1
|
Winter DL, Wairara AR, Bennett JL, Donald WA, Glover DJ. Protein Interaction Kinetics Delimit the Performance of Phosphorylation-Driven Protein Switches. ACS Synth Biol 2024; 13:1781-1797. [PMID: 38830815 DOI: 10.1021/acssynbio.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Post-translational modifications (PTMs) such as phosphorylation and dephosphorylation can rapidly alter protein surface chemistry and structural conformation, which can switch protein-protein interactions (PPIs) within signaling networks. Recently, de novo-designed phosphorylation-responsive protein switches have been created that harness kinase- and phosphatase-mediated phosphorylation to modulate PPIs. PTM-driven protein switches are promising tools for investigating PTM dynamics in living cells, developing biocompatible nanodevices, and engineering signaling pathways to program cell behavior. However, little is known about the physical and kinetic constraints of PTM-driven protein switches, which limits their practical application. In this study, we present a framework to evaluate two-component PTM-driven protein switches based on four performance metrics: effective concentration, dynamic range, response time, and reversibility. Our computational models reveal an intricate relationship between the binding kinetics, phosphorylation kinetics, and switch concentration that governs the sensitivity and reversibility of PTM-driven protein switches. Building upon the insights of the interaction modeling, we built and evaluated novel phosphorylation-driven protein switches consisting of phosphorylation-sensitive coiled coils as sensor domains fused to fluorescent proteins as actuator domains. By modulating the phosphorylation state of the switches with a specific protein kinase and phosphatase, we demonstrate fast, reversible transitions between "on" and "off" states. The response of the switches linearly correlated to the kinase concentration, demonstrating its potential as a biosensor for kinase measurements in real time. As intended, the switches responded to specific kinase activity with an increase in the fluorescence signal and our model could be used to distinguish between two mechanisms of switch activation: dimerization or a structural rearrangement. The protein switch kinetics model developed here should enable PTM-driven switches to be designed with ideal performance for specific applications.
Collapse
Affiliation(s)
- Daniel L Winter
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia
| | - Adelgisa R Wairara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Winter DL, Iranmanesh H, Clark DS, Glover DJ. Design of Tunable Protein Interfaces Controlled by Post-Translational Modifications. ACS Synth Biol 2020; 9:2132-2143. [PMID: 32702241 DOI: 10.1021/acssynbio.0c00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design of protein interaction interfaces is a cornerstone of synthetic biology, where they can be used to promote the association of protein subunits into active molecular complexes or into protein nanostructures. In nature, protein interactions can be modulated by post-translational modifications (PTMs) that modify the protein interfaces with the addition and removal of various chemical groups. PTMs thus represent a means to gain control over protein interactions, yet they have seldom been considered in the design of synthetic proteins. Here, we explore the potential of a reversible PTM, serine phosphorylation, to modulate the interactions between peptides. We designed a series of interacting peptide pairs, including heterodimeric coiled coils, that contained one or more protein kinase A (PKA) recognition motifs. Our set of peptide pairs comprised interactions ranging from nanomolar to micromolar affinities. Mass spectrometry analyses showed that all peptides were excellent phosphorylation substrates of PKA, and subsequent phosphate removal could be catalyzed by lambda protein phosphatase. Binding kinetics measurements performed before and after treatment of the peptides with PKA revealed that phosphorylation of the target serines affected both the association and dissociation rates of the interacting peptides. We observed both the strengthening of interactions (up to an 11-fold decrease in Kd) and the weakening of interactions (up to a 180-fold increase in Kd). De novo-designed PTM-modulated interfaces will be useful to control the association of proteins in biological systems using protein-modifying enzymes, expanding the paradigm of self-assembly to encompass controlled assembly of engineerable protein complexes.
Collapse
Affiliation(s)
- Daniel L. Winter
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia
| | - Hasti Iranmanesh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dominic J. Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Phospho-peptide binding domains in S. cerevisiae model organism. Biochimie 2019; 163:117-127. [PMID: 31194995 DOI: 10.1016/j.biochi.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Protein phosphorylation is one of the main mechanisms by which signals are transmitted in eukaryotic cells, and it plays a crucial regulatory role in almost all cellular processes. In yeast, more than half of the proteins are phosphorylated in at least one site, and over 20,000 phosphopeptides have been experimentally verified. However, the functional consequences of these phosphorylation events for most of the identified phosphosites are unknown. A family of protein interaction domains selectively recognises phosphorylated motifs to recruit regulatory proteins and activate signalling pathways. Nine classes of dedicated modules are coded by the yeast genome: 14-3-3, FHA, WD40, BRCT, WW, PBD, and SH2. The recognition specificity relies on a few residues on the target protein and has coevolved with kinase specificity. In the present study, we review the current knowledge concerning yeast phospho-binding domains and their networks. We emphasise the relevance of both positive and negative amino acid selection to orchestrate the highly regulated outcomes of inter- and intra-molecular interactions. Finally, we hypothesise that only a small fraction of yeast phosphorylation events leads to the creation of a docking site on the target molecule, while many have a direct effect on the protein or, as has been proposed, have no function at all.
