1
|
Szokoli D, Mutschler H. Protein-free catalysis of DNA hydrolysis and self-integration by a ribozyme. Nucleic Acids Res 2025; 53:gkae1224. [PMID: 39698822 PMCID: PMC11754743 DOI: 10.1093/nar/gkae1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Group II introns are ancient self-splicing ribozymes and retrotransposons. Though long speculated to have originated before translation, their dependence on intron-encoded proteins for splicing and mobility has cast doubt on this hypothesis. While some group II introns are known to retain part of their catalytic repertoire in the absence of protein cofactors, protein-free complete reverse splicing of a group II intron into a DNA target has never been demonstrated. Here, we demonstrate the complete independence of a group II intron from protein cofactors in all intron-catalyzed reactions. The ribozyme is capable of fully reverse splicing into single-stranded DNA targets in vitro, readily hydrolyzes DNA substrates and is even able to unwind and react with stably duplexed DNA. Our findings make a protein-free origin for group II introns plausible by expanding their known catalytic capabilities beyond what would be needed to survive the transition from RNA to DNA genomes. Furthermore, the intron's capacity to react with both single and double-stranded DNA in conjunction with its expanded sequence recognition may represent a promising starting point for the development of protein-free genomic editing tools.
Collapse
Affiliation(s)
- Deni Szokoli
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, Dortmund 44227, Germany
| | - Hannes Mutschler
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, Dortmund 44227, Germany
| |
Collapse
|
2
|
Yin J, Wu S, Yang Y, Wang D, Ma Y, Zhao Y, Sheth S, Huang H, Song B, Chen Z. In Addition to Damaging the Plasma Membrane, Phenolic Monoterpenoid Carvacrol Can Bind to the Minor Groove of DNA of Phytopathogenic Fungi to Potentially Control Tea Leaf Spot Caused by Lasiodiplodia theobromae. PHYTOPATHOLOGY 2024; 114:700-716. [PMID: 37856707 DOI: 10.1094/phyto-07-23-0263-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carvacrol expresses a wide range of biological activities, but the studies of its mechanisms focused on bacteria, mainly involving the destruction of the plasma membrane. In this study, carvacrol exhibited strong activities against several phytopathogenic fungi and demonstrated a novel antifungal mechanism against Lasiodiplodia theobromae. RNA sequencing indicated that many genes of L. theobromae hyphae were predominately induced by carvacrol, particularly those involved in replication and transcription. Hyperchromic, hypsochromic, and bathochromic effects in the UV-visible absorption spectrum were observed following titration of calf thymus DNA (ctDNA) and carvacrol, which indicated the formation of a DNA-carvacrol complex. Circular dichroism (CD) spectroscopy indicated that the response of DNA to carvacrol was similar to that of 4',6-diamidino-2-phenylindole (DAPI) but different from that of ethidium bromide (EB), implying the ionic bonds between carvacrol and ctDNA. Fluorescence spectrum (FS) analysis indicated that carvacrol quenched the fluorescence of double-stranded DNA (dsDNA) more than single-stranded DNA, indicating that carvacrol mainly bound to dsDNA. A displacement assay showed that carvacrol reduced the fluorescence intensity of the DNA-DAPI complex through competition with DAPI, but this did not occur for DNA-EB. The FS assay revealed that carvacrol bound to the AAA sequence on the minor groove of ds-oligonucleotides. The hydroxyl of carvacrol was verified to bind to ctDNA through a comparative test in which structural analogs of carvacrol, including thymol and 4-ethyl-1,2-dimethyl, were analyzed. The current study indicated carvacrol can destruct plasma membranes and bind to the minor groove of DNA, inhibiting fungal proliferation by disturbing the stability of dsDNA.
Collapse
Affiliation(s)
- Jiayu Yin
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shuang Wu
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yongli Yang
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yue Ma
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
| | - Yongtian Zhao
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, Guizhou, China
| | - Sujitraj Sheth
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
| | - Honglin Huang
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuo Chen
- National Key Laboratory of Green Pesticide, Guiyang, Guizhou 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
3
|
Costa M. Group II Introns: Flexibility and Repurposing. Front Mol Biosci 2022; 9:916157. [PMID: 35865004 PMCID: PMC9294222 DOI: 10.3389/fmolb.2022.916157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
|
4
|
Molina-Sánchez MD, García-Rodríguez FM, Andrés-León E, Toro N. Identification of Group II Intron RmInt1 Binding Sites in a Bacterial Genome. Front Mol Biosci 2022; 9:834020. [PMID: 35281263 PMCID: PMC8914252 DOI: 10.3389/fmolb.2022.834020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
RmInt1 is a group II intron encoding a reverse transcriptase protein (IEP) lacking the C-terminal endonuclease domain. RmInt1 is an efficient mobile retroelement that predominantly reverse splices into the transient single-stranded DNA at the template for lagging strand DNA synthesis during host replication, a process facilitated by the interaction of the RmInt1 IEP with DnaN at the replication fork. It has been suggested that group II intron ribonucleoprotein particles bind DNA nonspecifically, and then scan for their correct target site. In this study, we investigated RmInt1 binding sites throughout the Sinorhizobium meliloti genome, by chromatin-immunoprecipitation coupled with next-generation sequencing. We found that RmInt1 binding sites cluster around the bidirectional replication origin of each of the three replicons comprising the S. meliloti genome. Our results provide new evidence linking group II intron mobility to host DNA replication.
Collapse
Affiliation(s)
- María Dolores Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Spanish National Research Council (CSIC), Granada, Spain
| | - Fernando Manuel García-Rodríguez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Spanish National Research Council (CSIC), Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Spanish National Research Council (CSIC), Granada, Spain
- *Correspondence: Nicolás Toro,
| |
Collapse
|
5
|
Monachello D, Lauraine M, Gillot S, Michel F, Costa M. A new RNA-DNA interaction required for integration of group II intron retrotransposons into DNA targets. Nucleic Acids Res 2021; 49:12394-12410. [PMID: 34791436 PMCID: PMC8643678 DOI: 10.1093/nar/gkab1031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Mobile group II introns are site-specific retrotransposable elements abundant in bacterial and organellar genomes. They are composed of a large and highly structured ribozyme and an intron-encoded reverse transcriptase that binds tightly to its intron to yield a ribonucleoprotein (RNP) particle. During the first stage of the mobility pathway, the intron RNA catalyses its own insertion directly into the DNA target site. Recognition of the proper target rests primarily on multiple base-pairing interactions between the intron RNA and the target DNA, while the protein makes contacts with only a few target positions by yet-unidentified mechanisms. Using a combination of comparative sequence analyses and in vivo mobility assays we demonstrate the existence of a new base-pairing interaction named EBS2a–IBS2a between the intron RNA and its DNA target site. This pairing adopts a Watson–Crick geometry and is essential for intron mobility, most probably by driving unwinding of the DNA duplex. Importantly, formation of EBS2a–IBS2a also requires the reverse transcriptase enzyme which stabilizes the pairing in a non-sequence-specific manner. In addition to bringing to light a new structural device that allows subgroup IIB1 and IIB2 introns to invade their targets with high efficiency and specificity our work has important implications for the biotechnological applications of group II introns in bacterial gene targeting.
Collapse
Affiliation(s)
- Dario Monachello
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Lauraine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sandra Gillot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - François Michel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maria Costa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Sui Y, Peng S. A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons. Front Cell Dev Biol 2021; 9:618113. [PMID: 33644055 PMCID: PMC7905054 DOI: 10.3389/fcell.2021.618113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, more and more evidence has emerged showing that changes in copy number variations (CNVs) correlated with the transcriptional level can be found during evolution, embryonic development, and oncogenesis. However, the underlying mechanisms remain largely unknown. The success of the induced pluripotent stem cell suggests that genome changes could bring about transformations in protein expression and cell status; conversely, genome alterations generated during embryonic development and senescence might also be the result of genome changes. With rapid developments in science and technology, evidence of changes in the genome affected by transcriptional level has gradually been revealed, and a rational and concrete explanation is needed. Given the preference of the HIV-1 genome to insert into transposons of genes with high transcriptional levels, we propose a mechanism based on retrotransposons facilitated by specific pre-mRNA splicing style and homologous recombination (HR) to explain changes in CNVs in the genome. This mechanism is similar to that of the group II intron that originated much earlier. Under this proposed mechanism, CNVs on genome are dynamically and spontaneously extended in a manner that is positively correlated with transcriptional level or contract as the cell divides during evolution, embryonic development, senescence, and oncogenesis, propelling alterations in them. Besides, this mechanism explains several critical puzzles in these processes. From evidence collected to date, it can be deduced that the message contained in genome is not just three-dimensional but will become four-dimensional, carrying more genetic information.
