1
|
Zeng J, Sun Y, Fang Y, Wang X, Huang Q, Zhang P, Shao M, Wang P, Cheng J, Di M, Liu T, Qian Q. Unleashing the potential of a low CpG Passer transposon for superior CAR-T cell therapy. Front Immunol 2025; 16:1541653. [PMID: 39981247 PMCID: PMC11840574 DOI: 10.3389/fimmu.2025.1541653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Background To date, the non-viral vector Chimeric Antigen Receptor (CAR) T cell preparation platform, exemplified by transposons, has demonstrated significant potential in tumor immunotherapy and yielded positive results in multiple clinical trials. Nonetheless, non-methylated CpG sequences within plasmid DNA can elicit an inflammatory response via Toll-like receptor 9 (TLR9) during CAR-T cell preparation, adversely affecting transgene expression. Additionally, de novo DNA methylation programs promote T cell exhaustion, which poses a significant limitation for CAR-T cell therapy applications. Methods High-throughput liquid protein chip and CBA analyses were utilized to determine the expression levels of inflammatory factors. Flow cytometry and luciferase reporter assays were employed for mutation screening. BALB/c mice and M-NSG mice were used to evaluate the inflammatory response and efficacy of LCG CAR-T in vivo, with TIL grouping detected via immunohistochemistry. Results In this study, we modified the newly discovered Passer (JL) transposon to construct a low-CpG content transposon for CAR-T cell (LCG CAR-T cell) preparation. In vitro experiments demonstrated that LCG CAR-T cells prepared using this new transposon exhibited stronger cytotoxicity. In animal models, LCG CAR-T cells significantly inhibited tumor growth and increased the populations of CD4+CAR-T cells and tumor-infiltrating lymphocytes. Furthermore, LCG CAR-T cells modulated pro-inflammatory cytokine release, thereby reducing in vivo inflammatory responses and surpassing the effects observed with unmodified CAR-T cells. Conclusions Collectively, our results demonstrate the high safety and efficacy of non-viral, low CpG Passer transposon CAR-T cells, offering new avenues for improving CAR-T cell efficacy while minimizing in vivo inflammation.
Collapse
Affiliation(s)
- Jianyao Zeng
- School of Medicine, Shanghai University, Shanghai, China
| | - Yan Sun
- School of Medicine, Shanghai University, Shanghai, China
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Yuan Fang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Xiaodie Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Qian Huang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Pingjing Zhang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Meiqi Shao
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Pei Wang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Jingbo Cheng
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Meng Di
- School of Medicine, Shanghai University, Shanghai, China
| | - Tao Liu
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Qijun Qian
- School of Medicine, Shanghai University, Shanghai, China
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
- Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Kamali P, Fairn GD. Using the Sleeping Beauty Transposon System for Doxycycline-inducible Gene Expression in RAW264.7 Macrophage Cells to Study Phagocytosis. Bio Protoc 2025; 15:e5178. [PMID: 39959293 PMCID: PMC11825295 DOI: 10.21769/bioprotoc.5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025] Open
Abstract
Macrophages are known for engulfing and digesting pathogens and dead cells through a specialized form of endocytosis called phagocytosis. Unfortunately, many macrophage cell lines are refractory to most reagents used for transient transfections. Alternative transient approaches, such as electroporation or transduction with lentiviral vectors, typically cause cell death (electroporation) or can be time-consuming to generate numerous lentivirus when using different genes of interest. Therefore, we use the Sleeping Beauty system to generate stably transfected cells. The system uses a "resurrected" transposase gene named Sleeping Beauty found in salmonid fish. Experimentally, the system introduces two plasmids: one carrying the Sleeping Beauty transposase and the other with an integration cassette carrying the gene of interest, a reverse-doxycycline controlled repressor gene, and an antibiotic resistance gene. The construct used in this protocol provides puromycin resistance. Stable integrations are selected by culturing the cells in the presence of puromycin, and further enrichment can be obtained using fluorescence-activated cell sorting (FACS). In this protocol, we use the Sleeping Beauty transposon system to generate RAW264.7 cells with doxycycline-inducible inositol polyphosphate 4-phosphatase B containing a C-terminal CaaX motif (INPP4B-CaaX). INPP4B-CaaX dephosphorylates the D-4 position of phosphatidylinositol 3,4-bisphosphate and inhibits phagocytosis. One benefit is that generating stable cell lines is substantially faster than selecting for random integrations. Without FACS, the method typically gives ~50% of the cells that are transfected; with sorting, this approaches 100%. This makes phagocytosis experiments easier since more cells can be analyzed per experiment, allowing for population-based measurements where a ~10% transient transfection rate is insufficient. Finally, using the doxycycline-promoter allows for low near endogenous expression of proteins or robust overexpression. Key features • This protocol builds on the protocols and reagents developed by Kowarz et al. [1] and extends it to using RAW macrophages. • Allows for the rapid generation of stably induced cell lines. • This protocol also determines the phagocytic index and efficiency.
Collapse
Affiliation(s)
- Parsa Kamali
- Dept of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Gregory D. Fairn
- Dept of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Dept of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Diaby M, Wu H, Gao B, Shi S, Wang B, Wang S, Wang Y, Wu Z, Chen C, Wang X, Song C. A Naturally Active Spy Transposon Discovered from the Insect Genome of Colletes gigas as a Promising Novel Gene Transfer Tool. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400969. [PMID: 38774947 PMCID: PMC11304231 DOI: 10.1002/advs.202400969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Indexed: 08/09/2024]
Abstract
Novel active DNA transposons, such as Spy transposons from the PHIS superfamily, are identified through bioinformatics in this study. The native transposases cgSpy and cvSpy displayed transposition activities of approximately 85% and 35% compared to the hyperactive piggyBac transposase (hyPB). The cgSpy transposon showed unique characteristics, including a lack of overproduction inhibition and reduced efficiency for insertion sizes between 3.1 to 8.5 kb. Integration preferences of cgSpy are found in genes and regulatory regions, making it suitable for genetic manipulation. Evaluation in T-cell engineering demonstrated that cgSpy-mediated chimeric antigen receptor (CAR) modification is comparable to the PB system, indicating its potential utility in cell therapy. This study unveils the promising application of the active native transposase, Spy, from Colletes gigas, as a valuable tool for genetic engineering, particularly in T-cell manipulation.
Collapse
Affiliation(s)
- Mohamed Diaby
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Han Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Bo Gao
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Shasha Shi
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Bingqing Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Saisai Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Yali Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Zherui Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Cai Chen
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Xiaoyan Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Chengyi Song
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| |
Collapse
|
4
|
Zhang T, Tan S, Tang N, Li Y, Zhang C, Sun J, Guo Y, Gao H, Cai Y, Sun W, Wang C, Fu L, Ma H, Wu Y, Hu X, Zhang X, Gee P, Yan W, Zhao Y, Chen Q, Guo B, Wang H, Zhang YE. Heterologous survey of 130 DNA transposons in human cells highlights their functional divergence and expands the genome engineering toolbox. Cell 2024; 187:3741-3760.e30. [PMID: 38843831 DOI: 10.1016/j.cell.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 07/14/2024]
Abstract
Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuanqing Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Gao
- Rengene Biotechnology Co., Ltd., Beijing 100036, China
| | - Yujia Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liangzheng Fu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yachao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Peter Gee
- MaxCyte Inc., Rockville, MD 20850, USA
| | - Weihua Yan
- Cold Spring Biotech Corp., Beijing 100031, China
| | - Yahui Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baocheng Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Rossi M, Breman E. Engineering strategies to safely drive CAR T-cells into the future. Front Immunol 2024; 15:1411393. [PMID: 38962002 PMCID: PMC11219585 DOI: 10.3389/fimmu.2024.1411393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.
