1
|
Moos HK, Patel R, Flaherty SK, Loverde SM, Nikolova EN. H2A.Z facilitates Sox2-nucleosome interaction by promoting DNA and histone H3 tail mobility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641691. [PMID: 40093108 PMCID: PMC11908261 DOI: 10.1101/2025.03.06.641691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Epigenetic regulation of eukaryotic chromatin structure and function can be modulated by histone variants and post-translational modifications. The conserved variant H2A.Z has been functionally linked to pioneer factors Sox2 and Oct4 that open chromatin and initiate cell fate-specific expression programs. However, the molecular basis for their interaction remains unknown. Using biochemistry, nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations, we examine the role of H2A.Z nucleosome dynamics in pioneer factor binding. We find that H2A.Z facilitates Sox2 and Oct4 binding at distinct locations in 601 nucleosomes. We further link this to increased DNA accessibility and perturbed dynamics of the H3 N-terminal tail, which we show competes with Sox2 for DNA binding. Our simulations validate a coupling between H2A.Z-mediated DNA unwrapping and altered H3 N-tail conformations with fewer contacts to DNA and the H2A.Z C- terminal tail. This destabilizing effect of H2A.Z is DNA sequence dependent and enhanced with the less stable Lin28B nucleosome. Collectively, our findings suggest that H2A.Z promotes pioneer factor binding by increasing access to DNA and reducing competition with H3 tails. This could have broader implications for how epigenetic marks or oncogenic mutations tune pioneer factor engagement with chromatin and thus affect its structure and recognition.
Collapse
|
2
|
Patel R, Onyema A, Tang PK, Loverde SM. Conformational Dynamics of the Nucleosomal Histone H2B Tails Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:4709-4726. [PMID: 38865599 PMCID: PMC11200259 DOI: 10.1021/acs.jcim.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic modifications of histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. One of the key post-translational modifications (PTMs) is the acetylation of lysine residues on histone tails. Epigenetic modifications are ubiquitous in the development of diseases, such as cancer and neurological disorders. Histone H2B tails are critical regulators of nucleosome dynamics, biological processes, and certain diseases. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome to demonstrate that acetylation of the histone tails changes their conformational space and interaction with DNA. We perform simulations of H2B tails, critical regulators of gene regulation, in both the lysine-acetylated (ACK) and unacetylated wild type (WT) states. To explore the effects of salt concentration, we use two different NaCl concentrations to perform simulations at microsecond time scales. Salt can modulate the effects of electrostatic interactions between the DNA phosphate backbone and histone tails. Upon acetylation, H2B tails shift their secondary structure helical propensity. The number of contacts between the DNA and the H2B tail decreases. We characterize the conformational dynamics of the H2B tails by principal component analysis (PCA). The ACK tails become more compact at increased salt concentrations, but conformations from the WT tails display the most contacts with DNA at both salt concentrations. Mainly, H2B acetylation may increase the DNA accessibility for regulatory proteins to bind, which can aid in gene regulation and NCP stability.
Collapse
Affiliation(s)
- Rutika Patel
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Augustine Onyema
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Phu K. Tang
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Sharon M. Loverde
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Physics, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Brickner JH. Inheritance of epigenetic transcriptional memory through read-write replication of a histone modification. Ann N Y Acad Sci 2023; 1526:50-58. [PMID: 37391188 PMCID: PMC11216120 DOI: 10.1111/nyas.15033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Epigenetic transcriptional regulation frequently requires histone modifications. Some, but not all, of these modifications are able to template their own inheritance. Here, I discuss the molecular mechanisms by which histone modifications can be inherited and relate these ideas to new results about epigenetic transcriptional memory, a phenomenon that poises recently repressed genes for faster reactivation and has been observed in diverse organisms. Recently, we found that the histone H3 lysine 4 dimethylation that is associated with this phenomenon plays a critical role in sustaining memory and, when factors critical for the establishment of memory are inactivated, can be stably maintained through multiple mitoses. This chromatin-mediated inheritance mechanism may involve a physical interaction between an H3K4me2 reader, SET3C, and an H3K4me2 writer, Spp1- COMPASS. This is the first example of a chromatin-mediated inheritance of a mark that promotes transcription.
Collapse
Affiliation(s)
- Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
4
|
Abstract
Nearly three-fourths of all eukaryotic DNA is occupied by nucleosomes, protein-DNA complexes comprising octameric histone core proteins and ∼150 base pairs of DNA. In addition to acting as a DNA compaction vehicle, the dynamics of nucleosomes regulate the DNA site accessibility for the nonhistone proteins, thereby controlling regulatory processes involved in determining the cell identity and cell fate. Here, we propose an analytical framework to analyze the role of nucleosome dynamics on the target search process of transcription factors through a simple discrete-state stochastic description of the search process. By considering the experimentally determined kinetic rates associated with protein and nucleosome dynamics as the only inputs, we estimate the target search time of a protein via first-passage probability calculations separately during nucleosome breathing and sliding dynamics. Although both the nucleosome dynamics permit transient access to the DNA sites that are otherwise occluded by the histone proteins, our result suggests substantial differences between the protein search mechanism on a nucleosome performing breathing and sliding dynamics. Furthermore, we identify the molecular factors that influence the search efficiency and demonstrate how these factors together portray a highly dynamic landscape of gene regulation. Our analytical results are validated using extensive Monte Carlo simulations.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Donovan BT, Chen H, Eek P, Meng Z, Jipa C, Tan S, Bai L, Poirier MG. Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions. Mol Cell 2023; 83:1251-1263.e6. [PMID: 36996811 PMCID: PMC10182836 DOI: 10.1016/j.molcel.2023.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hengye Chen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Priit Eek
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiyuan Meng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caroline Jipa
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Michael G Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
McCauley MJ, Morse M, Becker N, Hu Q, Botuyan MV, Navarrete E, Huo R, Muthurajan UM, Rouzina I, Luger K, Mer G, Maher LJ, Williams MC. Human FACT subunits coordinate to catalyze both disassembly and reassembly of nucleosomes. Cell Rep 2022; 41:111858. [PMID: 36577379 PMCID: PMC9807050 DOI: 10.1016/j.celrep.2022.111858] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
The histone chaperone FACT (facilitates chromatin transcription) enhances transcription in eukaryotic cells, targeting DNA-protein interactions. FACT, a heterodimer in humans, comprises SPT16 and SSRP1 subunits. We measure nucleosome stability and dynamics in the presence of FACT and critical component domains. Optical tweezers quantify FACT/subdomain binding to nucleosomes, displacing the outer wrap of DNA, disrupting direct DNA-histone (core site) interactions, altering the energy landscape of unwrapping, and increasing the kinetics of DNA-histone disruption. Atomic force microscopy reveals nucleosome remodeling, while single-molecule fluorescence quantifies kinetics of histone loss for disrupted nucleosomes, a process accelerated by FACT. Furthermore, two isolated domains exhibit contradictory functions; while the SSRP1 HMGB domain displaces DNA, SPT16 MD/CTD stabilizes DNA-H2A/H2B dimer interactions. However, only intact FACT tethers disrupted DNA to the histones and supports rapid nucleosome reformation over several cycles of force disruption/release. These results demonstrate that key FACT domains combine to catalyze both nucleosome disassembly and reassembly.