Collapse
Affiliation(s)
- Yunpeng Sui
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | | |
Collapse
|
7
|
Velázquez E, Lorenzo VD, Al-Ramahi Y. Recombination-Independent Genome Editing through CRISPR/Cas9-Enhanced TargeTron Delivery. ACS Synth Biol 2019; 8:2186-2193. [PMID: 31419111 DOI: 10.1021/acssynbio.9b00293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group II introns were developed some time ago as tools for the construction of knockout mutants in a wide range of organisms, ranging from Gram-positive and Gram-negative bacteria to human cells. Utilizing these introns is advantageous because they are independent of the host's DNA recombination machinery, they can carry heterologous sequences (and thus be used as vehicles for gene delivery), and they can be easily retargeted for subsequent insertions of additional genes at the user's will. Alas, the use of this platform has been limited, as insertion efficiencies greatly change depending on the target sites and cannot be predicted a priori. Moreover, the ability of introns to perform their own splicing and integration is compromised when they carry foreign sequences. To overcome these limitations, we merged the group II intron-based TargeTron system with CRISPR/Cas9 counterselection. To this end, we first engineered a new group-II intron by replacing the retrotransposition-activated selectable marker (RAM) with ura3 and retargeting it to a new site in the lacZ gene of E. coli. Then, we showed that directing CRISPR/Cas9 toward the wild-type sequences dramatically increased the chances of finding clones that integrated the retrointron into the target lacZ sequence. The CRISPR-Cas9 counterselection strategy presented herein thus overcomes a major limitation that has prevented the use of group II introns as devices for gene delivery and genome editing at large in a recombination-independent fashion.
Collapse
Affiliation(s)
- Elena Velázquez
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Yamal Al-Ramahi
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
8
|
Wen Z, Lu M, Ledesma-Amaro R, Li Q, Jin M, Yang S. TargeTron Technology Applicable in Solventogenic Clostridia: Revisiting 12 Years' Advances. Biotechnol J 2019; 15:e1900284. [PMID: 31475782 DOI: 10.1002/biot.201900284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/20/2019] [Indexed: 12/11/2022]
Abstract
Clostridium has great potential in industrial application and medical research. But low DNA repair capacity and plasmids transformation efficiency severely delay development and application of genetic tools based on homologous recombination (HR). TargeTron is a gene editing technique dependent on the mobility of group II introns, rather than homologous recombination, which makes it very suitable for gene disruption of Clostridium. The application of TargeTron technology in solventogenic Clostridium is academically reported in 2007 and this tool has been introduced in various clostridia as it is easy to operate, time saving, and reliable. TargeTron has made great progress in solventogenic Clostridium in the aspects of acetone-butanol-ethanol (ABE) fermentation pathway modification, important functional genes identification, and xylose metabolic pathway analysis and reconstruction. In the review, 12 years' advances of TargeTron technology applicable in solventogenic Clostridium, including its principle, technical characteristics, application, and efforts to expand its capabilities, or to avoid potential drawbacks, are revisisted. Some other technologies as putative competitors or collaborators are also discussed. It is believed that TargeTron combined with CRISPR/Cas-assisted gene/base editing and gene-expression regulation system will make a better future for clostridial genetic modification.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | | | - Qi Li
- College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, 610101, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Zhejiang, 313000, China
| |
Collapse
|
9
|
Molina-Sánchez MD, Toro N. DNA cleavage and reverse splicing of ribonucleoprotein particles reconstituted in vitro with linear RmInt1 RNA. RNA Biol 2019; 16:930-939. [PMID: 30943851 DOI: 10.1080/15476286.2019.1601379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The RmInt1 group II intron is an efficient self-splicing mobile retroelement that catalyzes its own excision as lariat, linear and circular molecules. In vivo, the RmInt1 lariat and the reverse transcriptase (IEP) it encodes form a ribonucleoprotein particle (RNP) that recognizes the DNA target for site-specific full intron insertion via a two-step reverse splicing reaction. RNPs containing linear group II intron RNA are generally thought to be unable to complete the reverse splicing reaction. Here, we show that reconstituted in vitro RNPs containing linear RmInt1 ΔORF RNA can mediate the cleavage of single-stranded DNA substrates in a very precise manner with the attachment of the intron RNA to the 3´exon as the first step of a reverse splicing reaction. Notably, we also observe molecules in which the 5´exon is linked to the RmInt1 RNA, suggesting the completion of the reverse splicing reaction, albeit rather low and inefficiently. That process depends on DNA target recognition and can be successful completed by RmInt1 RNPs with linear RNA displaying 5´ modifications.
Collapse
Affiliation(s)
- María Dolores Molina-Sánchez
- a Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems , Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| | - Nicolás Toro
- a Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Department of Soil Microbiology and Symbiotic Systems , Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| |
Collapse
|
10
|
Belfort M, Lambowitz AM. Group II Intron RNPs and Reverse Transcriptases: From Retroelements to Research Tools. Cold Spring Harb Perspect Biol 2019; 11:11/4/a032375. [PMID: 30936187 DOI: 10.1101/cshperspect.a032375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Group II introns, self-splicing retrotransposons, serve as both targets of investigation into their structure, splicing, and retromobility and a source of tools for genome editing and RNA analysis. Here, we describe the first cryo-electron microscopy (cryo-EM) structure determination, at 3.8-4.5 Å, of a group II intron ribozyme complexed with its encoded protein, containing a reverse transcriptase (RT), required for RNA splicing and retromobility. We also describe a method called RIG-seq using a retrotransposon indicator gene for high-throughput integration profiling of group II introns and other retrotransposons. Targetrons, RNA-guided gene targeting agents widely used for bacterial genome engineering, are described next. Finally, we detail thermostable group II intron RTs, which synthesize cDNAs with high accuracy and processivity, for use in various RNA-seq applications and relate their properties to a 3.0-Å crystal structure of the protein poised for reverse transcription. Biological insights from these group II intron revelations are discussed.
Collapse
Affiliation(s)
- Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, State University of New York, Albany, New York 12222
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
11
|
Mohr G, Kang SYS, Park SK, Qin Y, Grohman J, Yao J, Stamos JL, Lambowitz AM. A Highly Proliferative Group IIC Intron from Geobacillus stearothermophilus Reveals New Features of Group II Intron Mobility and Splicing. J Mol Biol 2018; 430:2760-2783. [PMID: 29913158 DOI: 10.1016/j.jmb.2018.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/01/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022]
Abstract
The thermostable Geobacillus stearothermophilus GsI-IIC intron is among the few bacterial group II introns found to proliferate to high copy number in its host genome. Here, we developed a bacterial genetic assay for retrohoming and biochemical assays for protein-dependent and self-splicing of GsI-IIC. We found that GsI-IIC, like other group IIC introns, retrohomes into sites having a 5'-exon DNA hairpin, typically from a bacterial transcription terminator, followed by short intron-binding sequences (IBSs) recognized by base pairing of exon-binding sequences (EBSs) in the intron RNA. Intron RNA insertion occurs preferentially but not exclusively into the parental lagging strand at DNA replication forks, using a nascent lagging strand DNA as a primer for reverse transcription. In vivo mobility assays, selections, and mutagenesis indicated that a variety of GC-rich DNA hairpins of 7-19 bp with continuous base pairs or internal elbow regions support efficient intron mobility and identified a critically recognized nucleotide (T-5) between the hairpin and IBS1, a feature not reported previously for group IIC introns. Neither the hairpin nor T-5 is required for intron excision or lariat formation during RNA splicing, but the 5'-exon sequence can affect the efficiency of exon ligation. Structural modeling suggests that the 5'-exon DNA hairpin and T-5 bind to the thumb and DNA-binding domains of GsI-IIC reverse transcriptase. This mode of DNA target site recognition enables the intron to proliferate to high copy number by recognizing numerous transcription terminators and then finding the best match for the EBS/IBS interactions within a short distance downstream.
Collapse
Affiliation(s)
- Georg Mohr
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Sean Yoon-Seo Kang
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Seung Kuk Park
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jacob Grohman
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer L Stamos
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
12
|
DciA is an ancestral replicative helicase operator essential for bacterial replication initiation. Nat Commun 2016; 7:13271. [PMID: 27830752 PMCID: PMC5109545 DOI: 10.1038/ncomms13271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Delivery of the replicative helicase onto DNA is an essential step in the initiation of replication. In bacteria, DnaC (in Escherichia coli) and DnaI (in Bacillus subtilis) are representative of the two known mechanisms that assist the replicative helicase at this stage. Here, we establish that these two strategies cannot be regarded as prototypical of the bacterial domain since dnaC and dnaI (dna[CI]) are present in only a few bacterial phyla. We show that dna[CI] was domesticated at least seven times through evolution in bacteria and at the expense of one gene, which we rename dciA (dna[CI] antecedent), suggesting that DciA and Dna[CI] share a common function. We validate this hypothesis by establishing in Pseudomonas aeruginosa that DciA possesses the attributes of the replicative helicase-operating proteins associated with replication initiation. DNA replication requires the loading of the replicative helicase onto the DNA molecule; in bacteria this was believed to be solely accomplished by DnaC and DnaI. Here the authors identify DciA as an ancestral and still widely distributed replicative helicase loader.
