1
|
Zhu X, Cruz VE, Zhang H, Erzberger JP, Mendell JT. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes. Science 2024; 386:eadq8587. [PMID: 39571015 PMCID: PMC11583848 DOI: 10.1126/science.adq8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 11/24/2024]
Abstract
The CCR4-NOT complex is a major regulator of eukaryotic messenger RNA (mRNA) stability. Slow decoding during translation promotes association of CCR4-NOT with ribosomes, accelerating mRNA degradation. We applied selective ribosome profiling to further investigate the determinants of CCR4-NOT recruitment to ribosomes in mammalian cells. This revealed that specific arginine codons in the P-site are strong signals for ribosomal recruitment of human CNOT3, a CCR4-NOT subunit. Cryo-electron microscopy and transfer RNA (tRNA) mutagenesis demonstrated that the D-arms of select arginine tRNAs interact with CNOT3 and promote its recruitment whereas other tRNA D-arms sterically clash with CNOT3. These effects link codon content to mRNA stability. Thus, in addition to their canonical decoding function, tRNAs directly engage regulatory complexes during translation, a mechanism we term P-site tRNA-mediated mRNA decay.
Collapse
MESH Headings
- Humans
- Arginine/metabolism
- Codon
- Cryoelectron Microscopy
- HEK293 Cells
- Protein Biosynthesis
- Ribosomes/metabolism
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- Transcription Factors/metabolism
- Jurkat Cells
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor Emmanuel Cruz
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan P. Erzberger
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Barman P, Ferdoush J, Kaja A, Chakraborty P, Uprety B, Bhaumik R, Bhaumik R, Bhaumik SR. Ubiquitin-proteasome system regulation of a key gene regulatory factor, Paf1C. Gene 2024; 894:148004. [PMID: 37977317 DOI: 10.1016/j.gene.2023.148004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Paf1 (Polymerase-associated factor 1) complex (Paf1C) is evolutionarily conserved from yeast to humans, and facilitates transcription elongation as well as co-transcriptional histone covalent modifications and mRNA 3'-end processing. Thus, Paf1C is a key player in regulation of eukaryotic gene expression. Paf1C consists of Paf1, Cdc73, Ctr9, Leo1 and Rtf1 in both yeast and humans, but it has an additional component, Ski8, in humans. The abundances of these components regulate the assembly of Paf1C and/or its functions, thus implying the mechanisms involved in regulating the abundances of the Paf1C components in altered gene expression and hence cellular pathologies. Towards finding the mechanisms associated with the abundances of the Paf1C components, we analyzed here whether the Paf1C components are regulated via targeted ubiquitylation and 26S proteasomal degradation. We find that the Paf1C components except Paf1 do not undergo the 26S proteasomal degradation in both yeast and humans. Paf1 is found to be regulated by the ubiquitin-proteasome system (UPS) in yeast and humans. Alteration of such regulation changes Paf1's abundance, leading to aberrant gene expression. Intriguingly, while the Rtf1 component of Paf1C does not undergo the 26S proteasomal degradation, it is found to be ubiquitylated, suggesting that Rtf1 ubiquitylation could be engaged in Paf1C assembly and/or functions. Collectively, our results reveal distinct UPS regulation of the Paf1C components, Paf1 and Rtf1, in a proteolysis-dependent and -independent manners, respectively, with functional implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bhawana Uprety
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Risa Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
3
|
Collart MA, Audebert L, Bushell M. Roles of the CCR4-Not complex in translation and dynamics of co-translation events. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1827. [PMID: 38009591 PMCID: PMC10909573 DOI: 10.1002/wrna.1827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells that is most well-known to repress gene expression. Delivery of the complex to mRNAs through a multitude of distinct mechanisms accelerates their decay, yet Ccr4-Not also plays an important role in co-translational processes, such as co-translational association of proteins and delivery of translating mRNAs to organelles. The recent structure of Not5 interacting with the translated ribosome has brought to light that embedded information within the codon sequence can be monitored by recruitment of the Ccr4-Not complex to elongating ribosomes. Thereby, the Ccr4-Not complex is empowered with regulatory decisions determining the fate of proteins being synthesized and their encoding mRNAs. This review will focus on the roles of the complex in translation and dynamics of co-translation events. This article is categorized under: Translation > Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
- Martine A. Collart
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Léna Audebert
- Department of Microbiology and Molecular MedicineInstitute of Genetics and Genomics Geneva, University of Geneva, Faculty of MedicineGenèveSwitzerland
| | - Martin Bushell
- Cancer Research UK Beatson InstituteGlasgowUK
- School of Cancer Sciences, University of GlasgowGlasgowUK
| |
Collapse
|
4
|
Zhao Q, Pavanello L, Bartlam M, Winkler GS. Structure and function of molecular machines involved in deadenylation-dependent 5'-3' mRNA degradation. Front Genet 2023; 14:1233842. [PMID: 37876592 PMCID: PMC10590902 DOI: 10.3389/fgene.2023.1233842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
In eukaryotic cells, the synthesis, processing, and degradation of mRNA are important processes required for the accurate execution of gene expression programmes. Fully processed cytoplasmic mRNA is characterised by the presence of a 5'cap structure and 3'poly(A) tail. These elements promote translation and prevent non-specific degradation. Degradation via the deadenylation-dependent 5'-3' degradation pathway can be induced by trans-acting factors binding the mRNA, such as RNA-binding proteins recognising sequence elements and the miRNA-induced repression complex. These factors recruit the core mRNA degradation machinery that carries out the following steps: i) shortening of the poly(A) tail by the Ccr4-Not and Pan2-Pan3 poly (A)-specific nucleases (deadenylases); ii) removal of the 5'cap structure by the Dcp1-Dcp2 decapping complex that is recruited by the Lsm1-7-Pat1 complex; and iii) degradation of the mRNA body by the 5'-3' exoribonuclease Xrn1. In this review, the biochemical function of the nucleases and accessory proteins involved in deadenylation-dependent mRNA degradation will be reviewed with a particular focus on structural aspects of the proteins and enzymes involved.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | | |
Collapse
|
5
|
Hagkarim NC, Hajkarim MC, Suzuki T, Fujiwara T, Winkler GS, Stewart GS, Grand RJ. Disruption of the Mammalian Ccr4-Not Complex Contributes to Transcription-Mediated Genome Instability. Cells 2023; 12:1868. [PMID: 37508532 PMCID: PMC10378556 DOI: 10.3390/cells12141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian Ccr4-Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. It is involved in the control of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, and nuclear RNA surveillance; the Ccr4-Not complex also plays a central role in the regulation of mRNA decay. Growing evidence suggests that gene transcription has a vital role in shaping the landscape of genome replication and is also a potent source of replication stress and genome instability. Here, we have examined the effects of the inactivation of the Ccr4-Not complex, via the depletion of the scaffold subunit CNOT1, on DNA replication and genome integrity in mammalian cells. In CNOT1-depleted cells, the elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which, together with R-loop accumulation, results in replication fork slowing, DNA damage, and senescence. Furthermore, we have shown that the stability of TBP mRNA increases in the absence of CNOT1, which may explain its elevated protein expression in CNOT1-depleted cells. Finally, we have shown the activation of mitogen-activated protein kinase signalling as evidenced by ERK1/2 phosphorylation in the absence of CNOT1, which may be responsible for the observed cell cycle arrest at the border of G1/S.