Collapse
Affiliation(s)
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Nicole Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Emily Navarrete
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Ran Huo
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Uma M. Muthurajan
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado, Boulder, CO, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA, USA,Lead contact,Correspondence:
| |
Collapse
|
7
|
Zhou JJ, Cho KWY. Epigenomic dynamics of early Xenopus Embryos. Dev Growth Differ 2022; 64:508-516. [PMID: 36168140 PMCID: PMC10550391 DOI: 10.1111/dgd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/31/2022]
Abstract
How the embryonic genome regulates accessibility to transcription factors is one of the major questions in understanding the spatial and temporal dynamics of gene expression during embryogenesis. Epigenomic analyses of embryonic chromatin provide molecular insights into cell-specific gene activities and genomic architectures. In recent years, significant advances have been made to elucidate the dynamic changes behind the activation of the zygotic genome in various model organisms. Here we provide an overview of the recent epigenomic studies pertaining to early Xenopus development.
Collapse
Affiliation(s)
- Jeff Jiajing Zhou
- Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ken W Y Cho
- Developmental and Cell Biology, University of California, Irvine, California, USA
- Center for Complex Biological Systems, University of California, Irvine, California, USA
| |
Collapse
|
8
|
Mondal A, Mishra SK, Bhattacherjee A. Kinetic origin of nucleosome invasion by pioneer transcription factors. Biophys J 2021; 120:5219-5230. [PMID: 34757077 DOI: 10.1016/j.bpj.2021.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/14/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Recently, a cryo-electron microscopy study has captured different stages of nucleosome breathing dynamics that show partial unwrapping of DNA from histone core to permit transient access to the DNA sites by transcription factors. In practice, however, only a subset of transcription factors named pioneer factors can invade nucleosomes and bind to specific DNA sites to trigger essential DNA metabolic processes. We propose a discrete-state stochastic model that considers the interplay of nucleosome breathing and protein dynamics explicitly and estimate the mean time to search the target DNA sites. It is found that the molecular principle governing the search process on nucleosome is very different compared to that on naked DNA. The pioneer factors minimize their search times on nucleosomal DNA by compensating their nucleosome association rates by dissociation rates. A fine balance between the two presents a tradeoff between their nuclear mobility and error associated with the search process.
Collapse
Affiliation(s)
- Anupam Mondal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
9
|
Mir US, Bhat A, Mushtaq A, Pandita S, Altaf M, Pandita TK. Role of histone acetyltransferases MOF and Tip60 in genome stability. DNA Repair (Amst) 2021; 107:103205. [PMID: 34399315 DOI: 10.1016/j.dnarep.2021.103205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
The accurate repair of DNA damage specifically the chromosomal double-strand breaks (DSBs) arising from exposure to physical or chemical agents, such as ionizing radiation (IR) and radiomimetic drugs is critical in maintaining genomic integrity. The DNA DSB response and repair is facilitated by hierarchical signaling networks that orchestrate chromatin structural changes specifically histone modifications which impact cell-cycle checkpoints through enzymatic activities to repair the broken DNA ends. Various histone posttranslational modifications such as phosphorylation, acetylation, methylation and ubiquitylation have been shown to play a role in DNA damage repair. Recent studies have provided important insights into the role of histone-specific modifications in sensing DNA damage and facilitating the DNA repair. Histone modifications have been shown to determine the pathway choice for repair of DNA DSBs. This review will summarize the role of important histone acetyltransferases MOF and Tip60 mediated acetylation in repair of DNA DSBs in eukaryotic cells.
Collapse
Affiliation(s)
- Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, 181143, India
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Shruti Pandita
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India; Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Tej K Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Abstract
Transcription factors (TFs) are essential mediators of epigenetic regulation and modifiers of penetrance. Studies from the past decades have revealed a sub-class of TF that is capable of remodeling closed chromatin states through targeting nucleosomal motifs. This pioneer factor (PF) class of chromatin remodeler is ATP independent in its roles in epigenetic initiation, with nucleosome-motif recognition and association with repressive chromatin regions. Increasing evidence suggests that the fundamental properties of PFs can be coopted in human cancers. We explore the role of PFs in the larger context of tissue-specific epigenetic regulation. Moreover, we highlight an emerging class of chimeric PF derived from translocation partners in human disease and PFs associated with rare tumors. In the age of site-directed genome editing and targeted protein degradation, increasing our understanding of PFs will provide access to next-generation therapy for human disease driven from altered transcriptional circuitry.
Collapse
|
11
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
12
|
Understanding transcription across scales: From base pairs to chromosomes. Mol Cell 2021; 81:1601-1616. [PMID: 33770487 DOI: 10.1016/j.molcel.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The influence of genome organization on transcription is central to our understanding of cell type specification. Higher-order genome organization is established through short- and long-range DNA interactions. Coordination of these interactions, from single atoms to entire chromosomes, plays a fundamental role in transcriptional control of gene expression. Loss of this coupling can result in disease. Analysis of transcriptional regulation typically involves disparate experimental approaches, from structural studies that define angstrom-level interactions to cell-biological and genomic approaches that assess mesoscale relationships. Thus, to fully understand the mechanisms that regulate gene expression, it is critical to integrate the findings gained across these distinct size scales. In this review, I illustrate fundamental ways in which cells regulate transcription in the context of genome organization.
Collapse
|
13
|
Bendandi A, Patelli AS, Diaspro A, Rocchia W. The role of histone tails in nucleosome stability: An electrostatic perspective. Comput Struct Biotechnol J 2020; 18:2799-2809. [PMID: 33133421 PMCID: PMC7575852 DOI: 10.1016/j.csbj.2020.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
We propose a methodology for the study of protein-DNA electrostatic interactions and apply it to clarify the effect of histone tails in nucleosomes. This method can be used to correlate electrostatic interactions to structural and functional features of protein-DNA systems, and can be combined with coarse-grained representations. In particular, we focus on the electrostatic field and resulting forces acting on the DNA. We investigate the electrostatic origins of effects such as different stages in DNA unwrapping, nucleosome destabilization upon histone tail truncation, and the role of specific arginines and lysines undergoing Post-Translational Modifications. We find that the positioning of the histone tails can oppose the attractive pull of the histone core, locally deform the DNA, and tune DNA unwrapping. Small conformational variations in the often overlooked H2A C-terminal tails had significant electrostatic repercussions near the DNA entry and exit sites. The H2A N-terminal tail exerts attractive electrostatic forces towards the histone core in positions where Polymerase II halts its progress. We validate our results with comparisons to previous experimental and computational observations.
Collapse
Affiliation(s)
- Artemi Bendandi
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16149 Genoa, Italy.,CHT Erzelli, Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Alessandro S Patelli
- LCVMM, Institute of Mathematics, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16149 Genoa, Italy.,CHT Erzelli, Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Walter Rocchia
- Concept Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| |
Collapse
|
14
|
Cusack M, King HW, Spingardi P, Kessler BM, Klose RJ, Kriaucionis S. Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors. Genome Res 2020; 30:1393-1406. [PMID: 32963030 PMCID: PMC7605266 DOI: 10.1101/gr.257576.119] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly understood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are integrated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. We observe widespread increases in chromatin accessibility at retrotransposons when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements has elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced additive effect of HDAC inhibition in DNA methylation-deficient cells demonstrates that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.