Collapse
|
13
|
Molina-Sánchez MD, García-Rodríguez FM, Toro N. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles. Front Mol Biosci 2016; 3:58. [PMID: 27730127 PMCID: PMC5037169 DOI: 10.3389/fmolb.2016.00058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 01/22/2023] Open
Abstract
The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3' end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.
Collapse
Affiliation(s)
- Maria D Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Fernando M García-Rodríguez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
14
|
Qu G, Kaushal PS, Wang J, Shigematsu H, Piazza CL, Agrawal RK, Belfort M, Wang HW. Structure of a group II intron in complex with its reverse transcriptase. Nat Struct Mol Biol 2016; 23:549-57. [PMID: 27136327 PMCID: PMC4899178 DOI: 10.1038/nsmb.3220] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.
Collapse
Affiliation(s)
- Guosheng Qu
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, USA
| | - Prem Singh Kaushal
- Laboratory of Cellular and Molecular Basis of Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hideki Shigematsu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Carol Lyn Piazza
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, USA
| | - Rajendra Kumar Agrawal
- Laboratory of Cellular and Molecular Basis of Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Abstract
This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.
Collapse
|
16
|
Weninger A, Killinger M, Vogl T. Key Methods for Synthetic Biology: Genome Engineering and DNA Assembly. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
17
|
Richter S, Schwarz F, Hering L, Böggemann M, Bleidorn C. The Utility of Genome Skimming for Phylogenomic Analyses as Demonstrated for Glycerid Relationships (Annelida, Glyceridae). Genome Biol Evol 2015; 7:3443-62. [PMID: 26590213 PMCID: PMC4700955 DOI: 10.1093/gbe/evv224] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glyceridae (Annelida) are a group of venomous annelids distributed worldwide from intertidal to abyssal depths. To trace the evolutionary history and complexity of glycerid venom cocktails, a solid backbone phylogeny of this group is essential. We therefore aimed to reconstruct the phylogenetic relationships of these annelids using Illumina sequencing technology. We constructed whole-genome shotgun libraries for 19 glycerid specimens and 1 outgroup species (Glycinde armigera). The chosen target genes comprise 13 mitochondrial proteins, 2 ribosomal mitochondrial genes, and 4 nuclear loci (18SrRNA, 28SrRNA, ITS1, and ITS2). Based on partitioned maximum likelihood as well as Bayesian analyses of the resulting supermatrix, we were finally able to resolve a robust glycerid phylogeny and identified three clades comprising the majority of taxa. Furthermore, we detected group II introns inside the cox1 gene of two analyzed glycerid specimens, with two different insertions in one of these species. Moreover, we generated reduced data sets comprising 10 million, 4 million, and 1 million reads from the original data sets to test the influence of the sequencing depth on assembling complete mitochondrial genomes from low coverage genome data. We estimated the coverage of mitochondrial genome sequences in each data set size by mapping the filtered Illumina reads against the respective mitochondrial contigs. By comparing the contig coverage calculated in all data set sizes, we got a hint for the scalability of our genome skimming approach. This allows estimating more precisely the number of reads that are at least necessary to reconstruct complete mitochondrial genomes in Glyceridae and probably non-model organisms in general.
Collapse
Affiliation(s)
- Sandy Richter
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany
| | - Francine Schwarz
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany
| | - Lars Hering
- Animal Evolution & Development, Institute of Biology, University of Leipzig, Germany Department of Zoology, Institute of Biology, University of Kassel, Germany
| | | | - Christoph Bleidorn
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Truong DM, Hewitt FC, Hanson JH, Cui X, Lambowitz AM. Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation. PLoS Genet 2015; 11:e1005422. [PMID: 26241656 PMCID: PMC4524724 DOI: 10.1371/journal.pgen.1005422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/05/2015] [Indexed: 12/22/2022] Open
Abstract
Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed “retrohoming”. Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the evolution of introns and gene expression mechanisms. Mobile group II introns are bacterial retrotransposons that are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase, which together promote intron mobility to new DNA sites by a mechanism called retrohoming. Although found in bacteria, archaea and eukaryotic organelles, group II introns are absent from eukaryotic nuclear genomes, where host defenses impede their expression and lower intracellular Mg2+ concentrations limit their ribozyme activity. Here, we developed a mobile group II intron expression system that bypasses expression barriers and show that simply adding Mg2+ to culture medium enables group II intron retrohoming into plasmid and chromosomal target sites in human cells at appreciable frequencies. Genetic selections and deep sequencing identified intron RNA mutations that moderately enhance retrohoming in human cells, but not without added Mg2+. Thus, low Mg2+ concentrations in human cells are a natural barrier to efficient retrohoming that is not readily overcome by mutational variation and selection. Our results have implications for group II intron use for gene targeting in higher organisms and highlight the impact of different intracellular environments on intron evolution and gene expression mechanisms in bacteria and eukarya.
Collapse
Affiliation(s)
- David M. Truong
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - F. Curtis Hewitt
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Joseph H. Hanson
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Xiaoxia Cui
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Present in the genomes of bacteria and eukaryotic organelles, group II introns are an ancient class of ribozymes and retroelements that are believed to have been the ancestors of nuclear pre-mRNA introns. Despite long-standing speculation, there is limited understanding about the actual pathway by which group II introns evolved into eukaryotic introns. In this review, we focus on the evolution of group II introns themselves. We describe the different forms of group II introns known to exist in nature and then address how these forms may have evolved to give rise to spliceosomal introns and other genetic elements. Finally, we summarize the structural and biochemical parallels between group II introns and the spliceosome, including recent data that strongly support their hypothesized evolutionary relationship.
Collapse
Affiliation(s)
- Steven Zimmerly
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4 Canada
| | - Cameron Semper
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4 Canada
| |
Collapse
|
20
|
Fricker AD, Peters JE. Vulnerabilities on the lagging-strand template: opportunities for mobile elements. Annu Rev Genet 2014; 48:167-86. [PMID: 25195506 DOI: 10.1146/annurev-genet-120213-092046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mobile genetic elements have the ability to move between positions in a genome. Some of these elements are capable of targeting one of the template strands during DNA replication. Examples found in bacteria include (a) Red recombination mediated by bacteriophage λ, (b) integration of group II mobile introns that reverse splice and reverse transcribe into DNA, (c) HUH endonuclease elements that move as single-stranded DNA, and (d) Tn7, a DNA cut-and-paste transposon that uses a target-site-selecting protein to target transposition into certain forms of DNA replication. In all of these examples, the lagging-strand template appears to be targeted using a variety of features specific to this strand. These features appear especially available in certain situations, such as when replication forks stall or collapse. In this review, we address the idea that features specific to the lagging-strand template represent vulnerabilities that are capitalized on by mobile genetic elements.
Collapse
Affiliation(s)
- Ashwana D Fricker
- Department of Microbiology, Cornell University, Ithaca, New York 14853;
| | | |
Collapse
|
21
|
García-Rodríguez FM, Hernández-Gutiérrez T, Díaz-Prado V, Toro N. Use of the computer-retargeted group II intron RmInt1 of Sinorhizobium meliloti for gene targeting. RNA Biol 2014; 11:391-401. [PMID: 24646865 PMCID: PMC4075523 DOI: 10.4161/rna.28373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gene-targeting vectors derived from mobile group II introns capable of forming a ribonucleoprotein (RNP) complex containing excised intron lariat RNA and an intron-encoded protein (IEP) with reverse transcriptase (RT), maturase, and endonuclease (En) activities have been described. RmInt1 is an efficient mobile group II intron with an IEP lacking the En domain. We performed a comprehensive study of the rules governing RmInt1 target site recognition based on selection experiments with donor and recipient plasmid libraries, with randomization of the elements of the intron RNA involved in target recognition and the wild-type target site. The data obtained were used to develop a computer algorithm for identifying potential RmInt1 targets in any DNA sequence. Using this algorithm, we modified RmInt1 for the efficient recognition of DNA target sites at different locations in the Sinorhizobium meliloti chromosome. The retargeted RmInt1 integrated efficiently into the chromosome, regardless of the location of the target gene. Our results suggest that RmInt1 could be efficiently adapted for gene targeting.
