1
|
Sakhabutdinova AR, Garafutdinov RR. Mechanism of DNA multimerization caused by strand-displacement DNA polymerases. Anal Biochem 2025; 703:115876. [PMID: 40254165 DOI: 10.1016/j.ab.2025.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025]
Abstract
It has been recently shown that for Bst DNA polymerase, the side isothermal amplification reaction named multimerization (MM) proceeds under certain conditions. MM hinders interpretation of amplification results and reduces the accuracy and reliability of DNA/RNA diagnostics. Here, the mechanism of MM caused by strand-displacement DNA polymerases is reported. The mechanism includes the following key stages: 1) envelopment of the enzyme globule by the synthesized DNA strand, facilitated by DNA breathing, 2) convergence of the 3'-ends of the DNA strands and pseudo-cyclic trigger DNA structure formation, 3) synthesis of the products with repeated motifs resulting in their expansion due to DNA slippage. Initiation of MM reaction occurs with extremely low probability, however, the resulting few trigger DNA structures are efficiently amplified and ultimately lead to the accumulation of nonspecific amplicons (multimers). Molecular models with certain steric and thermodynamic characteristics were used to confirm the proposed mechanism. The highest MM efficiency was observed for DNA templates and reaction conditions that facilitated DNA breathing, complete envelopment of the enzyme globule with DNA strands and convergence of their 3'-ends.
Collapse
Affiliation(s)
- Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prosp, Oktyabrya, 71, 450054, Ufa, Bashkortostan, Russia.
| | - Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prosp, Oktyabrya, 71, 450054, Ufa, Bashkortostan, Russia.
| |
Collapse
|
2
|
Vandepoele ACW, Novotna N, Myers D, Marciano MA. Characterizing stutter in single cells and the impact on multi-cell analysis. Forensic Sci Int Genet 2025; 76:103211. [PMID: 39693838 DOI: 10.1016/j.fsigen.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Short tandem repeat analysis is a robust and reliable DNA analysis technique that aids in source identification of a biological sample. However, the interpretation, particularly when DNA mixtures are present at low levels, can be complicated by the presence of PCR artifacts most commonly referred to as stutter. The presence of stutter products can increase the difficulty of interpretation in DNA mixtures as well as low-level DNA samples down to a single cell. Stutter product formation is stochastic in nature and although methods exist that can estimate the magnitude of stutter product formation, it still is not well understood. With the increased sensitivity of forensic DNA analyses, it has become possible to obtain interpretable DNA profiles from as low as 6.6 pg of DNA, or a single human diploid cell. However, this presents an interpretational challenge because the stutter in these low-level DNA samples might stray from the expected patterns observed in high-level DNA samples. Therefore, this project focuses on characterizing stutter in single cell samples to help generate a deeper understanding of stutter and provide a guide for detecting and evaluating stutter in low-level samples. Stutter analysis was performed using data generated from 180 single cells isolated with the DEPArrayTM NxT, amplified using the PowerPlex Fusion 6 C amplification kit at 29 or 30 cycles. Stutter was successfully characterized in single cells and stutter percentages were highly elevated compared to high-level samples where the variance increased as the number of cells being analyzed decreased leading to potential high stutter at low DNA levels. Using empirical and simulated (resampled) data, this study also reinforces historically relevant patterns in stutter product formation and demonstrates the relative differences in stutter in n-1, n-2 and n + 1 stutter product formation in simple, complex and compound repeats.
Collapse
Affiliation(s)
- Amber C W Vandepoele
- Forensic & National Security Sciences Institute, Syracuse University, Syracuse, NY, USA
| | - Natalie Novotna
- Forensic & National Security Sciences Institute, Syracuse University, Syracuse, NY, USA
| | - Dan Myers
- Forensic & National Security Sciences Institute, Syracuse University, Syracuse, NY, USA
| | - Michael A Marciano
- Forensic & National Security Sciences Institute, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Muthahari YA, Magnus L, Laurino P. From duplication to fusion: Expanding Dayhoff's model of protein evolution. Protein Sci 2025; 34:e70054. [PMID: 39969106 PMCID: PMC11837038 DOI: 10.1002/pro.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Dayhoff's hypothesis suggests that complex proteins emerged from simpler peptides or domains, which duplicated and fused to create more complex proteins and novel functions. These processes expanded and diversified the protein repertoire within organisms. Extensive studies and reviews over the past two decades have highlighted the impact of gene duplication on protein evolution. However, the role of fusion in this evolutionary narrative remains less understood. This perspective seeks to address this gap by emphasizing the role of fusion in evolution. Fusion is critical in determining the evolutionary fate of duplicated protomers, either preserving their ancestral function or evolving entirely new functions. It complements mutations, insertions, and deletions as evolutionary steps to enhance protein evolvability by expanding the capacity of the protein to explore new structural and functional space.
Collapse
Affiliation(s)
| | - Lilian Magnus
- Protein Engineering and Evolution UnitOkinawa Institute of Science and TechnologyOkinawaJapan
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and TechnologyOkinawaJapan
- Institute for Protein ResearchOsaka UniversitySuitaJapan
| |
Collapse
|
4
|
Sidstedt M, Gynnå AH, Kiesler KM, Jansson L, Steffen CR, Håkansson J, Johansson G, Österlund T, Bogestål Y, Tillmar A, Rådström P, Ståhlberg A, Vallone PM, Hedman J. Ultrasensitive sequencing of STR markers utilizing unique molecular identifiers and the SiMSen-Seq method. Forensic Sci Int Genet 2024; 71:103047. [PMID: 38598919 DOI: 10.1016/j.fsigen.2024.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Massively parallel sequencing (MPS) is increasingly applied in forensic short tandem repeat (STR) analysis. The presence of stutter artefacts and other PCR or sequencing errors in the MPS-STR data partly limits the detection of low DNA amounts, e.g., in complex mixtures. Unique molecular identifiers (UMIs) have been applied in several scientific fields to reduce noise in sequencing. UMIs consist of a stretch of random nucleotides, a unique barcode for each starting DNA molecule, that is incorporated in the DNA template using either ligation or PCR. The barcode is used to generate consensus reads, thus removing errors. The SiMSen-Seq (Simple, multiplexed, PCR-based barcoding of DNA for sensitive mutation detection using sequencing) method relies on PCR-based introduction of UMIs and includes a sophisticated hairpin design to reduce unspecific primer binding as well as PCR protocol adjustments to further optimize the reaction. In this study, SiMSen-Seq is applied to develop a proof-of-concept seven STR multiplex for MPS library preparation and an associated bioinformatics pipeline. Additionally, machine learning (ML) models were evaluated to further improve UMI allele calling. Overall, the seven STR multiplex resulted in complete detection and concordant alleles for 47 single-source samples at 1 ng input DNA as well as for low-template samples at 62.5 pg input DNA. For twelve challenging mixtures with minor contributions of 10 pg to 150 pg and ratios of 1-15% relative to the major donor, 99.2% of the expected alleles were detected by applying the UMIs in combination with an ML filter. The main impact of UMIs was a substantially lowered number of artefacts as well as reduced stutter ratios, which were generally below 5% of the parental allele. In conclusion, UMI-based STR sequencing opens new means for improved analysis of challenging crime scene samples including complex mixtures.
Collapse
Affiliation(s)
- Maja Sidstedt
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden
| | - Arvid H Gynnå
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden
| | - Kevin M Kiesler
- National Institute of Standards and Technology, 100 Bureau Drive, M/S 8314, Gaithersburg, MD 20899, USA
| | - Linda Jansson
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund SE-221 00, Sweden
| | - Carolyn R Steffen
- National Institute of Standards and Technology, 100 Bureau Drive, M/S 8314, Gaithersburg, MD 20899, USA
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, Box 857, Borås SE-501 15, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405 30, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Gustav Johansson
- SIMSEN Diagnostics, Sahlgrenska Science Park, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, Gothenburg 41390, Sweden; Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41390, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland 41390, Sweden
| | - Yalda Bogestål
- RISE Unit of Biological Function, Division Materials and Production, Box 857, Borås SE-501 15, Sweden
| | - Andreas Tillmar
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping SE-587 58, Sweden
| | - Peter Rådström
- Applied Microbiology, Department of Chemistry, Lund University, Lund SE-221 00, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, Gothenburg 41390, Sweden; Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41390, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland 41390, Sweden
| | - Peter M Vallone
- National Institute of Standards and Technology, 100 Bureau Drive, M/S 8314, Gaithersburg, MD 20899, USA
| | - Johannes Hedman
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund SE-221 00, Sweden.
| |
Collapse
|
5
|
Oscorbin I, Filipenko M. Bst polymerase - a humble relative of Taq polymerase. Comput Struct Biotechnol J 2023; 21:4519-4535. [PMID: 37767105 PMCID: PMC10520511 DOI: 10.1016/j.csbj.2023.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
DNA polymerases are a superfamily of enzymes synthesizing DNA using DNA as a template. They are essential for nucleic acid metabolism and for DNA replication and repair. Modern biotechnology and molecular diagnostics rely heavily on DNA polymerases in analyzing nucleic acids. Among a variety of discovered DNA polymerases, Bst polymerase, a large fragment of DNA polymerase I from Geobacillus stearothermophilus, is one of the most commonly used but is not as well studied as Taq polymerase. The ability of Bst polymerase to displace an upstream DNA strand during synthesis, coupled with its moderate thermal stability, has provided the basis for several isothermal DNA amplification methods, including LAMP, WGA, RCA, and many others. Bst polymerase is one of the key components defining the robustness and analytical characteristics of diagnostic test systems based on isothermal amplification. Here, we present an overview of the biochemical and structural features of Bst polymerase and provide information on its mutated analogs.