Collapse
Affiliation(s)
- Nafiseh Chalabi Hagkarim
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Morteza Chalabi Hajkarim
- Department of Medicine Haematology & Oncology, Columbia University, New York City, NY 10032, USA
| | - Toru Suzuki
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka City 577-8502, Japan
| | | | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger J Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Pavanello L, Hall M, Winkler GS. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front Cell Dev Biol 2023; 11:1153624. [PMID: 37152278 PMCID: PMC10157403 DOI: 10.3389/fcell.2023.1153624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Accurate and precise regulation of gene expression programmes in eukaryotes involves the coordinated control of transcription, mRNA stability and translation. In recent years, significant progress has been made about the role of sequence elements in the 3' untranslated region for the regulation of mRNA degradation, and a model has emerged in which recruitment of the Ccr4-Not complex is the critical step in the regulation of mRNA decay. Recruitment of the Ccr4-Not complex to a target mRNA results in deadenylation mediated by the Caf1 and Ccr4 catalytic subunits of the complex. Following deadenylation, the 5' cap structure is removed, and the mRNA subjected to 5'-3' degradation. Here, the role of the human Ccr4-Not complex in cytoplasmic deadenylation of mRNA is reviewed, with a particular focus on mechanisms of its recruitment to mRNA by sequence motifs in the 3' untranslated region, codon usage, as well as general mechanisms involving the poly(A) tail.
Collapse
Affiliation(s)
- Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Hall
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | | |
Collapse
|
7
|
Zhang G, Luo H, Li X, Hu Z, Wang Q. The Dynamic Poly(A) Tail Acts as a Signal Hub in mRNA Metabolism. Cells 2023; 12:572. [PMID: 36831239 PMCID: PMC9954528 DOI: 10.3390/cells12040572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In eukaryotes, mRNA metabolism requires a sophisticated signaling system. Recent studies have suggested that polyadenylate tail may play a vital role in such a system. The poly(A) tail used to be regarded as a common modification at the 3' end of mRNA, but it is now known to be more than just that. It appears to act as a platform or hub that can be understood in two ways. On the one hand, polyadenylation and deadenylation machinery constantly regulates its dynamic activity; on the other hand, it exhibits the ability to recruit RNA-binding proteins and then interact with diverse factors to send various signals to regulate mRNA metabolism. In this paper, we outline the main complexes that regulate the dynamic activities of poly(A) tails, explain how these complexes participate polyadenylation/deadenylation process and summarize the diverse signals this hub emit. We are trying to make a point that the poly(A) tail can metaphorically act as a "flagman" who is supervised by polyadenylation and deadenylation and sends out signals to regulate the orderly functioning of mRNA metabolism.
Collapse
Affiliation(s)
- Guiying Zhang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haolin Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quan Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
8
|
Huang M, Yang L, Zhou L, Sun C, Zhao W, Peng J, Jiao Z, Tian C, Guo G. Identification and functional characterization of ORF19.5274, a novel gene involved in both azoles susceptibility and hypha development in Candida albicans. Front Microbiol 2022; 13:990318. [PMID: 36262330 PMCID: PMC9575988 DOI: 10.3389/fmicb.2022.990318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Azole resistance is becoming increasingly serious due to the frequent recurrence of fungal infections and the need for long-term clinical prevention. In our previous study, we discovered ORF19.5274 with an unknown function by TMT™ quantitative proteomics technology after fluconazole (FLC) treatment of Candida albicans. In this study, we created the target gene deletion strain using CRISPR-Cas9 editing technology to see if ORF19.5274 regulates azole sensitivity. The data showed that ORF19.5274 was involved in hyphal development and susceptibility to antifungal azoles. Deleting this gene resulted in defective hyphal growth in solid medium, while only a weak lag in the initiation of hyphal development and restoring hyphal growth during the hyphal maintenance phase under liquid conditions. Moreover, intracellular reactive oxygen species (ROS) assay and propidium iodide staining assays showed increased endogenous ROS levels and membrane permeability, but decreased metabolic activity of biofilm in orf19.5274Δ/Δ after treatment with FLC in comparison with either SC5314 or orf19.5274Δ/Δ::ORF19.5274 strains. More importantly, orf19.5274Δ/Δ significantly enhanced the FLC efficacy against C. albicans in infected Galleria mellonella larvae. The above characteristics were fully or partially restored in the complemented strain indicating that the changes caused by ORF19.5274 deletion were specific. In summary, the ORF19.5274 gene is required for hyphal development of C. albicans, and is correlated with the response to antifungal azoles in vitro and in vivo. The identification of ORF19.5275 is promising to expand the potential candidate targets for azoles.