Collapse
Affiliation(s)
- Martin Cusack
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Hamish W King
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Paolo Spingardi
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom;
| |
Collapse
|
15
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
16
|
Ensembles of Breathing Nucleosomes: A Computational Study. Biophys J 2019; 118:2297-2308. [PMID: 31882248 DOI: 10.1016/j.bpj.2019.11.3395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
About three-fourths of the human DNA molecules are wrapped into nucleosomes, protein spools with DNA. Nucleosomes are highly dynamic, transiently exposing their DNA through spontaneous unspooling. Recent experiments allowed to observe the DNA of an ensemble of such breathing nucleosomes through x-ray diffraction with contrast matching between the solvent and the protein core. In this study, we calculate such an ensemble through a Monte Carlo simulation of a coarse-grained nucleosome model with sequence-dependent DNA mechanics. Our analysis gives detailed insights into the sequence dependence of nucleosome breathing observed in the experiment and allows us to determine the adsorption energy of the DNA bound to the protein core as a function of the ionic strength. Moreover, we predict the breathing behavior of other potentially interesting sequences and compare the findings to earlier related experiments.
Collapse
|
17
|
Abstract
Nucleosomes and chromatin control eukaryotic genome accessibility and thereby regulate DNA processes, including transcription, replication, and repair. Conformational dynamics within the nucleosome and chromatin structure play a key role in this regulatory function. Structural fluctuations continuously expose internal DNA sequences and nucleosome surfaces, thereby providing transient access for the nuclear machinery. Progress in structural studies of nucleosomes and chromatin has provided detailed insight into local chromatin organization and has set the stage for recent in-depth investigations of the structural dynamics of nucleosomes and chromatin fibers. Here, we discuss the dynamic processes observed in chromatin over different length scales and timescales and review current knowledge about the biophysics of distinct structural transitions.
Collapse
Affiliation(s)
- Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael G. Poirier
- Department of Physics, Biophysics Graduate Program, Ohio State Biochemistry Graduate Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210-1117, USA
| |
Collapse
|
18
|
Kurup JT, Campeanu IJ, Kidder BL. Contribution of H3K4 demethylase KDM5B to nucleosome organization in embryonic stem cells revealed by micrococcal nuclease sequencing. Epigenetics Chromatin 2019; 12:20. [PMID: 30940185 PMCID: PMC6444878 DOI: 10.1186/s13072-019-0266-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Positioning of nucleosomes along DNA is an integral regulator of chromatin accessibility and gene expression in diverse cell types. However, the precise nature of how histone demethylases including the histone 3 lysine 4 (H3K4) demethylase, KDM5B, impacts nucleosome positioning around transcriptional start sites (TSS) of active genes is poorly understood. RESULTS Here, we report that KDM5B is a critical regulator of nucleosome positioning in embryonic stem (ES) cells. Micrococcal nuclease sequencing (MNase-Seq) revealed increased enrichment of nucleosomes around TSS regions and DNase I hypersensitive sites in KDM5B-depleted ES cells. Moreover, depletion of KDM5B resulted in a widespread redistribution and disorganization of nucleosomes in a sequence-dependent manner. Dysregulated nucleosome phasing was also evident in KDM5B-depleted ES cells, including asynchronous nucleosome spacing surrounding TSS regions, where nucleosome variance was positively correlated with the degree of asynchronous phasing. The redistribution of nucleosomes around TSS regions in KDM5B-depleted ES cells is correlated with dysregulated gene expression, and altered H3K4me3 and RNA polymerase II occupancy. In addition, we found that DNA shape features varied significantly at regions with shifted nucleosomes. CONCLUSION Altogether, our data support a role for KDM5B in regulating nucleosome positioning in ES cells.
Collapse
Affiliation(s)
- Jiji T. Kurup
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| | - Ion J. Campeanu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| | - Benjamin L. Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
19
|
Shafirovich V, Kolbanovskiy M, Kropachev K, Liu Z, Cai Y, Terzidis MA, Masi A, Chatgilialoglu C, Amin S, Dadali A, Broyde S, Geacintov NE. Nucleotide Excision Repair and Impact of Site-Specific 5',8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry 2019; 58:561-574. [PMID: 30570250 PMCID: PMC6373774 DOI: 10.1021/acs.biochem.8b01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N2-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts. The BPDE-dG adducts are also NER-resistant in Rec-NCPs but are good substrates of NER in HeLa-NCPs. The four BPDE-dG adduct samples are excised with different efficiencies in free DNA, but in HeLa-NCPs, the efficiencies are reduced by a common factor of 2.2 ± 0.2 relative to the NER efficiencies in free DNA. The NER response of the BPDE-dG adducts in HeLa-NCPs is not directly correlated with the observed differences in the thermodynamic destabilization of HeLa-NCPs, the Förster resonance energy transfer values, or hydroxyl radical footprint patterns and is weakly dependent on the rotational settings. These and other observations suggest that NER is initiated by the binding of the DNA damage-sensing NER factor XPC-RAD23B to a transiently opened BPDE-modified DNA sequence that corresponds to the known footprint of XPC-DNA-RAD23B complexes (≥30 bp). These observations are consistent with the hypothesis that post-translational modifications and the dimensions and properties of the DNA lesions are the major factors that have an impact on the dynamics and initiation of NER in nucleosomes.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Marina Kolbanovskiy
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Zhi Liu
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Yuquin Cai
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Shantu Amin
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alexander Dadali
- Bronx College of the City University of New York, Bronx, NY 10453, United States
| | - Suse Broyde
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| |
Collapse
|
20
|
Winogradoff D, Aksimentiev A. Molecular Mechanism of Spontaneous Nucleosome Unraveling. J Mol Biol 2019; 431:323-335. [PMID: 30468737 PMCID: PMC6331254 DOI: 10.1016/j.jmb.2018.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022]
Abstract
Meters of DNA wrap around histone proteins to form nucleosomes and fit inside the micron-diameter nucleus. For the genetic information encoded in the DNA to become available for transcription, replication, and repair, the DNA-histone assembly must be disrupted. Experiment has indicated that the outer stretches of nucleosomal DNA "breathe" by spontaneously detaching from and reattaching to the histone core. Here, we report direct observation of spontaneous DNA breathing in atomistic molecular dynamics simulations, detailing a microscopic mechanism of the DNA breathing process. According to our simulations, the outer stretches of nucleosomal DNA detach in discrete steps involving 5 or 10 base pairs, with the detachment process being orchestrated by the motion of several conserved histone residues. The inner stretches of nucleosomal DNA are found to be more stably associated with the histone core by more abundant nonspecific DNA-protein contacts, providing a microscopic interpretation of nucleosome unraveling experiments. The CG content of nucleosomal DNA is found to anticorrelate with the extent of unwrapping, supporting the possibility that AT-rich segments may signal the start of transcription by forming less stable nucleosomes.
Collapse
Affiliation(s)
- David Winogradoff
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Parry AJ, Hoare M, Bihary D, Hänsel-Hertsch R, Smith S, Tomimatsu K, Mannion E, Smith A, D'Santos P, Russell IA, Balasubramanian S, Kimura H, Samarajiwa SA, Narita M. NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence. Nat Commun 2018; 9:1840. [PMID: 29743479 PMCID: PMC5943456 DOI: 10.1038/s41467-018-04283-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/16/2018] [Indexed: 12/16/2022] Open
Abstract
Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture.
