1
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Heat shock response in archaea. Emerg Top Life Sci 2018; 2:581-593. [DOI: 10.1042/etls20180024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 11/17/2022]
Abstract
An adequate response to a sudden temperature rise is crucial for cellular fitness and survival. While heat shock response (HSR) is well described in bacteria and eukaryotes, much less information is available for archaea, of which many characterized species are extremophiles thriving in habitats typified by large temperature gradients. Here, we describe known molecular aspects of archaeal heat shock proteins (HSPs) as key components of the protein homeostasis machinery and place this in a phylogenetic perspective with respect to bacterial and eukaryotic HSPs. Particular emphasis is placed on structure–function details of the archaeal thermosome, which is a major element of the HSR and of which subunit composition is altered in response to temperature changes. In contrast with the structural response, it is largely unclear how archaeal cells sense temperature fluctuations and which molecular mechanisms underlie the corresponding regulation. We frame this gap in knowledge by discussing emerging questions related to archaeal HSR and by proposing methodologies to address them. Additionally, as has been shown in bacteria and eukaryotes, HSR is expected to be relevant for the control of physiology and growth in various stress conditions beyond temperature stress. A better understanding of this essential cellular process in archaea will not only provide insights into the evolution of HSR and of its sensing and regulation, but also inspire the development of biotechnological applications, by enabling transfer of archaeal heat shock components to other biological systems and for the engineering of archaea as robust cell factories.
Collapse
|
3
|
Shoemark DK, Sessions RB, Brancaccio A, Bigotti MG. Intraring allostery controls the function and assembly of a hetero-oligomeric class II chaperonin. FASEB J 2018; 32:2223-2234. [PMID: 29233859 PMCID: PMC5983026 DOI: 10.1096/fj.201701061r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Class II chaperonins are essential multisubunit complexes that aid the folding of nonnative proteins in the cytosol of archaea and eukarya. They use energy derived from ATP to drive a series of structural rearrangements that enable polypeptides to fold within their central cavity. These events are regulated by an elaborate allosteric mechanism in need of elucidation. We employed mutagenesis and experimental analysis in concert with in silico molecular dynamics simulations and interface-binding energy calculations to investigate the class II chaperonin from Thermoplasma acidophilum. Here we describe the effects on the asymmetric allosteric mechanism and on hetero-oligomeric complex formation in a panel of mutants in the ATP-binding pocket of the α and β subunits. Our observations reveal a potential model for a nonconcerted folding mechanism optimized for protecting and refolding a range of nonnative substrates under different environmental conditions, starting to unravel the role of subunit heterogeneity in this folding machine and establishing important links with the behavior of the most complex eukaryotic chaperonins.—Shoemark, D. K., Sessions, R. B., Brancaccio, A., Bigotti, M. G. Intraring allostery controls the function and assembly of a hetero-oligomeric class II chaperonin.
Collapse
Affiliation(s)
| | | | - Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Istituto di Chimica del Riconoscimento Molecolare-Consiglio Nazionale delle Ricerche (CNR), Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
4
|
Paul DM, Beuron F, Sessions RB, Brancaccio A, Bigotti MG. Internal (His)₆-tagging delivers a fully functional hetero-oligomeric class II chaperonin in high yield. Sci Rep 2016; 6:20696. [PMID: 26856373 PMCID: PMC4746591 DOI: 10.1038/srep20696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 11/09/2022] Open
Abstract
Group II chaperonins are ATP-ases indispensable for the folding of many proteins that play a crucial role in Archaea and Eukarya. They display a conserved two-ringed assembly enclosing an internal chamber where newly translated or misfolded polypeptides can fold to their native structure. They are mainly hexadecamers, with each eight-membered ring composed of one or two (in Archaea) or eight (in Eukarya) different subunits. A major recurring problem within group II chaperonin research, especially with the hetero-oligomeric forms, is to establish an efficient recombinant system for the expression of large amounts of wild-type as well as mutated variants. Herein we show how we can produce, in E. coli cells, unprecedented amounts of correctly assembled and active αβ-thermosome, the class II chaperonin from Thermoplasma acidophilum, by introducing a (His)6-tag within a loop in the α subunit of the complex. The specific location was identified via a rational approach and proved not to disturb the structure of the chaperonin, as demonstrated by size-exclusion chromatography, native gel electrophoresis and electron microscopy. Likewise, the tagged protein showed an ATP-ase activity and an ability to refold substrates identical to the wild type. This tagging strategy might be employed for the overexpression of other recombinant chaperonins.