Collapse
|
4
|
Kim K, Pedersen LC, Kirby TW, DeRose EF, London RE. Characterization of the APLF FHA-XRCC1 phosphopeptide interaction and its structural and functional implications. Nucleic Acids Res 2017; 45:12374-12387. [PMID: 29059378 PMCID: PMC5716189 DOI: 10.1093/nar/gkx941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023] Open
Abstract
Aprataxin and PNKP-like factor (APLF) is a DNA repair factor containing a forkhead-associated (FHA) domain that supports binding to the phosphorylated FHA domain binding motifs (FBMs) in XRCC1 and XRCC4. We have characterized the interaction of the APLF FHA domain with phosphorylated XRCC1 peptides using crystallographic, NMR, and fluorescence polarization studies. The FHA–FBM interactions exhibit significant pH dependence in the physiological range as a consequence of the atypically high pK values of the phosphoserine and phosphothreonine residues and the preference for a dianionic charge state of FHA-bound pThr. These high pK values are characteristic of the polyanionic peptides typically produced by CK2 phosphorylation. Binding affinity is greatly enhanced by residues flanking the crystallographically-defined recognition motif, apparently as a consequence of non-specific electrostatic interactions, supporting the role of XRCC1 in nuclear cotransport of APLF. The FHA domain-dependent interaction of XRCC1 with APLF joins repair scaffolds that support single-strand break repair and non-homologous end joining (NHEJ). It is suggested that for double-strand DNA breaks that have initially formed a complex with PARP1 and its binding partner XRCC1, this interaction acts as a backup attempt to intercept the more error-prone alternative NHEJ repair pathway by recruiting Ku and associated NHEJ factors.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
5
|
Role of CK2-dependent phosphorylation of Ifh1 and Crf1 in transcriptional regulation of ribosomal protein genes in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1004-13. [DOI: 10.1016/j.bbagrm.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/17/2023]
|
6
|
Huang YMM, Chang CEA. Achieving peptide binding specificity and promiscuity by loops: case of the forkhead-associated domain. PLoS One 2014; 9:e98291. [PMID: 24870410 PMCID: PMC4037201 DOI: 10.1371/journal.pone.0098291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022] Open
Abstract
The regulation of a series of cellular events requires specific protein–protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design.
Collapse
Affiliation(s)
- Yu-ming M. Huang
- Department of Chemistry, University of California Riverside, Riverside, California, United States of America
- * E-mail: (YMH); (CAC)
| | - Chia-en A. Chang
- Department of Chemistry, University of California Riverside, Riverside, California, United States of America
- * E-mail: (YMH); (CAC)
| |
Collapse
|
7
|
Machida S, Yuan YA. Crystal structure of Arabidopsis thaliana Dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding. MOLECULAR PLANT 2013; 6:1290-1300. [PMID: 23313986 DOI: 10.1093/mp/sst007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dawdle (DDL) is a microRNA processing protein essential for the development of Arabidopsis. DDL contains a putative nuclear localization signal at its amino-terminus and forkhead-associated (FHA) domain at the carboxyl-terminus. Here, we report the crystal structure of the FHA domain of Arabidopsis Dawdle, determined by multiple-wavelength anomalous dispersion method at 1.7-Å resolution. DDL FHA structure displays a seven-stranded β-sandwich architecture that contains a unique structural motif comprising two long anti-parallel strands. Strikingly, crystal packing of the DDL FHA domain reveals that a glutamate residue from the symmetry-related DDL FHA domain, a structural mimic of the phospho-threonine, is specifically recognized by the structurally conserved phospho-threonine binding cleft. Consistently with the structural observations, co-immuno-precipitation experiments performed in Nicotiana benthamiana show that the DDL FHA domain co-immuno-precipitates with DCL1 fragments containing the predicted pThr+3(Ile/Val/Leu/Asp) motif. Taken together, we count the recognition of the target residue by the canonical binding cleft of the DDL FHA domain as the key molecular event to instate FHA domain-mediated protein-protein interaction in plant miRNA processing.
Collapse
Affiliation(s)
- Satoru Machida
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | |
Collapse
|
8
|
Huang YMM, Chang CEA. Mechanism of PhosphoThreonine/Serine Recognition and Specificity for Modular Domains from All-atom Molecular Dynamics. BMC BIOPHYSICS 2011; 4:12. [PMID: 21612598 PMCID: PMC3146460 DOI: 10.1186/2046-1682-4-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/25/2011] [Indexed: 11/25/2022]
Abstract
Background Phosphopeptide-binding domains mediate many vital cellular processes such as signal transduction and protein recognition. We studied three well-known domains important for signal transduction: BRCT repeats, WW domain and forkhead-associated (FHA) domain. The first two recognize both phosphothreonine (pThr) and phosphoserine (pSer) residues, but FHA has high specificity for pThr residues. Here we used molecular dynamics (MD) simulations to reveal how FHA exclusively chooses pThr and how BRCT and WW recognize both pThr/pSer. The work also investigated the energies and thermodynamic information of intermolecular interactions. Results Simulations carried out included wide-type and mutated systems. Through analysis of MD simulations, we found that the conserved His residue defines dual loops feature of the FHA domain, which creates a small cavity reserved for only the methyl group of pThr. These well-organized loop interactions directly response to the pThr binding selectivity, while single loop (the 2nd phosphobinding site of FHA) or in combination with α-helix (BRCT repeats) or β-sheet (WW domain) fail to differentiate pThr/pSer. Conclusions Understanding the domain pre-organizations constructed by conserved residues and the driving force of domain-phosphopeptide recognition provides structural insight into pThr specific binding, which also helps in engineering proteins and designing peptide inhibitors.
Collapse
Affiliation(s)
- Yu-Ming M Huang
- Department of Chemistry, University of California, Riverside, CA92521, USA.
| | | |
Collapse
|
9
|
Pennell S, Westcott S, Ortiz-Lombardía M, Patel D, Li J, Nott TJ, Mohammed D, Buxton RS, Yaffe MB, Verma C, Smerdon SJ. Structural and functional analysis of phosphothreonine-dependent FHA domain interactions. Structure 2010; 18:1587-95. [PMID: 21134638 DOI: 10.1016/j.str.2010.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/30/2022]
Abstract
FHA domains are well established as phospho-dependent binding modules mediating signal transduction in Ser/Thr kinase signaling networks in both eukaryotic and prokaryotic species. Although they are unique in binding exclusively to phosphothreonine, the basis for this discrimination over phosphoserine has remained elusive. Here, we attempt to dissect overall binding specificity at the molecular level. We first determined the optimal peptide sequence for Rv0020c FHA domain binding by oriented peptide library screening. This served as a basis for systematic mutagenic and binding analyses, allowing us to derive relative thermodynamic contributions of conserved protein and peptide residues to binding and specificity. Structures of phosphopeptide-bound and uncomplexed Rv0020c FHA domain then directed molecular dynamics simulations which show how the extraordinary discrimination in favor of phosphothreonine occurs through formation of additional hydrogen-bonding networks that are ultimately stabilized by van der Waals interactions of the phosphothreonine γ-methyl group with a conserved pocket on the FHA domain surface.