Collapse
Affiliation(s)
- Aled J Parry
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Dóra Bihary
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Robert Hänsel-Hertsch
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Stephen Smith
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kosuke Tomimatsu
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Elizabeth Mannion
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Amy Smith
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Paula D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - I Alasdair Russell
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hiroshi Kimura
- Cell Biology Centre, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Shamith A Samarajiwa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
22
|
Morgan AM, LeGresley SE, Briggs K, Al-Ani G, Fischer CJ. Effects of nucleosome stability on remodeler-catalyzed repositioning. Phys Rev E 2018; 97:032422. [PMID: 29776169 DOI: 10.1103/physreve.97.032422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 06/08/2023]
Abstract
Chromatin remodelers are molecular motors that play essential roles in the regulation of nucleosome positioning and chromatin accessibility. These machines couple the energy obtained from the binding and hydrolysis of ATP to the mechanical work of manipulating chromatin structure through processes that are not completely understood. Here we present a quantitative analysis of nucleosome repositioning by the imitation switch (ISWI) chromatin remodeler and demonstrate that nucleosome stability significantly impacts the observed activity. We show how DNA damage induced changes in the affinity of DNA wrapping within the nucleosome can affect ISWI repositioning activity and demonstrate how assay-dependent limitations can bias studies of nucleosome repositioning. Together, these results also suggest that some of the diversity seen in chromatin remodeler activity can be attributed to the variations in the thermodynamics of interactions between the remodeler, the histones, and the DNA, rather than reflect inherent properties of the remodeler itself.
Collapse
Affiliation(s)
- Aaron M Morgan
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Sarah E LeGresley
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Koan Briggs
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Gada Al-Ani
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Christopher J Fischer
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| |
Collapse
|
23
|
Xin B, Rohs R. Relationship between histone modifications and transcription factor binding is protein family specific. Genome Res 2018; 28:321-333. [PMID: 29326300 PMCID: PMC5848611 DOI: 10.1101/gr.220079.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/10/2018] [Indexed: 12/20/2022]
Abstract
The very small fraction of putative binding sites (BSs) that are occupied by transcription factors (TFs) in vivo can be highly variable across different cell types. This observation has been partly attributed to changes in chromatin accessibility and histone modification (HM) patterns surrounding BSs. Previous studies focusing on BSs within DNA regulatory regions found correlations between HM patterns and TF binding specificities. However, a mechanistic understanding of TF-DNA binding specificity determinants is still not available. The ability to predict in vivo TF binding on a genome-wide scale requires the identification of features that determine TF binding based on evolutionary relationships of DNA binding proteins. To reveal protein family-dependent mechanisms of TF binding, we conducted comprehensive comparisons of HM patterns surrounding BSs and non-BSs with exactly matched core motifs for TFs in three cell lines: 33 TFs in GM12878, 37 TFs in K562, and 18 TFs in H1-hESC. These TFs displayed protein family-specific preferences for HM patterns surrounding BSs, with high agreement among cell lines. Moreover, compared to models based on DNA sequence and shape at flanking regions of BSs, HM-augmented quantitative machine-learning methods resulted in increased performance in a TF family-specific manner. Analysis of the relative importance of features in these models indicated that TFs, displaying larger HM pattern differences between BSs and non-BSs, bound DNA in an HM-specific manner on a protein family-specific basis. We propose that TF family-specific HM preferences reveal distinct mechanisms that assist in guiding TFs to their cognate BSs by altering chromatin structure and accessibility.
Collapse
Affiliation(s)
- Beibei Xin
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, California 90089, USA
| | - Remo Rohs
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
24
|
Culkin J, de Bruin L, Tompitak M, Phillips R, Schiessel H. The role of DNA sequence in nucleosome breathing. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:106. [PMID: 29185124 PMCID: PMC7001874 DOI: 10.1140/epje/i2017-11596-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/14/2017] [Indexed: 05/05/2023]
Abstract
Roughly 3/4 of human genomes are sequestered by nucleosomes, DNA spools with a protein core, dictating a broad range of biological processes, ranging from gene regulation, recombination, and replication, to chromosome condensation. Nucleosomes are dynamical structures and temporarily expose wrapped DNA through spontaneous unspooling from either end, a process called site exposure or nucleosome breathing. Here we ask how this process is influenced by the mechanical properties of the wrapped DNA, which is known to depend on the underlying base pair sequence. Using a coarse-grained nucleosome model we calculate the accessibility profiles for site exposure. We find that the process is very sensitive to sequence effects, so that evolution could potentially tune the accessibility of nucleosomal DNA and would only need a small number of mutations to do so.
Collapse
Affiliation(s)
- Jamie Culkin
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Lennart de Bruin
- Laboratory for Computation and Visualization in Mathematics and Mechanics, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Tompitak
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Rob Phillips
- Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology, 91125, Pasadena, CA, USA
| | - Helmut Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands.
| |
Collapse
|
25
|
Fu I, Cai Y, Geacintov NE, Zhang Y, Broyde S. Nucleosome Histone Tail Conformation and Dynamics: Impacts of Lysine Acetylation and a Nearby Minor Groove Benzo[a]pyrene-Derived Lesion. Biochemistry 2017; 56:1963-1973. [PMID: 28304160 DOI: 10.1021/acs.biochem.6b01208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone tails in nucleosomes play critical roles in regulation of many biological processes, including chromatin compaction, transcription, and DNA repair. Moreover, post-translational modifications, notably lysine acetylation, are crucial to these functions. While the tails have been intensively studied, how the structures and dynamics of tails are impacted by the presence of a nearby bulky DNA lesion is a frontier research area, and how these properties are impacted by tail lysine acetylation remains unexplored. To obtain molecular insight, we have utilized all atom 3 μs molecular dynamics simulations of nucleosome core particles (NCPs) to determine the impact of a nearby DNA lesion, 10S (+)-trans-anti-B[a]P-N2-dG-the major adduct derived from the procarcinogen benzo[a]pyrene-on H2B tail behavior in unacetylated and acetylated states. We similarly studied lesion-free NCPs to investigate the normal properties of the H2B tail in both states. In the lesion-free NCPs, charge neutralization upon lysine acetylation causes release of the tail from the DNA. When the lesion is present, it stably engulfs part of the nearby tail, impairing the interactions between DNA and tail. With the tail in an acetylated state, the lesion still interacts with part of it, although unstably. The lesion's partial entrapment of the tail should hinder the tail from interacting with other nucleosomes, and other proteins such as acetylases, deacetylases, and acetyl-lysine binding proteins, and thus disrupt critical tail-governed processes. Hence, the lesion would impede tail functions modulated by acetylation or deacetylation, causing aberrant chromatin structures and impaired biological transactions such as transcription and DNA repair.