Collapse
Affiliation(s)
- Danielle M. Paul
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Istituto di Chimica del Riconoscimento Molecolare, CNR c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | | |
Collapse
|
5
|
The Mechanism and Function of Group II Chaperonins. J Mol Biol 2015; 427:2919-30. [PMID: 25936650 DOI: 10.1016/j.jmb.2015.04.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/19/2022]
Abstract
Protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substrates of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis.
Collapse
|
6
|
Dissection of the ATP-dependent conformational change cycle of a group II chaperonin. J Mol Biol 2013; 426:447-59. [PMID: 24120682 DOI: 10.1016/j.jmb.2013.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 11/21/2022]
Abstract
Group II chaperonin captures an unfolded protein while in its open conformation and then mediates the folding of the protein during ATP-driven conformational change cycle. In this study, we performed kinetic analyses of the group II chaperonin from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TKS1-Cpn), by stopped-flow fluorometry and stopped-flow small-angle X-ray scattering to reveal the reaction cycle. Two TKS1-Cpn variants containing a Trp residue at position 265 or position 56 exhibit nearly the same fluorescence kinetics induced by rapid mixing with ATP. Fluorescence started to increase immediately after the start of mixing and reached a maximum at 1-2s after mixing. Only in the presence of K(+) that a gradual decrease in fluorescence was observed after the initial peak. Similar results were obtained by stopped-flow small-angle X-ray scattering. A rapid fluorescence increase, which reflects nucleotide binding, was observed for the mutant containing a Trp residue near the ATP binding site (K485W), irrespective of the presence or absence of K(+). Without K(+), a small, rapid fluorescence decrease followed the initial increase, and then a gradual decrease was observed. In contrast, with K(+), a large, rapid fluorescence decrease occurred just after the initial increase, and then the fluorescence gradually increased. Finally, we observed ATP binding signal and also subtle conformational change in an ATPase-deficient mutant with K485W mutation. Based on these results, we propose a reaction cycle model for group II chaperonins.
Collapse
|
7
|
Jayasinghe M, Shrestha P, Wu X, Tehver R, Stan G. Weak intra-ring allosteric communications of the archaeal chaperonin thermosome revealed by normal mode analysis. Biophys J 2013; 103:1285-95. [PMID: 22995501 DOI: 10.1016/j.bpj.2012.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/21/2022] Open
Abstract
Chaperonins are molecular machines that use ATP-driven cycles to assist misfolded substrate proteins to reach the native state. During the functional cycle, these machines adopt distinct nucleotide-dependent conformational states, which reflect large-scale allosteric changes in individual subunits. Distinct allosteric kinetics has been described for the two chaperonin classes. Bacterial (group I) chaperonins, such as GroEL, undergo concerted subunit motions within each ring, whereas archaeal and eukaryotic chaperonins (group II) undergo sequential subunit motions. We study these distinct mechanisms through a comparative normal mode analysis of monomer and double-ring structures of the archaeal chaperonin thermosome and GroEL. We find that thermosome monomers of each type exhibit common low-frequency behavior of normal modes. The observed distinct higher-frequency modes are attributed to functional specialization of these subunit types. The thermosome double-ring structure has larger contribution from higher-frequency modes, as it is found in the GroEL case. We find that long-range intersubunit correlation of amino-acid pairs is weaker in the thermosome ring than in GroEL. Overall, our results indicate that distinct allosteric behavior of the two chaperonin classes originates from different wiring of individual subunits as well as of the intersubunit communications.
Collapse
Affiliation(s)
- Manori Jayasinghe
- Department of Chemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| | | | | | | | | |
Collapse
|
8
|
Reissmann S, Joachimiak LA, Chen B, Meyer AS, Nguyen A, Frydman J. A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle. Cell Rep 2012; 2:866-77. [PMID: 23041314 DOI: 10.1016/j.celrep.2012.08.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/06/2012] [Accepted: 08/30/2012] [Indexed: 01/16/2023] Open
Abstract
The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins.