Collapse
Affiliation(s)
- Simon Pennell
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW71AA, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
King CA, Bradley P. Structure-based prediction of protein-peptide specificity in Rosetta. Proteins 2010; 78:3437-49. [PMID: 20954182 DOI: 10.1002/prot.22851] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/16/2010] [Accepted: 07/28/2010] [Indexed: 01/03/2023]
Abstract
Protein-peptide interactions mediate many of the connections in intracellular signaling networks. A generalized computational framework for atomically precise modeling of protein-peptide specificity may allow for predicting molecular interactions, anticipating the effects of drugs and genetic mutations, and redesigning molecules for new interactions. We have developed an extensible, general algorithm for structure-based prediction of protein-peptide specificity as part of the Rosetta molecular modeling package. The algorithm is not restricted to any one peptide-binding domain family and, at minimum, does not require an experimentally characterized structure of the target protein nor any information about sequence specificity; although known structural data can be incorporated when available to improve performance. We demonstrate substantial success in specificity prediction across a diverse set of peptide-binding proteins, and show how performance is affected when incorporating varying degrees of input structural data. We also illustrate how structure-based approaches can provide atomic-level insight into mechanisms of peptide recognition and can predict the effects of point mutations on peptide specificity. Shortcomings and artifacts of our benchmark predictions are explained and limits on the generality of the method are explored. This work provides a promising foundation upon which further development of completely generalized, de novo prediction of peptide specificity may progress.
Collapse
Affiliation(s)
- Christopher A King
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
11
|
Aucher W, Becker E, Ma E, Miron S, Martel A, Ochsenbein F, Marsolier-Kergoat MC, Guerois R. A strategy for interaction site prediction between phospho-binding modules and their partners identified from proteomic data. Mol Cell Proteomics 2010; 9:2745-59. [PMID: 20733106 DOI: 10.1074/mcp.m110.003319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Small and large scale proteomic technologies are providing a wealth of potential interactions between proteins bearing phospho-recognition modules and their substrates. Resulting interaction maps reveal such a dense network of interactions that the functional dissection and understanding of these networks often require to break specific interactions while keeping the rest intact. Here, we developed a computational strategy, called STRIP, to predict the precise interaction site involved in an interaction with a phospho-recognition module. The method was validated by a two-hybrid screen carried out using the ForkHead Associated (FHA)1 domain of Rad53, a key protein of Saccharomyces cerevisiae DNA checkpoint, as a bait. In this screen we detected 11 partners, including Cdc7 and Cdc45, essential components of the DNA replication machinery. FHA domains are phospho-threonine binding modules and the threonines involved in both interactions could be predicted using the STRIP strategy. The threonines T484 and T189 in Cdc7 and Cdc45, respectively, were mutated and loss of binding could be monitored experimentally with the full-length proteins. The method was further tested for the analysis of 63 known Rad53 binding partners and provided several key insights regarding the threonines likely involved in these interactions. The STRIP method relies on a combination of conservation, phosphorylation likelihood, and binding specificity criteria and can be accessed via a web interface at http://biodev.extra.cea.fr/strip/.
Collapse
Affiliation(s)
- Willy Aucher
- Laboratoire du Métabolisme de l'ADN et Réponses aux Génotoxiques, Gif-sur-Yvette F-91191, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Matsumura Y, Shinjo M, Mahajan A, Tsai MD, Kihara H. alpha-Helical burst on the folding pathway of FHA domains from Rad53 and Ki67. Biochimie 2010; 92:1031-9. [PMID: 20466033 DOI: 10.1016/j.biochi.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/05/2010] [Indexed: 11/15/2022]
Abstract
We investigated refolding processes of beta-sheeted protein FHA domains (FHA1 domain of Rad53 and Ki67 FHA domain) by cryo-stopped-flow (SF) method combined with far-ultraviolet (far-UV) circular dichroism (CD, the average secondary structure content) and small angle X-ray scattering (SAXS, measuring the radius of gyration). In case of FHA1 domain of Rad53, no detectable time course was observed except the initial burst on its refolding process at 4 degrees C, suggesting that the FHA1 domain of Rad53 was already refolded to its native state within the dead time of the SF apparatus and the rate of the refolding is too fast to be observed at this temperature. In contrast, there was an observable alpha-helical burst at -15 degrees C and -20 degrees C in the presence of 45% ethylene glycol (EGOH) by CD-SF. Besides, the radius of gyration (Rg) of the burst phase intermediate at -20 degrees C shows the intermediate is already compact, and the compaction process was accompanied with the decrease of alpha-helical content at the same temperature. In case of Ki67 FHA domain, ellipticity change at 222 nm was observed on its refolding pathway at -28 degrees C in the presence of 45% EGOH and 2 mM DTT, indicating that Ki67 FHA domain also takes non-native alpha-helix-rich intermediate on its folding pathway. Time-resolved SAXS experiment was done. As the signal/noise ratio is low, we could not observe the time-dependent signal change through the time course. However, the initial Rg value was obtained as 18.2 +/- 0.5 A, which is much smaller than the unfolded Rg value (26.5 +/- 1.2 A), and is slightly larger than the native one (15.9 +/- 1.8 A). These results suggest that Ki67 FHA domain also forms compact non-native alpha-helix-rich intermediate before refolding to its native beta-structure on the refolding pathway. These results are in good agreement with other beta-proteins, such as bovine beta-lactoglobulin (BLG), src SH3 domain proteins. It seems the alpha-helical burst phases appear on the folding pathway of beta-sandwiched proteins.