Collapse
|
6
|
Tian J, Tong D, Li Z, Wang E, Yu Y, Lv H, Hu Z, Sun F, Wang G, He M, Xia T. Mage transposon: a novel gene delivery system for mammalian cells. Nucleic Acids Res 2024; 52:2724-2739. [PMID: 38300794 PMCID: PMC10954464 DOI: 10.1093/nar/gkae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Transposons, as non-viral integration vectors, provide a secure and efficient method for stable gene delivery. In this study, we have discovered Mage (MG), a novel member of the piggyBac(PB) family, which exhibits strong transposability in a variety of mammalian cells and primary T cells. The wild-type MG showed a weaker insertion preference for near genes, transcription start sites (TSS), CpG islands, and DNaseI hypersensitive sites in comparison to PB, approaching the random insertion pattern. Utilizing in silico virtual screening and feasible combinatorial mutagenesis in vitro, we effectively produced the hyperactive MG transposase (hyMagease). This variant boasts a transposition rate 60% greater than its native counterpart without significantly altering its insertion pattern. Furthermore, we applied the hyMagease to efficiently deliver chimeric antigen receptor (CAR) into T cells, leading to stable high-level expression and inducing significant anti-tumor effects both in vitro and in xenograft mice models. These findings provide a compelling tool for gene transfer research, emphasizing its potential and prospects in the domains of genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jinghan Tian
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Doudou Tong
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | - Erqiang Wang
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yifei Yu
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Hangya Lv
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Zhendan Hu
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Fang Sun
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Guoping Wang
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min He
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Tian Xia
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
7
|
Marie C, Scherman D. Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials. Genes (Basel) 2024; 15:261. [PMID: 38540320 PMCID: PMC10970329 DOI: 10.3390/genes15030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 06/15/2024] Open
Abstract
Until very recently, the major use, for gene therapy, specifically of linear or circular DNA, such as plasmids, was as ancillary products for viral vectors' production or as a genetic template for mRNA production. Thanks to targeted and more efficient physical or chemical delivery techniques and to the refinement of their structure, non-viral plasmid DNA are now under intensive consideration as pharmaceutical drugs. Plasmids traditionally carry an antibiotic resistance gene for providing the selection pressure necessary for maintenance in a bacterial host. Nearly a dozen different antibiotic-free gene vectors have now been developed and are currently assessed in preclinical assays and phase I/II clinical trials. Their reduced size leads to increased transfection efficiency and prolonged transgene expression. In addition, associating non-viral gene vectors and DNA transposons, which mediate transgene integration into the host genome, circumvents plasmid dilution in dividing eukaryotic cells which generate a loss of the therapeutic gene. Combining these novel molecular tools allowed a significantly higher yield of genetically engineered T and Natural Killer cells for adoptive immunotherapies due to a reduced cytotoxicity and increased transposition rate. This review describes the main progresses accomplished for safer, more efficient and cost-effective gene and cell therapies using non-viral approaches and antibiotic-free gene vectors.
Collapse
Affiliation(s)
- Corinne Marie
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Chimie ParisTech, Université PSL, 75005 Paris, France
| | - Daniel Scherman
- Université Paris Cité, CNRS, Inserm, UTCBS, 75006 Paris, France;
- Fondation Maladies Rares, 75014 Paris, France
| |
Collapse
|
8
|
Han M, Perkins MH, Novaes LS, Xu T, Chang H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Front Genet 2023; 14:1290146. [PMID: 38098473 PMCID: PMC10719622 DOI: 10.3389/fgene.2023.1290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.
Collapse
Affiliation(s)
- Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo Santana Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Devaraj A, Singh M, Narayanavari SA, Yong G, Chen J, Wang J, Becker M, Walisko O, Schorn A, Cseresznyés Z, Raskó T, Radscheit K, Selbach M, Ivics Z, Izsvák Z. HMGXB4 Targets Sleeping Beauty Transposition to Germinal Stem Cells. Int J Mol Sci 2023; 24:ijms24087283. [PMID: 37108449 PMCID: PMC10138897 DOI: 10.3390/ijms24087283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and marks both germinal progenitor and somatic stem cells. SB piggybacks HMGXB4 to activate transposase expression and target transposition to germinal stem cells, thereby potentiating heritable transposon insertions. The HMGXB4 promoter is located within an active chromatin domain, offering multiple looping possibilities with neighboring genomic regions. HMGXB4 is activated by ERK2/MAPK1, ELK1 transcription factors, coordinating pluripotency and self-renewal pathways, but suppressed by the KRAB-ZNF/TRIM28 epigenetic repression machinery, also known to regulate transposable elements. At the post-translational level, SUMOylation regulates HMGXB4, which modulates binding affinity to its protein interaction partners and controls its transcriptional activator function via nucleolar compartmentalization. When expressed, HMGXB4 can participate in nuclear-remodeling protein complexes and transactivate target gene expression in vertebrates. Our study highlights HMGXB4 as an evolutionarily conserved host-encoded factor that assists Tc1/Mariner transposons to target the germline, which was necessary for their fixation and may explain their abundance in vertebrate genomes.
Collapse
Affiliation(s)
- Anantharam Devaraj
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Manvendra Singh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Suneel A Narayanavari
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Guo Yong
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jichang Wang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Mareike Becker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver Walisko
- Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Andrea Schorn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Zoltán Cseresznyés
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Tamás Raskó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kathrin Radscheit
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Matthias Selbach
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
10
|
Mahmoudian RA, Fathi F, Farshchian M, Abbaszadegan MR. Construction and Quantitative Evaluation of a Tissue-Specific Sleeping Beauty by EDL2-Specific Transposase Expression in Esophageal Squamous Carcinoma Cell Line KYSE-30. Mol Biotechnol 2023; 65:350-360. [PMID: 35474410 DOI: 10.1007/s12033-022-00490-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
Gene delivery to esophageal tissue could provide novel treatments for diseases, such as cancer. The Sleeping Beauty (SB) transposon system, as a natural and non-viral tool, is efficient at transferring transgene into the human genome for human cell genetic engineering. The plasmid-based SB transposon can insert into chromosomes through an accurate recombinase-mediated mechanism, providing long-term expression of transgene integrated into the target cells. In this study, we aimed to investigate the activity of ED-L2 tissue-specific promoter that was engineered from the Epstein-Barr Virus (EBV) and combined with the hyperactive SB100X transposase to achieve the stable expression of T2-Onc3 transposon in esophageal squamous epithelial cells. Here we constructed an SB transposon-based plasmid system to obtain the stable expression of transposon upon introduction of a hyperactive SB transposase under the control of tissue-specific ED-L2 promoter via the lipid-based delivery method in the cultured esophageal squamous cell carcinoma cells. Among established human and mouse cell lines, the (ED-L2)-SB100X transposase was active only in human esophageal stratified squamous epithelial and differentiated keratinocytes derived from skin (KYSE-30 and HaCaT cell lines), where it revealed high promoter activity. Data offered that the 782 bp sequence of ED-L2 promoter has a key role in its activity in vitro. The (ED-L2)-SB100X transposase mediated stable integration of T2-Onc3 in KYSE-30 cells, thereby providing further evidence of the tissue specificity of ED-L2 promoter. The KYSE-30 cells modified with the SB system integrate on average 187 copies of the T2-Onc3 transposon in its genome. In aggregate, the (ED-L2)-SB100X transposase can be efficiently applied for the tissue-specific stable expression of a transgene in human KYSE-30 cells using SB transposon.
Collapse
Affiliation(s)
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR) Razavi Khorasan, ACECR Central Building, Ferdowsi University Campus, Mashhad- Azadi Square, Mashhad Branch, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Wang S, Gao B, Miskey C, Guan Z, Sang Y, Chen C, Wang X, Ivics Z, Song C. Passer, a highly active transposon from a fish genome, as a potential new robust genetic manipulation tool. Nucleic Acids Res 2023; 51:1843-1858. [PMID: 36688327 PMCID: PMC9976928 DOI: 10.1093/nar/gkad005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
The discovery of new, active DNA transposons can expand the range of genetic tools and provide more options for genomic manipulation. In this study, a bioinformatics analysis suggested that Passer (PS) transposons, which are members of the pogo superfamily, show signs of recent and current activity in animals and may be active in some species. Cell-based transposition assays revealed that the native PS transposases from Gasterosteus aculeatus and Danio rerio displayed very high activity in human cells relative to the Sleeping Beauty transposon. A typical overproduction inhibition phenomenon was observed for PS, and transposition capacity was decreased by ∼12% with each kilobase increase in the insertion size. Furthermore, PS exhibited a pronounced integration preference for genes and their transcriptional regulatory regions. We further show that two domesticated human proteins derived from PS transposases have lost their transposition activity. Overall, PS may represent an alternative with a potentially efficient genetic manipulation tool for transgenesis and mutagenesis applications.
Collapse
Affiliation(s)
- Saisai Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, D-63225 Langen, Germany
| | - Zhongxia Guan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, D-63225 Langen, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
12
|
Montoliu L. Transgenesis and Genome Engineering: A Historical Review. Methods Mol Biol 2023; 2631:1-32. [PMID: 36995662 DOI: 10.1007/978-1-0716-2990-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our ability to modify DNA molecules and to introduce them into mammalian cells or embryos almost appears in parallel, starting from the 1970s of the last century. Genetic engineering techniques rapidly developed between 1970 and 1980. In contrast, robust procedures to microinject or introduce DNA constructs into individuals did not take off until 1980 and evolved during the following two decades. For some years, it was only possible to add transgenes, de novo, of different formats, including artificial chromosomes, in a variety of vertebrate species or to introduce specific mutations essentially in mice, thanks to the gene-targeting methods by homologous recombination approaches using mouse embryonic stem (ES) cells. Eventually, genome-editing tools brought the possibility to add or inactivate DNA sequences, at specific sites, at will, irrespective of the animal species involved. Together with a variety of additional techniques, this chapter will summarize the milestones in the transgenesis and genome engineering fields from the 1970s to date.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
13
|
Tschorn N, van Heuvel Y, Stitz J. Transgene Expression and Transposition Efficiency of Two-Component Sleeping Beauty Transposon Vector Systems Utilizing Plasmid or mRNA Encoding the Transposase. Mol Biotechnol 2022:10.1007/s12033-022-00642-6. [DOI: 10.1007/s12033-022-00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
AbstractThe use of two-component transposon plasmid vector systems, namely, a transposase construct and a donor vector carrying the gene of interest (GOI) can accelerate the development of recombinant cell lines. However, the undesired stable transfection of the transposase construct and the sustained expression of the enzyme can cause genetic instability due to the re-mobilization of the previously transposed donor vectors. Using a Sleeping Beauty-derived vector system, we established three recombinant cell pools and demonstrate stable integration of the transposase construct and sustained expression of the transposase over a period of 48 days. To provide an alternative approach, transcripts of the transposase gene were generated in vitro and co-transfected with donor vector plasmid at different ratios and mediating high GOI copy number integrations and expression levels. We anticipate that the use of transposase mRNA will foster further improvements in future cell line development processes.