Collapse
Affiliation(s)
- Mingjiao Huang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Longbing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Luoxiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
| | - Chaoqin Sun
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Laboratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjing Zhao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
| | - Zhenlong Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Chunren Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- *Correspondence: Guo Guo,
| |
Collapse
|
9
|
Liu J, Lu X, Zhang S, Yuan L, Sun Y. Molecular Insights into mRNA Polyadenylation and Deadenylation. Int J Mol Sci 2022; 23:ijms231910985. [PMID: 36232288 PMCID: PMC9570436 DOI: 10.3390/ijms231910985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Poly(A) tails are present on almost all eukaryotic mRNAs, and play critical roles in mRNA stability, nuclear export, and translation efficiency. The biosynthesis and shortening of a poly(A) tail are regulated by large multiprotein complexes. However, the molecular mechanisms of these protein machineries still remain unclear. Recent studies regarding the structural and biochemical characteristics of those protein complexes have shed light on the potential mechanisms of polyadenylation and deadenylation. This review summarizes the recent structural studies on pre-mRNA 3′-end processing complexes that initiate the polyadenylation and discusses the similarities and differences between yeast and human machineries. Specifically, we highlight recent biochemical efforts in the reconstitution of the active human canonical pre-mRNA 3′-end processing systems, as well as the roles of RBBP6/Mpe1 in activating the entire machinery. We also describe how poly(A) tails are removed by the PAN2-PAN3 and CCR4-NOT deadenylation complexes and discuss the emerging role of the cytoplasmic poly(A)-binding protein (PABPC) in promoting deadenylation. Together, these recent discoveries show that the dynamic features of these machineries play important roles in regulating polyadenylation and deadenylation.
Collapse
|
10
|
Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat Cell Biol 2022; 24:968-980. [PMID: 35697785 DOI: 10.1038/s41556-022-00928-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
In mammals, translational control plays critical roles during oocyte-to-embryo transition (OET) when transcription ceases. However, the underlying regulatory mechanisms remain challenging to study. Here, using low-input Ribo-seq (Ribo-lite), we investigated translational landscapes during OET using 30-150 mouse oocytes or embryos per stage. Ribo-lite can also accommodate single oocytes. Combining PAIso-seq to interrogate poly(A) tail lengths, we found a global switch of translatome that closely parallels changes of poly(A) tails upon meiotic resumption. Translation activation correlates with polyadenylation and is supported by polyadenylation signal proximal cytoplasmic polyadenylation elements (papCPEs) in 3' untranslated regions. By contrast, translation repression parallels global de-adenylation. The latter includes transcripts containing no CPEs or non-papCPEs, which encode many transcription regulators that are preferentially re-activated before zygotic genome activation. CCR4-NOT, the major de-adenylation complex, and its key adaptor protein BTG4 regulate translation downregulation often independent of RNA decay. BTG4 is not essential for global de-adenylation but is required for selective gene de-adenylation and production of very short-tailed transcripts. In sum, our data reveal intimate interplays among translation, RNA stability and poly(A) tail length regulation underlying mammalian OET.
Collapse
|
11
|
Pillet B, Méndez-Godoy A, Murat G, Favre S, Stumpe M, Falquet L, Kressler D. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. eLife 2022; 11:74255. [PMID: 35357307 PMCID: PMC8970588 DOI: 10.7554/elife.74255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production. Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.
Collapse
Affiliation(s)
- Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Guillaume Murat
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sébastien Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Krinsky BH, Arthur RK, Xia S, Sosa D, Arsala D, White KP, Long M. Rapid Cis-Trans Coevolution Driven by a Novel Gene Retroposed from a Eukaryotic Conserved CCR4-NOT Component in Drosophila. Genes (Basel) 2021; 13:57. [PMID: 35052398 PMCID: PMC8774992 DOI: 10.3390/genes13010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Young, or newly evolved, genes arise ubiquitously across the tree of life, and they can rapidly acquire novel functions that influence a diverse array of biological processes. Previous work identified a young regulatory duplicate gene in Drosophila, Zeus that unexpectedly diverged rapidly from its parent, Caf40, an extremely conserved component in the CCR4-NOT machinery in post-transcriptional and post-translational regulation of eukaryotic cells, and took on roles in the male reproductive system. This neofunctionalization was accompanied by differential binding of the Zeus protein to loci throughout the Drosophila melanogaster genome. However, the way in which new DNA-binding proteins acquire and coevolve with their targets in the genome is not understood. Here, by comparing Zeus ChIP-Seq data from D. melanogaster and D. simulans to the ancestral Caf40 binding events from D. yakuba, a species that diverged before the duplication event, we found a dynamic pattern in which Zeus binding rapidly coevolved with a previously unknown DNA motif, which we term Caf40 and Zeus-Associated Motif (CAZAM), under the influence of positive selection. Interestingly, while both copies of Zeus acquired targets at male-biased and testis-specific genes, D. melanogaster and D. simulans proteins have specialized binding on different chromosomes, a pattern echoed in the evolution of the associated motif. Using CRISPR-Cas9-mediated gene knockout of Zeus and RNA-Seq, we found that Zeus regulated the expression of 661 differentially expressed genes (DEGs). Our results suggest that the evolution of young regulatory genes can be coupled to substantial rewiring of the transcriptional networks into which they integrate, even over short evolutionary timescales. Our results thus uncover dynamic genome-wide evolutionary processes associated with new genes.