Collapse
Affiliation(s)
- Igor Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Lee S, McAnany PK, Chang CW, Norona W, Short ML, Mulero JJ, Zhong C. Developmental validation of Applied Biosystems YFiler Platinum Casework PCR Amplification Kit. Sci Rep 2023; 13:14539. [PMID: 37666878 PMCID: PMC10477233 DOI: 10.1038/s41598-023-41788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
The YFiler Platinum Casework PCR Amplification Kit is a 6-dye multiplex assay that simultaneously amplifies a set of 38 male-specific, Y-chromosome Short Tandem Repeat (YSTR) markers (DYS576, DYS389I, DYS635, DYS389II, DYS627, DYS549, DYS593, DYS645, DYS460, DYS458, DYS19, YGATAH4, DYS448, DYS391, DYS557, DYS522, DYS456, DYS390, DYS438, DYS392, DYS518, DYS444, DYS533, DYS570, DYS437, DYS385, DYS449, DYS643, DYS596, DYS393, DYS439, DYS481, DYF387S1, DYS527, DYS447), three insertion/deletion polymorphic markers (Yindels: rs771783753, rs759551978, rs199815934), and an internal quality control (IQC) system. When compared to the YFiler Platinum PCR Amplification kit for database samples, YFiler Platinum Casework kit was developed to include an improved Primer Mix incorporating a brighter TED dye, an updated internal quality control system, better resolution of large DNA fragments in Applied Biosystems POP-4 Polymer, and reduced female DNA cross-reactivity. Here, we report the results of the developmental validation study which followed the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines and includes data for PCR-based studies, sensitivity, species specificity, stability, precision, reproducibility and repeatability, population concordance, stutter, DNA mixtures, and performance on mock casework samples. The results validate the multiplex design as well as demonstrate the kit's robustness, reliability, and suitability as an assay for human identification with casework DNA samples.
Collapse
Affiliation(s)
- Sumin Lee
- Thermo Fisher Scientific Inc., 6065 Sunol Blvd, Pleasanton, CA, 94566, USA
| | - Peterjon K McAnany
- Thermo Fisher Scientific Inc., 6065 Sunol Blvd, Pleasanton, CA, 94566, USA
| | - Chien Wei Chang
- Thermo Fisher Scientific Inc., 6065 Sunol Blvd, Pleasanton, CA, 94566, USA
| | - Wilma Norona
- Thermo Fisher Scientific Inc., 6065 Sunol Blvd, Pleasanton, CA, 94566, USA
| | - Marc L Short
- Thermo Fisher Scientific Inc., 6065 Sunol Blvd, Pleasanton, CA, 94566, USA
| | - Julio J Mulero
- Thermo Fisher Scientific Inc., 6065 Sunol Blvd, Pleasanton, CA, 94566, USA
| | - Chang Zhong
- Thermo Fisher Scientific Inc., 6065 Sunol Blvd, Pleasanton, CA, 94566, USA.
| |
Collapse
|
7
|
Chai S, Li M, Tao R, Xia R, Kong Q, Qu Y, Chen L, Liu S, Li C, Chen P, Zhang S. Internal validation of an improved system for forensic application: a 41-plex Y-STR panel. Forensic Sci Res 2023; 8:70-78. [PMID: 37415794 PMCID: PMC10265952 DOI: 10.1093/fsr/owad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/22/2023] [Indexed: 07/08/2023] Open
Abstract
Y-chromosome short tandem repeats (Y-STRs) have a unique role in forensic investigation. However, low-medium mutating Y-STRs cannot meet the requirements for male lineage differentiation in inbred populations, whereas rapidly mutating (RM) high-resolution Y-STRs might cause unexpected exclusion of paternal lineages. Thus, combining Y-STRs with low and high mutation rates helps to distinguish male individuals and lineages in family screening and analysis of genetic relationships. In this study, a novel 6-dye, 41-plex Y-STR panel was developed and validated, which included 17 loci from the Yfiler kit, nine RM Y-STR loci, 15 low-medium mutating Y-STR loci, and three Y-InDels. Developmental validation was performed for this panel, including size precision testing, stutter analysis, species specificity analysis, male specificity testing, sensitivity testing, concordance evaluation, polymerase chain reaction inhibitors analysis, and DNA mixture examination. The results demonstrated that the novel 41-plex Y-STR panel, developed in-house, was time efficient, accurate, and reliable. It showed good adaptability to directly amplify a variety of case-type samples. Furthermore, adding multiple Y-STR loci significantly improved the system's ability to distinguish related males, making it highly informative for forensic applications. In addition, the data obtained were compatible with the widely used Y-STR kits, facilitating the search and construction of population databases. Moreover, the addition of Y-Indels with short amplicons improves the analyses of degraded samples. Key Points A novel multiplex comprising 41 Y-STR and 3 Y-InDel was developed for forensic application.The multiplex included rapidly mutating Y-STRs and low-medium mutating Y-STRs, which is compatible with many commonly used Y-STR kits.The multiplex is a powerful tool for distinguishing related males, familial searching, and constructing DNA databases.
Collapse
Affiliation(s)
| | | | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
| | - Ruocheng Xia
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
| | - Qianqian Kong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
- Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yiling Qu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Liqin Chen
- Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shiquan Liu
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, China, Shanghai, China
| | | | | |
Collapse
|
8
|
Fan G, Zhao Q, Wuo NA, Li Q, Mao Z. Developmental validation of a complementary Y-STR system for the amplification of forensic samples. Forensic Sci Int 2023; 346:111667. [PMID: 37003122 DOI: 10.1016/j.forsciint.2023.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
In this study, a new complementary Y-STR system that includes 31 loci was developed (DYS522, DYS388, DYF387S1a/b, DYS510, DYS587, DYS645, DYS531, DYS593, DYS617, GATA_A10, DYS622, DYS552, DYS508, DYS447, DYS527a/b, DYS446, DYS459a/b, DYS444, DYS557, DYS443, DYS626, DYS630, DYS526a, DYF404S1a/b, DYS520, DYS518, and DYS526b). This 31-plex Y-STR system, SureID® Y-comp, is designed for biological samples from forensic casework and reference samples from forensic DNA database. To validate the suitability of this novel kit, many developmental works including size precision testing, sensitivity, male specificity testing, species specificity, PCR inhibitors, stutter precision, reproducibility, suitability for use on DNA mixture and parallel testing of different capillary electrophoresis devices were performed. Mutation rates were investigated using 295 DNA-confirmed father-son pairs. The results demonstrate that the SureID® Y-comp Kit is time-efficient, accurate, and reliable for various case-type samples. It possessed a higher discrimination power and can be a stand-alone kit for male identification. Moreover, the simply acquired additional Y-STR loci will be conductive to construct a robust database. Even if various commercial Y-STR kits are used in distinct forensic laboratories, a wider trans-database retrieval will become feasible with the effort of the SureID® Y-comp Kit.
Collapse
Affiliation(s)
- Guangyao Fan
- Forensic Center, School of Medicine, Shaoxing University, Shaoxing 312000, China.
| | - Qian Zhao
- Shanghai Xuhui District Dahua Hospital, Shanghai 200031, China
| | - Nixon Austin Wuo
- College of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Qinghao Li
- Tongshan District Branch of Xuzhou Public Security Bureau, Xuzhou 221100, China
| | - Zemin Mao
- Ningbo Health Gene Technologies Co. Ltd., Ningbo 315040, China
| |
Collapse
|
9
|
Morato Torres CA, Zafar F, Tsai YC, Vazquez JP, Gallagher MD, McLaughlin I, Hong K, Lai J, Lee J, Chirino-Perez A, Romero-Molina AO, Torres F, Fernandez-Ruiz J, Ashizawa T, Ziegle J, Jiménez Gil FJ, Schüle B. ATTCT and ATTCC repeat expansions in the ATXN10 gene affect disease penetrance of spinocerebellar ataxia type 10. HGG ADVANCES 2022; 3:100137. [PMID: 36092952 PMCID: PMC9460507 DOI: 10.1016/j.xhgg.2022.100137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal-dominant disorder caused by an expanded pentanucleotide repeat in the ATXN10 gene. This repeat expansion, when fully penetrant, has a size of 850-4,500 repeats. It has been shown that the repeat composition can be a modifier of disease, e.g., seizures. Here, we describe a Mexican kindred in which we identified both pure (ATTCT)n and mixed (ATTCT)n-(ATTCC)n expansions in the same family. We used amplification-free targeted sequencing and optical genome mapping to decipher the composition of these repeat expansions. We found a considerable degree of mosaicism of the repeat expansion. This mosaicism was confirmed in skin fibroblasts from individuals with ATXN10 expansions with RNAScope in situ hybridization. All affected family members with the mixed ATXN10 repeat expansion showed typical clinical signs of spinocerebellar ataxia and epilepsy. In contrast, individuals with the pure ATXN10 expansion present with Parkinson's disease or are unaffected, even in individuals more than 20 years older than the average age at onset for SCA10. Our findings suggest that the pure (ATTCT)n expansion is non-pathogenic, while repeat interruptions, e.g., (ATTCC)n, are necessary to cause SCA10. This mechanism has been recently described for several other repeat expansions including SCA31 (BEAN1), SCA37 (DAB1), and three loci for benign adult familial myoclonic epilepsy BAFME (SAMD12, TNRC6A, RAPGEF2). Therefore, long-read sequencing and optical genome mapping of the entire genomic structure of repeat expansions are critical for clinical practice and genetic counseling, as variations in the repeat can affect disease penetrance, symptoms, and disease trajectory.