Collapse
Affiliation(s)
- Stefanie Reissmann
- Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | | | | | |
Collapse
|
9
|
Noi K, Hirai H, Hongo K, Mizobata T, Kawata Y. A potentially versatile nucleotide hydrolysis activity of group II chaperonin monomers from Thermoplasma acidophilum. Biochemistry 2009; 48:9405-15. [PMID: 19728744 DOI: 10.1021/bi900959c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compared to the group I chaperonins such as Escherichia coli GroEL, which facilitate protein folding, many aspects of the functional mechanism of archaeal group II chaperonins are still unclear. Here, we show that monomeric forms of archaeal group II chaperonin alpha and beta from Thermoplasma acidophilum may be purified stably and that these monomers display a strong AMPase activity in the presence of divalent ions, especially Co(2+) ion, in addition to ATPase and ADPase activities. Furthermore, other nucleoside phosphates (guanosine, cytidine, uridine, and inosine phosphates) in addition to adenine nucleotides were hydrolyzed. From analyses of the products of hydrolysis using HPLC, it was revealed that the monomeric chaperonin successively hydrolyzed the phosphoanhydride and phosphoester bonds of ATP in the order of gamma to alpha. This activity was strongly suppressed by point mutation of specific essential aspartic acid residues. Although these archaeal monomeric chaperonins did not alter the refolding of MDH, their novel versatile nucleotide hydrolysis activity might fulfill a new function. Western blot experiments demonstrated that the monomeric chaperonin subunits were also present in lysed cell extracts of T. acidophilum, and partially purified native monomer displayed Co(2+)-dependent AMPase activity.
Collapse
Affiliation(s)
- Kentaro Noi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Institute of Regenerative Medicine Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan
| | | | | | | | | |
Collapse
|
10
|
Bergeron LM, Shis DL, Gomez L, Clark DS. Small molecule inhibition of a Group II chaperonin: Pinpointing a loop region within the equatorial domain as necessary for protein refolding. Arch Biochem Biophys 2009; 481:45-51. [DOI: 10.1016/j.abb.2008.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 11/28/2022]
|
11
|
Neirynck K, Waterschoot D, Vandekerckhove J, Ampe C, Rommelaere H. Actin Interacts with CCT via Discrete Binding Sites: A Binding transition-release Model for CCT-Mediated Actin Folding. J Mol Biol 2006; 355:124-38. [PMID: 16300788 DOI: 10.1016/j.jmb.2005.10.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/29/2005] [Accepted: 10/18/2005] [Indexed: 11/28/2022]
Abstract
The chaperones prefoldin and the cytosolic chaperonin CCT-containing TCP-1 (CCT) guide the cytoskeletal protein actin to its native conformation. Performing an alanine scan of actin, we identified discrete recognition determinants for CCT interaction. Interestingly, one of these is similar and functional in the non-homologous protein Cdc20, suggesting that some of the binding information in the CCT target proteins is shared. The information in actin for recognition by CCT and for folding is different, as all but one of the mutants in the recognition determinants are folding-competent. In addition, some other actin mutants remain CCT-arrested and are not released in a native conformation, whereas others do fold but remain bound to CAP. Kinetic experiments provide evidence that CCT-mediated folding of non-native actin occurs in at least two steps, in which initially the recognition determinant 245-249 contacts CCT and the other determinants interact at later stages. Actin mutants that are CCT-arrested demonstrate that some regions neighbouring the recognition determinants are involved in modulating the correct folding transitions of actin on CCT, or its release from this chaperonin. Further, we found that the ATP binding of actin is not a prerequisite for its release, and we suggest that CAP may be involved in charging the nucleotide. Based on the kinetics of CCT binding and folding of actin and actin mutants, we propose a multi-step recognition-transition-release model. This also implies that the currently accepted notion of CCT-mediated actin folding is probably more complex.