Collapse
Affiliation(s)
- Benjamin H. Krinsky
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA;
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Robert K. Arthur
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Dylan Sosa
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Deanna Arsala
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Kevin P. White
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA
| | - Manyuan Long
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA;
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| |
Collapse
|
13
|
Chen Y, Khazina E, Izaurralde E, Weichenrieder O. Crystal structure and functional properties of the human CCR4-CAF1 deadenylase complex. Nucleic Acids Res 2021; 49:6489-6510. [PMID: 34038562 PMCID: PMC8216464 DOI: 10.1093/nar/gkab414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
The CCR4 and CAF1 deadenylases physically interact to form the CCR4-CAF1 complex and function as the catalytic core of the larger CCR4-NOT complex. Together, they are responsible for the eventual removal of the 3′-poly(A) tail from essentially all cellular mRNAs and consequently play a central role in the posttranscriptional regulation of gene expression. The individual properties of CCR4 and CAF1, however, and their respective contributions in different organisms and cellular environments are incompletely understood. Here, we determined the crystal structure of a human CCR4-CAF1 complex and characterized its enzymatic and substrate recognition properties. The structure reveals specific molecular details affecting RNA binding and hydrolysis, and confirms the CCR4 nuclease domain to be tethered flexibly with a considerable distance between both enzyme active sites. CCR4 and CAF1 sense nucleotide identity on both sides of the 3′-terminal phosphate, efficiently differentiating between single and consecutive non-A residues. In comparison to CCR4, CAF1 emerges as a surprisingly tunable enzyme, highly sensitive to pH, magnesium and zinc ions, and possibly allowing distinct reaction geometries. Our results support a picture of CAF1 as a primordial deadenylase, which gets assisted by CCR4 for better efficiency and by the assembled NOT proteins for selective mRNA targeting and regulation.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| |
Collapse
|
14
|
Kandasamy G, Pradhan AK, Palanimurugan R. Ccr4-Not complex subunits Ccr4, Caf1, and Not4 are novel proteolysis factors promoting the degradation of ubiquitin-dependent substrates by the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119010. [PMID: 33727038 DOI: 10.1016/j.bbamcr.2021.119010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 12/22/2022]
Abstract
Degradation of short-lived and abnormal proteins is essential for normal cellular homeostasis. In eukaryotes, such unstable cellular proteins are selectively degraded by the ubiquitin proteasome system (UPS). Abnormalities in protein degradation by the UPS have been linked to several human diseases. Ccr4, Caf1, and Not4 proteins are known components of the Ccr4-Not multimeric complex. Ccr4 and Caf1 have established roles in transcription, mRNA de-adenylation and RNA degradation etc., while Not4 was shown to have important roles in regulating translation and protein quality control pathways. Here we show that Ccr4, Caf1, and Not4 have a novel function at a post-ubiquitylation step in the UPS pathway by promoting ubiquitin-dependent degradation of short-lived proteins by the 26S proteasome. Using a substrate of the well-studied ubiquitin fusion degradation (UFD) pathway, we found that its UPS-mediated degradation was severely impaired upon deletion of CCR4, CAF1, or NOT4 genes in Saccharomyces cerevisiae. Additionally, we show that Ccr4, Caf1, and Not4 bind to cellular ubiquitin conjugates, and that Ccr4 and Caf1 proteins interact with the proteasome. In contrast to Ccr4, Caf1, and Not4, other subunits of the Ccr4-Not complex are dispensable for UFD substrate degradation. From our findings we conclude that the Ccr4-Not complex subunits Ccr4, Caf1, and Not4 have a novel function outside of the canonical Ccr4-Not complex as a factor targeting ubiquitylated substrates for proteasomal degradation.
Collapse
Affiliation(s)
- Ganapathi Kandasamy
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India.
| | - Ashis Kumar Pradhan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| | - R Palanimurugan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| |
Collapse
|
15
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
16
|
Arvola RM, Chang CT, Buytendorp JP, Levdansky Y, Valkov E, Freddolino L, Goldstrohm AC. Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Nucleic Acids Res 2020; 48:1843-1871. [PMID: 31863588 PMCID: PMC7038932 DOI: 10.1093/nar/gkz1187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.
Collapse
Affiliation(s)
- René M Arvola
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joseph P Buytendorp
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Arae T, Morita K, Imahori R, Suzuki Y, Yasuda S, Sato T, Yamaguchi J, Chiba Y. Identification of Arabidopsis CCR4-NOT Complexes with Pumilio RNA-Binding Proteins, APUM5 and APUM2. PLANT & CELL PHYSIOLOGY 2019; 60:2015-2025. [PMID: 31093672 DOI: 10.1093/pcp/pcz089] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
CCR4/CAF1 are widely conserved deadenylases in eukaryotes. They form a large complex that includes NOT1 as a scaffold protein and various NOT proteins that are core components of multiple levels of gene expression control. The CCR4-NOT complex also contains several RNA-binding proteins as accessory proteins, which are required for target recognition by CCR4/CAF1 deadenylases. AtCCR4a/b, orthologs of human CCR4 in Arabidopsis, have various physiological effects. AtCCR4 isoforms are likely to have specific target mRNAs related to each physiological effect; however, AtCCR4 does not have RNA-binding capability. Therefore, identifying factors that interact with AtCCR4a/b is indispensable to understand its function as a regulator of gene expression, as well as the target mRNA recognition mechanism. Here, we identified putative components of the AtCCR4-NOT complex using co-immunoprecipitation in combination with mass spectrometry using FLAG-tagged AtCCR4b and subsequent verification with a yeast two-hybrid assay. Interestingly, four of 11 AtCAF1 isoforms interacted with both AtCCR4b and AtNOT1, whereas two isoforms interacted only with AtNOT1 in yeast two-hybrid assays. These results imply that Arabidopsis has multiple CCR4-NOT complexes with various combinations of deadenylases. We also revealed that the RNA-binding protein Arabidopsis Pumilio 5 and 2 interacted with AtCCR4a/b in the cytoplasm with a few foci.