Collapse
Affiliation(s)
| | | | | | - Yingkai Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| | | |
Collapse
|
26
|
Ramachandran S, Ahmad K, Henikoff S. Capitalizing on disaster: Establishing chromatin specificity behind the replication fork. Bioessays 2017; 39. [PMID: 28133760 PMCID: PMC5513704 DOI: 10.1002/bies.201600150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes are packaged into nucleosomal chromatin, and genomic activity requires the precise localization of transcription factors, histone modifications and nucleosomes. Classic work described the progressive reassembly and maturation of bulk chromatin behind replication forks. More recent proteomics has detailed the molecular machines that accompany the replicative polymerase to promote rapid histone deposition onto the newly replicated DNA. However, localized chromatin features are transiently obliterated by DNA replication every S phase of the cell cycle. Genomic strategies now observe the rebuilding of locus-specific chromatin features, and reveal surprising delays in transcription factor binding behind replication forks. This implies that transient chromatin disorganization during replication is a central juncture for targeted transcription factor binding within genomes. We propose that transient occlusion of regulatory elements by disorganized nucleosomes during chromatin maturation enforces specificity of factor binding.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| | - Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
27
|
Acetylation Mimics Within a Single Nucleosome Alter Local DNA Accessibility In Compacted Nucleosome Arrays. Sci Rep 2016; 6:34808. [PMID: 27708426 PMCID: PMC5052607 DOI: 10.1038/srep34808] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
The activation of a silent gene locus is thought to involve pioneering transcription factors that initiate changes in the local chromatin structure to increase promoter accessibility and binding of downstream effectors. To better understand the molecular requirements for the first steps of locus activation, we investigated whether acetylation of a single nucleosome is sufficient to alter DNA accessibility within a condensed 25-nucleosome array. We found that acetylation mimics within the histone H4 tail domain increased accessibility of the surrounding linker DNA, with the increased accessibility localized to the immediate vicinity of the modified nucleosome. In contrast, acetylation mimics within the H3 tail had little effect, but were able to synergize with H4 tail acetylation mimics to further increase accessibility. Moreover, replacement of the central nucleosome with a nucleosome free region also resulted in increased local, but not global DNA accessibility. Our results indicate that modification or disruption of only a single target nucleosome results in significant changes in local chromatin architecture and suggest that very localized chromatin modifications imparted by pioneer transcription factors are sufficient to initiate a cascade of events leading to promoter activation.
Collapse
|
28
|
Chang L, Takada S. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations. Sci Rep 2016; 6:34441. [PMID: 27698366 PMCID: PMC5048180 DOI: 10.1038/srep34441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures.
Collapse
Affiliation(s)
- Le Chang
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo 606-8502, Kyoto Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo 606-8502, Kyoto Japan
| |
Collapse
|
29
|
Eslami-Mossallam B, Schiessel H, van Noort J. Nucleosome dynamics: Sequence matters. Adv Colloid Interface Sci 2016; 232:101-113. [PMID: 26896338 DOI: 10.1016/j.cis.2016.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
About three quarter of all eukaryotic DNA is wrapped around protein cylinders, forming nucleosomes. Even though the histone proteins that make up the core of nucleosomes are highly conserved in evolution, nucleosomes can be very different from each other due to posttranslational modifications of the histones. Another crucial factor in making nucleosomes unique has so far been underappreciated: the sequence of their DNA. This review provides an overview of the experimental and theoretical progress that increasingly points to the importance of the nucleosomal base pair sequence. Specifically, we discuss the role of the underlying base pair sequence in nucleosome positioning, sliding, breathing, force-induced unwrapping, dissociation and partial assembly and also how the sequence can influence higher-order structures. A new view emerges: the physical properties of nucleosomes, especially their dynamical properties, are determined to a large extent by the mechanical properties of their DNA, which in turn depends on DNA sequence.
Collapse
|
30
|
Duncan MT, DeLuca TA, Kuo HY, Yi M, Mrksich M, Miller WM. SIRT1 is a critical regulator of K562 cell growth, survival, and differentiation. Exp Cell Res 2016; 344:40-52. [PMID: 27086164 PMCID: PMC4879089 DOI: 10.1016/j.yexcr.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
Inhibition of histone deacetylases (HDACi) has emerged as a promising approach in the treatment of many types of cancer, including leukemias. Among the HDACs, Class III HDACs, also known as sirtuins (SIRTs), are unique in that their function is directly related to the cell's metabolic state through their dependency on the co-factor NAD(+). In this study, we examined the relation between SIRTs and the growth, survival, and differentiation of K562 erythroleukemia cells. Using a mass spectrometry approach we previously developed, we show that SIRT expression and deacetylase activity in these cells changes greatly with differentiation state (undifferentiated vs. megakaryocytic differentiation vs. erythroid differentiation). Moreover, SIRT1 is crucially involved in regulating the differentiation state. Overexpression of wildtype (but not deacetylase mutant) SIRT1 resulted in upregulation of glycophorin A, ~2-fold increase in the mRNA levels of α, γ, ε, and ζ-globins, and spontaneous hemoglobinization. Hemin-induced differentiation was also enhanced by (and depended on) higher SIRT1 levels. Since K562 cells are bipotent, we also investigated whether SIRT1 modulation affected their ability to undergo megakaryocytic (MK) differentiation. SIRT1 was required for commitment to the MK lineage and subsequent maturation, but was not directly involved in polyploidization of either K562 cells or an already-MK-committed cell line, CHRF-288-11. The observed blockage in commitment to the MK lineage was associated with a dramatic decrease in the formation of autophagic vacuoles, which was previously shown to be required for K562 cell MK commitment. Autophagy-associated conversion of the protein LC3-I to LC3-II was greatly enhanced by overexpression of wildtype SIRT1, further suggesting a functional connection between SIRT1, autophagy, and MK differentiation. Based on its clear effects on autophagy, we also examined the effect of SIRT1 modulation on stress responses. Consistent with results of prior studies, we found that SIRT1 silencing modestly promoted drug-induced apoptosis, while overexpression was protective. Furthermore, pan-SIRT inhibition mediated by nicotinamide pre-treatment substantially increased imatinib-induced apoptosis. Altogether, our results suggest a complex role for SIRT1 in regulating many aspects of K562 cell state and stress response. These observations warrant further investigation using normal and leukemic primary cell models. We further suggest that, ultimately, a well-defined mapping of HDACs to their substrates and corresponding signaling pathways will be important for optimally designing HDACi-based therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Hsin-Yu Kuo
- Department of Biomedical Engineering; Department of Chemistry; Department of Cell and Molecular Biology
| | - Minchang Yi
- Master of Biotechnology Program, Northwestern University, Evanston, IL 60208, United States
| | - Milan Mrksich
- Department of Biomedical Engineering; Department of Chemistry; Department of Cell and Molecular Biology; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, United States
| | - William M Miller
- Department of Chemical and Biological Engineering; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
31
|
The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis. Int J Mol Sci 2016; 17:ijms17010099. [PMID: 26784169 PMCID: PMC4730341 DOI: 10.3390/ijms17010099] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.
Collapse
|
32
|
Schram RD, Klinker H, Becker PB, Schiessel H. Computational study of remodeling in a nucleosomal array. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:85. [PMID: 26248702 DOI: 10.1140/epje/i2015-15085-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/18/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Chromatin remodeling complexes utilize the energy of ATP hydrolysis to change the packing state of chromatin, e.g. by catalysing the sliding of nucleosomes along DNA. Here we present simple models to describe experimental data of changes in DNA accessibility along a synthetic, repetitive array of nucleosomes during remodeling by the ACF enzyme or its isolated ATPase subunit, ISWI. We find substantial qualitative differences between the remodeling activities of ISWI and ACF. To understand better the observed behavior for the ACF remodeler, we study more microscopic models of nucleosomal arrays.
Collapse
Affiliation(s)
- Raoul D Schram
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA, Leiden, The Netherlands
| | | | | | | |
Collapse
|
33
|
Gansen A, Tóth K, Schwarz N, Langowski J. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure––a FRET study. Nucleic Acids Res 2015; 43:1433-43. [PMID: 25589544 PMCID: PMC4330349 DOI: 10.1093/nar/gku1354] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones.