Collapse
|
14
|
Baldassarri S, Benati D, D’Alessio F, Patrizi C, Cattin E, Gentile M, Raggioli A, Recchia A. Engineered Sleeping Beauty Transposon as Efficient System to Optimize Chimp Adenoviral Production. Int J Mol Sci 2022; 23:ijms23147538. [PMID: 35886882 PMCID: PMC9316264 DOI: 10.3390/ijms23147538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Sleeping Beauty (SB) is the first DNA transposon employed for efficient transposition in vertebrate cells, opening new applications for genetic engineering and gene therapies. A transposon-based gene delivery system holds the favourable features of non-viral vectors and an attractive safety profile. Here, we employed SB to engineer HEK293 cells for optimizing the production of a chimpanzee Adenovector (chAd) belonging to the Human Mastadenovirus C species. To date, chAd vectors are employed in several clinical settings for infectious diseases, last but not least COVID-19. A robust, efficient and quick viral vector production could advance the clinical application of chAd vectors. To this aim, we firstly swapped the hAd5 E1 with chAd-C E1 gene by using the CRISPR/Cas9 system. We demonstrated that in the absence of human Ad5 E1, chimp Ad-C E1 gene did not support HEK293 survival. To improve chAd-C vector production, we engineered HEK293 cells to stably express the chAd-C precursor terminal protein (ch.pTP), which plays a crucial role in chimpanzee Adenoviral DNA replication. The results indicate that exogenous ch.pTP expression significantly ameliorate the packaging and amplification of recombinant chAd-C vectors thus, the engineered HEK293ch.pTP cells could represent a superior packaging cell line for the production of these vectors.
Collapse
Affiliation(s)
- Samantha Baldassarri
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | - Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | - Federica D’Alessio
- ReiThera S.r.l., 00128 Rome, Italy; (F.D.); (M.G.); (A.R.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80138 Naples, Italy
| | - Clarissa Patrizi
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | - Eleonora Cattin
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | | | | | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
- Correspondence:
| |
Collapse
|
15
|
Moretti A, Ponzo M, Nicolette CA, Tcherepanova IY, Biondi A, Magnani CF. The Past, Present, and Future of Non-Viral CAR T Cells. Front Immunol 2022; 13:867013. [PMID: 35757746 PMCID: PMC9218214 DOI: 10.3389/fimmu.2022.867013] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.
Collapse
Affiliation(s)
- Alex Moretti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | - Marianna Ponzo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | | | | | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Pediatrics, University of Milano - Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano - Bicocca/Fondazione MBBM, Monza, Italy
| | - Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Wei M, Mi CL, Jing CQ, Wang TY. Progress of Transposon Vector System for Production of Recombinant Therapeutic Proteins in Mammalian Cells. Front Bioeng Biotechnol 2022; 10:879222. [PMID: 35600890 PMCID: PMC9114503 DOI: 10.3389/fbioe.2022.879222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, mammalian cells have become the primary host cells for the production of recombinant therapeutic proteins (RTPs). Despite that the expression of RTPs in mammalian cells can be improved by directly optimizing or engineering the expression vectors, it is still influenced by the low stability and efficiency of gene integration. Transposons are mobile genetic elements that can be inserted and cleaved within the genome and can change their inserting position. The transposon vector system can be applied to establish a stable pool of cells with high efficiency in RTPs production through facilitating the integration of gene of interest into transcriptionally active sites under screening pressure. Here, the structure and optimization of transposon vector system and its application in expressing RTPs at high level in mammalian cells are reviewed.
Collapse
Affiliation(s)
- Mian Wei
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Chang-Qin Jing
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Chang-Qin Jing, ; Tian-Yun Wang,
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Chang-Qin Jing, ; Tian-Yun Wang,
| |
Collapse
|
17
|
Sahu U, Barth RF, Otani Y, McCormack R, Kaur B. Rat and Mouse Brain Tumor Models for Experimental Neuro-Oncology Research. J Neuropathol Exp Neurol 2022; 81:312-329. [PMID: 35446393 PMCID: PMC9113334 DOI: 10.1093/jnen/nlac021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rodent brain tumor models have been useful for developing effective therapies for glioblastomas (GBMs). In this review, we first discuss the 3 most commonly used rat brain tumor models, the C6, 9L, and F98 gliomas, which are all induced by repeated injections of nitrosourea to adult rats. The C6 glioma arose in an outbred Wistar rat and its potential to evoke an alloimmune response is a serious limitation. The 9L gliosarcoma arose in a Fischer rat and is strongly immunogenic, which must be taken into consideration when using it for therapy studies. The F98 glioma may be the best of the 3 but it does not fully recapitulate human GBMs because it is weakly immunogenic. Next, we discuss a number of mouse models. The first are human patient-derived xenograft gliomas in immunodeficient mice. These have failed to reproduce the tumor-host interactions and microenvironment of human GBMs. Genetically engineered mouse models recapitulate the molecular alterations of GBMs in an immunocompetent environment and “humanized” mouse models repopulate with human immune cells. While the latter are rarely isogenic, expensive to produce, and challenging to use, they represent an important advance. The advantages and limitations of each of these brain tumor models are discussed. This information will assist investigators in selecting the most appropriate model for the specific focus of their research.
Collapse
Affiliation(s)
- Upasana Sahu
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Yoshihiro Otani
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ryan McCormack
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Balveen Kaur
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
18
|
Montoliu L. Historical DNA Manipulation Overview. Methods Mol Biol 2022; 2495:3-28. [PMID: 35696025 DOI: 10.1007/978-1-0716-2301-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The history of DNA manipulation for the creation of genetically modified animals began in the 1970s, using viruses as the first DNA molecules microinjected into mouse embryos at different preimplantation stages. Subsequently, simple DNA plasmids were used to microinject into the pronuclei of fertilized mouse oocytes and that method became the reference for many years. The isolation of embryonic stem cells together with advances in genetics allowed the generation of gene-specific knockout mice, later on improved with conditional mutations. Cloning procedures expanded the gene inactivation to livestock and other non-model mammalian species. Lentiviruses, artificial chromosomes, and intracytoplasmic sperm injections expanded the toolbox for DNA manipulation. The last chapter of this short but intense history belongs to programmable nucleases, particularly CRISPR-Cas systems, triggering the development of genomic-editing techniques, the current revolution we are living in.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
19
|
Prommersberger S, Monjezi R, Shankar R, Schmeer M, Hudecek M, Ivics Z, Schleef M. Minicircles for CAR T Cell Production by Sleeping Beauty Transposition: A Technological Overview. Methods Mol Biol 2022; 2521:25-39. [PMID: 35732991 DOI: 10.1007/978-1-0716-2441-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Development and application of chimeric antigen receptor (CAR) T cell therapy has led to a breakthrough in the treatment of hematologic malignancies. In 2017, the FDA approved the first commercialized CD19-specific CAR T cell products for treatment of patients with B-cell malignancies. This success increased the desire to broaden the availability of CAR T cells to a larger patient cohort with hematological but also solid tumors. A critical factor of CAR T cell production is the stable and efficient delivery of the CAR transgene into T cells. This gene transfer is conventionally achieved by viral vectors. However, viral gene transfer is not conducive to affordable, scalable, and timely manufacturing of CAR T cell products. Thus, there is a necessity for developing alternative nonviral engineering platforms, which are more cost-effective, less complex to handle and which provide the scalability requirement for a globally available therapy.One alternative method for engineering of T cells is the nonviral gene transfer by Sleeping Beauty (SB) transposition. Electroporation with two nucleic acids is sufficient to achieve stable CAR transfer into T cells. One of these vectors has to encode the gene of interest, which is the CAR , the second one a recombinase called SB transposase, the enzyme that catalyzes integration of the transgene into the host cell genome. As nucleic acids are easy to produce and handle SB gene transfer has the potential to provide scalability, cost-effectiveness, and feasibility for widespread use of CAR T cell therapies.Nevertheless, the electroporation of two large-size plasmid vectors into T cells leads to high T cell toxicity and low gene transfer rates and has hindered the prevalent clinical application of the SB system. To circumvent these limitations, conventional plasmid vectors can be replaced by minimal-size vectors called minicircles (MC ). MCs are DNA vectors that lack the plasmid backbone, which is relevant for propagation in bacteria, but has no function in a human cell. Thus, their size is drastically reduced compared to conventional plasmids. It has been demonstrated that MC-mediated SB CAR transposition into T cells enhances their viability and gene transfer rate enabling the production of therapeutic doses of CAR T cells. These improvements make CAR SB transposition from MC vectors a promising alternative for engineering of clinical grade CAR T cells.