Collapse
Affiliation(s)
- Toshihiro Arae
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Kotone Morita
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Riko Imahori
- School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Yuya Suzuki
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Shigetaka Yasuda
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Takeo Sato
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Junji Yamaguchi
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- JST PRESTO, Kawaguchi, Japan
| |
Collapse
|
18
|
Wild P, Susperregui A, Piazza I, Dörig C, Oke A, Arter M, Yamaguchi M, Hilditch AT, Vuina K, Chan KC, Gromova T, Haber JE, Fung JC, Picotti P, Matos J. Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis. Mol Cell 2019; 75:859-874.e4. [PMID: 31351878 PMCID: PMC6715774 DOI: 10.1016/j.molcel.2019.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.
Collapse
Affiliation(s)
- Philipp Wild
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Aitor Susperregui
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ilaria Piazza
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Christian Dörig
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ashwini Oke
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Meret Arter
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Miyuki Yamaguchi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | - Alexander T Hilditch
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Karla Vuina
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ki Choi Chan
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Tatiana Gromova
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | - Jennifer C Fung
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Paola Picotti
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
19
|
Reconstitution of recombinant human CCR4-NOT reveals molecular insights into regulated deadenylation. Nat Commun 2019; 10:3173. [PMID: 31320642 PMCID: PMC6639331 DOI: 10.1038/s41467-019-11094-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
CCR4-NOT is a conserved multiprotein complex which regulates eukaryotic gene expression principally via shortening of poly(A) tails of messenger RNA or deadenylation. Here, we reconstitute a complete, recombinant human CCR4-NOT complex. Our reconstitution strategy permits strict compositional control to test mechanistic hypotheses with purified component variants. CCR4-NOT is more active and selective for poly(A) than the isolated exonucleases, CCR4a and CAF1, which have distinct deadenylation profiles in vitro. The exonucleases require at least two out of three conserved non-enzymatic modules (CAF40, NOT10:NOT11 or NOT) for full activity in CCR4-NOT. CAF40 and the NOT10:NOT11 module both bind RNA directly and stimulate deadenylation in a partially redundant manner. Linear motifs from different RNA-binding factors that recruit CCR4-NOT to specific mRNAs via protein-protein interactions with CAF40 can inhibit bulk deadenylation. We reveal an additional layer of regulatory complexity to the human deadenylation machinery, which may prime it either for general or target-specific degradation. The CCR4-NOT complex shortens poly(A) tails of messenger RNAs. By biochemical reconstitution of the entire human CCR4-NOT complex, the authors show the stimulatory roles of non-enzymatic subunits and the importance of the interaction between CAF40 and RNA binding proteins in targeted deadenylation.
Collapse
|
20
|
Abstract
The Ccr4-Not complex is an essential multi-subunit protein complex that plays a fundamental role in eukaryotic mRNA metabolism and has a multitude of different roles that impact eukaryotic gene expression . It has a conserved core of three Not proteins, the Ccr4 protein, and two Ccr4 associated factors, Caf1 and Caf40. A fourth Not protein, Not4, is conserved, but is only a stable subunit of the complex in yeast. Certain subunits have been duplicated during evolution, with functional divergence, such as Not3 in yeast, and Ccr4 or Caf1 in human. However the complex includes only one homolog for each protein. In addition, species-specific subunits are part of the complex, such as Caf130 in yeast or Not10 and Not11 in human. Two conserved catalytic functions are associated with the complex, deadenylation and ubiquitination . The complex adopts an L-shaped structure, in which different modules are bound to a large Not1 scaffold protein. In this chapter we will summarize our current knowledge of the architecture of the complex and of the structure of its constituents.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland.
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, Switzerland
| |
Collapse
|
21
|
Keskeny C, Raisch T, Sgromo A, Igreja C, Bhandari D, Weichenrieder O, Izaurralde E. A conserved CAF40-binding motif in metazoan NOT4 mediates association with the CCR4-NOT complex. Genes Dev 2019; 33:236-252. [PMID: 30692204 PMCID: PMC6362812 DOI: 10.1101/gad.320952.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022]
Abstract
The multisubunit CCR4-NOT mRNA deadenylase complex plays important roles in the posttranscriptional regulation of gene expression. The NOT4 E3 ubiquitin ligase is a stable component of the CCR4-NOT complex in yeast but does not copurify with the human or Drosophila melanogaster complex. Here we show that the C-terminal regions of human and D. melanogaster NOT4 contain a conserved sequence motif that directly binds the CAF40 subunit of the CCR4-NOT complex (CAF40-binding motif [CBM]). In addition, nonconserved sequences flanking the CBM also contact other subunits of the complex. Crystal structures of the CBM-CAF40 complex reveal a mutually exclusive binding surface for NOT4 and Roquin or Bag of marbles mRNA regulatory proteins. Furthermore, CAF40 depletion or structure-guided mutagenesis to disrupt the NOT4-CAF40 interaction impairs the ability of NOT4 to elicit decay of tethered reporter mRNAs in cells. Together with additional sequence analyses, our results reveal the molecular basis for the association of metazoan NOT4 with the CCR4-NOT complex and show that it deviates substantially from yeast. They mark the NOT4 ubiquitin ligase as an ancient but nonconstitutive cofactor of the CCR4-NOT deadenylase with potential recruitment and/or effector functions.
Collapse
Affiliation(s)
- Csilla Keskeny
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Annamaria Sgromo
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| |
Collapse
|
22
|
Groves JA, Gillman C, DeLay CN, Kroll TT. Identification of Novel Binding Partners for Transcription Factor Emx2. Protein J 2019; 38:2-11. [PMID: 30628007 DOI: 10.1007/s10930-019-09810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mammalian homolog of Drosophila empty spiracles 2 (Emx2) is a homeobox transcription factor that plays central roles in early development of the inner ear, pelvic and shoulder girdles, cerebral cortex, and urogenital organs. The role for Emx2 is best understood within the context of the development of the neocortical region of the cortex, where Emx2 is expressed in a high posterior-medial to low anterior-lateral gradient that regulates the partitioning of the neocortex into different functional fields that perform discrete computational tasks. Despite several lines of evidence demonstrating an Emx2 concentration-dependent mechanism for establishing functional areas within the developing neocortex, little is known about how Emx2 physically carries out this role. Although several binding partners for Emx2 have been identified (including Sp8, eIF4E, and Pbx1), no screens have been used to identify potential protein binding partners for this protein. We utilized a yeast two-hybrid screen using a library constructed from embryonic mouse cDNA in an attempt to identify novel binding partners for Emx2. This initial screen isolated two potential Emx2-binding partner proteins, Cnot6l and QkI-7. These novel Emx2-binding proteins are involved in multiple levels of mRNA metabolism that including splicing, mRNA export, translation, and destruction, thus making them interesting targets for further study.
