperative to screen for variations in these sites in candidate genes, which are otherwise repeat-masked in studies pertaining to identification of predisposition markers.
Collapse
|
32
|
Kim TM, Hong SJ, Rhyu MG. Periodic explosive expansion of human retroelements associated with the evolution of the hominoid primate. J Korean Med Sci 2004; 19:177-85. [PMID: 15082888 PMCID: PMC2822296 DOI: 10.3346/jkms.2004.19.2.177] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five retroelement families, L1 and L2 (long interspersed nuclear element, LINE), Alu and MIR (short interspersed nuclear element, SINE), and LTR (long terminal repeat), comprise almost half of the human genome. This genome-wide analysis on the time-scaled expansion of retroelements sheds light on the chronologically synchronous amplification peaks of each retroelement family in variable heights across human chromosomes. Especially, L1s and LTRs in the highest density on sex chromosomes Xq and Y, respectively, disclose peak activities that are obscured in autosomes. The periods of young L1, Alu, LTR, and old L1 peak activities calibrated based on sequence divergence coincide with the divergence of the three major hominoid divergence as well as early eutherian radiation while the amplification peaks of old MIR and L2 account for the marsupial-placental split. Overall, the peaks of autonomous LINE (young and old L1s and L2s) peaks and non-autonomous SINE (Alus and MIRs) have alternated repeatedly for 150 million years. In addition, a single burst of LTR parallels the Cretaceous-Tertiary (K-T) boundary, an exceptional global event. These findings suggest that the periodic explosive expansions of LINEs and SINEs and an exceptional burst of LTR comprise the genome dynamics underlying the macroevolution of the hominoid primate lineage.
Collapse
Affiliation(s)
- Tae-Min Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
van de Lagemaat LN, Landry JR, Mager DL, Medstrand P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 2003; 19:530-6. [PMID: 14550626 DOI: 10.1016/j.tig.2003.08.004] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nearly half of mammalian genomes are derived from ancient transposable elements (TEs). We analyzed the prevalence of TEs in untranslated regions of human and mouse mRNAs and found evidence suggesting that TEs affect the expression of many genes through the donation of transcriptional regulatory signals. Furthermore, we found that recently expanded gene classes, such as those involved in immunity or response to external stimuli, have transcripts enriched in TEs, whereas TEs are excluded from mRNAs of highly conserved genes with basic functions in development or metabolism. These results support the view that TEs have played a significant role in the diversification and evolution of mammalian genes.
Collapse
Affiliation(s)
- Louie N van de Lagemaat
- Terry Fox Laboratory, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver, BC, V5Z1L3, Canada
| | | | | | | |
Collapse
|
34
|
Hon LS, Jain AN. Compositional structure of repetitive elements is quantitatively related to co-expression of gene pairs. J Mol Biol 2003; 332:305-10. [PMID: 12948482 DOI: 10.1016/s0022-2836(03)00926-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A sequence similarity metric operating on 10 kb upstream regions of gene pairs quantitatively predicts a portion of co-variation of expression of gene pairs in large-scale gene expression studies in human tumors and tumor-derived cell lines. The signal on which the metric depends most strongly originates in the compositional structure of repetitive genomic sequences (particularly Alu elements) present in these upstream regions. This effect is completely separable from effects of isochore composition on gene expression. The results implicate repetitive elements with some functional role in transcriptional regulation of the specific genes in whose promoter regions they reside and lend credence to suggestions that the general phenomenon of repetitive element insertions may be a fundamental evolutionary mechanism for modulating gene transcription.
Collapse
Affiliation(s)
- Lawrence S Hon
- Cancer Research Institute, University of California, 2340 Sutter Street S-336, Box 0128, San Francisco, CA 94143-0128, USA
| | | |
Collapse
|
35
|
Comai L, Madlung A, Josefsson C, Tyagi A. Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids? Philos Trans R Soc Lond B Biol Sci 2003; 358:1149-55. [PMID: 12831481 PMCID: PMC1693194 DOI: 10.1098/rstb.2003.1305] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Allopolyploidy, the joining of two parental genomes in a polyploid organism with diploid meiosis, is an important mechanism of reticulate evolution. While many successful long-established allopolyploids are known, those formed recently undergo an instability phase whose basis is now being characterized. We describe observations made with the Arabidopsis system that include phenotypic instability, gene silencing and activation, and methylation changes. We present a model based on the epigenetic destabilization of genomic repeats, which in the parents are heterochromatinized and suppressed. We hypothesize that loss of epigenetic suppression of these sequences, here defined as the heterome, results in genomic instability including silencing of single-copy genes.