Collapse
Affiliation(s)
| | - Faria Zafar
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu-Chih Tsai
- Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA
| | | | | | - Ian McLaughlin
- Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA
| | - Karl Hong
- Bionano Genomics, San Diego, CA 92121, USA
| | - Jill Lai
- Bionano Genomics, San Diego, CA 92121, USA
| | - Joyce Lee
- Bionano Genomics, San Diego, CA 92121, USA
| | - Amanda Chirino-Perez
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Angel Omar Romero-Molina
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Francisco Torres
- Southern California Permanente Medical Group, Oxnard, CA 93036, USA
| | - Juan Fernandez-Ruiz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Tetsuo Ashizawa
- Department Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Janet Ziegle
- Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA
| | | | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Liu SC, Feng YL, Sun XN, Chen RD, Liu Q, Xiao JJ, Zhang JN, Huang ZC, Xiang JF, Chen GQ, Yang Y, Lou C, Li HD, Cai Z, Xu SM, Lin H, Xie AY. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing. Genome Biol 2022; 23:165. [PMID: 35915475 PMCID: PMC9341079 DOI: 10.1186/s13059-022-02736-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Due to post-cleavage residence of the Cas9-sgRNA complex at its target, Cas9-induced DNA double-strand breaks (DSBs) have to be exposed to engage DSB repair pathways. Target interaction of Cas9-sgRNA determines its target binding affinity and modulates its post-cleavage target residence duration and exposure of Cas9-induced DSBs. This exposure, via different mechanisms, may initiate variable DNA damage responses, influencing DSB repair pathway choices and contributing to mutational heterogeneity in genome editing. However, this regulation of DSB repair pathway choices is poorly understood. RESULTS In repair of Cas9-induced DSBs, repair pathway choices vary widely at different target sites and classical nonhomologous end joining (c-NHEJ) is not even engaged at some sites. In mouse embryonic stem cells, weakening the target interaction of Cas9-sgRNA promotes bias towards c-NHEJ and increases target dissociation and reduces target residence of Cas9-sgRNAs in vitro. As an important strategy for enhancing homology-directed repair, inactivation of c-NHEJ aggravates off-target activities of Cas9-sgRNA due to its weak interaction with off-target sites. By dislodging Cas9-sgRNA from its cleaved targets, DNA replication alters DSB end configurations and suppresses c-NHEJ in favor of other repair pathways, whereas transcription has little effect on c-NHEJ engagement. Dissociation of Cas9-sgRNA from its cleaved target by DNA replication may generate three-ended DSBs, resulting in palindromic fusion of sister chromatids, a potential source for CRISPR/Cas9-induced on-target chromosomal rearrangements. CONCLUSIONS Target residence of Cas9-sgRNA modulates DSB repair pathway choices likely through varying dissociation of Cas9-sgRNA from cleaved DNA, thus widening on-target and off-target mutational spectra in CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Si-Cheng Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Yi-Li Feng
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xiu-Na Sun
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Ruo-Dan Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Qian Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Jing-Jing Xiao
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Jin-Na Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- The First affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
| | - Zhi-Cheng Huang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Ji-Feng Xiang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, People's Republic of China
| | - Guo-Qiao Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Yi Yang
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Chao Lou
- Shurui Tech Ltd, Hangzhou, Zhejiang, 310005, People's Republic of China
| | - Hao-Dan Li
- Shurui Tech Ltd, Hangzhou, Zhejiang, 310005, People's Republic of China
| | - Zhen Cai
- The First affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
| | - Shi-Ming Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Hui Lin
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
| | - An-Yong Xie
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China.
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China.
| |
Collapse
|
11
|
Karniel U, Adler Berke N, Mann V, Hirschberg J. Perturbations in the Carotenoid Biosynthesis Pathway in Tomato Fruit Reactivate the Leaf-Specific Phytoene Synthase 2. FRONTIERS IN PLANT SCIENCE 2022; 13:844748. [PMID: 35283915 PMCID: PMC8914173 DOI: 10.3389/fpls.2022.844748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of the red carotenoid pigment lycopene in tomato (Solanum lycopersicum) fruit is achieved by increased carotenoid synthesis during ripening. The first committed step that determines the flux in the carotenoid pathway is the synthesis of phytoene catalyzed by phytoene synthase (PSY). Tomato has three PSY genes that are differentially expressed. PSY1 is exclusively expressed in fruits, while PSY2 mostly functions in green tissues. It has been established that PSY1 is mostly responsible for phytoene synthesis in fruits. Although PSY2 is found in the chromoplasts, it is inactive because loss-of-function mutations in PSY1 in the locus yellow flesh (r) eliminate carotenoid biosynthesis in the fruit. Here we demonstrate that specific perturbations of carotenoid biosynthesis downstream to phytoene prior and during the transition from chloroplast to chromoplast cause the recovery of phytoene synthesis in yellow flesh (r) fruits without significant transcriptional changes of PSY1 and PSY2. The recovery of carotenoid biosynthesis was abolished when the expression of PSY2 was silenced, indicating that the perturbations of carotenoid biosynthesis reactivated the chloroplast-specific PSY2 in fruit chromoplasts. Furthermore, it is demonstrated that PSY2 can function in fruit chromoplasts under certain conditions, possibly due to alterations in the plastidial sub-organelle organization that affect its association with the carotenoid biosynthesis metabolon. This finding provides a plausible molecular explanation to the epistasis of the mutation tangerine in the gene carotenoid isomerase over yellow flesh.
Collapse
Affiliation(s)
| | | | | | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Huang Y, Chen X, Li X, Shu P, Wang H, Hou T, Wang Y, Song F, Zhang J. A proof-of-principle study on implementing polymerase chain displacement reaction (PCDR) to improve forensic low-template DNA analysis. Forensic Sci Int Genet 2021; 56:102609. [PMID: 34717077 DOI: 10.1016/j.fsigen.2021.102609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022]
Abstract
Polymerase chain reaction (PCR) plays an important role in forensic DNA analysis. However, the amplification of low-template DNA (LTDNA) samples usually encounters unsatisfactory results for the limited efficiency of PCR, which would interfere with the subsequent profile interpretation. Polymerase chain displacement reaction (PCDR) is a highly-efficient technique characterized by combining PCR and strand displacement reaction into a single PCDR cycle. This study explored the feasibility of PCDR for improving forensic LTDNA analysis. STR markers commonly used in forensic genetics were subjected to PCDR amplification and capillary electrophoresis detection. The results of singleplex reactions indicated that PCDR surpassed original PCR in efficiency for STR amplification. The average peak height of alleles in PCDR profiles was linearly correlated to the number of outer primers adopted for initiating the strand displacement process. Further, we assessed the multiplexing potential of PCDR by incorporating 17 STRs included in the expanded CODIS core loci and Amelogenin gene into a multiplex PCDR system. For pristine DNA templates ranged from 200 pg to 12.5 pg, the multiplex PCDR system consistently exhibited higher allele peak height as well as less allele dropout compared to the multiplex PCR references. Meanwhile, a significant reduction of stutter ratio was extensively observed in PCDR profiles. We also tested mock casework samples to verify the practical ability of multiplex PCDR for LTDNA detection. With DNA input varying from 48.1 pg to 6.6 pg, the multiplex PCDR system consistently obtained more allelic information than multiplex PCR methods. Our data collectively suggested that it is feasible to apply PCDR in forensic LTDNA analysis.
Collapse
Affiliation(s)
- Yuguo Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaogang Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xi Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Panyin Shu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Haoyu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tingyun Hou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuting Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Feng Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Ji Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Farfán N, Sanhueza N, Briones M, Burzio LO, Burzio VA. Antisense noncoding mitochondrial RNA-2 gives rise to miR-4485-3p by Dicer processing in vitro. Biol Res 2021; 54:33. [PMID: 34666824 PMCID: PMC8527801 DOI: 10.1186/s40659-021-00356-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background The antisense noncoding mitochondrial RNAs (ASncmtRNAs) derive from the mitochondrial 16S gene. Knockdown of these transcripts with chemically-modified antisense oligonucleotides induces proliferative arrest, apoptosis and invasiveness reduction in tumor but not normal cells. One of these transcripts, ASncmtRNA-2, contains the complete and identical sequence of hsa-miR-4485-3p and, upon knockdown of this transcript, there is a strong increase in levels of this miRNA, suggesting ASncmtRNA-2 as a source for miR-4485-3p, which is supported by several evidences from our group and others, in the ex vivo setting. Results Here we show that incubation of in vitro-transcribed ASncmtRNA-2 with recombinant Dicer produces RNA fragments corresponding to hsa-miR-4485-3p, showing that Dicer binds to and processes ASncmtRNA-2, strongly supporting the hypothesis that ASncmtRNA-2 acts as a precursor for miR-4485-3p. Conclusion The in vitro results presented here strengthen the hypothesis that miR-4485-3p is derived from ASncmtRNA-2 by Dicer processing. Since miR-4485-3p is classified as a tumor suppressor miRNA, this evidence strengthens the application of ASncmtRNA knockdown for cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00356-0.