Collapse
Affiliation(s)
- Jennifer A Groves
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA
| | - Cody Gillman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 157 Broad Center, M/C, Pasadena, USA
| | - Cierra N DeLay
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA
| | - Todd T Kroll
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA.
| |
Collapse
|
23
|
Raisch T, Sandmeir F, Weichenrieder O, Valkov E, Izaurralde E. Structural and biochemical analysis of a NOT1 MIF4G-like domain of the CCR4-NOT complex. J Struct Biol 2018; 204:388-395. [PMID: 30367941 DOI: 10.1016/j.jsb.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
The CCR4-NOT complex plays a central role in the regulation of gene expression and degradation of messenger RNAs. The multisubunit complex assembles on the NOT1 protein, which acts as a 'scaffold' and is highly conserved in eukaryotes. NOT1 consists of a series of helical domains that serve as docking sites for other CCR4-NOT subunits. We describe a crystal structure of a connector domain of NOT1 from the thermophilic fungus Chaetomium thermophilum (Ct). Comparative structural analysis indicates that this domain adopts a MIF4G-like fold and we have termed it the MIF4G-C domain. Solution scattering studies indicate that the human MIF4G-C domain likely adopts a very similar fold to the Ct MIF4G-C. MIF4G domains have been described to mediate interactions with DEAD-box helicases such as DDX6. However, comparison of the interfaces of the MIF4G-C with the MIF4G domain of NOT1 that interacts with DDX6 reveals key structural differences that explain why the MIF4G-C does not bind DDX6. We further show that the human MIF4G-C does not interact stably with other subunits of the CCR4-NOT complex. The structural conservation of the MIF4G-C domain suggests that it may have an important but presently undefined role in the CCR4-NOT complex.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Felix Sandmeir
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Comprehensive Identification of Nuclear and Cytoplasmic TNRC6A-Associating Proteins. J Mol Biol 2017; 429:3319-3333. [DOI: 10.1016/j.jmb.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
|
25
|
Collart MA, Kassem S, Villanyi Z. Mutations in the NOT Genes or in the Translation Machinery Similarly Display Increased Resistance to Histidine Starvation. Front Genet 2017; 8:61. [PMID: 28588606 PMCID: PMC5439007 DOI: 10.3389/fgene.2017.00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022] Open
Abstract
The NOT genes encode subunits of the conserved Ccr4-Not complex, a global regulator of gene expression, and in particular of mRNA metabolism. They were originally identified in a selection for increased resistance to histidine starvation in the yeast S. cerevisiae. Recent work indicated that the Not5 subunit, ortholog of mammalian CNOT3, determines global translation levels by defining binding of the Ccr4-Not scaffold protein Not1 to ribosomal mRNAs during transcription. This is needed for optimal translation of ribosomal proteins. In this work we searched for mutations in budding yeast that were resistant to histidine starvation using the same selection that originally led to the isolation of the NOT genes. We thereby isolated mutations in ribosome-related genes. This common phenotype of ribosome mutants and not mutants is in good agreement with the positive role of the Not proteins for translation. In this regard, it is interesting that frequent mutations in RPL5 and RPL10 or in CNOT3 have been observed to accumulate in adult T-cell acute lymphoblastic leukemia (T-ALL). This suggests that in metazoans a common function implicating ribosome subunits and CNOT3 plays a role in the development of cancer. In this perspective we suggest that the Ccr4-Not complex, according to translation levels and fidelity, could itself be involved in the regulation of amino acid biosynthesis levels. We discuss how this could explain why mutations have been identified in many cancers.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire (CMU), Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Sari Kassem
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire (CMU), Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Zoltan Villanyi
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire (CMU), Faculty of Medicine, University of GenevaGeneva, Switzerland
| |
Collapse
|
26
|
Goossens J, De Geyter N, Walton A, Eeckhout D, Mertens J, Pollier J, Fiallos-Jurado J, De Keyser A, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Goormachtig S, Goossens A. Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:476-489. [PMID: 27377668 DOI: 10.1111/tpj.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 05/26/2023]
Abstract
Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most powerful techniques to isolate protein complexes and elucidate protein interaction networks. Here, we describe the development of a TAP-MS strategy for the model legume Medicago truncatula, which is widely studied for its ability to produce valuable natural products and to engage in endosymbiotic interactions. As biological material, transgenic hairy roots, generated through Agrobacterium rhizogenes-mediated transformation of M. truncatula seedlings, were used. As proof of concept, proteins involved in the cell cycle, transcript processing and jasmonate signalling were chosen as bait proteins, resulting in a list of putative interactors, many of which confirm the interologue concept of protein interactions, and which can contribute to biological information about the functioning of these bait proteins in planta. Subsequently, binary protein-protein interactions among baits and preys, and among preys were confirmed by a systematic yeast two-hybrid screen. Together, by establishing a M. truncatula TAP-MS platform, we extended the molecular toolbox of this model species.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Nathan De Geyter
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alan Walton
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jan Mertens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jennifer Fiallos-Jurado
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
27
|
Ukleja M, Valpuesta JM, Dziembowski A, Cuellar J. Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: New structural insights to unravel CCR4-NOT mRNA processing machinery. Bioessays 2016; 38:1048-58. [PMID: 27502453 DOI: 10.1002/bies.201600092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery.