Collapse
Affiliation(s)
- Katrien Neirynck
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. A. Baertsoenkaai 3, 9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
12
|
Bigotti MG, Clarke AR. Cooperativity in the thermosome. J Mol Biol 2005; 348:13-26. [PMID: 15808850 DOI: 10.1016/j.jmb.2005.01.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/25/2005] [Accepted: 01/27/2005] [Indexed: 01/16/2023]
Abstract
The thermosome from Thermoplasma acidophilum is a type II chaperonin composed of eight alpha and eight beta subunits. The genes encoding the two types of subunit were co-expressed in Escherichia coli and the alpha8/beta8 complex purified from the cell extract. The isolated complex showed steady-state ATPase properties characteristic of the thermosome purified from the native organism and was capable of enhancing the folding yield of a thermostable enzyme at elevated temperature (55 degrees C). To compare the nucleotide response of this double-ring structure with the type I and more compositionally heterogeneous type II chaperonins, the tryptophan residue within the alpha subunit was used as a fluorescence reporter of the conformational changes within the thermosome induced by the binding of nucleotides. Stopped-flow measurements of indole fluorescence at 55 degrees C showed that there is a fast (approximately 350 s(-1)) and a slow (approximately 0.6 s(-1)) structural rearrangement when ATP binds to the thermosome. Further examination of the fast rearrangement showed that the associated rate constant followed a two-phase saturation profile, as it does for GroEL and for the type II chaperonin from the eukaryotic cytoplasm. This result, in keeping with these precedents, reveals that the thermosome is also a negatively cooperative system with respect to inter-ring communications, i.e. the first ring loads with higher affinity than the second. As in the case of GroEL, the loading of the second ring is weakened by ADP, implying that asymmetric ATP/ADP complexes are favoured over symmetric ones. Despite the difference in co-protein involvement in the type I and II chaperonins, these observations show that negative cooperativity is a common feature of all chaperonins thus far examined. This property results in a strong preference for asymmetry in nucleotide occupancy and implies at least some commonality with the reciprocating encapsulation mechanism shown for the GroE chaperonins.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
13
|
Tosukhowong A, Nakayama J, Mizunoe Y, Sugimoto S, Fukuda D, Sonomoto K. Reconstitution and function of Tetragenococcus halophila chaperonin 60 tetradecamer. J Biosci Bioeng 2005; 99:30-7. [PMID: 16233750 DOI: 10.1263/jbb.99.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 10/05/2004] [Indexed: 11/17/2022]
Abstract
Tetragenococcus halophila originally isolated from soy sauce is a halophilic lactic acid bacterium which can grow under 4 M sodium chloride. T. halophila chaperonin composed of a core moiety of chaperonin 60 (cpn60) and a lid moiety of chaperonin 10 (cpn10), is thought to contribute to host halotolerant capability. In this report, we reconstituted and characterized the core complex of T. halophila chaperonin by using a recombinant T. halophila cpn60 (Tcpn60) overexpressed in Escherichia coli. The reconstitution of Tcpn60 was performed in the presence of 10 mM MgCl2, 2 mM ATP and 0.8 M (NH4)2SO4 and the resultant oligomer was purified by gel filtration chromatography. Electron microscopy of the reconstituted Tcpn60 revealed a double toroidal tetradecameric structure that is characteristic of bacterial cpn60. The T. halophila tetradecamer cpn60 exhibited an ATPase activity and a refolding activity of both chemically and thermally denatured enolases under wide range of salt concentrations. Furthermore, we demonstrated that heterologous expression of Tcpn60 allowed the normal growth of host Escherichia coli cells under salt stress conditions and this effect was further enhanced by co-expression with Tcpn10. These results suggested that Tcpn60 contributes to the halotolerance property of T. halophila cell as a tetradecamer complex, probably associated with the Tcpn10 complex.
Collapse
Affiliation(s)
- Amonlaya Tosukhowong
- Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Shomura Y, Yoshida T, Iizuka R, Maruyama T, Yohda M, Miki K. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J Mol Biol 2004; 335:1265-78. [PMID: 14729342 DOI: 10.1016/j.jmb.2003.11.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The crystal structures of the group II chaperonins consisting of the alpha subunit with amino acid substitutions of G65C and/or I125T from the hyperthermophilic archaeum Thermococcus strain KS-1 were determined. These mutants have been shown to be active in ATP hydrolysis but inactive in protein folding. The structures were shown to be double-ring hexadecamers in an extremely closed form, which was consistent with the crystal structure of native alpha8beta8-chaperonin from Thermoplasma acidophilum. Comparisons of the present structures with the atomic structures of the GroEL14-GroES7-(ADP)7 complex revealed that the deficiency in protein-folding activity with the G65C amino acid substitution is caused by the steric hindrance of the local conformational change in an equatorial domain. We concluded that this mutant chaperonin with G65C substitution is deprived of the smooth conformational change in the refolding-reaction cycle. We obtained a new form of crystal with a distinct space group at a lower concentration of sulfate ion in the presence of nucleotide. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion. Such subunit rotation has never been characterized in group II chaperonins. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion.