Collapse
Affiliation(s)
- Nicole Farfán
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile.,Center for Regenerative Medicine, Faculty of Medicine, Universidad del Desarrollo/Clínica Alemana de Santiago, Santiago, Chile
| | - Nicole Sanhueza
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile.,Center for Integrative Biology, Faculty of Science, Universidad Mayor de Chile, Santiago, Chile
| | - Macarena Briones
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile
| | - Luis O Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile.,Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Verónica A Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile. .,Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
14
|
Developmental validation study of a 32-plex STR direct amplification system for forensic reference samples. Forensic Sci Int 2021; 327:110977. [PMID: 34482283 DOI: 10.1016/j.forsciint.2021.110977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/20/2022]
Abstract
The STRtyper-32G PCR Amplification Kit is a 6-dye multiplex system that combines the 30 autosomal STR loci with an Indel site (YIndel) and the sex-determinant locus Amelogenin. In addition to more loci, Master Mix has been optimized to amplify DNA on different substrates. The autosomal STR loci contained in this novel system meet the compatibility of requirements for databasing. In this study, the developmental validation study of the STRtyper-32G Kit followed the guidelines of SWGDAM (Scientific Working Group on DNA Analysis Methods), including PCR-based studies, species specificity, inhibitors, sensitivity, precision, repeatability, stutter, DNA mixtures, concordance studies, and population genetics studies. The validation results indicate that the new multiplex system is a robust tool for forensic database applications.
Collapse
|
15
|
Glökler J, Lim TS, Ida J, Frohme M. Isothermal amplifications - a comprehensive review on current methods. Crit Rev Biochem Mol Biol 2021; 56:543-586. [PMID: 34263688 DOI: 10.1080/10409238.2021.1937927] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The introduction of nucleic acid amplification techniques has revolutionized the field of medical diagnostics in the last decade. The advent of PCR catalyzed the increasing application of DNA, not just for molecular cloning but also for molecular based diagnostics. Since the introduction of PCR, a deeper understanding of molecular mechanisms and enzymes involved in DNA/RNA replication has spurred the development of novel methods devoid of temperature cycling. Isothermal amplification methods have since been introduced utilizing different mechanisms, enzymes, and conditions. The ease with which isothermal amplification methods have allowed nucleic acid amplification to be carried out has had a profound impact on the way molecular diagnostics are being designed after the turn of the millennium. With all the advantages isothermal amplification brings, the issues or complications surrounding each method are heterogeneous making it difficult to identify the best approach for an end-user. This review pays special attention to the various isothermal amplification methods by classifying them based on the mechanistic characteristics which include reaction formats, amplification information, promoter, strand break, and refolding mechanisms. We would also compare the efficiencies and usefulness of each method while highlighting the potential applications and detection methods involved. This review will serve as an overall outlook on the journey and development of isothermal amplification methods as a whole.
Collapse
Affiliation(s)
- Jörn Glökler
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Jeunice Ida
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Marcus Frohme
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
16
|
An in vivo selection system with tightly regulated gene expression enables directed evolution of highly efficient enzymes. Sci Rep 2021; 11:11669. [PMID: 34083677 PMCID: PMC8175713 DOI: 10.1038/s41598-021-91204-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
In vivo selection systems are powerful tools for directed evolution of enzymes. The selection pressure of the systems can be tuned by regulating the expression levels of the catalysts. In this work, we engineered a selection system for laboratory evolution of highly active enzymes by incorporating a translationally suppressing cis repressor as well as an inducible promoter to impart stringent and tunable selection pressure. We demonstrated the utility of our selection system by performing directed evolution experiments using TEM β-lactamase as the model enzyme. Five evolutionary rounds afforded a highly active variant exhibiting 440-fold improvement in catalytic efficiency. We also showed that, without the cis repressor, the selection system cannot provide sufficient selection pressure required for evolving highly efficient TEM β-lactamase. The selection system should be applicable for the exploration of catalytic perfection of a wide range of enzymes.
Collapse
|
17
|
Liu S, Huckaby AC, Brown AC, Moore CC, Burbulis I, McConnell MJ, Güler JL. Single-cell sequencing of the small and AT-skewed genome of malaria parasites. Genome Med 2021; 13:75. [PMID: 33947449 PMCID: PMC8094492 DOI: 10.1186/s13073-021-00889-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Single-cell genomics is a rapidly advancing field; however, most techniques are designed for mammalian cells. We present a single-cell sequencing pipeline for an intracellular parasite, Plasmodium falciparum, with a small genome of extreme base content. Through optimization of a quasi-linear amplification method, we target the parasite genome over contaminants and generate coverage levels allowing detection of minor genetic variants. This work, as well as efforts that build on these findings, will enable detection of parasite heterogeneity contributing to P. falciparum adaptation. Furthermore, this study provides a framework for optimizing single-cell amplification and variant analysis in challenging genomes.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Adam C Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Audrey C Brown
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher C Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Ian Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Escuela de Medicina, Universidad San Sebastian, Puerto Montt, Chile
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Current address: Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Jennifer L Güler
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
18
|
Brown NK, Merkens H, Rozemuller EH, Bell D, Bui TM, Kearns J. Reduced PCR-generated errors from a hybrid capture-based NGS assay for HLA typing. Hum Immunol 2021; 82:296-301. [PMID: 33676750 DOI: 10.1016/j.humimm.2021.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Next generation sequencing (NGS) assays are state of the art for HLA genotyping. To sequence on an Illumina sequencer, the DNA of interest must be enriched, fragmented, and bookended with known oligonucleotide sequences, a process known as library construction. Many HLA genotyping assays enrich the target loci by long-range PCR (LR-PCR), prior to fragmentation. This PCR step has been reported to introduce errors in the DNA to be sequenced, including inaccurate replication of repeated sequences, and the in vitro recombination of alleles encoded on separate chromosomes. An alternative library construction method involves fragmentation of genomic DNA, followed by hybrid-capture (HC) enrichment of target HLA loci. This HC-based method involves PCR, but with far fewer cycles. Consequently, the HC method had significantly fewer PCR-induced errors, including more faithful replication of repeated sequences, and the near elimination of recombinant sequences. These improvements likely produce more accurate NGS sequencing data of HLA loci.
Collapse
Affiliation(s)
- Nicholas K Brown
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | | | | | - Derrick Bell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thanh-Mai Bui
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jane Kearns
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Technical note: developmental validation of a novel 41-plex Y-STR system for the direct amplification of reference samples. Int J Legal Med 2020; 135:409-419. [PMID: 32524192 DOI: 10.1007/s00414-020-02326-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
The SureID® PathFinder Plus is a new 6-dye, 41-plex Y-STR system that includes the 17 loci from the Yfiler® kit (DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, and Y-GATA-H4) plus 14 rapidly mutating Y-STR loci (DYS449, DYS481, DYS518, DYS527a/b, DYS533, DYS549, DYS570, DYS576, DYS627, DYF387S1a/b, and DYF404S1), and 10 low-medium mutation loci (DYS388, DYS444, DYS447, DYS460, DYS522, DYS557, DYS593, DYS596, DYS643, and DYS645). The inclusion of the 14 rapidly mutating Y-STR loci improves the discrimination of related individuals. Conversely, the 10 low-medium mutation loci are suitable not only for familial searching but also for providing a higher refinement in the construction of Y chromosome phylogenetic relationships among lineages. The 41-plex Y-STR system is designed for direct amplification of reference samples, such as blood samples on an FTA® Card, gauze, tissue, or cotton substrates as well as hair root or buccal samples on swabs. We performed developmental validation work including accuracy, stability, stutter precision, species specificity, sensitivity, PCR inhibitors, reproducibility, parallel testing of the system, and suitability for use on DNA mixtures. In addition, mutations of the loci were analyzed by 754 DNA-confirmed father-son pairs. The results demonstrate that this kit, developed in-house, is time-efficient, accurate, reliable, and highly informative for forensic database, familial searching, and distinguishing related males.
Collapse
|
20
|
Silvery J, Ganschow S, Wiegand P, Tiemann C. Developmental validation of the monSTR identity panel, a forensic STR multiplex assay for massively parallel sequencing. Forensic Sci Int Genet 2020; 46:102236. [PMID: 31986344 DOI: 10.1016/j.fsigen.2020.102236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022]
Abstract
The 21-plex STR panel monSTR was designed for high-fidelity forensic genotyping on the Illumina MiSeq platform. In this study, the panel's performance was validated according to the recommended validation guidelines of the Scientific Working Group for DNA Analysis Methods (SWGDAM). Concordance, repeatability and reproducibility, sensitivity of detection, mixture analysis, species-specificity, and the ability to analyze mock samples were assessed. Sequence data was analyzed using the genotyping software toaSTR. The assay performance was evaluated by measuring the read on-target ratio, the genotype accuracy, the inter-locus balance, the heterozygosity balance, and the signal-to-noise ratio. Results showed that profiles of NIST reference DNA samples as well as GEDNAP proficiency samples were fully concordant with CE-based methods. In addition, inter-run and intra-run variation experiments indicated high precision. Furthermore, full profiles could be obtained using 62.5 pg of DNA input amount with proper inter-locus balance and read on-target ratio; 76.4% of alleles were correctly called with 7.8 pg DNA input amount. It was demonstrated that 94.4% of minor contributor alleles were resolved accurately in a 1:49 mixture. Results suggested that the minor contribution could be precisely calculated based on the minor component allele frequency. Validation results described here demonstrate that the monSTR forensic identity panel is a valid tool for forensic STR genotyping using massively parallel sequencing.