Collapse
Affiliation(s)
- Marta Ukleja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland. .,Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain. .,Institute of Structural and Molecular Biology, University College London and Birkbeck, London, UK.
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
28
|
Collart MA. The Ccr4-Not complex is a key regulator of eukaryotic gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:438-54. [PMID: 26821858 PMCID: PMC5066686 DOI: 10.1002/wrna.1332] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
The Ccr4‐Not complex is a multisubunit complex present in all eukaryotes that contributes to regulate gene expression at all steps, from production of messenger RNAs (mRNAs) in the nucleus to their degradation in the cytoplasm. In the nucleus it influences the post‐translational modifications of the chromatin template that has to be remodeled for transcription, it is present at sites of transcription and associates with transcription factors as well as with the elongating polymerase, it interacts with the factors that prepare the new transcript for export to the cytoplasm and finally is important for nuclear quality control and influences mRNA export. In the cytoplasm it is present in polysomes where mRNAs are translated and in RNA granules where mRNAs will be redirected upon inhibition of translation. It influences mRNA translatability, and is needed during translation, on one hand for co‐translational protein interactions and on the other hand to preserve translation that stalls. It is one of the relevant players during co‐translational quality control. It also interacts with factors that will repress translation or induce mRNA decapping when recruited to the translating template. Finally, Ccr4‐Not carries deadenylating enzymes and is a key player in mRNA decay, generic mRNA decay that follows normal translation termination, co‐translational mRNA decay of transcripts on which the ribosomes stall durably or which carry a non‐sense mutation and finally mRNA decay that is induced by external signaling for a change in genetic programming. Ccr4‐Not is a master regulator of eukaryotic gene expression. WIREs RNA 2016, 7:438–454. doi: 10.1002/wrna.1332 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Martine A Collart
- Department Microbiology and Molecular Medicine, CMU, Geneva, Switzerland.,Institute of Genetics and Genomics, Geneva, Switzerland
| |
Collapse
|
29
|
The architecture of the Schizosaccharomyces pombe CCR4-NOT complex. Nat Commun 2016; 7:10433. [PMID: 26804377 PMCID: PMC4737751 DOI: 10.1038/ncomms10433] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/11/2015] [Indexed: 11/08/2022] Open
Abstract
CCR4-NOT is a large protein complex present both in cytoplasm and the nucleus of eukaryotic cells. Although it is involved in a variety of distinct processes related to expression of genetic information such as poly(A) tail shortening, transcription regulation, nuclear export and protein degradation, there is only fragmentary information available on some of its nine subunits. Here we show a comprehensive structural characterization of the native CCR4-NOT complex from Schizosaccharomyces pombe. Our cryo-EM 3D reconstruction of the complex, combined with techniques such as immunomicroscopy, RNA-nanogold labelling, docking of the available high-resolution structures and models of different subunits and domains, allow us to propose its full molecular architecture. We locate all functionally defined domains endowed with deadenylating and ubiquitinating activities, the nucleus-specific RNA-interacting subunit Mmi1, as well as surfaces responsible for protein–protein interactions. This information provides insight into cooperation of the different CCR4-NOT complex functions. CCR4-NOT is a protein complex involved in a variety of important genetic processes. Here, the authors report the mid-resolution structure of this complex, and model the positions and contacts between the subunits, providing structural support for the previously reported functions of the complex.
Collapse
|
30
|
Bui DC, Son H, Shin JY, Kim JC, Kim H, Choi GJ, Lee YW. The FgNot3 Subunit of the Ccr4-Not Complex Regulates Vegetative Growth, Sporulation, and Virulence in Fusarium graminearum. PLoS One 2016; 11:e0147481. [PMID: 26799401 PMCID: PMC4723064 DOI: 10.1371/journal.pone.0147481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/05/2016] [Indexed: 01/23/2023] Open
Abstract
The Ccr4-Not complex is evolutionarily conserved and important for multiple cellular functions in eukaryotic cells. In this study, the biological roles of the FgNot3 subunit of this complex were investigated in the plant pathogenic fungus Fusarium graminearum. Deletion of FgNOT3 resulted in retarded vegetative growth, retarded spore germination, swollen hyphae, and hyper-branching. The ΔFgnot3 mutants also showed impaired sexual and asexual sporulation, decreased virulence, and reduced expression of genes related to conidiogenesis. Fgnot3 deletion mutants were sensitive to thermal stress, whereas NOT3 orthologs in other model eukaryotes are known to be required for cell wall integrity. We found that FgNot3 functions as a negative regulator of the production of secondary metabolites, including trichothecenes and zearalenone. Further functional characterization of other components of the Not module of the Ccr4-Not complex demonstrated that the module is conserved. Each subunit primarily functions within the context of a complex and might have distinct roles outside of the complex in F. graminearum. This is the first study to functionally characterize the Not module in filamentous fungi and provides novel insights into signal transduction pathways in fungal development.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Ji Young Shin
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hun Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Abstract
In this mini-review, we summarize our current knowledge about the cross-talk between the different levels of gene expression. We introduce the Ccr4 (carbon catabolite repressed 4)–Not (negative on TATA-less) complex as a candidate to be a master regulator that orchestrates between the different levels of gene expression. An integrated view of the findings about the Ccr4–Not complex suggests that it is involved in gene expression co-ordination. Since the discovery of the Not proteins in a selection for transcription regulators in yeast [Collart and Struhl (1994) Genes Dev. 8, 525–537], the Ccr4–Not complex has been connected to every step of the mRNA lifecycle. Moreover, it has been found to be relevant for appropriate protein folding and quaternary protein structure by being involved in co-translational protein complex assembly.
Collapse
|
32
|
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2015; 11:1122-36. [PMID: 25483043 DOI: 10.4161/rna.34406] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.