Collapse
Affiliation(s)
- Luca Comai
- Department of Biology, Box 355325, University of Washington, Seattle, WA 98195-5325, USA.
| | | | | | | |
Collapse
|
36
|
Ureta-Vidal A, Ettwiller L, Birney E. Comparative genomics: genome-wide analysis in metazoan eukaryotes. Nat Rev Genet 2003; 4:251-62. [PMID: 12671656 DOI: 10.1038/nrg1043] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The increasing number of complete and nearly complete metazoan genome sequences provides a significant amount of material for large-scale comparative genomic analysis. Finding new effective methods to analyse such enormous datasets has been the object of intense research. Three main areas in comparative genomics have recently shown important developments: whole-genome alignment, gene prediction and regulatory-region prediction. Each of these areas improves the methods of deciphering long genomic sequences and uncovering what lies hidden in them.
Collapse
Affiliation(s)
- Abel Ureta-Vidal
- EnsEMBL Project, Room A2-06, EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | | |
Collapse
|
37
|
Tomitori H, Nenoi M, Mita K, Daino K, Igarashi K, Ichimura S. Functional characterization of the human spermidine/spermine N(1)-acetyltransferase gene promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1579:180-4. [PMID: 12427553 DOI: 10.1016/s0167-4781(02)00545-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Spermidine/spermine N(1)-acetyltransferase (SSAT), the key enzyme of polyamine catabolism, is induced by antiproliferative stresses. We analyzed the 5' flanking region of the human SSAT gene, and clarified that the binding of Sp1 to the GC-box located 42 to 51 bp upstream from the transcription start site is essential for transcription in HeLa S3 cells. A polyamine-responsive element (PRE) seemed to be responsible for the elevated transcription after X-ray irradiation.
Collapse
Affiliation(s)
- Hideyuki Tomitori
- Department of Clinical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
38
|
von Sternberg R. On the roles of repetitive DNA elements in the context of a unified genomic-epigenetic system. Ann N Y Acad Sci 2002; 981:154-88. [PMID: 12547679 DOI: 10.1111/j.1749-6632.2002.tb04917.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Repetitive DNA sequences comprise a substantial portion of most eukaryotic and some prokaryotic chromosomes. Despite nearly forty years of research, the functions of various sequence families as a whole and their monomer units remain largely unknown. The inability to map specific functional roles onto many repetitive DNA elements (REs), coupled with the taxon-specificity of sequence families, have led many to speculate that these genomic components are "selfish" replicators generating genomic "junk." The purpose of this paper is to critically examine the selfishness, evolutionary effects, and functionality of REs. First, a brief overview of the range of ideas pertaining to RE function is presented. Second, the argument is presented that the selfish DNA "hypothesis" is actually a narrative scheme, that it serves to protect neo-Darwinian assumptions from criticism, and that this story is untestable and therefore not a hypothesis. Third, attempts to synthesize the selfish DNA concept with complex systems models of the genome and RE functionality are critiqued. Fourth, the supposed connection between RE-induced mutations and macroevolutionary events are stated to be at variance with empirical evidence and theoretical considerations. Hypotheses that base phylogenetic transitions in repetitive sequence changes thus remain speculative. Fifth and finally, the case is made for viewing REs as integrally functional components of chromosomes, genomes, and cells. It is argued throughout that a new conceptual framework is needed for understanding the roles of repetitive DNA in genomic/epigenetic systems, and that neo-Darwinian "narratives" have been the primary obstacle to elucidating the effects of these enigmatic components of chromosomes.
Collapse
Affiliation(s)
- Richard von Sternberg
- Department of Systematic Biology, NHB-163, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| |
Collapse
|
39
|
Ebihara M, Ohba H, Ohno SI, Yoshikawa T. Genomic organization and promoter analysis of the human nicotinic acetylcholine receptor alpha6 subunit (CHNRA6) gene: Alu and other elements direct transcriptional repression. Gene 2002; 298:101-8. [PMID: 12406580 DOI: 10.1016/s0378-1119(02)00925-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) form ligand-gated ion channels involved in fast synaptic transmission. Recently mutations in nAChR genes have been reported in nocturnal frontal lobe epilepsy. We performed molecular analysis on the human neuronal nAChR alpha6 subunit (CHRNA6) gene, a member of nAChR gene family, to understand its role in disease. Genomic analysis revealed that the gene consisted of six exons with an estimated size of 16 kb. We mapped the CHRNA6 gene to chromosome 8p11.21-11.22 by fluorescence in situ hybridization, the same putative region responsible for adolescent-onset idiopathic generalized epilepsy. Examination of the 5'-regulatory region failed to identify either a TATA box or GC-rich sequences, but did highlight tandem Alu sequences, located between 910 and 370 bp upstream from a potential cap site. Analyses of transcriptional activity, performed using nested deletions of the 5'-upstream region, showed that the downstream Alu repeat and another element(s) in the promoter region, function as negative regulators. Further analyses of the tandem Alu repeats, examined by fusing them to a different ion channel gene promoter, confirmed their role as transcriptional repressors regardless of their orientation and copy number. These data may explain the limited expression of the CHRNA6 gene in the brain.