Collapse
|
13
|
Lin CC, Huoh YS, Schmitz KR, Jensen LE, Ferguson KM. Pellino proteins contain a cryptic FHA domain that mediates interaction with phosphorylated IRAK1. Structure 2009; 16:1806-16. [PMID: 19081057 DOI: 10.1016/j.str.2008.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/11/2008] [Accepted: 09/18/2008] [Indexed: 02/06/2023]
Abstract
Pellino proteins are RING E3 ubiquitin ligases involved in signaling events downstream of the Toll and interleukin-1 (IL-1) receptors, key initiators of innate immune and inflammatory responses. Pellino proteins associate with and ubiquitinate proteins in these pathways, including the interleukin-1 receptor associated kinase-1 (IRAK1). We determined the X-ray crystal structure of a Pellino2 fragment lacking only the RING domain. This structure reveals that the IRAK1-binding region of Pellino proteins consists largely of a previously unidentified forkhead-associated (FHA) domain. FHA domains are well-characterized phosphothreonine-binding modules, and this cryptic example in Pellino2 can drive interaction of this protein with phosphorylated IRAK1. The Pellino FHA domain is decorated with an unusual appendage or "wing" composed of two long inserts that lie within the FHA homology region. Delineating how this E3 ligase associates with substrates, and how these interactions are regulated by phosphorylation, is crucial for a complete understanding of Toll/IL-1 receptor signaling.
Collapse
Affiliation(s)
- Chun-Chi Lin
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
14
|
Mahajan A, Yuan C, Lee H, Chen ESW, Wu PY, Tsai MD. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 2008; 1:re12. [PMID: 19109241 DOI: 10.1126/scisignal.151re12] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The forkhead-associated (FHA) domain is the only known phosphoprotein-binding domain that specifically recognizes phosphothreonine (pThr) residues, distinguishing them from phosphoserine (pSer) residues. In contrast to its very strict specificity toward pThr, the FHA domain recognizes very diverse patterns in the residues surrounding the pThr residue. For example, the FHA domain of Ki67, a protein associated with cellular proliferation, binds to an extended target surface involving residues remote from the pThr, whereas the FHA domain of Dun1, a DNA damage-response kinase, specifically recognizes a doubly phosphorylated Thr-Gln (TQ) cluster by virtue of its possessing two pThr-binding sites. The FHA domain exists in various proteins with diverse functions and is particularly prevalent among proteins involved in the DNA damage response. Despite a very short history, a number of unique structural and functional properties of the FHA domain have been uncovered. This review highlights the diversity of biological functions of the FHA domain-containing proteins and the structural bases for the novel binding specificities and multiple binding modes of FHA domains.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Brooks MA, Dziembowski A, Quevillon-Cheruel S, Henriot V, Faux C, van Tilbeurgh H, Séraphin B. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Res 2008; 37:129-43. [PMID: 19033360 PMCID: PMC2615620 DOI: 10.1093/nar/gkn894] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RES complex was previously identified in yeast as a splicing factor affecting nuclear pre-mRNA retention. This complex was shown to contain three subunits, namely Snu17, Bud13 and Pml1, but its mode of action remains ill-defined. To obtain insights into its function, we have performed a structural investigation of this factor. Production of a short N-terminal truncation of residues that are apparently disordered allowed us to determine the X-ray crystallographic structure of Pml1. This demonstrated that it consists mainly of a FHA domain, a fold which has been shown to mediate interactions with phosphothreonine-containing peptides. Using a new sensitive assay based on alternative splice-site choice, we show, however, that mutation of the putative phosphothreonine-binding pocket of Pml1 does not affect pre-mRNA splicing. We have also investigated how Pml1 integrates into the RES complex. Production of recombinant complexes, combined with serial truncation and mutagenesis of their subunits, indicated that Pml1 binds to Snu17, which itself contacts Bud13. This analysis allowed us to demarcate the binding sites involved in the formation of this assembly. We propose a model of the organization of the RES complex based on these results, and discuss the functional consequences of this architecture.
Collapse
Affiliation(s)
- Mark A. Brooks
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Andrzej Dziembowski
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Sophie Quevillon-Cheruel
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Véronique Henriot
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Céline Faux
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Herman van Tilbeurgh
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Bertrand Séraphin
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
- *To whom correspondence should be addressed. Tel: + 33 1 69 82 38 84; Fax: + 33 1 69 82 38 77;
| |
Collapse
|
16
|
Trowitzsch S, Weber G, Lührmann R, Wahl MC. Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. J Mol Biol 2008; 385:531-41. [PMID: 19010333 DOI: 10.1016/j.jmb.2008.10.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
The precursor mRNA retention and splicing (RES) complex mediates nuclear retention and enhances splicing of precursor mRNAs. The RES complex from yeast comprises three proteins, Snu17p, Bud13p and Pml1p. Snu17p acts as a central platform that concomitantly binds the Bud13p and Pml1p subunits via short peptide epitopes. As a step to decipher the molecular architecture of the RES complex, we have determined crystal structures of full-length Pml1p and N-terminally truncated Pml1p. The first 50 residues of full-length Pml1p, encompassing the Snu17p-binding region, are disordered, showing that Pml1p binds to Snu17p via an intrinsically unstructured region. The remainder of Pml1p folds as a forkhead-associated (FHA) domain, which is expanded by a number of noncanonical elements compared with known FHA domains from other proteins. An atypical N-terminal appendix runs across one beta-sheet and thereby stabilizes the domain as shown by deletion experiments. FHA domains are thought to constitute phosphopeptide-binding elements. Consistently, a sulfate ion was found at the putative phosphopeptide-binding loops of full-length Pml1p. The N-terminally truncated version of the protein lacked a similar phosphopeptide mimic but retained an almost identical structure. A long loop neighboring the putative phosphopeptide-binding site was disordered in both structures. Comparison with other FHA domain proteins suggests that this loop adopts a defined conformation upon ligand binding and thereby confers ligand specificity. Our results show that in the RES complex, an FHA domain of Pml1p is flexibly tethered via an unstructured N-terminal region to Snu17p.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
17
|
Kelly W, Stumpf M. Protein-protein interactions: from global to local analyses. Curr Opin Biotechnol 2008; 19:396-403. [PMID: 18644446 DOI: 10.1016/j.copbio.2008.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/25/2008] [Accepted: 06/25/2008] [Indexed: 12/26/2022]
Abstract
For the increasing number of species with complete genome sequences, the task of elucidating their complete proteomes and interactomes has attracted much recent interest. Although the proteome describes the complete repertoire of proteins expressed, the interactome comprises the pairwise protein-protein interactions that occur, or could occur, within an organism, and forms a large-scale sparse network. Here we discuss the challenges provided by present data, and outline a route from global analysis to more detailed and focused studies of protein-protein interactions. Carefully using protein-interaction data allows us to explore its potential fully alongside the evaluation of mechanistic hypotheses about biological systems.