Collapse
Affiliation(s)
| | - Razieh Monjezi
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Ram Shankar
- PlasmidFactory GmbH & Co. KG, Bielefeld, Germany
| | | | - Michael Hudecek
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | |
Collapse
|
20
|
Bascuas T, Zedira H, Kropp M, Harmening N, Asrih M, Prat-Souteyrand C, Tian S, Thumann G. Human Retinal Pigment Epithelial Cells Overexpressing the Neuroprotective Proteins PEDF and GM-CSF to Treat Degeneration of the Neural Retina. Curr Gene Ther 2021; 22:168-183. [PMID: 34238157 DOI: 10.2174/1566523221666210707123809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-viral transposon-mediated gene delivery can overcome viral vectors' limitations. Transposon gene delivery offers the safe and life-long expression of genes such as pigment epithelium-derived factor (PEDF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) to counteract retinal degeneration by reducing oxidative stress damage. OBJECTIVE Use Sleeping Beauty transposon to transfect human retinal pigment epithelial (RPE) cells with the neuroprotective factors PEDF and GM-CSF to investigate the effect of these factors on oxidative stress damage. METHODS Human RPE cells were transfected with PEDF and GM-CSF by electroporation, using the hyperactive Sleeping Beauty transposon gene delivery system (SB100X). Gene expression was determined by RT-qPCR and protein level by Western Blot as well as ELISA. The cellular stress level and the neuroprotective effect of the proteins were determined by measuring the concentrations of the antioxidant glutathione in human RPE cells and immunohistochemical examination of retinal integrity, inflammation, and apoptosis of rat retina-organotypic cultures (ROC) exposed to H2O2. RESULTS Human RPE cells were efficiently transfected, showing a significantly augmented gene expression and protein secretion. Human RPE cells overexpressing PEDF and/or GM-CSF or pre-treated with recombinant proteins presented significantly increased glutathione levels post-H2O2 incubation than non-transfected/untreated controls. rPEDF and/or rGM-CSF-treated ROC exhibited decreased inflammatory reactions and cell degeneration. CONCLUSION GM-CSF and/or PEDF could be delivered successfully to RPE cells by combining the use of SB100X and electroporation. PEDF and/or GM-CSF reduced H2O2-mediated oxidative stress damage in RPE cells and ROC offering an encouraging technique to re-establish a cell-protective environment to halt age-related retinal degeneration.
Collapse
Affiliation(s)
- Thais Bascuas
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| | - Hajer Zedira
- Experimental Ophthalmology, University of Geneva, Geneva, Switzerland
| | - Martina Kropp
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| | - Nina Harmening
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| | - Mohamed Asrih
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Shuwei Tian
- The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Gabriele Thumann
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
22
|
CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. Gene Ther 2021; 28:560-571. [PMID: 33846552 PMCID: PMC8455317 DOI: 10.1038/s41434-021-00254-w] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Clinical development of chimeric antigen receptor (CAR)-T-cell therapy has been enabled by advances in synthetic biology, genetic engineering, clinical-grade manufacturing, and complex logistics to distribute the drug product to treatment sites. A key ambition of the CARAMBA project is to provide clinical proof-of-concept for virus-free CAR gene transfer using advanced Sleeping Beauty (SB) transposon technology. SB transposition in CAR-T engineering is attractive due to the high rate of stable CAR gene transfer enabled by optimized hyperactive SB100X transposase and transposon combinations, encoded by mRNA and minicircle DNA, respectively, as preferred vector embodiments. This approach bears the potential to facilitate and expedite vector procurement, CAR-T manufacturing and distribution, and the promise to provide a safe, effective, and economically sustainable treatment. As an exemplary and novel target for SB-based CAR-T cells, the CARAMBA consortium has selected the SLAMF7 antigen in multiple myeloma. SLAMF7 CAR-T cells confer potent and consistent anti-myeloma activity in preclinical assays in vitro and in vivo. The CARAMBA clinical trial (Phase-I/IIA; EudraCT: 2019-001264-30) investigates the feasibility, safety, and anti-myeloma efficacy of autologous SLAMF7 CAR-T cells. CARAMBA is the first clinical trial with virus-free CAR-T cells in Europe, and the first clinical trial that uses advanced SB technology worldwide.
Collapse
|
23
|
Shen D, Song C, Miskey C, Chan S, Guan Z, Sang Y, Wang Y, Chen C, Wang X, Müller F, Ivics Z, Gao B. A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates. Nucleic Acids Res 2021; 49:2126-2140. [PMID: 33638993 PMCID: PMC7913693 DOI: 10.1093/nar/gkab045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
New genetic tools and strategies are currently under development to facilitate functional genomics analyses. Here, we describe an active member of the Tc1/mariner transposon superfamily, named ZB, which invaded the zebrafish genome very recently. ZB exhibits high activity in vertebrate cells, in the range of those of the widely used transposons piggyBac (PB), Sleeping Beauty (SB) and Tol2. ZB has a similar structural organization and target site sequence preference to SB, but a different integration profile with respect to genome-wide preference among mammalian functional annotation features. Namely, ZB displays a preference for integration into transcriptional regulatory regions of genes. Accordingly, we demonstrate the utility of ZB for enhancer trapping in zebrafish embryos and in the mouse germline. These results indicate that ZB may be a powerful tool for genetic manipulation in vertebrate model species.
Collapse
Affiliation(s)
- Dan Shen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Shuheng Chan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhongxia Guan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
24
|
Aiderus A, Contreras-Sandoval AM, Meshey AL, Newberg JY, Ward JM, Swing DA, Copeland NG, Jenkins NA, Mann KM, Mann MB. Promoterless Transposon Mutagenesis Drives Solid Cancers via Tumor Suppressor Inactivation. Cancers (Basel) 2021; 13:E225. [PMID: 33435458 PMCID: PMC7827284 DOI: 10.3390/cancers13020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
A central challenge in cancer genomics is the systematic identification of single and cooperating tumor suppressor gene mutations driving cellular transformation and tumor progression in the absence of oncogenic driver mutation(s). Multiple in vitro and in vivo gene inactivation screens have enhanced our understanding of the tumor suppressor gene landscape in various cancers. However, these studies are limited to single or combination gene effects, specific organs, or require sensitizing mutations. In this study, we developed and utilized a Sleeping Beauty transposon mutagenesis system that functions only as a gene trap to exclusively inactivate tumor suppressor genes. Using whole body transposon mobilization in wild type mice, we observed that cumulative gene inactivation can drive tumorigenesis of solid cancers. We provide a quantitative landscape of the tumor suppressor genes inactivated in these cancers and show that, despite the absence of oncogenic drivers, these genes converge on key biological pathways and processes associated with cancer hallmarks.
Collapse
Affiliation(s)
- Aziz Aiderus
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Ana M. Contreras-Sandoval
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Amanda L. Meshey
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Karen M. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
25
|
Ochmann MT, Ivics Z. Jumping Ahead with Sleeping Beauty: Mechanistic Insights into Cut-and-Paste Transposition. Viruses 2021; 13:76. [PMID: 33429848 PMCID: PMC7827188 DOI: 10.3390/v13010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sleeping Beauty (SB) is a transposon system that has been widely used as a genetic engineering tool. Central to the development of any transposon as a research tool is the ability to integrate a foreign piece of DNA into the cellular genome. Driven by the need for efficient transposon-based gene vector systems, extensive studies have largely elucidated the molecular actors and actions taking place during SB transposition. Close transposon relatives and other recombination enzymes, including retroviral integrases, have served as useful models to infer functional information relevant to SB. Recently obtained structural data on the SB transposase enable a direct insight into the workings of this enzyme. These efforts cumulatively allowed the development of novel variants of SB that offer advanced possibilities for genetic engineering due to their hyperactivity, integration deficiency, or targeting capacity. However, many aspects of the process of transposition remain poorly understood and require further investigation. We anticipate that continued investigations into the structure-function relationships of SB transposition will enable the development of new generations of transposition-based vector systems, thereby facilitating the use of SB in preclinical studies and clinical trials.
Collapse
Affiliation(s)
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany;
| |
Collapse
|
26
|
Stout AJ, Mirliani AB, Soule-Albridge EL, Cohen JM, Kaplan DL. Engineering carotenoid production in mammalian cells for nutritionally enhanced cell-cultured foods. Metab Eng 2020; 62:126-137. [PMID: 32890703 PMCID: PMC7666109 DOI: 10.1016/j.ymben.2020.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023]
Abstract
Metabolic engineering of mammalian cells has to-date focused primarily on biopharmaceutical protein production or the manipulation of native metabolic processes towards therapeutic aims. However, significant potential exists for expanding these techniques to diverse applications by looking across the taxonomic tree to bioactive metabolites not synthesized in animals. Namely, cross-taxa metabolic engineering of mammalian cells could offer value in applications ranging fromfood and nutrition to regenerative medicine and gene therapy. Towards the former, recent advances in meat production through cell culture suggest the potential to produce meat with fine cellular control, where tuning composition through cross-taxa metabolic engineering could enhance nutrition and food-functionality. Here we demonstrate this possibility by engineering primary bovine and immortalized murine muscle cells with prokaryotic enzymes to endogenously produce the antioxidant carotenoids phytoene, lycopene and β-carotene. These phytonutrients offer general nutritive value and protective effects against diseases associated with red and processed meat consumption, and so offer a promising proof-of-concept for nutritional engineering in cultured meat. We demonstrate the phenotypic integrity of engineered cells, the ability to tune carotenoid yields, and the antioxidant functionality of these compounds in vitro towards both nutrition and food-quality objectives. Our results demonstrate the potential for tailoring the nutritional profile of cultured meats. They further lay a foundation for heterologous metabolic engineering of mammalian cells for applications outside of the clinical realm.