Collapse
Affiliation(s)
- Janine Silvery
- LABCON-OWL Analytik, Forschung und Consulting GmbH, Siemensstraße 40, 32105 Bad Salzuflen, Germany; Institute of Legal Medicine, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Sebastian Ganschow
- LABCON-OWL Analytik, Forschung und Consulting GmbH, Siemensstraße 40, 32105 Bad Salzuflen, Germany
| | - Peter Wiegand
- Institute of Legal Medicine, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Carsten Tiemann
- LABCON-OWL Analytik, Forschung und Consulting GmbH, Siemensstraße 40, 32105 Bad Salzuflen, Germany; Faculty of Engineering and Mathematics, Bielefeld University of Applied Science, Interaktion 1, 33619 Bielefeld, Germany
| |
Collapse
|
21
|
Li M, Zhou W, Zhang Y, Huang L, Wang X, Wu J, Meng M, Wang H, Li C, Bian Y. Development and validation of a novel 29-plex Y-STR typing system for forensic application. Forensic Sci Int Genet 2020; 44:102169. [DOI: 10.1016/j.fsigen.2019.102169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 11/29/2022]
|
22
|
Zhou R, Wang X, Chen W, Zhang J, Cui Y, Chen J, Shi Y, Wang G, Li F, Liu Y. Developmental validation of the EX16+22Y system. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2020. [DOI: 10.4103/jfsm.jfsm_41_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
The Influence of Reaction Conditions on DNA Multimerization During Isothermal Amplification with Bst exo− DNA Polymerase. Appl Biochem Biotechnol 2019; 190:758-771. [DOI: 10.1007/s12010-019-03127-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
|
24
|
Zhong C, Gopinath S, Norona W, Ge J, Lagacé RE, Wang DY, Short ML, Mulero JJ. Developmental validation of the Huaxia™ Platinum PCR amplification kit: A 6-dye multiplex direct amplification assay designed for Chinese reference samples. Forensic Sci Int Genet 2019; 42:190-197. [DOI: 10.1016/j.fsigen.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
25
|
Sheng X, Wang Y, Zhang J, Chen L, Lin Y, Zhao Z, Li C, Zhang S. Forensic investigation of 23 autosomal STRs and application in Han and Mongolia ethnic groups. Forensic Sci Res 2018; 3:138-144. [PMID: 30483662 PMCID: PMC6197138 DOI: 10.1080/20961790.2018.1428782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/12/2018] [Indexed: 12/03/2022] Open
Abstract
A forensic validation study of the Early Access Huaxia™ Platinum Polymerase Chain Reaction (PCR) kit was completed to document the performance capabilities and limitations. The genotyping of DNA samples was consistent across a large range of template DNA concentrations, with complete profiles obtained at 0.125 ng; however, no more than 2 mm × 1.2 mm punches of samples would be recommended for direct amplification. The size precision and accuracy test revealed the genotyping ability; while consistent results were obtained when comparing the kit with other commercially available systems. In addition, the whole PCR amplification can finish within approximately 45 min, making the system suitable for fast-detection. However, only partial profiles may be obtained with challenging samples, including DNA stored on Foam-Tipped Applicators (FTA) cards or some case samples. For the forensic application in ethnic groups, a total of 282 and 229 alleles were obtained in Han and Mongolia, respectively. Since the 23 short tandem repeats were independent from each other, the cumulative power of exclusion in duos was 0.999 999 157 188 and the cumulative power of exclusion in trios was 0.999 999 999 859 in the Han group while the cumulative power of exclusion in duos (CPEduo) was 0.999 998 848 26 and cumulative power of exclusion in trios (CPEtrio) was 0.999 999 999 79 in the Mongolia group. And good internal consistency was found between the two investigated groups and the Sichuan Han, Hui, Tibetan and Uygur according to available reference data.
Collapse
Affiliation(s)
- Xiang Sheng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yali Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jiashuo Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Liqin Chen
- Department of Forensic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yuan Lin
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Zhenmin Zhao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
26
|
Developmental validation of GlobalFiler™ PCR amplification kit: a 6-dye multiplex assay designed for amplification of casework samples. Int J Legal Med 2018. [PMID: 29523969 PMCID: PMC6208722 DOI: 10.1007/s00414-018-1817-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The GlobalFiler™ PCR Amplification Kit is a single multiplex assay that amplifies a set of 24 markers, which encompass the European Standard Set and CODIS (Combined DNA Index System) recommended composite set of loci. In addition to more loci and a 6-dye chemistry format, the Master Mix has been formulated to allow higher sample loading volume for trace DNA samples. The GlobalFiler™ Kit has been optimized to deliver high performance on casework samples, while also delivering fast thermal cycling, with an amplification time of approximately 80 min. Here, we report the results of the developmental validation study which followed the SWGDAM (Scientific Working Group on DNA Analysis Methods) guidelines and includes data for PCR-based studies, sensitivity, species specificity, stability, precision, reproducibility and repeatability, concordance, stutter, DNA mixtures, and performance on mock casework samples. The results validate the multiplex design as well as demonstrate the kit's robustness, reliability, and suitability as an assay for human identification with casework DNA samples.
Collapse
|
27
|
Lobos-González L, Silva V, Araya M, Restovic F, Echenique J, Oliveira-Cruz L, Fitzpatrick C, Briones M, Villegas J, Villota C, Vidaurre S, Borgna V, Socias M, Valenzuela S, Lopez C, Socias T, Varas M, Díaz J, Burzio LO, Burzio VA. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors. Oncotarget 2018; 7:58331-58350. [PMID: 27507060 PMCID: PMC5295434 DOI: 10.18632/oncotarget.11110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023] Open
Abstract
We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.
Collapse
Affiliation(s)
- Lorena Lobos-González
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Verónica Silva
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Mariela Araya
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Franko Restovic
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Present address: Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Echenique
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Christopher Fitzpatrick
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Macarena Briones
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Jaime Villegas
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Claudio Villota
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Soledad Vidaurre
- Andes Biotechnologies SpA, Santiago, Chile.,Facultad de Salud, Deporte y Recreación, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Servicio de Urología, Hospital Barros-Lucco-Trudeau, Santiago, Chile
| | | | | | - Constanza Lopez
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Teresa Socias
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | | | - Jorge Díaz
- Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Luis O Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| |
Collapse
|
28
|
Sadeghipour F, Basiratnia M, Derakhshan A, Fardaei M. Mutation analysis of the CTNS gene in Iranian patients with infantile nephropathic cystinosis: identification of two novel mutations. Hum Genome Var 2017; 4:17038. [PMID: 28983406 PMCID: PMC5628181 DOI: 10.1038/hgv.2017.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 12/02/2022] Open
Abstract
Nephropathic cystinosis is an inherited lysosomal transport disorder caused by mutations in the CTNS gene that encodes for a lysosomal membrane transporter, cystinosin. Dysfunction in this protein leads to cystine accumulation in the cells of different organs. The accumulation of cystine in the kidneys becomes apparent with renal tubular Fanconi syndrome between 6 and 12 months of age and leads to renal failure in the first decade of life. The aim of this study was to analyze the CTNS mutations in 20 Iranian patients, from 20 unrelated families, all of whom were afflicted with infantile nephropathic cystinosis. In these patients, seven different mutant alleles were found, including two new mutations, c.517T>C; p.Y173H and c.492_515del, that have not been previously reported. In addition, we observed that c.681G>A, the common Middle Eastern mutation, was the most common mutation in our patients. Moreover, a new minisatellite or variable number of tandem repeat marker (KX499495) was identified at the CTNS gene. Seven different alleles were found for this marker, and its allele frequency and heterozygosity degree were calculated in cystinosis patients and healthy individuals.
Collapse
Affiliation(s)
- Forough Sadeghipour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Basiratnia
- Department of Pediatric Nephrology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Derakhshan
- Department of Pediatric Nephrology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Gopinath S, Zhong C, Nguyen V, Ge J, Lagacé RE, Short ML, Mulero JJ. Developmental validation of the Yfiler® Plus PCR Amplification Kit: An enhanced Y-STR multiplex for casework and database applications. Forensic Sci Int Genet 2016; 24:164-175. [DOI: 10.1016/j.fsigen.2016.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/23/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022]
|
30
|
Quispe-Tintaya W, Gorbacheva T, Lee M, Makhortov S, Popov VN, Vijg J, Maslov AY. Quantitative detection of low-abundance somatic structural variants in normal cells by high-throughput sequencing. Nat Methods 2016; 13:584-6. [PMID: 27271197 PMCID: PMC4927357 DOI: 10.1038/nmeth.3893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022]
Abstract
The detection and quantification of low-abundance somatic DNA mutations by high throughput sequencing is challenging because of the difficulty in distinguishing errors from true mutations. While there are several approaches available for analyzing somatic point mutations and small indels, an accurate genome-wide assessment of somatic structural variants (somSVs) in bulk DNA is still not possible. Here we present Structural Variant Search (SVS), a method to accurately detect rare somSVs by low-coverage sequencing. We demonstrate direct quantitative assessment of elevated somSV frequencies induced by known clastogenic compounds in human primary cells.