Collapse
Affiliation(s)
- Fernando M García-Rodríguez
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Teresa Hernández-Gutiérrez
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Vanessa Díaz-Prado
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| |
Collapse
|
22
|
Enyeart PJ, Mohr G, Ellington AD, Lambowitz AM. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mob DNA 2014; 5:2. [PMID: 24410776 PMCID: PMC3898094 DOI: 10.1186/1759-8753-5-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Mobile group II introns are bacterial retrotransposons that combine the activities of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase to insert site-specifically into DNA. They recognize DNA target sites largely by base pairing of sequences within the intron RNA and achieve high DNA target specificity by using the ribozyme active site to couple correct base pairing to RNA-catalyzed intron integration. Algorithms have been developed to program the DNA target site specificity of several mobile group II introns, allowing them to be made into ‘targetrons.’ Targetrons function for gene targeting in a wide variety of bacteria and typically integrate at efficiencies high enough to be screened easily by colony PCR, without the need for selectable markers. Targetrons have found wide application in microbiological research, enabling gene targeting and genetic engineering of bacteria that had been intractable to other methods. Recently, a thermostable targetron has been developed for use in bacterial thermophiles, and new methods have been developed for using targetrons to position recombinase recognition sites, enabling large-scale genome-editing operations, such as deletions, inversions, insertions, and ‘cut-and-pastes’ (that is, translocation of large DNA segments), in a wide range of bacteria at high efficiency. Using targetrons in eukaryotes presents challenges due to the difficulties of nuclear localization and sub-optimal magnesium concentrations, although supplementation with magnesium can increase integration efficiency, and directed evolution is being employed to overcome these barriers. Finally, spurred by new methods for expressing group II intron reverse transcriptases that yield large amounts of highly active protein, thermostable group II intron reverse transcriptases from bacterial thermophiles are being used as research tools for a variety of applications, including qRT-PCR and next-generation RNA sequencing (RNA-seq). The high processivity and fidelity of group II intron reverse transcriptases along with their novel template-switching activity, which can directly link RNA-seq adaptor sequences to cDNAs during reverse transcription, open new approaches for RNA-seq and the identification and profiling of non-coding RNAs, with potentially wide applications in research and biotechnology.
Collapse
Affiliation(s)
| | | | | | - Alan M Lambowitz
- Departments of Molecular Biosciences and Chemistry, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
23
|
Saldanha RJ, Pemberton A, Shiflett P, Perutka J, Whitt JT, Ellington A, Lambowitz AM, Kramer R, Taylor D, Lamkin TJ. Rapid targeted gene disruption in Bacillus anthracis. BMC Biotechnol 2013; 13:72. [PMID: 24047152 PMCID: PMC3848504 DOI: 10.1186/1472-6750-13-72] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/13/2013] [Indexed: 01/12/2023] Open
Abstract
Background Anthrax is a zoonotic disease recognized to affect herbivores since Biblical times and has the widest range of susceptible host species of any known pathogen. The ease with which the bacterium can be weaponized and its recent deliberate use as an agent of terror, have highlighted the importance of gaining a deeper understanding and effective countermeasures for this important pathogen. High quality sequence data has opened the possibility of systematic dissection of how genes distributed on both the bacterial chromosome and associated plasmids have made it such a successful pathogen. However, low transformation efficiency and relatively few genetic tools for chromosomal manipulation have hampered full interrogation of its genome. Results Group II introns have been developed into an efficient tool for site-specific gene inactivation in several organisms. We have adapted group II intron targeting technology for application in Bacillus anthracis and generated vectors that permit gene inactivation through group II intron insertion. The vectors developed permit screening for the desired insertion through PCR or direct selection of intron insertions using a selection scheme that activates a kanamycin resistance marker upon successful intron insertion. Conclusions The design and vector construction described here provides a useful tool for high throughput experimental interrogation of the Bacillus anthracis genome and will benefit efforts to develop improved vaccines and therapeutics.
Collapse
Affiliation(s)
- Roland J Saldanha
- Air Force Research Laboratory, Air Force Research Laboratory, 711th HPW/RHXBC, Molecular Signatures Section, 2510 Fifth Street, Area B, Bldg 840, Room W220, Wright-Patterson AFB, OH 45433-7913, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mohr G, Hong W, Zhang J, Cui GZ, Yang Y, Cui Q, Liu YJ, Lambowitz AM. A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum. PLoS One 2013; 8:e69032. [PMID: 23874856 PMCID: PMC3706431 DOI: 10.1371/journal.pone.0069032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/03/2013] [Indexed: 01/04/2023] Open
Abstract
Background Targetrons are gene targeting vectors derived from mobile group II introns. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which use their combined activities to achieve highly efficient site-specific DNA integration with readily programmable DNA target specificity. Methodology/Principal Findings Here, we used a mobile group II intron from the thermophilic cyanobacterium Thermosynechococcus elongatus to construct a thermotargetron for gene targeting in thermophiles. After determining its DNA targeting rules by intron mobility assays in Escherichia coli at elevated temperatures, we used this thermotargetron in Clostridium thermocellum, a thermophile employed in biofuels production, to disrupt six different chromosomal genes (cipA, hfat, hyd, ldh, pta, and pyrF). High integration efficiencies (67–100% without selection) were achieved, enabling detection of disruptants by colony PCR screening of a small number of transformants. Because the thermotargetron functions at high temperatures that promote DNA melting, it can recognize DNA target sequences almost entirely by base pairing of the intron RNA with less contribution from the intron-encoded protein than for mesophilic targetrons. This feature increases the number of potential targetron-insertion sites, while only moderately decreasing DNA target specificity. Phenotypic analysis showed that thermotargetron disruption of the genes encoding lactate dehydrogenase (ldh; Clo1313_1160) and phosphotransacetylase (pta; Clo1313_1185) increased ethanol production in C. thermocellum by decreasing carbon flux toward lactate and acetate. Conclusions/Significance Thermotargetron provides a new, rapid method for gene targeting and genetic engineering of C. thermocellum, an industrially important microbe, and should be readily adaptable for gene targeting in other thermophiles.
Collapse
Affiliation(s)
- Georg Mohr
- Section of Molecular Genetics and Microbiology, Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, School of Biological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Wei Hong
- Shandong Provincial Key Laboratory of Energy Genetics, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Gu-zhen Cui
- Shandong Provincial Key Laboratory of Energy Genetics, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People’s Republic of China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment, Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People’s Republic of China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People’s Republic of China
| | - Ya-jun Liu
- Shandong Provincial Key Laboratory of Energy Genetics, and Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People’s Republic of China
- * E-mail: (AL); (YL)
| | - Alan M. Lambowitz
- Section of Molecular Genetics and Microbiology, Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, School of Biological Sciences, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AL); (YL)
| |
Collapse
|
25
|
Zerbato M, Holic N, Moniot-Frin S, Ingrao D, Galy A, Perea J. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities. PLoS One 2013; 8:e58263. [PMID: 23505475 PMCID: PMC3594303 DOI: 10.1371/journal.pone.0058263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/01/2013] [Indexed: 01/13/2023] Open
Abstract
Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.
Collapse
Affiliation(s)
- Madeleine Zerbato
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Nathalie Holic
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Sophie Moniot-Frin
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Dina Ingrao
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Anne Galy
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| | - Javier Perea
- Inserm, U951 Evry, France
- University of Evry Val d’Essonne, UMR S_951, Evry, France
- Genethon, Evry, France
| |
Collapse
|
26
|
Leclercq S, Cordaux R. Selection-driven extinction dynamics for group II introns in Enterobacteriales. PLoS One 2012; 7:e52268. [PMID: 23251705 PMCID: PMC3522654 DOI: 10.1371/journal.pone.0052268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/12/2012] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Some TEs were proposed to evolve under a pattern of periodic extinctions-recolonizations, in which elements recurrently invade and quickly proliferate within their host genomes, then start to disappear until total extinction. Depending on the model, TE extinction is assumed to be driven by purifying selection against colonized host genomes (Sel-DE model) or by saturation of host genomes (Sat-DE model). Bacterial group II introns are suspected to follow an extinction-recolonization model of evolution, but whether they follow Sel-DE or Sat-DE dynamics is not known. Our analysis of almost 200 group II intron copies from 90 sequenced Enterobacteriales genomes confirms their extinction-recolonization dynamics: patchy element distributions among genera and even among strains within genera, acquisition of new group II introns through plasmids or other mobile genetic elements, and evidence for recent proliferations in some genomes. Distributions of recent and past proliferations and of their respective homing sites further provide strong support for the Sel-DE model, suggesting that group II introns are deleterious to their hosts. Overall, our observations emphasize the critical impact of host properties on TE dynamics.