Collapse
Affiliation(s)
- Alexander Gansen
- To whom correspondence should be addressed. Tel: +49 6221 423396; Fax: +49 6221 423391;
| | | | | | - Jörg Langowski
- Correspondence may also be addressed to Jörg Langowski. Tel: +49 6221 423390; Fax: +49 6221 423391;
| |
Collapse
|
34
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
35
|
Lenz L, Hoenderdos M, Prinsen P, Schiessel H. The influence of DNA shape fluctuations on fluorescence resonance energy transfer efficiency measurements in nucleosomes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064104. [PMID: 25564291 DOI: 10.1088/0953-8984/27/6/064104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence resonance energy transfer (FRET) measurements allow one to observe site exposure in nucleosomes, i.e. the transient unwrapping of a part of the wrapped DNA from the histone octamer. In such experiments one can typically distinguish between a closed state and an open state but in principle one might hope to detect several states, each corresponding to a certain number of open binding sites. Here we show that even in an ideal FRET setup it would be hard to detect unwrapping states with intermediate levels of FRET efficiencies. As the unwrapped DNA molecule, modelled here as a wormlike chain, has a finite stiffness, shape fluctuations smear out FRET signals completely from such intermediate states.
Collapse
Affiliation(s)
- Lucia Lenz
- Instituut-Lorentz, Leiden University, PO Box 9506, 2300 RA Leiden, The Netherlands. Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr. 19, 79104 Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
36
|
Nam GM, Arya G. Torsional behavior of chromatin is modulated by rotational phasing of nucleosomes. Nucleic Acids Res 2014; 42:9691-9. [PMID: 25100871 PMCID: PMC4150795 DOI: 10.1093/nar/gku694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Torsionally stressed DNA plays a critical role in genome organization and regulation. While the effects of torsional stresses on naked DNA have been well studied, little is known about how these stresses propagate within chromatin and affect its organization. Here we investigate the torsional behavior of nucleosome arrays by means of Brownian dynamics simulations of a coarse-grained model of chromatin. Our simulations reveal a strong dependence of the torsional response on the rotational phase angle Ψ0 between adjacent nucleosomes. Extreme values of Ψ0 lead to asymmetric, bell-shaped extension-rotation profiles with sharp maxima shifted toward positive or negative rotations, depending on the sign of Ψ0, and to fast, irregular propagation of DNA twist. In contrast, moderate Ψ0 yield more symmetric profiles with broad maxima and slow, uniform propagation of twist. The observed behavior is shown to arise from an interplay between nucleosomal transitions into states with crossed and open linker DNAs and global supercoiling of arrays into left- and right-handed coils, where Ψ0 serves to modulate the energy landscape of nucleosomal states. Our results also explain the torsional resilience of chromatin, reconcile differences between experimentally measured extension-rotation profiles, and suggest a role of torsional stresses in regulating chromatin assembly and organization.
Collapse
Affiliation(s)
- Gi-Moon Nam
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0448, USA
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0448, USA
| |
Collapse
|
37
|
O'Neill DJ, Williamson SC, Alkharaif D, Monteiro ICM, Goudreault M, Gaughan L, Robson CN, Gingras AC, Binda O. SETD6 controls the expression of estrogen-responsive genes and proliferation of breast carcinoma cells. Epigenetics 2014; 9:942-50. [PMID: 24751716 PMCID: PMC4143409 DOI: 10.4161/epi.28864] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 12/24/2022] Open
Abstract
The lysine methyltransferase SETD6 modifies the histone variant H2AZ, a key component of nuclear receptor-dependent transcription. Herein, we report the identification of several factors that associate with SETD6 and are implicated in nuclear hormone receptor signaling. Specifically, SETD6 associates with the estrogen receptor α (ERα), histone deacetylase HDAC1, metastasis protein MTA2, and the transcriptional co-activator TRRAP. Luciferase reporter assays identify SETD6 as a transcriptional repressor, in agreement with its association with HDAC1 and MTA2. However, SETD6 behaves as a co-activator of several estrogen-responsive genes, such as PGR and TFF1. Consistent with these results, silencing of SETD6 in several breast carcinoma cell lines induced cellular proliferation defects accompanied by enhanced expression of the cell cycle inhibitor CDKN1A and induction of apoptosis. Herein, we have identified several chromatin proteins that associate with SETD6 and described SETD6 as an essential factor for nuclear receptor signaling and cellular proliferation.
Collapse
Affiliation(s)
- Daniel J O'Neill
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| | | | - Dhuha Alkharaif
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| | | | - Marilyn Goudreault
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; Toronto, ON Canada
| | - Luke Gaughan
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| | - Craig N Robson
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; Toronto, ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| | - Olivier Binda
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne, UK
| |
Collapse
|
38
|
Duan MR, Smerdon MJ. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin). J Biol Chem 2014; 289:8353-63. [PMID: 24515106 DOI: 10.1074/jbc.m113.540732] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.
Collapse
Affiliation(s)
- Ming-Rui Duan
- From Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520
| | | |
Collapse
|
39
|
Luo Y, North JA, Rose SD, Poirier MG. Nucleosomes accelerate transcription factor dissociation. Nucleic Acids Res 2013; 42:3017-27. [PMID: 24353316 PMCID: PMC3950707 DOI: 10.1093/nar/gkt1319] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription factors (TF) bind DNA-target sites within promoters to activate gene expression. TFs target their DNA-recognition sequences with high specificity by binding with resident times of up to hours in vitro. However, in vivo TFs can exchange on the order of seconds. The factors that regulate TF dynamics in vivo and increase dissociation rates by orders of magnitude are not known. We investigated TF binding and dissociation dynamics at their recognition sequence within duplex DNA, single nucleosomes and short nucleosome arrays with single molecule total internal reflection fluorescence (smTIRF) microscopy. We find that the rate of TF dissociation from its site within either nucleosomes or nucleosome arrays is increased by 1000-fold relative to duplex DNA. Our results suggest that TF binding within chromatin could be responsible for the dramatic increase in TF exchange in vivo. Furthermore, these studies demonstrate that nucleosomes regulate DNA–protein interactions not only by preventing DNA–protein binding but by dramatically increasing the dissociation rate of protein complexes from their DNA-binding sites.
Collapse
Affiliation(s)
- Yi Luo
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
40
|
Soliman ML, Ohm JE, Rosenberger TA. Acetate reduces PGE2 release and modulates phospholipase and cyclooxygenase levels in neuroglia stimulated with lipopolysaccharide. Lipids 2013; 48:651-62. [PMID: 23709104 DOI: 10.1007/s11745-013-3799-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
Acetate supplementation attenuates neuroglial activation, increases histone and non-histone protein acetylation, reduces pro-inflammatory cytokine expression, and increases IL-4 transcription in rat models of neuroinflammation and Lyme's neuroborreliosis. Because eicosanoid signaling is involved in neuroinflammation, we measured the effect acetate treatment had on phospholipase, cyclooxygenase, and prostaglandin E2 (PGE2) levels in BV-2 microglia and primary astrocytes stimulated with lipopolysaccharide (LPS). In BV-2 microglia, we found that LPS increased the phosphorylation-state of cytosolic phospholipase A2 (cPLA2), reduced the levels of phospholipase C (PLC) β1, and increased the levels of cyclooxygenase (Cox)-1 and -2. Acetate treatment returned PLCβ1 and Cox-1 levels to normal, attenuated the increase in Cox-2, but had no effect on cPLA2 phosphorylation. In primary astrocytes, LPS increased the phosphorylation of cPLA2 and increased the levels of Cox-1 and Cox-2. Acetate treatment in these cells reduced secretory PLA2 IIA and PLCβ1 levels as compared to LPS-treatment groups, reversed the increase in cPLA2 phosphorylation, and returned Cox-1 levels to normal. Acetate treatment reduced PGE2 release in astrocytes stimulated with LPS to control levels, but did not alter PGE2 levels in BV-2 microglia. The amount of acetylated H3K9 bound to the promoter regions of Cox-1, Cox-2, IL-1β and NF-κB p65 genes, but not IL-4 in were increased in BV-2 microglia treated with acetate. These data suggest that acetate treatment can disrupt eicosanoid signaling in neuroglia that may, in part, be the result of altering gene expression due chromatin remodeling as a result of increasing H3K9 acetylation.