Collapse
Affiliation(s)
| | - Tatyana Gorbacheva
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Genetics, Cytology, and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Moonsook Lee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sergei Makhortov
- Department of Applied and System Software, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology, and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
31
|
Wang DY, Gopinath S, Lagacé RE, Norona W, Hennessy LK, Short ML, Mulero JJ. Developmental validation of the GlobalFiler(®) Express PCR Amplification Kit: A 6-dye multiplex assay for the direct amplification of reference samples. Forensic Sci Int Genet 2015; 19:148-155. [PMID: 26226223 DOI: 10.1016/j.fsigen.2015.07.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 11/26/2022]
Abstract
In order to increase the power of discrimination, reduce the possibility of adventitious matches, and expand global data sharing, the CODIS Core Loci Working Group made a recommendation to expand the CODIS core loci from the "required" 13 loci to 20 plus three additional "highly recommended" loci. The GlobalFiler(®) Express Kit was designed to incorporate all 20 required and 3 highly recommended loci along with a novel male-specific Y insertion/deletion marker. The GlobalFiler(®) Express Kit allows simultaneous amplification of the following loci: D3S1358, vWA, D16S539, CSF1PO, TPOX, Yindel, AMEL, D8S1179, D21S11, D18S51, DYS391, D2S441, D19S433, TH01, FGA, D22S1045, D5S818, D13S317, D7S820, SE33, D10S1248, D1S1656, D12S391, and D2S1338. The kit enables direct amplification from blood and buccal samples stored on paper or swab and the chemistry features an optimized PCR protocol that yields time to results in less than an hour. Developmental validation testing followed SWGDAM guidelines and demonstrated the quality and robustness of the GlobalFiler(®) Express Kit over a number of variables. The validation results demonstrate that the 24-locus multiplex kit is a robust and reliable identification assay as required for forensic DNA typing and databasing.
Collapse
Affiliation(s)
- Dennis Y Wang
- Thermo Fisher Scientific Inc., 180 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| | - Siddhita Gopinath
- Thermo Fisher Scientific Inc., 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Robert E Lagacé
- Thermo Fisher Scientific Inc., 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Wilma Norona
- Thermo Fisher Scientific Inc., 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Lori K Hennessy
- Thermo Fisher Scientific Inc., 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Marc L Short
- Thermo Fisher Scientific Inc., 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Julio J Mulero
- Thermo Fisher Scientific Inc., 180 Oyster Point Blvd., South San Francisco, CA 94080, USA
| |
Collapse
|
32
|
Sun Z, Li W, Xu S, Huang H. The discovery, function and development of the variable number tandem repeats in different Mycobacterium species. Crit Rev Microbiol 2015; 42:738-58. [PMID: 26089025 DOI: 10.3109/1040841x.2015.1022506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The method of genotyping by variable number tandem repeats (VNTRs) facilitates the epidemiological studies of different Mycobacterium species worldwide. Until now, the VNTR method is not fully understood, for example, its discovery, function and classification. The inconsistent nomenclature and terminology of VNTR is especially confusing. In this review, we first describe in detail the VNTRs in Mycobacterium tuberculosis (M. tuberculosis), as this pathogen resulted in more deaths than any other microbial pathogen as well as for which extensive studies of VNTRs were carried out, and then we outline the recent progress of the VNTR-related epidemiological research in several other Mycobacterium species, such as M. abscessus, M. africanum, M. avium, M. bovis, M. canettii, M. caprae, M. intracellulare, M. leprae, M. marinum, M. microti, M. pinnipedii and M. ulcerans from different countries and regions. This article is aimed mainly at the practical notes of VNTR to help the scientists in better understanding and performing this method.
Collapse
Affiliation(s)
- Zhaogang Sun
- a Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Key Laboratory for Drug Resistance Tuberculosis Research , Beijing , China and
| | - Weimin Li
- b Beijing Chest Hospital, National Tuberculosis Clinical Laboratory, Capital Medical University , Beijing , China
| | - Shaofa Xu
- b Beijing Chest Hospital, National Tuberculosis Clinical Laboratory, Capital Medical University , Beijing , China
| | - Hairong Huang
- b Beijing Chest Hospital, National Tuberculosis Clinical Laboratory, Capital Medical University , Beijing , China
| |
Collapse
|
33
|
Koc KN, Stodola JL, Burgers PM, Galletto R. Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5'-flaps. Nucleic Acids Res 2015; 43:4179-90. [PMID: 25813050 PMCID: PMC4417170 DOI: 10.1093/nar/gkv260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 12/22/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3'-5' exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo(-) to carry out strand displacement synthesis and discovered that it is regulated by the 5'-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5'-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5'-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities.
Collapse
Affiliation(s)
- Katrina N Koc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
34
|
Identification, molecular cloning, and analysis of full-length hepatitis C virus transmitted/founder genotypes 1, 3, and 4. mBio 2015; 6:e02518. [PMID: 25714714 PMCID: PMC4358020 DOI: 10.1128/mbio.02518-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by persistent replication of a complex mixture of viruses termed a “quasispecies.” Transmission is generally associated with a stringent population bottleneck characterized by infection by limited numbers of “transmitted/founder” (T/F) viruses. Characterization of T/F genomes of human immunodeficiency virus type 1 (HIV-1) has been integral to studies of transmission, immunopathogenesis, and vaccine development. Here, we describe the identification of complete T/F genomes of HCV by single-genome sequencing of plasma viral RNA from acutely infected subjects. A total of 2,739 single-genome-derived amplicons comprising 10,966,507 bp from 18 acute-phase and 11 chronically infected subjects were analyzed. Acute-phase sequences diversified essentially randomly, except for the poly(U/UC) tract, which was subject to polymerase slippage. Fourteen acute-phase subjects were productively infected by more than one genetically distinct virus, permitting assessment of recombination between replicating genomes. No evidence of recombination was found among 1,589 sequences analyzed. Envelope sequences of T/F genomes lacked transmission signatures that could distinguish them from chronic infection viruses. Among chronically infected subjects, higher nucleotide substitution rates were observed in the poly(U/UC) tract than in envelope hypervariable region 1. Fourteen full-length molecular clones with variable poly(U/UC) sequences corresponding to seven genotype 1a, 1b, 3a, and 4a T/F viruses were generated. Like most unadapted HCV clones, T/F genomes did not replicate efficiently in Huh 7.5 cells, indicating that additional cellular factors or viral adaptations are necessary for in vitro replication. Full-length T/F HCV genomes and their progeny provide unique insights into virus transmission, virus evolution, and virus-host interactions associated with immunopathogenesis. Hepatitis C virus (HCV) infects 2% to 3% of the world’s population and exhibits extraordinary genetic diversity. This diversity is mirrored by HIV-1, where characterization of transmitted/founder (T/F) genomes has been instrumental in studies of virus transmission, immunopathogenesis, and vaccine development. Here, we show that despite major differences in genome organization, replication strategy, and natural history, HCV (like HIV-1) diversifies essentially randomly early in infection, and as a consequence, sequences of actual T/F viruses can be identified. This allowed us to capture by molecular cloning the full-length HCV genomes that are responsible for infecting the first hepatocytes and eliciting the initial immune responses, weeks before these events could be directly analyzed in human subjects. These findings represent an enabling experimental strategy, not only for HCV and HIV-1 research, but also for other RNA viruses of medical importance, including West Nile, chikungunya, dengue, Venezuelan encephalitis, and Ebola viruses.
Collapse
|
35
|
Donpudsa S, Visetnan S, Supungul P, Tang S, Tassanakajon A, Rimphanitchayakit V. Type I and type II crustins from Penaeus monodon, genetic variation and antimicrobial activity of the most abundant crustinPm4. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:95-103. [PMID: 25016236 DOI: 10.1016/j.dci.2014.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
An antimicrobial protein, crustin, is involved in the innate immunity of crustacean by defending the host directly against the microbial pathogens. By data mining the Penaeus monodon EST database, two type I crustins, carcininPm1 and 2, and ten type II crustins, crustinPm1-10, were identified. The abundant crustins were crustinPm1, 4 and 7, each with variation in the length of Gly-rich repeat among its members. A few crustinPm1, 4 and 7 with deletion in the Cys-rich region were also observed. Furthermore, the crustinPm4 with the longest N-terminal Gly-rich region was characterized. The crustinPm4 allelic genes were expressed mainly from the hemocytes. Its expression was up-regulated readily by WSSV infection and gradually decreased to normal level afterwards. The recombinant crustinPm4-1 (rcrustinPm4-1) isoform was produced using the Escherichia coli expression system and tested for its antimicrobial activity. The rcrustinPm4-1 was able to inhibit the growth of a Gram-positive bacterium, Bacillus megaterium but not Bacillus subtilis, Micrococcus luteus and Staphylococcus aureus. It also inhibited the growth of two Gram-negative bacteria, E. coli 363 and Vibrio harveyi 639 at lower potency. The rcrustinPm4-1 affected the WSSV infection because the expression of an intermediate early gene ie1 in WSSV-infected hemocyte cell culture was reduced. It was shown further that the rcrustinPm4-1 could delay by about one and a half days the manifestation of disease by WSSV.