Collapse
Affiliation(s)
- Mitsuru Ebihara
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
40
|
Hamdi HK, Reznik J, Castellon R, Atilano SR, Ong JM, Udar N, Tavis JH, Aoki AM, Nesburn AB, Boyer DS, Small KW, Brown DJ, Kenney MC. Alu DNA polymorphism in ACE gene is protective for age-related macular degeneration. Biochem Biophys Res Commun 2002; 295:668-72. [PMID: 12099691 DOI: 10.1016/s0006-291x(02)00728-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. We report an association between an Alu polymorphism in the angiotensin-converting enzyme (ACE) gene with the dry/atrophic form of AMD. Using the polymerase chain reaction (PCR) on genomic DNA isolated from patients with AMD (n=173), and an age-matched control population (n=189), we amplified a region polymorphic for an Alu element insertion in the ACE gene. The Alu(+/+) genotype occurred 4.5 times more frequently in the control population than the dry/atrophic AMD patient population, (p=0.004). The predominance of the Alu(+/+) genotype within the unaffected control group represents a protective insertion with respect to the human ocular disease, dry/atrophic AMD. This is the first demonstration of an Alu element insertion exerting protective effects against a known human disease.
Collapse
Affiliation(s)
- Hamdi K Hamdi
- Department of Surgery, Ophthalmology Research Laboratories, Burns and Allen Research Institute, Cedars-Sinai Medical Center, UCLA Medical School Affiliate, 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ackerman H, Udalova I, Hull J, Kwiatkowski D. Evolution of a polymorphic regulatory element in interferon-gamma through transposition and mutation. Mol Biol Evol 2002; 19:884-90. [PMID: 12032244 DOI: 10.1093/oxfordjournals.molbev.a004145] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammalian transposable elements have intrinsic regulatory elements that can activate neighboring genes, and it is speculated that they can also carry extrinsic transactivating DNA sequences to new genomic locations. We have identified a polymorphic segment of the human interferon-gamma promoter region where two adjacent binding sites for NF-kappaB and NFAT originated from the insertion of an Alu element approximately 22-34 MYA. Both binding sites lie outside the Alu consensus sequence but within the boundaries of the insertion, suggesting that this segment of DNA was comobilized when the Alu element moved from another part of the genome. Sequence comparisons and examination of DNA-protein interactions across nine different primate species indicate that the inserted sequence contained the intact NFAT binding site, whereas the ability to bind NF-kappaB evolved through a series of mutations after the insertion. These observations are consistent with the notion that retropseudogenes can comobilize intact regulatory sequences to new locations and thereby influence the evolution of gene regulatory networks; however, the extent to which such events have shaped the evolution of gene regulation remains unknown.
Collapse
Affiliation(s)
- Hans Ackerman
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom. University Department of Paediatrics, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
42
|
Balasubramanian S, Harrison P, Hegyi H, Bertone P, Luscombe N, Echols N, McGarvey P, Zhang Z, Gerstein M. SNPs on human chromosomes 21 and 22 -- analysis in terms of protein features and pseudogenes. Pharmacogenomics 2002; 3:393-402. [PMID: 12052146 DOI: 10.1517/14622416.3.3.393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
SNPs are useful for genome-wide mapping and the study of disease genes. Previous studies have focused on SNPs in specific genes or SNPs pooled from a variety of different sources. Here, a systematic approach to the analysis of SNPs in relation to various features on a genome-wide scale, with emphasis on protein features and pseudogenes, is presented. We have performed a comprehensive analysis of 39,408 SNPs on human chromosomes 21 and 22 from the SNP consortium (TSC) database, where SNPs are obtained by random sequencing using consistent and uniform methods. Our study indicates that the occurrence of SNPs is lowest in exons and higher in repeats, introns and pseudogenes. Moreover, in comparing genes and pseudogenes, we find that the SNP density is higher in pseudogenes and the ratio of nonsynonymous to synonymous changes is also much higher. These observations may be explained by the increased rate of SNP accumulation in pseudogenes, which presumably are not under selective pressure. We have also performed secondary structure prediction on all coding regions and found that there is no preferential distribution of SNPs in a -helices, b -sheets or coils. This could imply that protein structures, in general, can tolerate a wide degree of substitutions. Tables relating to our results are available from http://genecensus.org/pseudogene.