Collapse
Affiliation(s)
- Mahmoud L Soliman
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
41
|
Kim YW, Kim A. Histone acetylation contributes to chromatin looping between the locus control region and globin gene by influencing hypersensitive site formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:963-9. [PMID: 23607989 DOI: 10.1016/j.bbagrm.2013.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/27/2013] [Accepted: 04/11/2013] [Indexed: 01/19/2023]
Abstract
Chromatin loops are formed between enhancers and promoters and between insulators to regulate gene transcription in the eukaryotic genome. These transcription regulatory elements forming loops have highly acetylated histones. To understand the correlation between histone acetylation and chromatin loop formation, we inhibited the expression of histone acetyltransferase CBP and p300 in erythroid K562 cells and analyzed the chromatin structure of the β-globin locus. The proximity between the locus control region (LCR) and the active (G)γ-globin gene was decreased in the β-globin locus when histones were hypoacetylated by the double knockdown of CBP and p300. Sensitivity to DNase I and binding of erythroid specific activators were reduced in the hypoacetylated LCR hypersensitive sites (HSs) and gene promoter. Interestingly, the chromatin loop between HS5 and 3'HS1 was formed regardless of the hypoacetylation of the β-globin locus. CTCF binding was maintained at HS5 and 3'HS1 in the hypoacetylated locus. Thus, these results indicate that histone acetylation contributes to chromatin looping through the formation of HSs in the LCR and gene promoter. However, looping between insulators appears to be independent from histone acetylation.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, Pusan National University, Busan, South Korea
| | | |
Collapse
|
42
|
Fathizadeh A, Berdy Besya A, Reza Ejtehadi M, Schiessel H. Rigid-body molecular dynamics of DNA inside a nucleosome. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:21. [PMID: 23475204 DOI: 10.1140/epje/i2013-13021-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 06/01/2023]
Abstract
The majority of eukaryotic DNA, about three quarter, is wrapped around histone proteins forming so-called nucleosomes. To study nucleosomal DNA we introduce a coarse-grained molecular dynamics model based on sequence-dependent harmonic rigid base pair step parameters of DNA and nucleosomal binding sites. Mixed parametrization based on all-atom molecular dynamics and crystallographic data of protein-DNA structures is used for the base pair step parameters. The binding site parameters are adjusted by experimental B-factor values of the nucleosome crystal structure. The model is then used to determine the energy cost for placing a twist defect into the nucleosomal DNA which allows us to use Kramers theory to calculate nucleosome sliding caused by such defects. It is shown that the twist defect scenario together with the sequence-dependent elasticity of DNA can explain the slow time scales observed for nucleosome mobility along DNA. With this method we also show how the twist defect mechanism leads to a higher mobility of DNA in the presence of sin mutations near the dyad axis. Finally, by performing simulations on 5s rDNA, 601, and telomeric base pair sequences, it is demonstrated that the current model is a powerful tool to predict nucleosome positioning.
Collapse
Affiliation(s)
- Arman Fathizadeh
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran
| | | | | | | |
Collapse
|
43
|
Bintu L, Ishibashi T, Dangkulwanich M, Wu YY, Lubkowska L, Kashlev M, Bustamante C. Nucleosomal elements that control the topography of the barrier to transcription. Cell 2013; 151:738-749. [PMID: 23141536 DOI: 10.1016/j.cell.2012.10.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/08/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
The nucleosome represents a mechanical barrier to transcription that operates as a general regulator of gene expression. We investigate how each nucleosomal component-the histone tails, the specific histone-DNA contacts, and the DNA sequence-contributes to the strength of the barrier. Removal of the tails favors progression of RNA polymerase II into the entry region of the nucleosome by locally increasing the wrapping-unwrapping rates of the DNA around histones. In contrast, point mutations that affect histone-DNA contacts at the dyad abolish the barrier to transcription in the central region by decreasing the local wrapping rate. Moreover, we show that the nucleosome amplifies sequence-dependent transcriptional pausing, an effect mediated through the structure of the nascent RNA. Each of these nucleosomal elements controls transcription elongation by affecting distinctly the density and duration of polymerase pauses, thus providing multiple and alternative mechanisms for control of gene expression by chromatin remodeling and transcription factors.
Collapse
Affiliation(s)
- Lacramioara Bintu
- Jason L. Choy Laboratory of Single-Molecule Biophysics and Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Toyotaka Ishibashi
- QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Yueh-Yi Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics and Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
44
|
Elliott GO, Murphy KJ, Hayes JJ, Thiriet C. Replication-independent nucleosome exchange is enhanced by local and specific acetylation of histone H4. Nucleic Acids Res 2013; 41:2228-38. [PMID: 23303778 PMCID: PMC3575802 DOI: 10.1093/nar/gks1451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We used a novel single-cell strategy to examine the fate of histones during G2-phase. Consistent with previous results, we find that in G2-phase, the majority of nuclear histones are assembled into chromatin, whereas a small fraction comprises an unassembled pool. Small increases in the amount of histones within the free pool affect the extent of exchange, suggesting that the free pool is in dynamic equilibrium with chromatin proteins. Unexpectedly, acetylated H4 is preferentially partitioned to the unassembled pool. Although an increase in global histone acetylation did not affect overall nucleosome dynamics, an H4 containing lysine to glutamine substitutions as mimics of acetylation significantly increased the rate of exchange, but did not affect the acetylation state of neighbouring nucleosomes. Interestingly, transcribed regions are particularly predisposed to exchange on incorporation of H4 acetylation mimics compared with surrounding regions. Our results support a model whereby histone acetylation on K8 and K16 specifically marks nucleosomes for eviction, with histones being rapidly deacetylated on reassembly.
Collapse
Affiliation(s)
- Giles O Elliott
- UFIP (FRE-CNRS 3478), Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | | | | | | |
Collapse
|
45
|
Regulation of the H4 tail binding and folding landscapes via Lys-16 acetylation. Proc Natl Acad Sci U S A 2012; 109:17857-62. [PMID: 22988066 DOI: 10.1073/pnas.1201805109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins (IDP) are a broad class of proteins with relatively flat energy landscapes showing a high level of functional promiscuity, which are frequently regulated through posttranslational covalent modifications. Histone tails, which are the terminal segments of the histone proteins, are prominent IDPs that are implicated in a variety of signaling processes, which control chromatin organization and dynamics. Although a large body of work has been done on elucidating the roles of posttranslational modifications in functional regulation of IDPs, molecular mechanisms behind the observed behaviors are not fully understood. Using extensive atomistic molecular dynamics simulations, we found in this work that H4 tail mono-acetylation at LYS-16, which is a key covalent modification, induces a significant reorganization of the tail's conformational landscape, inducing partial ordering and enhancing the propensity for alpha-helical segments. Furthermore, our calculations of the potentials of mean force between the H4 tail and a DNA fragment indicate that contrary to the expectations based on simple electrostatic reasoning, the Lys-16 mono-acetylated H4 tail binds to DNA stronger than the unacetylated protein. Based on these results, we propose a molecular mechanism for the way Lys-16 acetylation might lead to experimentally observed disruption of compact chromatin fibers.