Collapse
Affiliation(s)
- Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Addison B Mirliani
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Erin L Soule-Albridge
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA; W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
27
|
Goda K, Dönmez-Cakil Y, Tarapcsák S, Szalóki G, Szöllősi D, Parveen Z, Türk D, Szakács G, Chiba P, Stockner T. Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion. PLoS Genet 2020; 16:e1009016. [PMID: 33031417 PMCID: PMC7544095 DOI: 10.1371/journal.pgen.1009016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/29/2020] [Indexed: 11/28/2022] Open
Abstract
Several ABC exporters carry a degenerate nucleotide binding site (NBS) that is unable to hydrolyze ATP at a rate sufficient for sustaining transport activity. A hallmark of a degenerate NBS is the lack of the catalytic glutamate in the Walker B motif in the nucleotide binding domain (NBD). The multidrug resistance transporter ABCB1 (P-glycoprotein) has two canonical NBSs, and mutation of the catalytic glutamate E556 in NBS1 renders ABCB1 transport-incompetent. In contrast, the closely related bile salt export pump ABCB11 (BSEP), which shares 49% sequence identity with ABCB1, naturally contains a methionine in place of the catalytic glutamate. The NBD-NBD interfaces of ABCB1 and ABCB11 differ only in four residues, all within NBS1. Mutation of the catalytic glutamate in ABCB1 results in the occlusion of ATP in NBS1, leading to the arrest of the transport cycle. Here we show that despite the catalytic glutamate mutation (E556M), ABCB1 regains its ATP-dependent transport activity, when three additional diverging residues are also replaced. Molecular dynamics simulations revealed that the rescue of ATPase activity is due to the modified geometry of NBS1, resulting in a weaker interaction with ATP, which allows the quadruple mutant to evade the conformationally locked pre-hydrolytic state to proceed to ATP-driven transport. In summary, we show that ABCB1 can be transformed into an active transporter with only one functional catalytic site by preventing the formation of the ATP-locked pre-hydrolytic state in the non-canonical site. ABC transporters are one of the largest membrane protein superfamilies, present in all organisms from archaea to humans. They transport a wide range of molecules including amino acids, sugars, vitamins, nucleotides, peptides, lipids, metabolites, antibiotics, and xenobiotics. ABC transporters energize substrate transport by hydrolyzing ATP in two symmetrically arranged nucleotide binding sites (NBSs). The human multidrug resistance transporter ABCB1 has two active NBSs, and it is generally believed that integrity and cooperation of both sites are needed for transport. Several human ABC transporters, such as the bile salt transporter ABCB11, have one degenerate NBS, which has significantly reduced ATPase activity. Interestingly, unilateral mutations affecting one of the two NBSs completely abolish the function of symmetrical ABC transporters. Here we engineered an ABCB1 variant with a degenerate, ABCB11-like NBS1, which can nevertheless transport substrates. Our results indicate that ABCB1 can mediate active transport with a single active site, questioning the validity of models assuming strictly alternating catalysis.
Collapse
Affiliation(s)
- Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Yaprak Dönmez-Cakil
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Maltepe, Istanbul, Turkey
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Gábor Szalóki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
| | - Zahida Parveen
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Dóra Türk
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja, Budapest, Hungary
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, Vienna, Austria
- * E-mail: (PC); (TS)
| |
Collapse
|
28
|
Amberger M, Ivics Z. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications. Bioessays 2020; 42:e2000136. [PMID: 32939778 DOI: 10.1002/bies.202000136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition-based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral-vector-based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof-of-concept RNA-guided transposition, further expand on possible applications in the future. In addition, innate advantages such as lack of preferential integration into genes reduce insertional mutagenesis-related safety concerns while comparably low manufacturing costs enable widespread implementation. Accordingly, the system is recognized as a powerful and versatile tool for genetic engineering and is playing a central role in an ever-expanding number of gene and cell therapy clinical trials with the potential to become a key technology to meet the growing demand for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Maximilian Amberger
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| |
Collapse
|
29
|
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12:527-544. [PMID: 32843912 PMCID: PMC7415244 DOI: 10.4252/wjsc.v12.i7.527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells present a seminal discovery in cell biology and promise to support innovative treatments of so far incurable diseases. To translate iPS technology into clinical trials, the safety and stability of these reprogrammed cells needs to be shown. In recent years, different non-viral transposon systems have been developed for the induction of cellular pluripotency, and for the directed differentiation into desired cell types. In this review, we summarize the current state of the art of different transposon systems in iPS-based cell therapies.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Taruna Anand
- NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Mariensee 31535, Germany
| |
Collapse
|
30
|
Chiang CY, Ligunas GD, Chin WC, Ni CW. Efficient Nonviral Stable Transgenesis Mediated by Retroviral Integrase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1061-1070. [PMID: 32462054 PMCID: PMC7240061 DOI: 10.1016/j.omtm.2020.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Efficient transgene delivery is critical for genetic manipulation and therapeutic intervention of target cells. Two well-characterized integrative systems have been described that rely on viral and nonviral vectors. However, use of viral vectors for gene therapy has been associated with several safety concerns. Here, we report a virus-free method for stable transgenesis based on the reaction of retroviral integrase. We constructed a gateway cloning compatible vector containing two truncated long terminal repeat (LTR) sequences (dLTR) that flank the transgene cassette. Notably, 5′-ACTG-3′ and blunt-end restriction cutting sites were also embedded at the end of dLTR to be recognized by HIV-1 integrase. When performing coinjection of transgene cassette and integrase mRNA into zebrafish embryos at one cell stage, there were 50% to 55% of injected embryos expressing a marker gene in a desired pattern. When applying our method in mammalian cells, there were 42% of cultured human epithelial cell lines showing stable integration. These results demonstrated that our method can successfully insert an exogenous gene into the host genome with highly efficient integration. Importantly, this system operates without most of the viral components while retaining effective stable transgenesis. We anticipate this method will provide a convenient, safe, and highly efficient way for applications in transgenesis and gene therapy.
Collapse
Affiliation(s)
- Chang-Ying Chiang
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, USA
| | - Gloria Denise Ligunas
- Program of Quantitative and Systems Biology, University of California, Merced, Merced, CA, USA
| | - Wei-Chun Chin
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, USA.,Program of Quantitative and Systems Biology, University of California, Merced, Merced, CA, USA
| | - Chih-Wen Ni
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, USA.,Program of Quantitative and Systems Biology, University of California, Merced, Merced, CA, USA
| |
Collapse
|
31
|
Tschorn N, Berg K, Stitz J. Transposon vector-mediated stable gene transfer for the accelerated establishment of recombinant mammalian cell pools allowing for high-yield production of biologics. Biotechnol Lett 2020; 42:1103-1112. [PMID: 32323079 PMCID: PMC7275939 DOI: 10.1007/s10529-020-02889-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Stable recombinant mammalian cells are of growing importance in pharmaceutical biotechnology production scenarios for biologics such as monoclonal antibodies, growth and blood factors, cytokines and subunit vaccines. However, the establishment of recombinant producer cells using classical stable transfection of plasmid DNA is hampered by low stable gene transfer efficiencies. Consequently, subsequent selection of transgenic cells and the screening of clonal cell populations are time- and thus cost-intensive. To overcome these limitations, expression cassettes were embedded into transposon-derived donor vectors. Upon the co-transfection with transposase-encoding constructs, elevated vector copy numbers stably integrated into the genomes of the host cells are readily achieved facilitating under stringent selection pressure the establishment of cell pools characterized by sustained and high-yield recombinant protein production. Here, we discuss some aspects of transposon vector technologies, which render these vectors promising candidates for their further utilization in the production of biologics.
Collapse
Affiliation(s)
- Natalie Tschorn
- Research Group Pharmaceutical Biotechnology, TH Köln - University of Applied Sciences, Chempark Leverkusen E28, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany.,Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Karen Berg
- Research Group Pharmaceutical Biotechnology, TH Köln - University of Applied Sciences, Chempark Leverkusen E28, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany.,Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jörn Stitz
- Research Group Pharmaceutical Biotechnology, TH Köln - University of Applied Sciences, Chempark Leverkusen E28, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany.
| |
Collapse
|
32
|
Kesselring L, Miskey C, Zuliani C, Querques I, Kapitonov V, Laukó A, Fehér A, Palazzo A, Diem T, Lustig J, Sebe A, Wang Y, Dinnyés A, Izsvák Z, Barabas O, Ivics Z. A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Nucleic Acids Res 2020; 48:316-331. [PMID: 31777924 PMCID: PMC6943129 DOI: 10.1093/nar/gkz1119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc+/int− transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc+/int− transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change.