Collapse
Affiliation(s)
- Suchao Donpudsa
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Premruethai Supungul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 10120, Thailand
| | - Sureerat Tang
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 10120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
36
|
Lau CH, Zhu H, Tay JCK, Li Z, Tay FC, Chen C, Tan WK, Du S, Sia VK, Phang RZ, Tang SY, Yang C, Chi Z, Liang CC, Ning E, Wang S. Genetic rearrangements of variable di-residue (RVD)-containing repeat arrays in a baculoviral TALEN system. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14050. [PMID: 26015987 PMCID: PMC4362386 DOI: 10.1038/mtm.2014.50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/17/2014] [Indexed: 01/24/2023]
Abstract
Virus-derived gene transfer vectors have been successfully employed to express the transcription activator-like effector nucleases (TALENs) in mammalian cells. Since the DNA-binding domains of TALENs consist of the variable di-residue (RVD)-containing tandem repeat modules and virus genome with repeated sequences is susceptible to genetic recombination, we investigated several factors that might affect TALEN cleavage efficiency of baculoviral vectors. Using a TALEN system designed to target the AAVS1 locus, we observed increased sequence instability of the TALE repeat arrays when a higher multiplicity of infection (MOI) of recombinant viruses was used to produce the baculoviral vectors. We also detected more deleterious mutations in the TALE DNA-binding domains when both left and right TALEN arms were placed into a single expression cassette as compared to the viruses containing one arm only. The DNA sequence changes in the domains included deletion, addition, substitution, and DNA strand exchange between the left and right TALEN arms. Based on these observations, we have developed a protocol using a low MOI to produce baculoviral vectors expressing TALEN left and right arms separately. Cotransduction of the viruses produced by this optimal protocol provided an improved TALEN cleavage efficiency and enabled effective site-specific transgene integration in human cells.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Haibao Zhu
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Johan Chin-Kang Tay
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Felix Chang Tay
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Can Chen
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Wee-Kiat Tan
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Shouhui Du
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Vic-Ki Sia
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Rui-Zhe Phang
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Shin-Yi Tang
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Chiyun Yang
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Zhixia Chi
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Chieh-Ching Liang
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Er Ning
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore , Singapore, Singapore ; Institute of Bioengineering and Nanotechnology , Singapore, Singapore
| |
Collapse
|
37
|
Castillo-Lizardo M, Henneke G, Viguera E. Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi. Front Microbiol 2014; 5:403. [PMID: 25177316 PMCID: PMC4134008 DOI: 10.3389/fmicb.2014.00403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022] Open
Abstract
Replication slippage or slipped-strand mispairing involves the misalignment of DNA strands during the replication of repeated DNA sequences, and can lead to genetic rearrangements such as microsatellite instability. Here, we show that PolB and PolD replicative DNA polymerases from the archaeal model Pyrococcus abyssi (Pab) slip in vitro during replication of a single-stranded DNA template carrying a hairpin structure and short direct repeats. We find that this occurs in both their wild-type (exo+) and exonuclease deficient (exo-) forms. The slippage behavior of PabPolB and PabPolD, probably due to limited strand displacement activity, resembles that observed for the high fidelity P. furiosus (Pfu) DNA polymerase. The presence of PabPCNA inhibited PabPolB and PabPolD slippage. We propose a model whereby PabPCNA stimulates strand displacement activity and polymerase progression through the hairpin, thus permitting the error-free replication of repetitive sequences.
Collapse
Affiliation(s)
- Melissa Castillo-Lizardo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Malaga Málaga, Spain
| | - Ghislaine Henneke
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Institut Français de Recherche pour l'Exploitation de la Mer, Université de Bretagne Occidentale Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Enrique Viguera
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Malaga Málaga, Spain
| |
Collapse
|
38
|
Vidaurre S, Fitzpatrick C, Burzio VA, Briones M, Villota C, Villegas J, Echenique J, Oliveira-Cruz L, Araya M, Borgna V, Socías T, Lopez C, Avila R, Burzio LO. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. J Biol Chem 2014; 289:27182-27198. [PMID: 25100722 PMCID: PMC4175353 DOI: 10.1074/jbc.m114.558841] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy.
Collapse
Affiliation(s)
- Soledad Vidaurre
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo ÓHiggins, General Gana 1702, Santiago, Chile
| | - Christopher Fitzpatrick
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile.
| | - Macarena Briones
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Claudio Villota
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Jaime Villegas
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Javiera Echenique
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Mariela Araya
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8370134, Chile, and
| | - Teresa Socías
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Constanza Lopez
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Rodolfo Avila
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Luis O Burzio
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile.
| |
Collapse
|
39
|
PCR amplification of repetitive DNA: a limitation to genome editing technologies and many other applications. Sci Rep 2014; 4:5052. [PMID: 24852006 PMCID: PMC4031481 DOI: 10.1038/srep05052] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/06/2014] [Indexed: 11/08/2022] Open
Abstract
Designer transcription-activator like effectors (TALEs) is a promising technology and made it possible to edit genomes with higher specificity. Such specific engineering and gene regulation technologies are also being developed using RNA-binding proteins like PUFs and PPRs. The main feature of TALEs, PUFs and PPRs is their repetitive DNA/RNA-binding domains which have single nucleotide binding specificity. Available kits today allow researchers to assemble these repetitive domains in any combination they desire when generating TALEs for gene targeting and editing. However, PCR amplifications of such repetitive DNAs are highly problematic as these mostly fail, generating undesired artifact products or deletions. Here we describe the molecular mechanisms leading to these artifacts. We tested our models also in plasmid templates containing one copy versus two copies of GFP-coding sequence arranged as either direct or inverted repeats. Some limited solutions in amplifying repetitive DNA regions are described.
Collapse
|
40
|
Abstract
This chapter is intended as a guide on polymerase chain reaction (PCR) primer design (for information on PCR, see General PCR and Explanatory Chapter: Troubleshooting PCR). In the next section, general guidelines will be provided, followed by a discussion on primer design for specific applications. A list of recommended software tools is shown at the end.
Collapse
|
41
|
Reduction of stutter ratios in short tandem repeat loci typing of low copy number DNA samples. Forensic Sci Int Genet 2013; 8:213-8. [PMID: 24315611 DOI: 10.1016/j.fsigen.2013.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/01/2013] [Accepted: 10/08/2013] [Indexed: 11/22/2022]
Abstract
Increased height of stutter peaks is a phenomenon with low copy number (LCN) short tandem repeat (STR) typing that can impact interpretation. An alternative strategy of lowering the annealing/extension temperature (LT) at 56 °C was designed to attempt to decrease the heights of stutter peaks. STR typing results were generated in terms of stutter ratios using LT-PCR conditions and compared with data obtained using standard (STD) PCR conditions. DNA samples ranging from 100 to 25 pg were amplified using reagents contained in the AmpFℓSTR Identifiler PCR Amplification or AmpFℓSTR Identifiler Plus PCR Amplification kits with 32 or 34 PCR cycles. Stutter ratios decreased by an average of 14.7%, 14.9% and 18.1% at 100, 50 and 25 pg of template DNA under LT conditions compared with those of STD conditions in the Identifiler Kit amplified samples. The LT conditions also decreased average stutter ratios by 13.3% compared with those of STD conditions in the Identifiler Plus Kit amplified samples. The overall PCR efficiency obtained with STD and LT conditions with the two STR kits was comparable in terms of the number of detected alleles, peak heights and peak height ratios. These results support the hypothesis that a lower temperature annealing/extension step reduces the likelihood of slippage during PCR by enhancing the stability of the DNA polymerase/template DNA complex or the stability of the generated duplex than the conditions of the standard extension step. This stability in turn would result in lower stutter ratios.
Collapse
|
42
|
Webber MA, Sari I, Hoefel D, Monis PT, King BJ. PCR Slippage Across the ML-2 Microsatellite of theCryptosporidiumMIC1 Locus Enables Development of a PCR Assay Capable of Distinguishing the ZoonoticCryptosporidium parvumFrom Other Human InfectiousCryptosporidiumSpecies. Zoonoses Public Health 2013; 61:324-37. [DOI: 10.1111/zph.12074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 12/01/2022]
Affiliation(s)
- M. A. Webber
- Department of Medical Biotechnology; School of Medicine; Flinders University; Bedford Park SA Australia
| | - I. Sari
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide SA Australia
| | - D. Hoefel
- Australian Water Quality Centre; South Australian Water Corporation; Adelaide SA Australia
| | - P. T. Monis
- Department of Medical Biotechnology; School of Medicine; Flinders University; Bedford Park SA Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide SA Australia
- Australian Water Quality Centre; South Australian Water Corporation; Adelaide SA Australia
| | - B. J. King
- Department of Medical Biotechnology; School of Medicine; Flinders University; Bedford Park SA Australia
- Australian Water Quality Centre; South Australian Water Corporation; Adelaide SA Australia
| |
Collapse
|
43
|
Roos S, Macao B, Fusté JM, Lindberg C, Jemt E, Holme E, Moslemi AR, Oldfors A, Falkenberg M. Subnormal levels of POLγA cause inefficient initiation of light-strand DNA synthesis and lead to mitochondrial DNA deletions and progressive external ophthalmoplegia [corrected]. Hum Mol Genet 2013; 22:2411-22. [PMID: 23446635 DOI: 10.1093/hmg/ddt094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The POLG1 gene encodes the catalytic subunit of mitochondrial DNA (mtDNA) polymerase γ (POLγ). We here describe a sibling pair with adult-onset progressive external ophthalmoplegia, cognitive impairment and mitochondrial myopathy characterized by DNA depletion and multiple mtDNA deletions. The phenotype is due to compound heterozygous POLG1 mutations, T914P and the intron mutation c.3104 + 3A > T. The mutant genes produce POLγ isoforms with heterozygous phenotypes that fail to synthesize longer DNA products in vitro. However, exon skipping in the c.3104 + 3A > T mutant is not complete, and the presence of low levels of wild-type POLγ explains patient survival. To better understand the underlying pathogenic mechanisms, we characterized the effects of POLγ depletion in vitro and found that leading-strand DNA synthesis is relatively undisturbed. In contrast, initiation of lagging-strand DNA synthesis is ineffective at lower POLγ concentrations that uncouples leading strand from lagging-strand DNA synthesis. In vivo, this effect leads to prolonged exposure of the heavy strand in its single-stranded conformation that in turn can cause the mtDNA deletions observed in our patients. Our findings, thus, suggest a molecular mechanism explaining how POLγ mutations can cause mtDNA deletions in vivo.