Collapse
|
46
|
North JA, Shimko JC, Javaid S, Mooney AM, Shoffner MA, Rose SD, Bundschuh R, Fishel R, Ottesen JJ, Poirier MG. Regulation of the nucleosome unwrapping rate controls DNA accessibility. Nucleic Acids Res 2012; 40:10215-27. [PMID: 22965129 PMCID: PMC3488218 DOI: 10.1093/nar/gks747] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic genomes are repetitively wrapped into nucleosomes that then regulate access of transcription and DNA repair complexes to DNA. The mechanisms that regulate extrinsic protein interactions within nucleosomes are unresolved. We demonstrate that modulation of the nucleosome unwrapping rate regulates protein binding within nucleosomes. Histone H3 acetyl-lysine 56 [H3(K56ac)] and DNA sequence within the nucleosome entry-exit region additively influence nucleosomal DNA accessibility by increasing the unwrapping rate without impacting rewrapping. These combined epigenetic and genetic factors influence transcription factor (TF) occupancy within the nucleosome by at least one order of magnitude and enhance nucleosome disassembly by the DNA mismatch repair complex, hMSH2-hMSH6. Our results combined with the observation that ∼30% of Saccharomyces cerevisiae TF-binding sites reside in the nucleosome entry-exit region suggest that modulation of nucleosome unwrapping is a mechanism for regulating transcription and DNA repair.
Collapse
Affiliation(s)
- Justin A North
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Aslankoohi E, Voordeckers K, Sun H, Sanchez-Rodriguez A, van der Zande E, Marchal K, Verstrepen KJ. Nucleosomes affect local transformation efficiency. Nucleic Acids Res 2012; 40:9506-12. [PMID: 22904077 PMCID: PMC3479212 DOI: 10.1093/nar/gks777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic transformation is a natural process during which foreign DNA enters a cell and integrates into the genome. Apart from its relevance for horizontal gene transfer in nature, transformation is also the cornerstone of today's recombinant gene technology. Despite its importance, relatively little is known about the factors that determine transformation efficiency. We hypothesize that differences in DNA accessibility associated with nucleosome positioning may affect local transformation efficiency. We investigated the landscape of transformation efficiency at various positions in the Saccharomyces cerevisiae genome and correlated these measurements with nucleosome positioning. We find that transformation efficiency shows a highly significant inverse correlation with relative nucleosome density. This correlation was lost when the nucleosome pattern, but not the underlying sequence was changed. Together, our results demonstrate a novel role for nucleosomes and also allow researchers to predict transformation efficiency of a target region and select spots in the genome that are likely to yield higher transformation efficiency.
Collapse
Affiliation(s)
- Elham Aslankoohi
- Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
Lickwar CR, Mueller F, Hanlon SE, McNally JG, Lieb JD. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 2012; 484:251-5. [PMID: 22498630 PMCID: PMC3341663 DOI: 10.1038/nature10985] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 02/23/2012] [Indexed: 12/26/2022]
Abstract
Dynamic access to genetic information is central to organismal development and environmental response. Consequently, genomic processes must be regulated by mechanisms that alter genome function relatively rapidly. Conventional chromatin immunoprecipitation (ChIP) experiments measure transcription factor occupancy, but give no indication of kinetics and are poor predictors of transcription factor function at a given locus. To measure transcription-factor-binding dynamics across the genome, we performed competition ChIP (refs 6, 7) with a sequence-specific Saccharomyces cerevisiae transcription factor, Rap1 (ref. 8). Rap1-binding dynamics and Rap1 occupancy were only weakly correlated (R(2) = 0.14), but binding dynamics were more strongly linked to function than occupancy. Long Rap1 residence was coupled to transcriptional activation, whereas fast binding turnover, which we refer to as 'treadmilling', was linked to low transcriptional output. Thus, DNA-binding events that seem identical by conventional ChIP may have different underlying modes of interaction that lead to opposing functional outcomes. We propose that transcription factor binding turnover is a major point of regulation in determining the functional consequences of transcription factor binding, and is mediated mainly by control of competition between transcription factors and nucleosomes. Our model predicts a clutch-like mechanism that rapidly engages a treadmilling transcription factor into a stable binding state, or vice versa, to modulate transcription factor function.
Collapse
Affiliation(s)
- Colin R. Lickwar
- Department of Biology, Carolina Center for the Genome Sciences, Curriculum in Genetics and Molecular Biology, and Lineberger Comprehensive Cancer Center CB #3280, 408 Fordham Hall University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3280
| | - Florian Mueller
- LRBGE-National Cancer Institute The National Institutes of Health 41 Library Drive Bethesda, MD 20892
- Institut Pasteur Groupe Imagerie et Modélisation Centre National de la Recherche Scientifique, Unité de Recherche Associée 2582 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Sean E. Hanlon
- Department of Biology, Carolina Center for the Genome Sciences, Curriculum in Genetics and Molecular Biology, and Lineberger Comprehensive Cancer Center CB #3280, 408 Fordham Hall University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3280
| | - James G McNally
- LRBGE-National Cancer Institute The National Institutes of Health 41 Library Drive Bethesda, MD 20892
| | - Jason D. Lieb
- Department of Biology, Carolina Center for the Genome Sciences, Curriculum in Genetics and Molecular Biology, and Lineberger Comprehensive Cancer Center CB #3280, 408 Fordham Hall University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3280
| |
Collapse
|
49
|
Voltz K, Trylska J, Calimet N, Smith JC, Langowski J. Unwrapping of nucleosomal DNA ends: a multiscale molecular dynamics study. Biophys J 2012; 102:849-58. [PMID: 22385856 DOI: 10.1016/j.bpj.2011.11.4028] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 11/10/2011] [Accepted: 11/28/2011] [Indexed: 11/25/2022] Open
Abstract
To permit access to DNA-binding proteins involved in the control and expression of the genome, the nucleosome undergoes structural remodeling including unwrapping of nucleosomal DNA segments from the nucleosome core. Here we examine the mechanism of DNA dissociation from the nucleosome using microsecond timescale coarse-grained molecular dynamics simulations. The simulations exhibit short-lived, reversible DNA detachments from the nucleosome and long-lived DNA detachments not reversible on the timescale of the simulation. During the short-lived DNA detachments, 9 bp dissociate at one extremity of the nucleosome core and the H3 tail occupies the space freed by the detached DNA. The long-lived DNA detachments are characterized by structural rearrangements of the H3 tail including the formation of a turn-like structure at the base of the tail that sterically impedes the rewrapping of DNA on the nucleosome surface. Removal of the H3 tails causes the long-lived detachments to disappear. The physical consistency of the CG long-lived open state was verified by mapping a CG structure representative of this state back to atomic resolution and performing molecular dynamics as well as by comparing conformation-dependent free energies. Our results suggest that the H3 tail may stabilize the nucleosome in the open state during the initial stages of the nucleosome remodeling process.
Collapse
Affiliation(s)
- Karine Voltz
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
50
|
Lesne A, Bécavin C, Victor JM. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing. Phys Biol 2012; 9:013001. [PMID: 22314931 DOI: 10.1088/1478-3975/9/1/013001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.
Collapse
Affiliation(s)
- Annick Lesne
- CNRS UMR 7600, Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France.
| | | | | |
Collapse
|