Collapse
Affiliation(s)
- Sébastien Leclercq
- Université de Poitiers, CNRS UMR 7267 Ecologie et Biologie des Interactions, Poitiers, France
| | - Richard Cordaux
- Université de Poitiers, CNRS UMR 7267 Ecologie et Biologie des Interactions, Poitiers, France
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Lambowitz AM, Zimmerly S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 2011; 3:a003616. [PMID: 20463000 DOI: 10.1101/cshperspect.a003616] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Group II introns are mobile ribozymes that self-splice from precursor RNAs to yield excised intron lariat RNAs, which then invade new genomic DNA sites by reverse splicing. The introns encode a reverse transcriptase that stabilizes the catalytically active RNA structure for forward and reverse splicing, and afterwards converts the integrated intron RNA back into DNA. The characteristics of group II introns suggest that they or their close relatives were evolutionary ancestors of spliceosomal introns, the spliceosome, and retrotransposons in eukaryotes. Further, their ribozyme-based DNA integration mechanism enabled the development of group II introns into gene targeting vectors ("targetrons"), which have the unique feature of readily programmable DNA target specificity.
Collapse
Affiliation(s)
- Alan M Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
29
|
Use of RmInt1, a group IIB intron lacking the intron-encoded protein endonuclease domain, in gene targeting. Appl Environ Microbiol 2010; 77:854-61. [PMID: 21115708 DOI: 10.1128/aem.02319-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The group IIA intron Ll.LtrB from Lactococcus lactis and the group IIB intron EcI5 from Escherichia coli have intron-encoded proteins (IEP) with a DNA-binding domain (D) and an endonuclease domain (En). Both have been successfully retargeted to invade target DNAs other than their wild-type target sites. RmInt1, a subclass IIB3/D intron with an IEP lacking D and En domains, is highly active in retrohoming in its host, Sinorhizobium meliloti. We found that RmInt1 was also mobile in E. coli and that retrohoming in this heterologous host depended on temperature, being more efficient at 28°C than at 37°C. Furthermore, we programmed RmInt1 to recognize target sites other than its wild-type site. These retargeted introns efficiently and specifically retrohome into a recipient plasmid target site or a target site present as a single copy in the chromosome, generating a mutation in the targeted gene. Our results extend the range of group II introns available for gene targeting.
Collapse
|
30
|
Mohr G, Ghanem E, Lambowitz AM. Mechanisms used for genomic proliferation by thermophilic group II introns. PLoS Biol 2010; 8:e1000391. [PMID: 20543989 PMCID: PMC2882425 DOI: 10.1371/journal.pbio.1000391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
Studies of mobile group II introns from a thermophilic cyanobacterium reveal how these introns proliferate within genomes and might explain the origin of introns and retroelements in higher organisms. Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting ∼1.3% of the genome. Here, by using a combination of bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions. Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA, with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of thermostable reverse transcriptases. Group II introns are bacterial mobile elements thought to be ancestors of introns and retroelements in higher organisms. They comprise a catalytically active intron RNA and an intron-encoded reverse transcriptase, which promotes splicing of the intron from precursor RNA and integration of the excised intron into new genomic sites. While most bacteria have small numbers of group II introns, in the thermophilic cyanobacterium Thermosynechococcus elongatus, a single intron has proliferated and constitutes 1.3% of the genome. Here, we investigated how the T. elongatus introns proliferated to such high copy numbers. We found divergence of DNA target specificity, evolution of reverse transcriptases that splice and mobilize multiple degenerate introns, and preferential insertion into other mobile introns or insertion elements, which provide new integration sites in non-essential regions of the genome. Further, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on higher temperatures to help promote DNA strand separation, facilitating access to DNA target sites. We speculate how these mechanisms, including elevated temperature, might have contributed to intron proliferation in early eukaryotes. We also identify actively mobile thermophilic introns, which may be useful for structural studies and biotechnological applications.
Collapse
Affiliation(s)
- Georg Mohr
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Eman Ghanem
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Molina-Sánchez MD, Martínez-Abarca F, Toro N. Structural features in the C-terminal region of the Sinorhizobium meliloti RmInt1 group II intron-encoded protein contribute to its maturase and intron DNA-insertion function. FEBS J 2009; 277:244-54. [PMID: 19951359 DOI: 10.1111/j.1742-4658.2009.07478.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group II introns are both catalytic RNAs and mobile retroelements that move through a process catalyzed by a RNP complex consisting of an intron-encoded protein and the spliced intron lariat RNA. Group II intron-encoded proteins are multifunctional and contain an N-terminal reverse transcriptase domain, followed by a putative RNA-binding domain (domain X) associated with RNA splicing or maturase activity and a C-terminal DNA binding/DNA endonuclease region. The intron-encoded protein encoded by the mobile group II intron RmInt1, which lacks the DNA binding/DNA endonuclease region, has only a short C-terminal extension (C-tail) after a typical domain X, apparently unrelated to the C-terminal regions of other group II intron-encoded proteins. Multiple sequence alignments identified features of the C-terminal portion of the RmInt1 intron-encoded protein that are conserved throughout evolution in the bacterial ORF class D, suggesting a group-specific functionally important protein region. The functional importance of these features was demonstrated by analyses of deletions and mutations affecting conserved amino acid residues. We found that the C-tail of the RmInt1 intron-encoded protein contributes to the maturase function of this reverse transcriptase protein. Furthermore, within the C-terminal region, we identified, in a predicted alpha-helical region and downstream, conserved residues that are specifically required for the insertion of the intron into DNA targets in the orientation that would make it possible to use the nascent leading strand as a primer. These findings suggest that these group II intron intron-encoded proteins may have adapted to function in mobility by different mechanisms to make use of either leading or lagging-oriented targets in the absence of an endonuclease domain.
Collapse
Affiliation(s)
- María D Molina-Sánchez
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | |
Collapse
|
32
|
Linear group II intron RNAs can retrohome in eukaryotes and may use nonhomologous end-joining for cDNA ligation. Proc Natl Acad Sci U S A 2009; 106:18189-94. [PMID: 19833873 DOI: 10.1073/pnas.0910277106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mobile group II introns retrohome by an RNP-based mechanism in which the excised intron lariat RNA fully reverse splices into a DNA site via 2 sequential transesterification reactions and is reverse transcribed by the associated intron-encoded protein. However, linear group II intron RNAs, which can arise by either hydrolytic splicing or debranching of lariat RNA, cannot carry out both reverse-splicing steps and were thus expected to be immobile. Here, we used facile microinjection assays in 2 eukaryotic systems, Xenopus laevis oocyte nuclei and Drosophila melanogaster embryos, to show that group II intron RNPs containing linear intron RNA can retrohome by carrying out the first step of reverse splicing into a DNA site, thereby ligating the 3' end of the intron RNA to the 5' end of the downstream exon DNA. The attached linear intron RNA is then reverse transcribed, yielding an intron cDNA whose free end is linked to the upstream exon DNA. Some of these retrohoming events result in the precise insertion of full-length intron. Most, however, yield aberrant 5' junctions with 5' exon resections, 5' intron truncations, and/or extra nucleotide residues, hallmarks of nonhomologous end-joining. Our findings reveal a mobility mechanism for linear group II intron RNAs, show how group II introns can co-opt different DNA repair pathways for retrohoming, and suggest that linear group II intron RNAs might be used for site-specific DNA integration in gene targeting.
Collapse
|
33
|
Léon G, Roy PH. Group IIC intron mobility into attC sites involves a bulged DNA stem-loop motif. RNA (NEW YORK, N.Y.) 2009; 15:1543-1553. [PMID: 19509303 PMCID: PMC2714756 DOI: 10.1261/rna.1649309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
Bacterial group IIC introns are a subclass of group II intron ribozymes that are typically located downstream from transcriptional terminators. Class IIC-attC introns constitute a monophyletic subset of subgroup IIC, which preferentially insert into site-specific recombination sequences for integron integrases (attC). attCs are a diverse family of nucleotide sequences composed of conserved inverted repeats that flank a variable, but palindromic, central region. In this study, we used both PCR and colony patch hybridization methods to determine the basis for recognition of the attC(aadA1) stem-loop motif by the Serratia marcescens intron (S.ma.I2) in vivo. The quantitative results showed that mobility into the wild-type site occurs at a frequency of 18%, and is strongly biased by the orientation of the homing site relative to the direction of DNA replication. S.ma.I2 mobility results into mutant attC(aadA1) sites are consistent with recognition of stem-loop motifs in unwound DNA. The homing frequency results showed that, while the entire attC sequence is not necessary for recognition of the insertion site, short deletions of the attC stem-loop motif inhibited the intron mobility. Moreover, our data show that S.ma.I2 requires a bulged base in the folded attC stem for high homing frequency. We demonstrate that the IBS1/IBS3 motifs and two bulge bases conserved among attCs determine S.ma.I2 homing specificity for the attC bottom strand. These results suggest that class IIC-attC introns tolerate attC variation by recognition of a bulged hairpin DNA motif rather than a specific sequence.