Collapse
Affiliation(s)
- Sara Roos
- Department of Pathology, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gula Stråket 8, Gothenburg SE-413 45, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Joukhadar R, Jighly A. Microsatellites grant more stable flanking genes. BMC Res Notes 2012; 5:556. [PMID: 23035963 PMCID: PMC3515467 DOI: 10.1186/1756-0500-5-556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022] Open
Abstract
Background Microsatellites, or simple sequence repeats (SSRs), are DNA sequences that include tandem copies of specific sequences no longer than six bases. SSRs are ubiquitous in all genomes and highly mutable. Presentation of the hypothesis Results from previous studies suggest that flanking regions of SSR are exhibit high stability in a wide range of organisms. We hypothesized that the SSRs ability to discard weak DNA polymerases could be responsible for this unusual stability. . When the weak polymerases are being decayed over SSRs, the flanking sequences would have higher opportunity to be replicated by more stable DNA polymerases. We present evidence of the molecular basis of our hypothesis. Testing the hypothesis The hypothesis could be tested by examining the activity of DNA polymerase during and after a number of PCRs. The PCR reactions should be run with the same SSR locus possessing differences in the SSR length. The hypothesis could also be tested by comparing the mutational rate of a transferred gene between two transformations. The first one has a naked T-DNA (transferred DNA), while the second one has the same T-DNA flanked with two SSRs. Implications of the hypothesis In any transformation experiment, flanking the T-DNA fragment with SSR sequences would result in more stably transferred genes. This process would decrease the unpredictable risks that may occur because of the mutational pressure on this foreign segment.
Collapse
|
45
|
Kiritsi D, He Y, Pasmooij AMG, Onder M, Happle R, Jonkman MF, Bruckner-Tuderman L, Has C. Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination. J Clin Invest 2012; 122:1742-6. [PMID: 22466645 DOI: 10.1172/jci61976] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/15/2012] [Indexed: 11/17/2022] Open
Abstract
Spontaneous gene repair, also called revertant mosaicism, has been documented in several genetic disorders involving organs that undergo self-regeneration, including the skin. Genetic reversion may occur through different mechanisms, and in a single individual, the mutation can be repaired in various ways. Here we describe a disseminated pattern of revertant mosaicism observed in 6 patients with Kindler syndrome (KS), a genodermatosis caused by loss of kindlin-1 (encoded by FERMT1) and clinically characterized by patchy skin pigmentation and atrophy. All patients presented duplication mutations (c.456dupA and c.676dupC) in FERMT1, and slipped mispairing in direct nucleotide repeats was identified as the reversion mechanism in all investigated revertant skin spots. The sequence around the mutations demonstrated high propensity to mutations, favoring both microinsertions and microdeletions. Additionally, in some revertant patches, mitotic recombination generated areas with homozygous normal keratinocytes. Restoration of kindlin-1 expression led to clinically and structurally normal skin. Since loss of kindlin-1 severely impairs keratinocyte proliferation, we predict that revertant cells have a selective advantage that allows their clonal expansion and, consequently, the improvement of the skin condition.
Collapse
Affiliation(s)
- Dimitra Kiritsi
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lauridsen LH, Rothnagel JA, Veedu RN. Enzymatic recognition of 2'-modified ribonucleoside 5'-triphosphates: towards the evolution of versatile aptamers. Chembiochem 2011; 13:19-25. [PMID: 22162282 DOI: 10.1002/cbic.201100648] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 01/21/2023]
Abstract
The quest for effective, selective and nontoxic nucleic-acid-based drugs has led to designing modifications of naturally occurring nucleosides. A number of modified nucleic acids have been made in the past decades in the hope that they would prove useful in target-validation studies and therapeutic applications involving antisense, RNAi, aptamer, and ribozyme-based technologies. Since their invention in the early 1990s, aptamers have emerged as a very promising class of therapeutics, with one drug entering the market for the treatment of age-related macular degeneration. To combat the limitations of aptamers containing naturally occurring nucleotides, chemically modified nucleotides have to be used. In order to apply modified nucleotides in aptamer drug development, their enzyme-recognition capabilities must be understood. For this purpose, several modified nucleoside 5'-triphosphates were synthesized and investigated as substrates for various enzymes. Herein, we review studies on the enzyme-recognition of various 2'-sugar-modified NTPs that were carried out with a view to their effective utilization in SELEX processes to generate versatile aptamers.
Collapse
Affiliation(s)
- Lasse H Lauridsen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
47
|
Wang DY, Chang CW, Lagacé RE, Calandro LM, Hennessy LK. Developmental validation of the AmpFℓSTR® Identifiler® Plus PCR Amplification Kit: an established multiplex assay with improved performance. J Forensic Sci 2011; 57:453-65. [PMID: 22074494 DOI: 10.1111/j.1556-4029.2011.01963.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Analysis of length polymorphism at short tandem repeat (STR) loci utilizing multiplex polymerase chain reaction (PCR) remains the primary method for genotyping forensic samples. The AmpFℓSTR(®) Identifiler(®) Plus PCR Amplification Kit is an improved version of the AmpFℓSTR(®) Identifiler(®) PCR Amplification Kit and amplifies the core CODIS loci: D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, CSF1PO, FGA, TH01, TPOX, and vWA. Additional loci amplified in the multiplex reaction are the sex-determinant, amelogenin, and two internationally accepted loci, D2S1338 and D19S433. While the primer sequences and dye configurations were unchanged, the AmpFℓSTR(®) Identifiler(®) Plus PCR Amplification Kit features an enhanced buffer formulation and an optimized PCR cycling protocol that increases sensitivity, provides better tolerance to PCR inhibitors, and improves performance on mixture samples. The AmpFℓSTR(®) Identifiler(®) Plus PCR Amplification Kit has been validated according to the FBI/National Standards and Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. The validation results support the use of the AmpFℓSTR(®) Identifiler(®) Plus PCR Amplification Kit for human identity and parentage testing.
Collapse
Affiliation(s)
- Dennis Y Wang
- Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA.
| | | | | | | | | |
Collapse
|
48
|
Martínez O, Ecochard V, Mahéo S, Gross G, Bodin P, Teissié J, Escudier JM, Paquereau L. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction. PLoS One 2011; 6:e25510. [PMID: 21991314 PMCID: PMC3185000 DOI: 10.1371/journal.pone.0025510] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
Abstract
(S(C5'), R(P)) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.
Collapse
Affiliation(s)
- Olivier Martínez
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Vincent Ecochard
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Sabrina Mahéo
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Grégori Gross
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Pierre Bodin
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Justin Teissié
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, Unité Mixte de Recherche 5068, Centre National de la Recherche Scientifique, Toulouse , France
| | - Laurent Paquereau
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
- * E-mail:
| |
Collapse
|
49
|
Wang DY, Chang CW, Lagacé RE, Oldroyd NJ, Hennessy LK. Development and validation of the AmpFℓSTR® Identifiler® Direct PCR Amplification Kit: a multiplex assay for the direct amplification of single-source samples. J Forensic Sci 2011; 56:835-45. [PMID: 21418220 DOI: 10.1111/j.1556-4029.2011.01757.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AmpFℓSTR(®) Identifiler(®) Direct PCR Amplification Kit is a new short tandem repeat multiplex assay optimized to allow the direct amplification of single-source blood and buccal samples on FTA(®) card without the need for sample purification and quantification. This multiplex assay has been validated according to the FBI/National Standards and SWGDAM guidelines. Validation results revealed that slight variations in primer concentration, master mix component concentration, and thermal cycling parameters did not affect the performance of the chemistry. The assay's sensitivity was demonstrated by amplifying known amounts of white blood cells spotted onto FTA(®) cards, and the assay's specificity was verified by establishing minimal cross-reactivity with nonhuman DNA. No effect on the age of the sample stored on the FTA(®) substrate was observed and full concordance was established in the population study. These findings of the validation study support the use of the Identifiler(®) Direct Kit for forensic standards and database samples genotyping.
Collapse
Affiliation(s)
- Dennis Y Wang
- Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA.
| | | | | | | | | |
Collapse
|
50
|
Riepsamen AH, Gibson T, Rowe J, Chitwood DJ, Subbotin SA, Dowton M. Poly(T) variation in heteroderid nematode mitochondrial genomes is predominantly an artefact of amplification. J Mol Evol 2010; 72:182-92. [PMID: 21161202 DOI: 10.1007/s00239-010-9414-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 11/19/2010] [Indexed: 11/25/2022]
Abstract
We assessed the rate of in vitro polymerase errors at polythymidine [poly(T)] tracts in the mitochondrial DNA (mtDNA) of a heteroderid nematode (Heterodera cajani). The mtDNA of these nematodes contain unusually high numbers of poly(T) tracts, and have previously been suggested to contain biological poly(T) length variation. However, using a cloned molecule, we observed that poly(T) variation was generated in vitro at regions containing more than six consecutive Ts. This artefactual error rate was estimated at 7.3 × 10(-5) indels/poly(T) tract >6 Ts/cycle. This rate was then compared to the rate of poly(T) variation detected after the amplification of a biological sample, in order to estimate the 'biological + artefactual' rate of poly(T) variation. There was no significant difference between the artefactual and the artefactual + biological rates, suggesting that the majority of poly(T) variation in the biological sample was artefactual. We then examined the generation of poly(T) variation in a range of templates with tracts up to 16 Ts long, utilizing a range of Heteroderidae species. We observed that T deletions occurred five times more frequently than insertions, and a trend towards increasing error rates with increasing poly(T) tract length. These findings have significant implications for studies involving genomes with many homopolymer tracts.
Collapse
Affiliation(s)
- Angelique H Riepsamen
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | |
Collapse
|