Collapse
Affiliation(s)
- Yasuhito Shomura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Iizuka R, Yoshida T, Shomura Y, Miki K, Maruyama T, Odaka M, Yohda M. ATP binding is critical for the conformational change from an open to closed state in archaeal group II chaperonin. J Biol Chem 2003; 278:44959-65. [PMID: 12920124 DOI: 10.1074/jbc.m305484200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group II chaperonins, found in archaea and in eukaryotic cytosol, do not have a co-chaperonin corresponding to GroES. Instead, it is suggested that the helical protrusion extending from the apical domain acts as a built-in lid for the central cavity and that the opening and closing of the lid is regulated by ATP binding and hydrolysis. However, details of this conformational change remain unclear. To investigate the conformational change associated with the ATP-driven cycle, we conducted protease sensitivity analyses and tryptophan fluorescence spectroscopy of alpha-chaperonin from a hyperthermophilic archaeum, Thermococcus strain KS-1. In the nucleotide-free or ADP-bound state, the chaperonin, especially in the helical protrusion region, was highly sensitive to proteases. Addition of ATP and ammonium sulfate induced the transition to the relatively protease-resistant form. The fluorescence intensity of the tryptophan residue introduced at the tip of the helical protrusion was enhanced by the presence of ATP or ammonium sulfate. We conclude that ATP binding induces the conformational change from the lid-open to lid-closed form in archaeal group II chaperonin.
Collapse
Affiliation(s)
- Ryo Iizuka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Kusmierczyk AR, Martin J. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn. FEBS Lett 2003; 547:201-4. [PMID: 12860414 DOI: 10.1016/s0014-5793(03)00722-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The properties of the ATPase activity of the type II chaperonin from Methanococcus maripaludis (Mm-cpn) were examined. Mm-cpn can hydrolyze not only ATP, but also CTP, UTP, and GTP, albeit with different effectiveness. The ATPase activity is dependent on magnesium and potassium ions, and is effectively inhibited by sodium ions. Maximal rates of ATP hydrolysis are achieved at 600 mM potassium. Initial rates of ATP hydrolysis by Mm-cpn were determined at various ATP concentrations, revealing for the first time the presence of both positive intra-ring and negative inter-ring cooperativity in the archaeal chaperonin.
Collapse
Affiliation(s)
- Andrew R Kusmierczyk
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-J2, Providence, RI 02912, USA
| | | |
Collapse
|
17
|
Frangakis AS, Böhm J, Förster F, Nickell S, Nicastro D, Typke D, Hegerl R, Baumeister W. Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc Natl Acad Sci U S A 2002; 99:14153-8. [PMID: 12391313 PMCID: PMC137853 DOI: 10.1073/pnas.172520299] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electron tomograms of intact frozen-hydrated cells are essentially three-dimensional images of the entire proteome of the cell, and they depict the whole network of macromolecular interactions. However, this information is not easily accessible because of the poor signal-to-noise ratio of the tomograms and the crowded nature of the cytoplasm. Here, we describe a template matching algorithm that is capable of detecting and identifying macromolecules in tomographic volumes in a fully automated manner. The algorithm is based on nonlinear cross correlation and incorporates elements of multivariate statistical analysis. Phantom cells, i.e., lipid vesicles filled with macromolecules, provide a realistic experimental scenario for an assessment of the fidelity of this approach. At the current resolution of approximately 4 nm, macromolecules in the size range of 0.5-1 MDa can be identified with good fidelity.