Collapse
Affiliation(s)
- Wp Kelly
- Centre for Bioinformatics, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
18
|
Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell 2008; 30:767-78. [PMID: 18570878 DOI: 10.1016/j.molcel.2008.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/21/2008] [Accepted: 05/13/2008] [Indexed: 01/22/2023]
Abstract
Forkhead-associated (FHA) domains recognize phosphothreonines, and SQ/TQ cluster domains (SCDs) contain concentrated phosphorylation sites for ATM/ATR-like DNA-damage-response kinases. The Rad53-SCD1 has dual functions in regulating the activation of the Rad53-Dun1 checkpoint kinase cascade but with unknown molecular mechanisms. Here we present structural, biochemical, and genetic evidence that Dun1-FHA possesses an unprecedented diphosphothreonine-binding specificity. The Dun1-FHA has >100-fold increased affinity for diphosphorylated relative to monophosphorylated Rad53-SCD1 due to the presence of two separate phosphothreonine-binding pockets. In vivo, any single threonine of Rad53-SCD1 is sufficient for Rad53 activation and RAD53-dependent survival of DNA damage, but two adjacent phosphothreonines in the Rad53-SCD1 and two phosphothreonine-binding sites in the Dun1-FHA are necessary for Dun1 activation and DUN1-dependent transcriptional responses to DNA damage. The results uncover a phospho-counting mechanism that regulates the specificity of SCD, and provide mechanistic insight into a role of multisite phosphorylation in DNA-damage signaling.
Collapse
|
19
|
Abstract
[Structure: see text]. FHA domains are protein modules that switch signals in diverse biological pathways by monitoring the phosphorylation of threonine residues of target proteins. As part of the effort to gain insight into cellular avoidance of cancer, FHA domains involved in the cellular response to DNA damage have been especially well-characterized. The complete protein where the FHA domain resides and the interaction partners determine the nature of the signaling. Thus, a key biochemical question is how do FHA domains pick out their partners from among thousands of alternatives in the cell? This Account discusses the structure, affinity, and specificity of FHA domains and the formation of their functional structure. Although FHA domains share sequence identity at only five loop residues, they all fold into a beta-sandwich of two beta-sheets. The conserved arginine and serine of the recognition loops recognize the phosphorylation of the threonine targeted. Side chains emanating from loops that join beta-strand 4 with 5, 6 with 7, or 10 with 11 make specific contacts with amino acids of the ligand that tailor sequence preferences. Many FHA domains choose a partner in extended conformation, somewhat according to the residue three after the phosphothreonine in sequence (pT + 3 position). One group of FHA domains chooses a short carboxylate-containing side chain at pT + 3. Another group chooses a long, branched aliphatic side chain. A third group prefers other hydrophobic or uncharged polar side chains at pT + 3. However, another FHA domain instead chooses on the basis of pT - 2, pT - 3, and pT + 1 positions. An FHA domain from a marker of human cancer instead chooses a much longer protein fragment that adds a beta-strand to its beta-sheet and that presents hydrophobic residues from a novel helix to the usual recognition surface. This novel recognition site and more remote sites for the binding of other types of protein partners were predicted for the entire family of FHA domains by a bioinformatics approach. The phosphopeptide-dependent dynamics of an FHA domain, SH2 domain, and PTB domain suggest a common theme: rigid, preformed binding surfaces support van der Waals contacts that provide favorable binding enthalpy. Despite the lack of pronounced conformational changes in FHA domains linked to binding events, more subtle adjustments may be possible. In the one FHA domain tested, phosphothreonine peptide binding is accompanied by increased flexibility just outside the binding site and increased rigidity across the beta-sandwich. The folding of the same FHA domain progresses through near-native intermediates that stabilize the recognition loops in the center of the phosphoprotein-binding surface; this may promote rigidity in the interface and affinity for targets phosphorylated on threonine.
Collapse
Affiliation(s)
- XIANGYANG LIANG
- Department of Biochemistry, 105 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211
| | - STEVEN R. VAN DOREN
- Department of Biochemistry, 105 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
20
|
Tam ATY, Pike BL, Heierhorst J. Location-specific functions of the two forkhead-associated domains in Rad53 checkpoint kinase signaling. Biochemistry 2008; 47:3912-6. [PMID: 18302321 DOI: 10.1021/bi800027t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Signaling proteins often contain multiple modular protein-protein interaction domains of the same type. The Saccharomyces cerevisiae checkpoint kinase Rad53 contains two phosphothreonine-binding forkhead-associated (FHA) domains. To investigate if the precise position of these domains relative to each other is important, we created three rad53 alleles in which FHA1 and FHA2 domains were individually or simultaneously transposed to the opposite location. All three mutants were approximately 100-fold hypersensitive to DNA lesions whose survival requires intact Rad53 FHA domain functions, but they were not hypersensitive to DNA damage that is addressed in an FHA domain-independent manner. FHA domain-transposed Rad53 could still be recruited for activation by upstream kinases but then failed to autophosphorylate and activate FHA domain-dependent downstream functions. The results indicate that precise FHA domain positions are important for their roles in Rad53, possibly via regulation of the topology of oligomeric Rad53 signaling complexes.