Collapse
Affiliation(s)
- Suganthi Balasubramanian
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The Human Genome Project has generated both the information and technological infrastructure needed to accelerate genetic comparisons between humans and the African great apes (chimpanzees and gorillas). Sequence and chromosomal organization differences between these highly related genomes will provide clues to the genetic basis for recently evolved, specifically human traits such as bipedal gait and advanced cognitive function. Recent studies comparing the primate genomes have the potential to affect many aspects of human biomedical research and could benefit primate conservation efforts.
Collapse
Affiliation(s)
- J G Hacia
- The Institute for Genetic Medicine, University of Southern California, 2250 Alcazar Street, IGM 240, Los Angeles, CA 90089, USA.
| |
Collapse
|
44
|
Hayakawa T, Satta Y, Gagneux P, Varki A, Takahata N. Alu-mediated inactivation of the human CMP- N-acetylneuraminic acid hydroxylase gene. Proc Natl Acad Sci U S A 2001; 98:11399-404. [PMID: 11562455 PMCID: PMC58741 DOI: 10.1073/pnas.191268198] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inactivation of the CMP-N-acetylneuraminic acid hydroxylase gene has provided an example of human-specific genomic mutation that results in a widespread biochemical difference between human and nonhuman primates. We have found that, although a region containing a 92-bp exon and an AluSq element in the hydroxylase gene is intact in all nonhuman primates examined, the same region in the human genome is replaced by an AluY element that was disseminated at least one million years ago. We propose a mechanistic model for this Alu-mediated replacement event, which deleted the 92-bp exon and thus inactivated the human hydroxylase gene. It is suggested that Alu elements have played potentially important roles in genotypic and phenotypic evolution in the hominid lineage.
Collapse
Affiliation(s)
- T Hayakawa
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | | | | | | | | |
Collapse
|
45
|
Kurdyukov SG, Lebedev YB, Artamonova II, Gorodentseva TN, Batrak AV, Mamedov IZ, Azhikina TL, Legchilina SP, Efimenko IG, Gardiner K, Sverdlov ED. Full-sized HERV-K (HML-2) human endogenous retroviral LTR sequences on human chromosome 21: map locations and evolutionary history. Gene 2001; 273:51-61. [PMID: 11483360 DOI: 10.1016/s0378-1119(01)00570-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the evolutionary mechanisms for acquisition of novel functional sequences can be domestication of exogenous retroviruses that have been integrated into the germ line. The whole genome mapping of such elements in various species could reveal differences in positions of the retroviral integration and suggest possible roles of these differences in speciation. Here, we describe the number, locations and sequence features of the human endogenous retrovirus HERV-K (HML-2) long terminal repeat (LTR) sequences on human chromosome 21. We show that their distribution along the chromosome is not only non-random but also roughly correlated with the gene density. Amplification of orthologous LTR sites from a number of primate genomes produced patterns of presence and absence for each LTR sequence and allowed determination of the phylogenetic ages and evolutionary order of appearance of individual LTRs. The identity level and phylogenetic age of the LTRs did not correlate with their map locations. Thus, despite the non-random distribution of LTRs, they have apparently been inserted randomly into the chromosome relative to each other. As evidenced in previous studies of chromosomes 19 and 22, this is a characteristic of HERV-K integration.
Collapse
Affiliation(s)
- S G Kurdyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 16/10 Miklukho-Maklaya, Moscow, 117871, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gomes I, Sharma TT, Mahmud N, Kapp JD, Edassery S, Fulton N, Liang J, Hoffman R, Westbrook CA. Highly abundant genes in the transcriptosome of human and baboon CD34 antigen-positive bone marrow cells. Blood 2001; 98:93-9. [PMID: 11418467 DOI: 10.1182/blood.v98.1.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonhuman primates are useful large animal model systems for the in vivo study of hematopoietic stem cell biology. To better understand the degree of similarity of the hematopoietic systems between humans and baboons, and to explore the relevance of such studies in nonhuman primates to humans, this study was designed to compare the global gene expression profile of bone marrow CD34(+) cells isolated from these 2 species. Human complementary DNA (cDNA) filter arrays containing 25 920 human cDNAs were surveyed for this purpose. The expression pattern and relative gene abundance of the 2 RNA sources were similar, with a correlation coefficient of 0.87. A total of 15 970 of these cDNAs were expressed in human CD34(+) cells, of which the majority (96%) varied less than 3-fold in their relative level of expression between human and baboon. Reverse transcriptase-polymerase chain reaction analysis of selected genes confirmed that expression was comparable between the 2 species. No species-restricted transcripts have been identified, further reinforcing the high degree of similarity between the 2 populations. A subset of 1554 cDNAs, which are expressed at levels 100-fold and greater than background, is described, which includes 959 expressed sequence tags and uncharacterized cDNAs, and 595 named genes, including many that are clearly involved in hematopoiesis. The cDNAs reported here represent a selection of some of the most highly abundant genes in hematopoietic cells and provide a starting point to develop a profile of the transcriptosome of CD34(+) cells.