Collapse
Affiliation(s)
- Lisa Kesselring
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Irma Querques
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Vladimir Kapitonov
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Anita Fehér
- BioTalentum Ltd, Gödöllő, 2100 Gödöllő, Hungary
| | - Antonio Palazzo
- Department of Biology, University of Bari 'Aldo Moro', Italy
| | - Tanja Diem
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Janna Lustig
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Attila Sebe
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Yongming Wang
- Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
33
|
Kovač A, Miskey C, Menzel M, Grueso E, Gogol-Döring A, Ivics Z. RNA-guided retargeting of S leeping Beauty transposition in human cells. eLife 2020; 9:e53868. [PMID: 32142408 PMCID: PMC7077980 DOI: 10.7554/elife.53868] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
An ideal tool for gene therapy would enable efficient gene integration at predetermined sites in the human genome. Here we demonstrate biased genome-wide integration of the Sleeping Beauty (SB) transposon by combining it with components of the CRISPR/Cas9 system. We provide proof-of-concept that it is possible to influence the target site selection of SB by fusing it to a catalytically inactive Cas9 (dCas9) and by providing a single guide RNA (sgRNA) against the human Alu retrotransposon. Enrichment of transposon integrations was dependent on the sgRNA, and occurred in an asymmetric pattern with a bias towards sites in a relatively narrow, 300 bp window downstream of the sgRNA targets. Our data indicate that the targeting mechanism specified by CRISPR/Cas9 forces integration into genomic regions that are otherwise poor targets for SB transposition. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.
Collapse
Affiliation(s)
- Adrian Kovač
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | | | - Esther Grueso
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | | | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| |
Collapse
|
34
|
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. Int J Mol Sci 2020; 21:ijms21031172. [PMID: 32050713 PMCID: PMC7036786 DOI: 10.3390/ijms21031172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.
Collapse
|
35
|
CAR T Cell Generation by piggyBac Transposition from Linear Doggybone DNA Vectors Requires Transposon DNA-Flanking Regions. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:359-368. [PMID: 32071928 PMCID: PMC7016334 DOI: 10.1016/j.omtm.2019.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/21/2019] [Indexed: 01/27/2023]
Abstract
CD19-specific chimeric antigen receptor (CAR19) T cells, generated using viral vectors, are an efficacious but costly treatment for B cell malignancies. The nonviral piggyBac transposon system provides a simple and inexpensive alternative for CAR19 T cell production. Until now, piggyBac has been plasmid based, facilitating economical vector amplification in bacteria. However, amplified plasmids have several undesirable qualities for clinical translation, including bacterial genetic elements, antibiotic-resistance genes, and the requirement for purification to remove endotoxin. Doggybones (dbDNA) are linear, covalently closed, minimal DNA vectors that can be inexpensively produced enzymatically in vitro at large scale. Importantly, they lack the undesirable features of plasmids. We used dbDNA incorporating piggyBac to generate CAR19 T cells. Initially, expression of functional transposase was evident, but stable CAR expression did not occur. After excluding other causes, additional random DNA flanking the transposon within the dbDNA was introduced, promoting stable CAR expression comparable to that of using plasmid components. Our findings demonstrate that dbDNA incorporating piggyBac can be used to generate CAR T cells and indicate that there is a requirement for DNA flanking the piggyBac transposon to enable effective transposition. dbDNA may further reduce the cost and improve the safety of CAR T cell production with transposon systems.
Collapse
|
36
|
Bhatt S, Chalmers R. Targeted DNA transposition in vitro using a dCas9-transposase fusion protein. Nucleic Acids Res 2019; 47:8126-8135. [PMID: 31429873 PMCID: PMC6735945 DOI: 10.1093/nar/gkz552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Homology-directed genome engineering is limited by transgene size. Although DNA transposons are more efficient with large transgenes, random integrations are potentially mutagenic. Here we present an in vitro mechanistic study that demonstrates efficient Cas9 targeting of the mariner transposon Hsmar1. Integrations were unidirectional and tightly constrained to one side of the sgRNA binding site. Further analysis of the nucleoprotein intermediates demonstrated that the transposase and Cas9 moieties can bind their respective substrates independently or in concert. Kinetic analysis of the reaction in the presence of the Cas9 target-DNA revealed a delay between first and second strand cleavage at the transposon end. This step involves a significant conformational change that may be hindered by the properties of the interdomainal linker. Otherwise, the transposase moiety behaved normally and was proficient for integration in vitro and in Escherichia coli. Specific integration into the lacZ gene in E. coli was obscured by a high background of random integrations. Nevertheless, Cas9 is an attractive candidate for transposon-targeting because it has a high affinity and long dwell-time at its target site. This will facilitate a future optogenetic strategy for the temporal control of integration, which will increase the ratio of targeted to untargeted events.
Collapse
Affiliation(s)
- Shivam Bhatt
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
37
|
Hudecek M, Ivics Z. Non-viral therapeutic cell engineering with the Sleeping Beauty transposon system. Curr Opin Genet Dev 2018; 52:100-108. [PMID: 29957586 DOI: 10.1016/j.gde.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Widespread treatment of human diseases with gene therapies necessitates the development of gene transfer vectors that integrate genetic information effectively, safely and economically. Indeed, significant efforts have been devoted to engineer novel tools that (i) achieve high-level stable gene transfer at low toxicity to the host cell; (ii) induce low levels of genotoxicity and possess a `safe' integration profile with a high proportion of integrations into safe genomic locations; and (iii) are associated with acceptable cost per treatment, and scalable/exportable vector production to serve large numbers of patients. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. Here we review recent developments in vectorization of SB as a tool for gene therapy, and highlight clinical development of the SB system towards hematopoietic stem cell gene therapy and cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
38
|
Hodge R, Narayanavari SA, Izsvák Z, Ivics Z. Wide Awake and Ready to Move: 20 Years of Non-Viral Therapeutic Genome Engineering with the Sleeping Beauty Transposon System. Hum Gene Ther 2018; 28:842-855. [PMID: 28870121 DOI: 10.1089/hum.2017.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene therapies will only become a widespread tool in the clinical treatment of human diseases with the advent of gene transfer vectors that integrate genetic information stably, safely, effectively, and economically. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. SB may well overcome some of the limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are being used in the majority of ongoing clinical trials. The SB system has achieved a high level of stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, representing crucial steps that may permit its clinical use in the near future. This article reviews the most important aspects of SB as a tool for gene therapy, including aspects of its vectorization and genomic integration. As an illustration, the clinical development of the SB system toward gene therapy of age-related macular degeneration and cancer immunotherapy is highlighted.
Collapse
Affiliation(s)
- Russ Hodge
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Suneel A Narayanavari
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zsuzsanna Izsvák
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zoltán Ivics
- 2 Division of Medical Biotechnology, Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
39
|
Portier I, Vanhoorelbeke K, Verhenne S, Pareyn I, Vandeputte N, Deckmyn H, Goldenberg DS, Samal HB, Singh M, Ivics Z, Izsvák Z, De Meyer SF. High and long-term von Willebrand factor expression after Sleeping Beauty transposon-mediated gene therapy in a mouse model of severe von Willebrand disease. J Thromb Haemost 2018; 16:592-604. [PMID: 29288565 DOI: 10.1111/jth.13938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 01/08/2023]
Abstract
Essentials von Willebrand disease (VWD) is the most common inherited bleeding disorder. Gene therapy for VWD offers long-term therapy for VWD patients. Transposons efficiently integrate the large von Willebrand factor (VWF) cDNA in mice. Liver-directed transposons support sustained VWF expression with suboptimal multimerization. SUMMARY Background Type 3 von Willebrand disease (VWD) is characterized by complete absence of von Willebrand factor (VWF). Current therapy is limited to treatment with exogenous VWF/FVIII products, which only provide a short-term solution. Gene therapy offers the potential for a long-term treatment for VWD. Objectives To develop an integrative Sleeping Beauty (SB) transposon-mediated VWF gene transfer approach in a preclinical mouse model of severe VWD. Methods We established a robust platform for sustained transgene murine VWF (mVWF) expression in the liver of Vwf-/- mice by combining a liver-specific promoter with a sandwich transposon design and the SB100X transposase via hydrodynamic gene delivery. Results The sandwich SB transposon was suitable to deliver the full-length mVWF cDNA (8.4 kb) and supported supra-physiological expression that remained stable for up to 1.5 years after gene transfer. The sandwich vector stayed episomal (~60 weeks) or integrated in the host genome, respectively, in the absence or presence of the transposase. Transgene integration was confirmed using carbon tetrachloride-induced liver regeneration. Analysis of integration sites by high-throughput analysis revealed random integration of the sandwich vector. Although the SB vector supported long-term expression of supra-physiological VWF levels, the bleeding phenotype was not corrected in all mice. Long-term expression of VWF by hepatocytes resulted in relatively reduced amounts of high-molecular-weight multimers, potentially limiting its hemostatic efficacy. Conclusions Although this integrative platform for VWF gene transfer is an important milestone of VWD gene therapy, cell type-specific targeting is yet to be achieved.