Collapse
Affiliation(s)
- Grégory Léon
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec G1V 4G2, Canada
| | | |
Collapse
|
34
|
Abstract
Integrons are natural expression vectors in which gene cassettes are integrated downstream of a promoter region by a site-specific recombinase. Gene cassettes usually consist of a single gene followed by a recombination site designated attC. A major unanswered question is how a gene becomes associated with an attC site. Here, we investigate the potential role of a specific lineage of group IIC introns, named group IIC-attC, in cassette formation. Group IIC-attC introns preferentially target attC while retaining the ability to target transcriptional terminators. We show using a PCR-based mobility assay with Escherichia coli that the S.ma.I2 intron from the genome of a clinical isolate of Serratia marcescens can target both attC site and putative terminator motifs of resistance genes. Quantitative results showed that S.ma.I2 is more efficient in targeting various attC sequences than three group IIC-attC introns (54 to 64% sequence identity) from the genomes of environmental isolates. We also show that purified group IIC-attC intron-encoded reverse transcriptases have both RNA-dependent and DNA-dependent DNA polymerase activities in vitro. These data permit us to suggest a new model for gene cassette formation, in which a group IIC-attC intron targets separately a transcriptional terminator adjoining a gene and an isolated attC, joins the gene and the attC by homologous recombination, and then splices and reverse transcribes a gene-attC RNA template, leading to the formation of a cassette.
Collapse
|
35
|
Zhuang F, Karberg M, Perutka J, Lambowitz AM. EcI5, a group IIB intron with high retrohoming frequency: DNA target site recognition and use in gene targeting. RNA (NEW YORK, N.Y.) 2009; 15:432-449. [PMID: 19155322 PMCID: PMC2657007 DOI: 10.1261/rna.1378909] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 11/17/2008] [Indexed: 05/27/2023]
Abstract
We find that group II intron EcI5, a subclass CL/IIB1 intron from an Escherichia coli virulence plasmid, is highly active in retrohoming in E. coli. Both full-length EcI5 and an EcI5-DeltaORF intron with the intron-encoded protein expressed separately from the same donor plasmid retrohome into a recipient plasmid target site at substantially higher frequencies than do similarly configured Lactococcus lactis Ll.LtrB introns. A comprehensive view of DNA target site recognition by EcI5 was obtained from selection experiments with donor and recipient plasmid libraries in which different recognition elements were randomized. These experiments suggest that EcI5, like other mobile group II introns, recognizes DNA target sequences by using both the intron-encoded protein and base-pairing of the intron RNA, with the latter involving EBS1, EBS2, and EBS3 sequences characteristic of class IIB introns. The intron-encoded protein appears to recognize a small number of bases flanking those recognized by the intron RNA, but their identity is different than in previously characterized group II introns. A computer algorithm based on the empirically determined DNA recognition rules enabled retargeting of EcI5 to integrate specifically at 10 different sites in the chromosomal lacZ gene at frequencies up to 98% without selection. Our findings provide insight into modes of DNA target site recognition used by mobile group II introns. More generally, they show how the diversity of mobile group II introns can be exploited to provide a large variety of different target specificities and potentially other useful properties for gene targeting.
Collapse
Affiliation(s)
- Fanglei Zhuang
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
36
|
Coros CJ, Piazza CL, Chalamcharla VR, Belfort M. A mutant screen reveals RNase E as a silencer of group II intron retromobility in Escherichia coli. RNA (NEW YORK, N.Y.) 2008; 14:2634-2644. [PMID: 18945808 PMCID: PMC2590951 DOI: 10.1261/rna.1247608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 09/02/2008] [Indexed: 05/27/2023]
Abstract
Group II introns are mobile retroelements that invade their hosts. The Lactococcus lactis group II intron recruits cellular polymerases, nucleases, and DNA ligase to complete the retromobility process in Escherichia coli. Here we describe a genetic screen with a Tn5 transposon library to identify other E. coli functions involved in retromobility of the L. lactis LtrB intron. Thirteen disruptions that reproducibly resulted in increased or decreased retrohoming levels into the E. coli chromosome were isolated. These functions were classified as factors involved in RNA processing, DNA replication, energy metabolism, and global regulation. Here we characterize a novel mutant in the rne promoter region, which regulates RNase E expression. Retrohoming and retrotransposition levels are elevated in the rneTn5 mutant. The stimulatory effect of the mutation on retromobility results from intron RNA accumulation in the RNase E mutant. These results suggest that RNase E, which is the central component of the RNA degradosome, could regulate retrohoming levels in response to cellular physiology.
Collapse
Affiliation(s)
- Colin J Coros
- Center for Medical Sciences, Wadsworth Center, New York State Department of Health, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
37
|
Mastroianni M, Watanabe K, White TB, Zhuang F, Vernon J, Matsuura M, Wallingford J, Lambowitz AM. Group II intron-based gene targeting reactions in eukaryotes. PLoS One 2008; 3:e3121. [PMID: 18769669 PMCID: PMC2518211 DOI: 10.1371/journal.pone.0003121] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 08/11/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mobile group II introns insert site-specifically into DNA target sites by a mechanism termed retrohoming in which the excised intron RNA reverse splices into a DNA strand and is reverse transcribed by the intron-encoded protein. Retrohoming is mediated by a ribonucleoprotein particle that contains the intron-encoded protein and excised intron RNA, with target specificity determined largely by base pairing of the intron RNA to the DNA target sequence. This feature enabled the development of mobile group II introns into bacterial gene targeting vectors ("targetrons") with programmable target specificity. Thus far, however, efficient group II intron-based gene targeting reactions have not been demonstrated in eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS By using a plasmid-based Xenopus laevis oocyte microinjection assay, we show that group II intron RNPs can integrate efficiently into target DNAs in a eukaryotic nucleus, but the reaction is limited by low Mg(2+) concentrations. By supplying additional Mg(2+), site-specific integration occurs in up to 38% of plasmid target sites. The integration products isolated from X. laevis nuclei are sensitive to restriction enzymes specific for double-stranded DNA, indicating second-strand synthesis via host enzymes. We also show that group II intron RNPs containing either lariat or linear intron RNA can introduce a double-strand break into a plasmid target site, thereby stimulating homologous recombination with a co-transformed DNA fragment at frequencies up to 4.8% of target sites. Chromatinization of the target DNA inhibits both types of targeting reactions, presumably by impeding RNP access. However, by using similar RNP microinjection methods, we show efficient Mg(2+)-dependent group II intron integration into plasmid target sites in zebrafish (Danio rerio) embryos and into plasmid and chromosomal target sites in Drosophila melanogster embryos, indicating that DNA replication can mitigate effects of chromatinization. CONCLUSIONS/SIGNIFICANCE Our results provide an experimental foundation for the development of group II intron-based gene targeting methods for higher organisms.
Collapse
Affiliation(s)
- Marta Mastroianni
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Kazuo Watanabe
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Travis B. White
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Fanglei Zhuang
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jamie Vernon
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Manabu Matsuura
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - John Wallingford
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
38
|
Dai L, Chai D, Gu SQ, Gabel J, Noskov SY, Blocker FJH, Lambowitz AM, Zimmerly S. A three-dimensional model of a group II intron RNA and its interaction with the intron-encoded reverse transcriptase. Mol Cell 2008; 30:472-85. [PMID: 18424209 DOI: 10.1016/j.molcel.2008.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 02/19/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
Group II introns are self-splicing ribozymes believed to be the ancestors of spliceosomal introns. Many group II introns encode reverse transcriptases that promote both RNA splicing and intron mobility to new genomic sites. Here we used a circular permutation and crosslinking method to establish 16 intramolecular distance relationships within the mobile Lactococcus lactis Ll.LtrB-DeltaORF intron. Using these new constraints together with 13 established tertiary interactions and eight published crosslinks, we modeled a complete three-dimensional structure of the intron. We also used the circular permutation strategy to map RNA-protein interaction sites through fluorescence quenching and crosslinking assays. Our model provides a comprehensive structural framework for understanding the function of group II ribozymes, their natural structural variations, and the mechanisms by which the intron-encoded protein promotes RNA splicing and intron mobility. The model also suggests an arrangement of active site elements that may be conserved in the spliceosome.