Collapse
Affiliation(s)
- Angela T Y Tam
- St. Vincent's Institute of Medical Research and Department of Medicine SVH, The University of Melbourne, 9 Princes Street, Fitzroy, VIC 3065, Australia
| | | | | |
Collapse
|
21
|
Tanaka Y, Kuroda M, Yasutake Y, Yao M, Tsumoto K, Watanabe N, Ohta T, Tanaka I. Crystal structure analysis reveals a novel forkhead-associated domain of ESAT-6 secretion system C protein in Staphylococcus aureus. Proteins 2007; 69:659-64. [PMID: 17680693 DOI: 10.1002/prot.21302] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshikazu Tanaka
- Faculty of Advanced Life Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Guillemain G, Ma E, Mauger S, Miron S, Thai R, Guérois R, Ochsenbein F, Marsolier-Kergoat MC. Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:3378-89. [PMID: 17325030 PMCID: PMC1899965 DOI: 10.1128/mcb.00863-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, double-strand breaks (DSBs) activate DNA checkpoint pathways that trigger several responses including a strong G(2)/M arrest. We have previously provided evidence that the phosphatases Ptc2 and Ptc3 of the protein phosphatase 2C type are required for DNA checkpoint inactivation after a DSB and probably dephosphorylate the checkpoint kinase Rad53. In this article we have investigated further the interactions between Ptc2 and Rad53. We showed that forkhead-associated domain 1 (FHA1) of Rad53 interacts with a specific threonine of Ptc2, T376, located outside its catalytic domain in a TXXD motif which constitutes an optimal FHA1 binding sequence in vitro. Mutating T376 abolishes Ptc2 interaction with the Rad53 FHA1 domain and results in adaptation and recovery defects following a DSB. We found that Ckb1 and Ckb2, the regulatory subunits of the protein kinase CK2, are necessary for the in vivo interaction between Ptc2 and the Rad53 FHA1 domain, that Ckb1 binds Ptc2 in vitro and that ckb1Delta and ckb2Delta mutants are defective in adaptation and recovery after a DSB. Our data thus strongly suggest that CK2 is the kinase responsible for the in vivo phosphorylation of Ptc2 T376.
Collapse
Affiliation(s)
- Ghislaine Guillemain
- CEA, Direction des Sciences du Vivant, Institut de Biologie et de la Technologies de Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ding Z, Wang H, Liang X, Morris ER, Gallazzi F, Pandit S, Skolnick J, Walker JC, Van Doren SR. Phosphoprotein and Phosphopeptide Interactions with the FHA Domain from Arabidopsis Kinase-Associated Protein Phosphatase. Biochemistry 2007; 46:2684-96. [PMID: 17302430 DOI: 10.1021/bi061763n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FHA domains are phosphoThr recognition modules found in diverse signaling proteins, including kinase-associated protein phosphatase (KAPP) from Arabidopsis thaliana. The kinase-interacting FHA domain (KI-FHA) of KAPP targets it to function as a negative regulator of some receptor-like kinase (RLK) signaling pathways important in plant development and environmental responses. To aid in the identification of potential binding sites for the KI-FHA domain, we predicted (i) the structure of a representative KAPP-binding RLK, CLAVATA1, and (ii) the functional surfaces of RLK kinase domains using evolutionary trace analysis. We selected phosphopeptides from KAPP-binding Arabidopsis RLKs for in vitro studies of association with KI-FHA from KAPP. Three phosphoThr peptide fragments from the kinase domain of CLV1 or BAK1 were found to bind KI-FHA with KD values of 8-20 microM, by NMR or titration calorimetry. Their affinity is driven by favorable enthalpy and solvation entropy gain. Mutagenesis of these three threonine sites suggests Thr546 in the C-lobe of the BAK1 kinase domain to be a principal but not sole site of KI-FHA binding in vitro. The brassinosteroid receptor BRI1 and KAPP are shown to associate in vivo and in vitro. Further genetic studies indicate that KAPP may be a negative regulator of the BRI1 signaling transduction pathway. 15N-Labeled KI-FHA was titrated with the GST-BRI1 kinase domain and monitored by NMR. BRI1 interacts with the same 3/4, 4/5, 6/7, 8/9, and 10/11 recognition loops of KI-FHA, with similar affinity as the phosphoThr peptides.
Collapse
Affiliation(s)
- Zhaofeng Ding
- Department of Biochemistry, Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Byeon IJL, Li H, Song H, Gronenborn AM, Tsai MD. Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67. Nat Struct Mol Biol 2006; 12:987-93. [PMID: 16244663 DOI: 10.1038/nsmb1008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 09/22/2005] [Indexed: 11/09/2022]
Abstract
The forkhead-associated (FHA) domain of human Ki67 interacts with the human nucleolar protein hNIFK, recognizing a 44-residue fragment, hNIFK226-269, phosphorylated at Thr234. Here we show that high-affinity binding requires sequential phosphorylation by two kinases, CDK1 and GSK3, yielding pThr238, pThr234 and pSer230. We have determined the solution structure of Ki67FHA in complex with the triply phosphorylated peptide hNIFK226-269(3P), revealing not only local recognition of pThr234 but also the extension of the beta-sheet of the FHA domain by the addition of a beta-strand of hNIFK. The structure of an FHA domain in complex with a biologically relevant binding partner provides insights into ligand specificity and potentially links the cancer marker protein Ki67 to a signaling pathway associated with cell fate specification.