Collapse
Affiliation(s)
- Achilleas S Frangakis
- Max-Planck-Institut für Biochemie, Molekulare Strukturbiologie, Am Klopferspitz 18a, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Leroux MR. Protein folding and molecular chaperones in archaea. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:219-77. [PMID: 11677685 DOI: 10.1016/s0065-2164(01)50007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- M R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
19
|
Yoshida T, Kawaguchi R, Taguchi H, Yoshida M, Yasunaga T, Wakabayashi T, Yohda M, Maruyama T. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J Mol Biol 2002; 315:73-85. [PMID: 11771967 DOI: 10.1006/jmbi.2001.5220] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group II chaperonins of archaea and eukaryotes are distinct from group I chaperonins of bacteria. Whereas group I chaperonins require the co-chaperonin Cpn-10 or GroES for protein folding, no co-chaperonin has been known for group II. The protein folding mechanism of group II chaperonins is not yet clear. To understand this mechanism, we examined protein refolding by the recombinant alpha or beta-subunit chaperonin homo-oligomer (alpha16mer and beta16mer) from a hyperthermoplilic archaeum, Thermococcus strain KS-1, using a model substrate, green fluorescent protein (GFP). The alpha16mer and beta16mer captured the non-native GFP and promoted its refolding without any co-chaperonin in an ATP dependent manner. A non-hydrolyzable ATP analog, AMP-PNP, induced the GFP refolding mediated by beta16mer but not by the alpha16mer. A mutant alpha-subunit chaperonin homo-oligomer (trap-alpha) could capture the non-native protein but lacked the ability to refold it. Although trap-alpha suppressed ATP-dependent refolding of GFP mediated by alpha16mer or beta16mer, it did not affect the AMP-PNP-dependent refolding. This indicated that the GFP refolding mediated by beta16mer with AMP-PNP was not accessible to the trap-alpha. Gel filtration chromatography and a protease protection experiment revealed that this refolded GFP, in the presence of AMP-PNP, was associated with beta16mer. After the completion of GFP refolding mediated by beta16mer with AMP-PNP, addition of ATP induced an additional refolding of GFP. Furthermore, the beta16mer preincubated with AMP-PNP showed the ability to capture the non-native GFP. These suggest that AMP-PNP induced one of two chaperonin rings (cis-ring) to close and induced protein refolding in this ring, and that the other ring (trans-ring) could capture the unfolded GFP which was refolded by adding ATP. The present data indicate that, in the group II chaperonin of Thermococcus strain KS-1, the protein folding proceeds in its cis-ring in an ATP-dependent fashion without any co-chaperonin.
Collapse
Affiliation(s)
- Takao Yoshida
- Kamaishi Laboratories, Marine Biotechnology Institute Co. Ltd., 3-75-1 Heita, Kamaishi, 026-0001, Iwate, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Two classes of chaperonins are known in all groups of organisms to participate in the folding of newly synthesized proteins. Whereas bacterial type I chaperonins use a reversibly binding cofactor to temporarily sequester folding substrate proteins within the cylindrical chaperonin cavity, type II chaperonins in archaea and the eukaryotic cytosol appear to have evolved a built-in lid for this purpose. Not entirely surprisingly, this has consequences for the folding modes of the two types of chaperonins.
Collapse
Affiliation(s)
- A R Kusmierczyk
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, P.O. Box G-J2, Providence, RI 02912, USA
| | | |
Collapse
|
21
|
Gutsche I, Holzinger J, Rauh N, Baumeister W, May RP. ATP-induced structural change of the thermosome is temperature-dependent. J Struct Biol 2001; 135:139-46. [PMID: 11580263 DOI: 10.1006/jsbi.2001.4373] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein folding by chaperonins is powered by ATP binding and hydrolysis. ATPase activity drives the folding machine through a series of conformational rearrangements, extensively described for the group I chaperonin GroEL from Escherichia coli but still poorly understood for the group II chaperonins. The latter--archaeal thermosome and eukaryotic TRiC/CCT--function independently of a GroES-like cochaperonin and are proposed to rely on protrusions of their own apical domains for opening and closure in an ATP-controlled fashion. Here we use small-angle neutron scattering to analyze structural changes of the recombinant alpha-only and the native alphabeta-thermosome from Thermoplasma acidophilum upon their ATPase cycling in solution. We show that specific high-salt conditions, but not the presence of MgATP alone, induce formation of higher order thermosome aggregates. The mechanism of the open-closed transition of the thermosome is strongly temperature-dependent. ATP binding to the chaperonin appears to be a two-step process: at lower temperatures an open state of the ATP-thermosome is predominant, whereas heating to physiological temperatures induces its switching to a closed state. Our data reveal an analogy between the ATPase cycles of the two groups of chaperonins and enable us to put forward a model of thermosome action.