Collapse
Affiliation(s)
- Lixin Dai
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Robart AR, Seo W, Zimmerly S. Insertion of group II intron retroelements after intrinsic transcriptional terminators. Proc Natl Acad Sci U S A 2007; 104:6620-5. [PMID: 17420455 PMCID: PMC1871835 DOI: 10.1073/pnas.0700561104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mobile DNAs use many mechanisms to minimize damage to their hosts. Here we show that a subclass of group II introns avoids host damage by inserting directly after transcriptional terminator motifs in bacterial genomes (stem-loops followed by Ts). This property contrasts with the site-specific behavior of most group II introns, which insert into homing site sequences. Reconstituted ribonucleo protein particles of the Bacillus halodurans intron B.h.I1 are shown to reverse-splice into DNA targets in vitro but require the DNA to be single-stranded and fold into a stem-loop analogous to the RNA structure that forms during transcription termination. Recognition of this DNA stem-loop motif accounts for in vivo target specificity. Insertion after terminators is a previously unrecognized strategy for a selfish DNA because it prevents interruption of coding sequences and restricts expression of the mobile DNA after integration.
Collapse
Affiliation(s)
- Aaron R. Robart
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Wooseok Seo
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Steven Zimmerly
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Sela DA, Rawsthorne H, Mills DA. Characterization of the lactococcal group II intron target site in its native host. Plasmid 2007; 58:127-39. [PMID: 17408740 DOI: 10.1016/j.plasmid.2007.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/19/2022]
Abstract
The Lactococcus lactis group II intron (Ll.ltrB) retrohomes into the ltrB gene at high efficiency. To date, the critical DNA bases recognized in vivo by the Ll.ltrB ribonucleoprotein (RNP) have been exclusively elucidated in Escherichia coli. However, recent evidence indicates host-dependant differences in Ll.ltrB mobility, raising the possibility of limitations of the current model for RNP-homing site recognition in the native L. lactis host. In this work, intron retargeting experiments in L. lactis have demonstrated that adherence to specific target site critical bases is not sufficient to predict success or failure of chromosomal invasion, as in E. coli. Accordingly, a quantitative real-time PCR (QPCR) assay was developed to test target site nucleotides previously demonstrated as critical for homing in E. coli, for relevance in its native host. This two-plasmid QPCR homing assay is highly sensitive and, unlike previous E. coli-based assays, resolves differential homing efficiencies in the absence of selection. As in E. coli, deviation from wild type at target site positions -23, -21, -20, -19, and +5 resulted in lower homing efficiencies in L. lactis. Furthermore, the same trends are observed when assaying select variants in Enterococcus faecalis. Our results suggest that these target site positions are critical in both E. coli and L. lactis.
Collapse
Affiliation(s)
- David A Sela
- University of California at Davis, Department of Viticulture and Enology, One Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
41
|
Abstract
Group II introns are both catalytic RNAs (ribozymes) and mobile retroelements that were discovered almost 14 years ago. It has been suggested that eukaryotic mRNA introns might have originated from the group II introns present in the alphaproteobacterial progenitor of the mitochondria. Bacterial group II introns are of considerable interest not only because of their evolutionary significance, but also because they could potentially be used as tools for genetic manipulation in biotechnology and for gene therapy. This review summarizes what is known about the splicing mechanisms and mobility of bacterial group II introns, and describes the recent development of group II intron-based gene-targetting methods. Bacterial group II intron diversity, evolutionary relationships, and behaviour in bacteria are also discussed.
Collapse
Affiliation(s)
- Nicolás Toro
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| | | | | |
Collapse
|
42
|
Yao J, Lambowitz AM. Gene targeting in gram-negative bacteria by use of a mobile group II intron ("Targetron") expressed from a broad-host-range vector. Appl Environ Microbiol 2007; 73:2735-43. [PMID: 17322321 PMCID: PMC1855620 DOI: 10.1128/aem.02829-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobile group II introns ("targetrons") can be programmed for insertion into virtually any desired DNA target with high frequency and specificity. Here, we show that targetrons expressed via an m-toluic acid-inducible promoter from a broad-host-range vector containing an RK2 minireplicon can be used for efficient gene targeting in a variety of gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. Targetrons expressed from donor plasmids introduced by electroporation or conjugation yielded targeted disruptions at frequencies of 1 to 58% of screened colonies in the E. coli lacZ, P. aeruginosa pqsA and pqsH, and A. tumefaciens aopB and chvI genes. The development of this broad-host-range system for targetron expression should facilitate gene targeting in many bacteria.
Collapse
Affiliation(s)
- Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A4800, 2500 Speedway, Austin, TX 78712, USA
| | | |
Collapse
|
43
|
Noah JW, Park S, Whitt JT, Perutka J, Frey W, Lambowitz AM. Atomic force microscopy reveals DNA bending during group II intron ribonucleoprotein particle integration into double-stranded DNA. Biochemistry 2006; 45:12424-35. [PMID: 17029398 PMCID: PMC2526057 DOI: 10.1021/bi060612h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mobile Lactococcus lactis Ll.LtrB group II intron integrates into DNA target sites by a mechanism in which the intron RNA reverse splices into one DNA strand while the intron-encoded protein uses a C-terminal DNA endonuclease domain to cleave the opposite strand and then uses the cleaved 3' end to prime reverse transcription of the inserted intron RNA. These reactions are mediated by an RNP particle that contains the intron-encoded protein and the excised intron lariat RNA, with both the protein and base pairing of the intron RNA used to recognize DNA target sequences. Here, computational analysis indicates that Escherichia coli DNA target sequences that support Ll.LtrB integration have greater predicted bendability than do random E. coli genomic sequences, and atomic force microscopy shows that target DNA is bent during the reaction with Ll.LtrB RNPs. Time course and mutational analyses show that DNA bending occurs after reverse splicing and requires subsequent interactions between the intron-encoded protein and the 3' exon, which lead to two progressively larger bend angles. Our results suggest a model in which RNPs bend the target DNA by maintaining initial contacts with the 5' exon while engaging in subsequent 3' exon interactions that successively position the scissile phosphate for bottom-strand cleavage at the DNA endonuclease active site and then reposition the 3' end of the cleaved bottom strand to the reverse transcriptase active site for initiation of cDNA synthesis. Our findings indicate that bendability of the DNA target site is a significant factor for Ll.LtrB RNP integration.
Collapse
Affiliation(s)
- James W. Noah
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712−0159 USA
| | - Soyeun Park
- Department of Biomedical Engineering, Texas Materials Institute, and Center for Nano and Molecular Science and Technology, University of Texas at Austin, Austin, Texas 78712−1062 USA
| | - Jacob T. Whitt
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712−0159 USA
| | - Jiri Perutka
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712−0159 USA
| | - Wolfgang Frey
- Department of Biomedical Engineering, Texas Materials Institute, and Center for Nano and Molecular Science and Technology, University of Texas at Austin, Austin, Texas 78712−1062 USA
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712−0159 USA
- To whom correspondence should be addressed: Telephone: (512)-232−3418. Fax: (512)-232−3420. E-mail:
| |
Collapse
|
44
|
Rawsthorne H, Turner KN, Mills DA. Multicopy integration of heterologous genes, using the lactococcal group II intron targeted to bacterial insertion sequences. Appl Environ Microbiol 2006; 72:6088-93. [PMID: 16957233 PMCID: PMC1563669 DOI: 10.1128/aem.02992-05] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group II introns are mobile genetic elements that can be redirected to invade specific genes. Here we describe the use of the lactococcal group II intron, Ll.ltrB, to achieve multicopy delivery of heterologous genes into the genome of Lactococcus lactis IL1403-UCD without the need for selectable markers. Ll.ltrB was retargeted to invade three transposase genes, the tra gene found in IS904 (tra904), tra981, and tra983, of which 9, 10, and 14 copies, respectively, were present in IL1403-UCD. Intron invasion of tra904, tra981, and tra983 allele groups occurred at high frequencies, and individual segregants possessed anywhere from one to nine copies of intron in the respective tra alleles. To achieve multicopy delivery of a heterologous gene, a green fluorescent protein (GFP) marker was cloned into the tra904-targeted Ll.ltrB, and the resultant intron (Ll.ltrB::GFP) was induced to invade the L. lactis tra904 alleles. Segregants possessing Ll.ltrB::GFP in three, four, five, six, seven, and eight copies in different tra904 alleles were obtained. In general, increasing the chromosomal copy number of Ll.ltrB::GFP resulted in strains expressing successively higher levels of GFP. However, strains possessing the same number of Ll.ltrB::GFP copies within different sets of tra904 alleles exhibited differential GFP expression, and segregants possessing seven or eight copies of Ll.ltrB::GFP grew poorly upon induction, suggesting that GFP expression from certain combinations of alleles was detrimental. The highest level of GFP expression was observed from a specific six-copy variant that produced GFP at a level analogous to that obtained with a multicopy plasmid. In addition, the high level of GFP expression was stable for over 120 generations. This work demonstrates that stable multicopy integration of heterologous genes can be readily achieved in bacterial genomes with group II intron delivery by targeting repeated elements.