Collapse
Affiliation(s)
- In-Ja L Byeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Mahajan A, Yuan C, Pike BL, Heierhorst J, Chang CF, Tsai MD. FHA domain-ligand interactions: importance of integrating chemical and biological approaches. J Am Chem Soc 2006; 127:14572-3. [PMID: 16231900 DOI: 10.1021/ja054538m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combinatorial library screens based on binding affinity may preferentially select ligands with ability for ionic interactions and miss the biologically relevant ligands that bind more weakly with predominantly hydrophobic interactions.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ding Z, Lee GI, Liang X, Gallazzi F, Arunima A, Van Doren SR. PhosphoThr peptide binding globally rigidifies much of the FHA domain from Arabidopsis receptor kinase-associated protein phosphatase. Biochemistry 2005; 44:10119-34. [PMID: 16042389 PMCID: PMC2813517 DOI: 10.1021/bi050414a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A net increase in the backbone rigidity of the kinase-interacting FHA domain (KI-FHA) from the Arabidopsis receptor kinase-associated protein phosphatase (KAPP) accompanies the binding of a phosphoThr peptide from its CLV1 receptor-like kinase partner, according to (15)N NMR relaxation at 11.7 and 14.1 T. All of the loops of free KI-FHA display evidence of nanosecond-scale motions. Many of these same residues have residual dipolar couplings that deviate from structural predictions. Binding of the CLV1 pT868 peptide seems to reduce nanosecond-scale fluctuations of all loops, including half of the residues of recognition loops. Residues important for affinity are found to be rigid, i.e., conserved residues and residues of the subsite for the key pT+3 peptide position. This behavior parallels SH2 and PTB domain recognition of pTyr peptides. PhosphoThr peptide binding increases KI-FHA backbone rigidity (S(2)) of three recognition loops, a loop nearby, seven strands from the beta-sandwich, and a distal loop. Compensating the trend of increased rigidity, binding enhances fast mobility at a few sites in four loops on the periphery of the recognition surface and in two loops on the far side of the beta-sandwich. Line broadening evidence of microsecond- to millisecond-scale fluctuations occurs across the six-stranded beta-sheet and nearby edges of the beta-sandwich; this forms a network connected by packing of interior side chains and H-bonding. A patch of the slowly fluctuating residues coincides with the site of segment-swapped dimerization in crystals of the FHA domain of human Chfr. Phosphopeptide binding introduces microsecond- to millisecond-scale fluctuations to more residues of the long 8/9 recognition loop of KI-FHA. The rigidity of this FHA domain appears to couple as a whole to pThr peptide binding.
Collapse
Affiliation(s)
| | | | - Xiangyang Liang
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Fabio Gallazzi
- Molecular Biology Program, 125 Chemistry, 601 S. College Ave., University of Missouri, Columbia, Missouri, 65211 USA
| | - A. Arunima
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Steven R. Van Doren
- To whom correspondence should be addressed, E-mail: , Phone: 1 (573) 882-5113, FAX: 1 (573) 884-4812
| |
Collapse
|
27
|
Abstract
Checkpoint kinase 2 (Chk2) is a multifunctional enzyme whose functions are central to the induction of cell cycle arrest and apoptosis by DNA damage. Insight into Chk2 has derived from multiple approaches. Biochemical studies have addressed Chk2 structure, domain organization and regulation by phosphorylation. Extensive work has been done to identify factors that recognize and respond to DNA damage in order to activate Chk2. In turn a number of substrates and targets of Chk2 have been identified that play roles in the checkpoint response. The roles and regulation of Chk2 have been elucidated by studies in model genetic systems extending from worms and flies to mice and humans. The relationship of Chk2 to human cancer studies is developing rapidly with increasing evidence that Chk2 plays a role in tumor suppression.
Collapse
Affiliation(s)
- Jinwoo Ahn
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
28
|
Yongkiettrakul S, Byeon IJL, Tsai MD. The ligand specificity of yeast Rad53 FHA domains at the +3 position is determined by nonconserved residues. Biochemistry 2004; 43:3862-9. [PMID: 15049693 DOI: 10.1021/bi036195f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of the results from our laboratory and others, we recently suggested that the ligand specificity of forkhead-associated (FHA) domains is controlled by variations in three major factors: (i) residues interacting with pThr, (ii) residues recognizing the +1 to +3 residues from pThr, and (iii) an extended binding surface. While the first factor has been well established by several solution and crystal structures of FHA-phosphopeptide complexes, the structural bases of the second and third factors are not well understood and are likely to vary greatly between different FHA domains. In this work, we proposed and tested the hypothesis that nonconserved residues G133 and G135 of FHA1 and I681 and D683 of FHA2, located outside of the core FHA region of yeast Rad53 FHA domains, contribute to the specific recognition of the +3 position of different phosphopeptides. By rational mutagenesis of these residues, the specificity of FHA1 has been changed from predominantly pTXXD to be equally acceptable for pTXXD, pTXXL, and pYXL, which are similar to the specificities of the FHA2 domain of Rad53. Conversely, the +3 position specificity of FHA2 has been engineered to be more like FHA1 with the I681A mutation. These results were based on library screening as well as binding analyses of specific phosphopeptides. Furthermore, results of structural analyses by NMR indicate that some of these residues are also important for the structural integrity of the loops.
Collapse
|
29
|
Li H, Byeon IJL, Ju Y, Tsai MD. Structure of Human Ki67 FHA Domain and its Binding to a Phosphoprotein Fragment from hNIFK Reveal Unique Recognition Sites and New Views to the Structural Basis of FHA Domain Functions. J Mol Biol 2004; 335:371-81. [PMID: 14659764 DOI: 10.1016/j.jmb.2003.10.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies by use of short phosphopeptides showed that forkhead-associated (FHA) domains recognize pTXX(D/I/L) motifs. Solution structures and crystal structures of several different FHA domains and their complexes with short phosphopeptides have been reported by several groups. We now report the solution structure of the FHA domain of human Ki67, a large nuclear protein associated with the cell-cycle. Using fragments of its binding partner hNIFK, we show that Ki67-hNIFK binding involves ca 44 residues without a pTXX(D/I/L) motif. The pThr site of hNIFK recognized by Ki67 FHA is pThr234-Pro235, a motif also recognized by the proline isomerase Pin1. Heteronuclear single quantum coherence (HSQC) NMR was then used to map out the binding surface, and structural analyses were used to identify key binding residues of Ki67 FHA. The results represent the first structural characterization of the complex of an FHA domain with a biologically relevant target protein fragment. Detailed analyses of the results led us to propose that three major factors control the interaction of FHA with its target protein: the pT residue, +1 to +3 residues, and an extended binding surface, and that variation in the three factors is the likely cause of the great diversity in the function and specificity of FHA domains from different sources.