Collapse
Affiliation(s)
- I Gutsche
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, Martinsried bei München, D-82152, Germany
| | | | | | | | | |
Collapse
|
22
|
Ruepp A, Rockel B, Gutsche I, Baumeister W, Lupas AN. The Chaperones of the archaeon Thermoplasma acidophilum. J Struct Biol 2001; 135:126-38. [PMID: 11580262 DOI: 10.1006/jsbi.2001.4402] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chaperonesare an essential component of a cell's ability to respond to environmental challenges. Chaperones have been studied primarily in bacteria, but in recent years it has become apparent that some classes of chaperones either are very divergent in bacteria relative to archaea and eukaryotes or are missing entirely. In contrast, a high degree of similarity was found between the chaperonins of archaea and those of the eukaryotic cytosol, which has led to the establishment of archaeal model systems. The archaeon most extensively used for such studies is Thermoplasma acidophilum, which thrives at 59 degrees C and pH 2. Here we review information on its chaperone complement in light of the recently determined genome sequence.
Collapse
Affiliation(s)
- A Ruepp
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, Martinsried, D-82152, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
Chaperonins mediate protein folding in an ATP-dependent manner. ATP binding and hydrolysis by chaperonins are subject to both homotropic and heterotropic allosteric regulation. In the case of GroEL and CCT, homotropic regulation by ATP is manifested in nested cooperativity, which involves positive intra-ring cooperativity and negative inter-ring cooperativity in ATP binding. Both types of cooperativity are modulated by various heterotropic allosteric effectors, which include nonfolded proteins, ADP, Mg2+, monovalent ions such as K+, and cochaperonins in the case of type I chaperonins such as GroEL. Here, the allosteric properties of chaperonins are reviewed and new results of ours are presented with regard to allosteric effects of ADP. The role of allostery in the reaction cycle and folding function of chaperonins is discussed.
Collapse
Affiliation(s)
- A Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | |
Collapse
|
24
|
Steinbacher S, Ditzel L. Review: nucleotide binding to the thermoplasma thermosome: implications for the functional cycle of group II chaperonins. J Struct Biol 2001; 135:147-56. [PMID: 11580264 DOI: 10.1006/jsbi.2001.4382] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural information on group II chaperonins became available during recent years from electron microscopy and X-ray crystallography. Three conformational states have been identified for both archaeal and eukaryotic group II chaperonins: an open state, a spherical closed conformation, and an intermediate asymmetric bullet-shaped form. However, the functional cycle of group II chaperonins appears less well understood, although major principles are conserved when compared to group I chaperonins: binding of the substrate polypeptide to the apical domains of the open state and MgATP-driven conformational changes that result in encapsulation of the substrate where folding can proceed presumably in the closed ring of the bullet-shaped form. Binding of the transition state analogue MgADP-AlF3-H2O in the crystal structure of the Thermoplasma acidophilum thermosome suggests that the closed geometry is the enzymatically active conformation that performs ATP hydrolysis. Domain movements observed by electron microscopy suggest a coupling of ATP hydrolysis and domain movement similar to that in the GroE system. The hydrophilic interior of the closed thermosome corresponds to the cis-ring of the asymmetric GroEL-GroES complex implicated in protein folding.
Collapse
Affiliation(s)
- S Steinbacher
- Abteilung für Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, Martinsried, 82152, Germany.
| | | |
Collapse
|
25
|
Kafri G, Willison KR, Horovitz A. Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1. Protein Sci 2001; 10:445-9. [PMID: 11266630 PMCID: PMC2373951 DOI: 10.1110/ps.44401] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Initial rates of ATP hydrolysis by the chaperonin containing TCP-1 (CCT) from bovine testis were measured as a function of ATP concentration. Two allosteric transitions are observed: one at relatively low concentrations of ATP (<100 microM) and the second at higher concentrations of ATP. The data suggest that CCT has positive intra-ring cooperativity and negative inter-ring cooperativity in ATP hydrolysis, with respect to ATP, as previously observed in the case of GroEL. It is shown that the relatively weak positive intra-ring cooperativity found in the case of CCT may be due to heterogeneity in its subunit composition. Our results suggest that nested allosteric behavior may be common to chaperone double-ring systems.
Collapse
Affiliation(s)
- G Kafri
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|