Collapse
Affiliation(s)
- I Portier
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - K Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - S Verhenne
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - I Pareyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - N Vandeputte
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - H Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - D S Goldenberg
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H B Samal
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - M Singh
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Z Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Z Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - S F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
40
|
Hubner EK, Lechler C, Rösner TN, Kohnke-Ertel B, Schmid RM, Ehmer U. Constitutive and Inducible Systems for Genetic In Vivo Modification of Mouse Hepatocytes Using Hydrodynamic Tail Vein Injection. J Vis Exp 2018. [PMID: 29443066 DOI: 10.3791/56613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In research models of liver cancer, regeneration, inflammation, and fibrosis, flexible systems for in vivo gene expression and silencing are highly useful. Hydrodynamic tail vein injection of transposon-based constructs is an efficient method for genetic manipulation of hepatocytes in adult mice. In addition to constitutive transgene expression, this system can be used for more advanced applications, such as shRNA-mediated gene knock-down, implication of the CRISPR/Cas9 system to induce gene mutations, or inducible systems. Here, the combination of constitutive CreER expression together with inducible expression of a transgene or miR-shRNA of choice is presented as an example of this technique. We cover the multi-step procedure starting from the preparation of sleeping beauty-transposon constructs, to the injection and treatment of mice, and the preparation of liver tissue for analysis by immunostaining. The system presented is a reliable and efficient approach to achieve complex genetic manipulations in hepatocytes. It is specifically useful in combination with Cre/loxP-based mouse strains and can be applied to a variety of models in the research of liver disease.
Collapse
Affiliation(s)
- Eric K Hubner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München; Department of Pneumology, Center for Medicine, Medical Center University of Freiburg
| | - Christian Lechler
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München
| | - Thomas N Rösner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München
| | - Birgit Kohnke-Ertel
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München
| | - Roland M Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München
| | - Ursula Ehmer
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München;
| |
Collapse
|
41
|
Holstein M, Mesa-Nuñez C, Miskey C, Almarza E, Poletti V, Schmeer M, Grueso E, Ordóñez Flores JC, Kobelt D, Walther W, Aneja MK, Geiger J, Bonig HB, Izsvák Z, Schleef M, Rudolph C, Mavilio F, Bueren JA, Guenechea G, Ivics Z. Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors. Mol Ther 2018; 26:1137-1153. [PMID: 29503198 PMCID: PMC6079369 DOI: 10.1016/j.ymthe.2018.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform that combines simplicity, inexpensive manufacture, and favorable safety features in the context of human applications. However, efficient correction of hematopoietic stem and progenitor cells (HSPCs) with non-viral vector systems, including SB, demands further refinement of gene delivery techniques. We set out to improve SB gene transfer into hard-to-transfect human CD34+ cells by vectorizing the SB system components in the form of minicircles that are devoid of plasmid backbone sequences and are, therefore, significantly reduced in size. As compared to conventional plasmids, delivery of the SB transposon system as minicircle DNA is ∼20 times more efficient, and it is associated with up to a 50% reduction in cellular toxicity in human CD34+ cells. Moreover, providing the SB transposase in the form of synthetic mRNA enabled us to further increase the efficacy and biosafety of stable gene delivery into hematopoietic progenitors ex vivo. Genome-wide insertion site profiling revealed a close-to-random distribution of SB transposon integrants, which is characteristically different from gammaretroviral and lentiviral integrations in HSPCs. Transplantation of gene-marked CD34+ cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution, which was most efficient when the SB transposase was supplied as mRNA and nucleofected cells were maintained for 4–8 days in culture before transplantation. Collectively, implementation of minicircle and mRNA technologies allowed us to further refine the SB transposon system in the context of HSPC gene delivery to ultimately meet clinical demands of an efficient and safe non-viral gene therapy protocol.
Collapse
Affiliation(s)
- Marta Holstein
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Cristina Mesa-Nuñez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | | | | | - Esther Grueso
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Juan Carlos Ordóñez Flores
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Dennis Kobelt
- Translational Oncology, Experimental and Clinical Research Center, Charité University Medicine, Berlin, Germany
| | - Wolfgang Walther
- Translational Oncology, Experimental and Clinical Research Center, Charité University Medicine, Berlin, Germany
| | | | | | - Halvard B Bonig
- Department of Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe Universität, Frankfurt, Germany
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Carsten Rudolph
- ethris GmbH, Planegg, Germany; Department of Pediatrics, Ludwig Maximilian University, Munich, Germany
| | - Fulvio Mavilio
- Genethon, Evry, France; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
42
|
Pan Y, Lv J, Pan D, Yang M, Ju H, Zhou J, Zhu L, Zhang Y. Retrofitting baculoviral vector with Sleeping Beauty transposon system: competent for long-term reporter gene imaging in vivo. Appl Microbiol Biotechnol 2018; 102:1933-1943. [PMID: 29356866 DOI: 10.1007/s00253-018-8780-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Reporter gene imaging is widely used for non-invasively detecting tumorigenesis, trafficking therapeutic cells, and monitoring treatment effect. Baculoviral vectors (BVs) have been utilized as transgenic vectors in the reporter gene imaging systems in recent years. However, BV-mediated report gene imaging can only provide short-term investigation due to its transient transgene expression, which is incompetent for the long-term applications. In the current study, we reconstructed a series of hybrid BVs with several elements, to investigate the feasibility of this hybrid BV-mediated long-term reporter gene imaging in vivo. We showed that with the indispensable assistance of a positive-selection process, hybrid BV containing Sleeping Beauty 100× (SB) transposon system (BV-SB) could significantly prolong the enhanced green fluorescent protein (eGFP) expression for at least 180 days in vitro at nearly 100% eGFP positive percentage and over 1011 arbitrary unit total fluorescence intensity, whereas other hybrid BV-mediated transgene expression gradually faded in only 20 days. Furthermore, BV-SB-mediated eGFP fluorescent reporter gene imaging monitored tumorigenesis in the nude mice for at least 35 days. In addition, we exploited the glucagon-like peptide 1 receptor (glp-1r) gene as a radionuclide reporter gene for in vivo micro-PET imaging. At 50th day post-tumor transplantation, the micro-PET imaging showed considerable radiotracer-receptor-binding in vivo, resulted by stable high level of BV-SB-mediated GLP-1R expression in tumor. In summary, we retrofitted BV with the SB transposon system to make it competent for the long-term reporter gene imaging in vivo, which might broaden the application scopes of BV in the long-term molecular imaging and other biomedicine research fields.
Collapse
Affiliation(s)
- Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Jing Lv
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Huijun Ju
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Jinxin Zhou
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Liying Zhu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
43
|
Goetzman ES, Prochownik EV. The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Front Endocrinol (Lausanne) 2018; 9:129. [PMID: 29706933 PMCID: PMC5907532 DOI: 10.3389/fendo.2018.00129] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022] Open
Abstract
That cancer cells show patterns of metabolism different from normal cells has been known for over 50 years. Yet, it is only in the past decade or so that an appreciation of the benefits of these changes has begun to emerge. Altered cancer cell metabolism was initially attributed to defective mitochondria. However, we now realize that most cancers do not have mitochondrial mutations and that normal cells can transiently adopt cancer-like metabolism during periods of rapid proliferation. Indeed, an encompassing, albeit somewhat simplified, conceptual framework to explain both normal and cancer cell metabolism rests on several simple premises. First, the metabolic pathways used by cancer cells and their normal counterparts are the same. Second, normal quiescent cells use their metabolic pathways and the energy they generate largely to maintain cellular health and organelle turnover and, in some cases, to provide secreted products necessary for the survival of the intact organism. By contrast, undifferentiated cancer cells minimize the latter functions and devote their energy to producing the anabolic substrates necessary to maintain high rates of unremitting cellular proliferation. Third, as a result of the uncontrolled proliferation of cancer cells, a larger fraction of the metabolic intermediates normally used by quiescent cells purely as a source of energy are instead channeled into competing proliferation-focused and energy-consuming anabolic pathways. Fourth, cancer cell clones with the most plastic and rapidly adaptable metabolism will eventually outcompete their less well-adapted brethren during tumor progression and evolution. This attribute becomes increasingly important as tumors grow and as their individual cells compete in a constantly changing and inimical environment marked by nutrient, oxygen, and growth factor deficits. Here, we review some of the metabolic pathways whose importance has gained center stage for tumor growth, particularly those under the control of the c-Myc (Myc) oncoprotein. We discuss how these pathways differ functionally between quiescent and proliferating normal cells, how they are kidnapped and corrupted during the course of transformation, and consider potential therapeutic strategies that take advantage of common features of neoplastic and metabolic disorders.