Collapse
Affiliation(s)
- Helen Rawsthorne
- University of California at Davis, Department of Viticulture and Enology, One Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
45
|
Plante I, Cousineau B. Restriction for gene insertion within the Lactococcus lactis Ll.LtrB group II intron. RNA (NEW YORK, N.Y.) 2006; 12:1980-92. [PMID: 16973892 PMCID: PMC1624911 DOI: 10.1261/rna.193306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Ll.LtrB intron, from the low G+C gram-positive bacterium Lactococcus lactis, was the first bacterial group II intron shown to splice and mobilize in vivo. The detailed retrohoming and retrotransposition pathways of Ll.LtrB were studied in both L. lactis and Escherichia coli. This bacterial retroelement has many features that would make it a good gene delivery vector. Here we report that the mobility efficiency of Ll.LtrB expressing LtrA in trans is only slightly affected by the insertion of fragments <100 nucleotides within the loop region of domain IV. In contrast, Ll.LtrB mobility efficiency is drastically decreased by the insertion of foreign sequences >1 kb. We demonstrate that the inhibitory effect caused by the addition of expression cassettes on Ll.LtrB mobility efficiency is not sequence specific, and not due to the expression, or the toxicity, of the cargo genes. Using genetic screens, we demonstrate that in order to maintain intron mobility, the loop region of domain IV, more specifically domain IVb, is by far the best region to insert foreign sequences within Ll.LtrB. Poisoned primer extension and Northern blot analyses reveal that Ll.LtrB constructs harboring cargo sequences splice less efficiently, and show a significant reduction in lariat accumulation in L. lactis. This suggests that cargo-containing Ll.LtrB variants are less stable. These results reveal the potential, yet limitations, of the Ll.LtrB group II intron to be used as a gene delivery vector, and validate the random insertion approach described in this study to create cargo-containing Ll.LtrB variants that are mobile.
Collapse
Affiliation(s)
- Isabelle Plante
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | | |
Collapse
|
46
|
Beauregard A, Chalamcharla VR, Piazza CL, Belfort M, Coros CJ. Bipolar localization of the group II intron Ll.LtrB is maintained in Escherichia coli deficient in nucleoid condensation, chromosome partitioning and DNA replication. Mol Microbiol 2006; 62:709-22. [PMID: 17005014 DOI: 10.1111/j.1365-2958.2006.05419.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants DeltaoriC, seqA, tus and topoIV (ts). Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell.
Collapse
Affiliation(s)
- Arthur Beauregard
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
47
|
Kim HH, Corina LE, Suh JK, Herrin DL. Expression, purification, and biochemical characterization of the intron-encoded endonuclease, I-CreII. Protein Expr Purif 2005; 44:162-72. [PMID: 16095917 DOI: 10.1016/j.pep.2005.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/17/2005] [Accepted: 05/26/2005] [Indexed: 11/25/2022]
Abstract
The ORF of the Cr.psbA4 intron of Chlamydomonas reinhardtii mediates efficient intron homing, and contains an H-N-H and possibly a GIY-YIG motif. The ORF was over-expressed in Escherichia coli without non-native amino acids, but was mostly insoluble. However, co-over-expression of E. coli chaperonins GroEL/GroES solubilized approximately 50% of the protein, which was purified by ion-exchange and heparin-affinity chromatography. Biochemical characterization showed that the protein is a double-strand-specific endonuclease that cleaves fused psbA exon 4-exon 5 DNA, and was named I-CreII. I-CreII has a relatively relaxed divalent metal ion requirement (Mg(2+), Mn(2+), Ca(2+), and Fe(2+) supported cleavage), is insensitive to salt <350 mM, and is stabilized by DNA. Cleavage of target DNA occurs close (4 nt on the top strand) to the intron-insertion site, and leaves 2-nt 3'-OH overhangs, similar to GIY-YIG endonucleases. The boundaries of the recognition sequence span approximately 30 bp, and encompass the cleavage and intron-insertion sites. Cleavage of heterologous psbA DNAs indicates the enzyme can tolerate multiple, but not all, substitutions in the recognition site. This work will facilitate further study of this novel endonuclease, which may also find use in site-specific manipulation of chloroplast DNA.
Collapse
Affiliation(s)
- Hyong-Ha Kim
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
48
|
Robart AR, Zimmerly S. Group II intron retroelements: function and diversity. Cytogenet Genome Res 2005; 110:589-97. [PMID: 16093712 DOI: 10.1159/000084992] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 12/08/2003] [Indexed: 11/19/2022] Open
Abstract
Group II introns are a class of retroelements capable of carrying out both self-splicing and retromobility reactions. In recent years, the number of known group II introns has increased dramatically, particularly in bacteria, and the new information is altering our understanding of these intriguing elements. Here we review the basic properties of group II introns, and summarize the differences between the organellar and bacterial introns with regard to structures, insertion patterns and inferred behaviors. We also discuss the evolution of group II introns, as they are the putative ancestors of spliceosomal introns and possibly non-LTR retroelements, and may have played an important role in the development of eukaryote genomes.
Collapse
Affiliation(s)
- A R Robart
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
49
|
Zhao J, Lambowitz AM. A bacterial group II intron-encoded reverse transcriptase localizes to cellular poles. Proc Natl Acad Sci U S A 2005; 102:16133-40. [PMID: 16186487 PMCID: PMC1283441 DOI: 10.1073/pnas.0507057102] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Lactococcus lactis Ll.LtrB group II intron encodes a reverse transcriptase (LtrA protein) that binds the intron RNA to promote RNA splicing and intron mobility. Here, we used LtrA-GFP fusions and immunofluorescence microscopy to show that LtrA localizes to cellular poles in Escherichia coli and Lactococcus lactis. This polar localization occurs with or without coexpression of Ll.LtrB intron RNA, is observed over a wide range of cellular growth rates and expression levels, and is independent of replication origin function. The same localization pattern was found for three nonoverlapping LtrA subsegments, possibly reflecting dependence on common redundant signals and/or protein physical properties. When coexpressed in E. coli, LtrA interferes with the polar localization of the Shigella IcsA protein, which mediates polarized actin tail assembly, suggesting competition for a common localization determinant. The polar localization of LtrA could account for the preferential insertion of the Ll.LtrB intron in the origin and terminus regions of the E. coli chromosome, may facilitate access to exposed DNA in these regions, and could potentially link group II intron mobility to the host DNA replication and/or cell division machinery.
Collapse
Affiliation(s)
- Junhua Zhao
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
50
|
Tourasse NJ, Stabell FB, Reiter L, Kolstø AB. Unusual group II introns in bacteria of the Bacillus cereus group. J Bacteriol 2005; 187:5437-51. [PMID: 16030238 PMCID: PMC1196009 DOI: 10.1128/jb.187.15.5437-5451.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combination of sequence and structure analysis and reverse transcriptase PCR experiments was used to characterize the group II introns in the complete genomes of two strains of the pathogen Bacillus cereus. While B. cereus ATCC 14579 harbors a single intron element in the chromosome, B. cereus ATCC 10987 contains three introns in the chromosome and four in its 208-kb pBc10987 plasmid. The most striking finding is the presence in B. cereus ATCC 10987 of an intron [B.c.I2(a)] located on the reverse strand of a gene encoding a putative cell surface protein which appears to be correlated to strains of clinical origin. Because of the opposite orientation of B.c.I2(a), the gene is disrupted. Even more striking is that B.c.I2(a) splices out of an RNA transcript corresponding to the opposite DNA strand. All other intragenic introns studied here are inserted in the same orientation as their host genes and splice out of the mRNA in vivo, setting the flanking exons in frame. Noticeably, B.c.I3 in B. cereus ATCC 10987 represents the first example of a group II intron entirely included within a conserved replication gene, namely, the alpha subunit of DNA polymerase III. Another striking finding is that the observed 3' splice site of B.c.I4 occurs 56 bp after the predicted end of the intron. This apparently unusual splicing mechanism may be related to structural irregularities in the 3' terminus. Finally, we also show that the intergenic introns of B. cereus ATCC 10987 are transcribed with their upstream genes and do splice in vivo.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- School of Pharmacy, University of Oslo, PB 1068 Blindern, 0316 Oslo, Norway
| | | | | | | |
Collapse
|