Collapse
Affiliation(s)
- Hongyuan Li
- Department of Biochemistry and Chemistry, Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
30
|
Qin D, Lee H, Yuan C, Ju Y, Tsai MD. Identification of potential binding sites for the FHA domain of human Chk2 by in vitro binding studies. Biochem Biophys Res Commun 2003; 311:803-8. [PMID: 14623252 DOI: 10.1016/j.bbrc.2003.10.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human Chk2 is a newly identified tumor suppressor protein involved in signaling pathways in response to DNA damage. The protein consists of a forkhead-associated (FHA) domain and a kinase domain. Identification of binding partners of the Chk2FHA domain is important in understanding the roles of Chk2 in signaling. We report development of an approach involving the use of combinatorial libraries, pull-down assays, surface plasmon resonance (SPR), and nuclear magnetic resonance (NMR) methods to identify possible candidates for the binding sites of Chk2FHA. The approach has been used to identify Thr329 of p53 and Thr1852 of breast cancer type 1 susceptibility protein (BRCA1) as very likely biological binding sites of Chk2FHA. The results provide useful leads for further biological analyses of cell signaling involving the FHA domain of Chk2 protein.
Collapse
Affiliation(s)
- Dongyan Qin
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43220, USA
| | | | | | | | | |
Collapse
|
31
|
Sidorova JM, Breeden LL. Rad53 checkpoint kinase phosphorylation site preference identified in the Swi6 protein of Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:3405-16. [PMID: 12724400 PMCID: PMC164756 DOI: 10.1128/mcb.23.10.3405-3416.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rad53 of Saccharomyces cerevisiae is a checkpoint kinase whose structure and function are conserved among eukaryotes. When a cell detects damaged DNA, Rad53 activity is dramatically increased, which ultimately leads to changes in DNA replication, repair, and cell division. Despite its central role in checkpoint signaling, little is known about Rad53 substrates or substrate specificity. A number of proteins are implicated as Rad53 substrates; however, the evidence remains indirect. Previously, we have provided evidence that Swi6, a subunit of the Swi4/Swi6 late-G(1)-specific transcriptional activator, is a substrate of Rad53 in the G(1)/S DNA damage checkpoint. In the present study we identify Rad53 phosphorylation sites in Swi6 in vitro and demonstrate that at least one of them is targeted by Rad53 in vivo. Mutations in these phosphorylation sites in Swi6 shorten but do not eliminate the Rad53-dependent delay of the G(1)-to-S transition after DNA damage. We derive a consensus for Rad53 site preference at positions -2 and +2 (-2/+2) and identify its potential substrates in the yeast proteome. Finally, we present evidence that one of these candidates, the cohesin complex subunit Scc1 undergoes DNA damage-dependent phosphorylation, which is in part dependent on Rad53.
Collapse
Affiliation(s)
- Julia M Sidorova
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | | |
Collapse
|
32
|
Abstract
The structure of the FHA domain of the Chfr mitotic checkpoint protein described in this issue of Structure represents one of only a few known structures of this newly discovered phosphoprotein binding domain with diverse function and specificity.
Collapse
Affiliation(s)
- Ming Daw Tsai
- Department of Chemistry, The Ohio State University, Columbus 43210, USA
| |
Collapse
|
33
|
Current awareness on yeast. Yeast 2002; 19:651-8. [PMID: 11967835 DOI: 10.1002/yea.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
34
|
Current awareness on yeast. Yeast 2002; 19:565-72. [PMID: 11921105 DOI: 10.1002/yea.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
35
|
Byeon IJ, Yongkiettrakul S, Tsai MD. Solution structure of the yeast Rad53 FHA2 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-pYXL and FHA1-pTXXD complexes. J Mol Biol 2001; 314:577-88. [PMID: 11846568 DOI: 10.1006/jmbi.2001.5141] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was proposed previously that the FHA2 domain of the yeast protein kinase Rad53 has dual specificity toward pY and pT peptides. The consensus sequences of pY peptides for binding to FHA2, as well as the solution structures of free FHA2 and FHA2 complex with a pY peptide derived from Rad9, have been obtained previously. We now report the use of a pT library to screen for binding of pT peptides with the FHA2 domain. The results show that FHA2 binds favorably to pT peptides with Ile at the +3 position. We then searched the Rad9 sequences with a pTXXI/L motif, and tested the binding affinity of FHA2 toward ten pT peptides derived from Rad9. One of the peptides, (599)EVEL(pT)QELP(607), displayed the best binding affinity (K(d)=12.9 microM) and the greatest chemical shift changes. The structure of the FHA2 complex with this peptide was then determined by solution NMR and the structure of the complex between FHA2 and the pY peptide (826)EDI(pY)YLD(832) was further refined. Structural comparison of these two complexes indicates that the Leu residue at the +3 position in the pT peptide and that at the +2 position in the pY peptide occupy a very similar position relative to the binding site residues from FHA2. This can explain why FHA2 is able to bind both pT and pY peptides. This position change from +3 to +2 could be the consequence of the size difference between Thr and Tyr. Further insight into the structural basis of ligand specificity of FHA domains was obtained by comparing the structures of the FHA2-pTXXL complex obtained in this work and the FHA1-pTXXD complex reported in the accompanying paper.
Collapse
Affiliation(s)
- I J Byeon
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|