Collapse
Affiliation(s)
- Eric S. Goetzman
- Division of Medical Genetics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Edward V. Prochownik
- Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States
- *Correspondence: Edward V. Prochownik,
| |
Collapse
|
44
|
The Antibiotic-free pFAR4 Vector Paired with the Sleeping Beauty Transposon System Mediates Efficient Transgene Delivery in Human Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 11:57-67. [PMID: 29858090 PMCID: PMC5852330 DOI: 10.1016/j.omtn.2017.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
The anti-angiogenic and neurogenic pigment epithelium-derived factor (PEDF) demonstrated a potency to control choroidal neovascularization in age-related macular degeneration (AMD) patients. The goal of the present study was the development of an efficient and safe technique to integrate, ex vivo, the PEDF gene into retinal pigment epithelial (RPE) cells for later transplantation to the subretinal space of AMD patients to allow continuous PEDF secretion in the vicinity of the affected macula. Because successful gene therapy approaches require efficient gene delivery and stable gene expression, we used the antibiotic-free pFAR4 mini-plasmid vector to deliver the hyperactive Sleeping Beauty transposon system, which mediates transgene integration into the genome of host cells. In an initial study, lipofection-mediated co-transfection of HeLa cells with the SB100X transposase gene and a reporter marker delivered by pFAR4 showed a 2-fold higher level of genetically modified cells than when using the pT2 vectors. Similarly, with the pFAR4 constructs, electroporation-mediated transfection of primary human RPE cells led to 2.4-fold higher secretion of recombinant PEDF protein, which was still maintained 8 months after transfection. Thus, our results show that the pFAR4 plasmid is a superior vector for the delivery and integration of transgenes into eukaryotic cells.
Collapse
|
45
|
Kebriaei P, Izsvák Z, Narayanavari SA, Singh H, Ivics Z. Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet 2017; 33:852-870. [PMID: 28964527 DOI: 10.1016/j.tig.2017.08.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suneel A Narayanavari
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Harjeet Singh
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
46
|
RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells. Sci Rep 2017; 7:10065. [PMID: 28855524 PMCID: PMC5577316 DOI: 10.1038/s41598-017-09302-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/25/2017] [Indexed: 11/08/2022] Open
Abstract
Foot and mouth disease, which is induced by the foot and mouth disease virus (FMDV), takes its toll on the cloven-hoofed domestic animals. The VP1 gene in FMDV genome encodes the viral capsid, a vital element for FMDV replication. Sleeping Beauty (SB) is an active DNA-transposon system responsible for genetic transformation and insertional mutagenesis in vertebrates. In this study, a conserved VP1-shRNA which specifically targets the ovine FMDV-VP1 gene was constructed and combined with SB transposase and transposon. Then, they were microinjected into pronuclear embryos to breed transgenic sheep. Ninety-two lambs were born and the VP1-shRNA was positively integrated into eight of them. The rate of transgenic sheep production in SB transposon system was significantly higher than that in controls (13.04% vs. 3.57% and 7.14%, P < 0.05). The ear fibroblasts of the transgenic lambs transfected with the PsiCheck2-VP1 vector had a significant inhibitory effect on the VP1 gene of the FMDV. In conclusion, the VP1-shRNA transgenic sheep were successfully generated by the current new method. The ear fibroblasts from these transgenic sheep possess a great resistance to FMDV. The result indicated that RNAi technology combining the "Sleeping Beauty" transposon system is an efficient method to produce transgenic animals.
Collapse
|
47
|
Garcia-Garcia L, Recalde S, Hernandez M, Bezunartea J, Rodriguez-Madoz JR, Johnen S, Diarra S, Marie C, Izsvák Z, Ivics Z, Scherman D, Kropp M, Thumann G, Prosper F, Fernandez-Robredo P, Garcia-Layana A. Long-Term PEDF Release in Rat Iris and Retinal Epithelial Cells after Sleeping Beauty Transposon-Mediated Gene Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:1-11. [PMID: 29246287 PMCID: PMC5583395 DOI: 10.1016/j.omtn.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022]
Abstract
Pigment epithelium derived factor (PEDF) is a potent antiangiogenic, neurotrophic, and neuroprotective molecule that is the endogenous inhibitor of vascular endothelial growth factor (VEGF) in the retina. An ex vivo gene therapy approach based on transgenic overexpression of PEDF in the eye is assumed to rebalance the angiogenic-antiangiogenic milieu of the retina, resulting in growth regression of choroidal blood vessels, the hallmark of neovascular age-related macular degeneration. Here, we show that rat pigment epithelial cells can be efficiently transfected with the PEDF-expressing non-viral hyperactive Sleeping Beauty transposon system delivered in a form free of antibiotic resistance marker miniplasmids. The engineered retinal and iris pigment epithelium cells secrete high (141 ± 13 and 222 ± 14 ng) PEDF levels in 72 hr in vitro. In vivo studies showed cell survival and insert expression during at least 4 months. Transplantation of the engineered cells to the subretinal space of a rat model of choroidal neovascularization reduces almost 50% of the development of new vessels.
Collapse
Affiliation(s)
- Laura Garcia-Garcia
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Maria Hernandez
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Jaione Bezunartea
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sabine Diarra
- Department of Ophthalmology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Corinne Marie
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) UMR 8258, 75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, 75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France; INSERM, UTCBS U 1022, 75006 Paris, France
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Daniel Scherman
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) UMR 8258, 75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité, UTCBS, 75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France; INSERM, UTCBS U 1022, 75006 Paris, France
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland; Department of Ophthalmology, University Hospitals and School of Medicine, 22 Rue Alcide-Jentzer, Geneva 1205, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland; Department of Ophthalmology, University Hospitals and School of Medicine, 22 Rue Alcide-Jentzer, Geneva 1205, Switzerland
| | - Felipe Prosper
- Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain.
| | - Alfredo Garcia-Layana
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; Ophthalmology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
48
|
Abstract
The involvement of host factors is critical to our understanding of underlying mechanisms of transposition and the applications of transposon-based technologies. Modified piggyBac (PB) is one of the most potent transposon systems in mammals. However, varying transposition efficiencies of PB among different cell lines have restricted its application. We discovered that the DNA-PK complex facilitates PB transposition by binding to PB transposase (PBase) and promoting paired-end complex formation. Mass spectrometry analysis and coimmunoprecipitation revealed physical interaction between PBase and the DNA-PK components Ku70, Ku80, and DNA-PKcs Overexpression or knockdown of DNA-PK components enhances or suppresses PB transposition in tissue culture cells, respectively. Furthermore, germ-line transposition efficiency of PB is significantly reduced in Ku80 heterozygous mutant mice, confirming the role of DNA-PK in facilitating PB transposition in vivo. Fused dimer PBase can efficiently promote transposition. FRET experiments with tagged dimer PBase molecules indicated that DNA-PK promotes the paired-end complex formation of the PB transposon. These data provide a mechanistic explanation for the role of DNA-PK in facilitating PB transposition and suggest a transposition-promoting manipulation by enhancing the interaction of the PB ends. Consistent with this, deletions shortening the distance between the two PB ends, such as PB vectors with closer ends (PB-CE vectors), have a profound effect on transposition efficiency. Taken together, our study indicates that in addition to regulating DNA repair fidelity during transposition, DNA-PK also affects transposition efficiency by promoting paired-end complex formation. The approach of CE vectors provides a simple practical solution for designing efficient transposon vectors.
Collapse
|
49
|
Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 2017; 52:355-380. [PMID: 28402189 DOI: 10.1080/10409238.2017.1304354] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB's genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- a Medizinische Klinik und Poliklinik II , Universitätsklinikum Würzburg , Würzburg , Germany
| | - Zsuzsanna Izsvák
- b Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Sandra Johnen
- c Department of Ophthalmology , University Hospital RWTH Aachen , Aachen , Germany
| | - Matthias Renner
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| | - Gabriele Thumann
- e Département des Neurosciences Cliniques Service d'Ophthalmologie , Hôpitaux Universitaires de Genève , Genève , Switzerland
| | - Zoltán Ivics
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
50
|
Friedrich MJ, Rad L, Bronner IF, Strong A, Wang W, Weber J, Mayho M, Ponstingl H, Engleitner T, Grove C, Pfaus A, Saur D, Cadiñanos J, Quail MA, Vassiliou GS, Liu P, Bradley A, Rad R. Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nat Protoc 2017; 12:289-309. [PMID: 28079877 DOI: 10.1038/nprot.2016.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposon-mediated forward genetics screening in mice has emerged as a powerful tool for cancer gene discovery. It pinpoints cancer drivers that are difficult to find with other approaches, thus complementing the sequencing-based census of human cancer genes. We describe here a large series of mouse lines for insertional mutagenesis that are compatible with two transposon systems, PiggyBac and Sleeping Beauty, and give guidance on the use of different engineered transposon variants for constitutive or tissue-specific cancer gene discovery screening. We also describe a method for semiquantitative transposon insertion site sequencing (QiSeq). The QiSeq library preparation protocol exploits acoustic DNA fragmentation to reduce bias inherent to widely used restriction-digestion-based approaches for ligation-mediated insertion site amplification. Extensive multiplexing in combination with next-generation sequencing allows affordable ultra-deep transposon insertion site recovery in high-throughput formats within 1 week. Finally, we describe principles of data analysis and interpretation for obtaining insights into cancer gene function and genetic tumor evolution.
Collapse
Affiliation(s)
| | - Lena Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Iraad F Bronner
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Wei Wang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Julia Weber
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Matthew Mayho
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Thomas Engleitner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Carolyn Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Anja Pfaus
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juan Cadiñanos
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK.,Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain
| | - Michael A Quail
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton/Cambridge, UK
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, &German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|