Collapse
Affiliation(s)
- I Gomes
- Department of Medicine, University of Illinois at Chicago, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Martinez J, Dugaiczyk LJ, Zielinski R, Dugaiczyk A. Human genetic disorders, a phylogenetic perspective. J Mol Biol 2001; 308:587-96. [PMID: 11350162 DOI: 10.1006/jmbi.2001.4755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When viewed from the perspective of time, human genetic disorders give new insights into their etiology and evolution. Here, we have correlated a specific set of Alu repetitive DNA elements, known to be the basis of certain genetic defects, with their phylogenetic roots in primate evolution. From a differential distribution of Alu repeats among primate species, we identify the phylogenetic roots of three human genetic diseases involving the LPL, ApoB, and HPRT genes. The different phylogenetic age of these genetic disorders could explain the different susceptibility of various primate species to genetic diseases. Our results show that LPL deficiency is the oldest and should affect humans, apes, and monkeys. ApoB deficiency should affect humans and great apes, while a disorder in the HPRT gene (leading to the Lesch-Nyhan syndrome) is unique to human, chimpanzee, and gorilla. Similar results can be obtained for cancer. We submit that de novo transpositions of Alu elements, and saltatory appearances of Alu-mediated genetic disorders, represent singularities, places where behavior changes suddenly. Alus' propensity to spread, not only increased the regulatory and developmental complexity of the primate genome, it also increased its instability and susceptibility to genetic defects and cancer. The dynamic spread not only provided markers of primate phylogeny, it must have actively shaped the course of that phylogeny.
Collapse
Affiliation(s)
- J Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The remarkable similarity among the genomes of humans and the African great apes could warrant their classification together as a single genus. However, whereas there are many similarities in the biology, life history, and behavior of humans and great apes, there are also many striking differences that need to be explained. The complete sequencing of the human genome creates an opportunity to ask which genes are involved in those differences. A logical approach would be to use the chimpanzee genome for comparison and the other great ape genomes for confirmation. Until such a great ape genome project can become reality, the next best approach must be educated guesses of where the genetic differences may lie and a careful analysis of differences that we do know about. Our group recently discovered a human-specific inactivating mutation in the CMP-sialic acid hydroxylase gene, which results in the loss of expression of a common mammalian cell-surface sugar throughout all cells in the human body. We are currently investigating the implications of this difference for a variety of issues relevant to humans, ranging from pathogen susceptibility to brain development. Evaluating the uniqueness of this finding has also led us to explore the existing literature on the broader issue of genetic differences between humans and great apes. The aim of this brief review is to consider a listing of currently known genetic differences between humans and great apes and to suggest avenues for future research. The differences reported between human and great ape genomes include cytogenetic differences, differences in the type and number of repetitive genomic DNA and transposable elements, abundance and distribution of endogenous retroviruses, the presence and extent of allelic polymorphisms, specific gene inactivation events, gene sequence differences, gene duplications, single nucleotide polymorphisms, gene expression differences, and messenger RNA splicing variations. Evaluation of the reported findings in all these categories indicates that the CMP-sialic hydroxylase mutation is the only one that has so far been shown to result in a global biochemical and structural difference between humans and great apes. Several of the other known genetic dissimilarities deserve more exploration at the functional level. Among the areas of focus for the future should be genes affecting development, mental maturation, reproductive biology, and other aspects of life history. The approaches taken should include both going from the genome up to the adaptive potential of the organisms and going from novel adaptive regimes down to the relevant repercussions in the genome. Also, as much as we desire a simple genetic explanation for the human phenomenon, it is much more probable that our evolution occurred in multiple genetic steps, many of which must have left detectable footprints in our genomes. Ultimately, we need to know the exact number of genetic steps, the order in which they occurred, and the temporal, spatial, environmental, and cultural contexts that determined their impact on human evolution.
Collapse
Affiliation(s)
- P Gagneux
- Department of Medicine and Glycobiology Research and Training Center, University of California at San Diego, La Jolla, California 92093-0687, USA
| | | |
Collapse
|