Collapse
Affiliation(s)
- Aleksandra Siwaszek
- a Institute of Biochemistry and Biophysics ; Polish Academy of Sciences ; Warsaw , Poland
| | | | | |
Collapse
|
33
|
Preissler S, Reuther J, Koch M, Scior A, Bruderek M, Frickey T, Deuerling E. Not4-dependent translational repression is important for cellular protein homeostasis in yeast. EMBO J 2015; 34:1905-24. [PMID: 25971775 DOI: 10.15252/embj.201490194] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/12/2015] [Indexed: 11/09/2022] Open
Abstract
Translation of aberrant or problematic mRNAs can cause ribosome stalling which leads to the production of truncated or defective proteins. Therefore, cells evolved cotranslational quality control mechanisms that eliminate these transcripts and target arrested nascent polypeptides for proteasomal degradation. Here we show that Not4, which is part of the multifunctional Ccr4-Not complex in yeast, associates with polysomes and contributes to the negative regulation of protein synthesis. Not4 is involved in translational repression of transcripts that cause transient ribosome stalling. The absence of Not4 affected global translational repression upon nutrient withdrawal, enhanced the expression of arrested nascent polypeptides and caused constitutive protein folding stress and aggregation. Similar defects were observed in cells with impaired mRNA decapping protein function and in cells lacking the mRNA decapping activator and translational repressor Dhh1. The results suggest a role for Not4 together with components of the decapping machinery in the regulation of protein expression on the mRNA level and emphasize the importance of translational repression for the maintenance of proteome integrity.
Collapse
Affiliation(s)
- Steffen Preissler
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Julia Reuther
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Miriam Koch
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Annika Scior
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Michael Bruderek
- Molecular Microbiology, University of Konstanz, Konstanz, Germany
| | - Tancred Frickey
- Applied Bioinformatics, University of Konstanz, Konstanz, Germany
| | - Elke Deuerling
- Molecular Microbiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
34
|
Bhaskar V, Basquin J, Conti E. Architecture of the ubiquitylation module of the yeast Ccr4-Not complex. Structure 2015; 23:921-928. [PMID: 25914052 PMCID: PMC4431670 DOI: 10.1016/j.str.2015.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/25/2022]
Abstract
The Ccr4-Not complex regulates eukaryotic gene expression at multiple levels, including mRNA turnover, translational repression, and transcription. We have studied the ubiquitylation module of the yeast Ccr4-Not complex and addressed how E3 ligase binds cognate E2 and how it is tethered to the complex. The 2.8-Å resolution crystal structure of the N-terminal RING domain of Not4 in complex with Ubc4 shows the detailed interactions of this E3-E2 complex. The 3.6-Å resolution crystal structure of the C-terminal domain of the yeast Not4 in complex with the C-terminal domain of Not1 reveals how a largely extended region at the C-terminus of Not4 wraps around a HEAT-repeat region of Not1. This C-terminal region of Not4 is only partly conserved in metazoans, rationalizing its weaker Not1-binding properties. The structural and biochemical data show how Not1 can incorporate both the ubiquitylation module and the Not2-Not3/5 module concomitantly in the Ccr4-Not complex. The Not1 C-terminal domain tethers the Not4 ubiquitylation module to yeast Ccr4-Not A low-complexity region of Not4 wraps around the C-terminal HEAT repeats of Not1 In metazoans, Not4 lacks residues that confer high affinity binding to Not1 in yeast Not1C can recruit Not4 and Not2-Not5 concomitantly to the Ccr4-Not complex
Collapse
Affiliation(s)
- Varun Bhaskar
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Munich, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Munich, Germany.
| |
Collapse
|
35
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
36
|
López-Rosas I, Marchat LA, Olvera BG, Guillen N, Weber C, Hernández de la Cruz O, Ruíz-García E, Astudillo-de la Vega H, López-Camarillo C. Proteomic analysis identifies endoribouclease EhL-PSP and EhRRP41 exosome protein as novel interactors of EhCAF1 deadenylase. J Proteomics 2014; 111:59-73. [PMID: 24998979 DOI: 10.1016/j.jprot.2014.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/31/2014] [Accepted: 06/20/2014] [Indexed: 01/17/2023]
Abstract
UNLABELLED In higher eukaryotic cells mRNA degradation initiates by poly(A) tail shortening catalyzed by deadenylases CAF1 and CCR4. In spite of the key role of mRNA turnover in gene expression regulation, the underlying mechanisms remain poorly understood in parasites. Here, we aimed to study the function of EhCAF1 and identify associated proteins in Entamoeba histolytica. By biochemical assays, we evidenced that EhCAF1 has both RNA binding and deadenylase activities in vitro. EhCAF1 was located in cytoplasmic P-bodies that increased in number and size after cellular stress induced by DNA damage, heat shock, and nitric oxide. Using pull-down assays and ESI-MS/MS mass spectrometry, we identified 15 potential EhCAF1-interacting proteins, including the endoribonuclease EhL-PSP. Remarkably, EhCAF1 colocalized with EhL-PSP in cytoplasmic P-bodies in trophozoites. Bioinformatic analysis of EhL-PSP network proteins predicts a potential interaction with EhRRP41 exosome protein. Consistently, we evidenced that EhL-PSP colocalizes and physically interacts with EhRRP41. Strikingly, EhRRP41 did not coimmunoprecipitate EhCAF1, suggesting the existence of two EhL-PSP-containing complexes. In conclusion, our results showed novel interactions between mRNA degradation proteins and evidenced for the first time that EhCAF1 is a functional deadenylase that interacts with EhL-PSP endoribonuclease in P-bodies, while EhL-PSP interacts with EhRRP41 exosome protein in this early-branched eukaryote. BIOLOGICAL SIGNIFICANCE This study provides evidences for the functional deadenylase activity of EhCAF1 and shows a link between different mRNA degradation proteins in E. histolytica. By proteomic tools and pull down assays, we evidenced that EhCAF1 interacts with the putative endoribonuclease EhL-PSP, which in turn interacts with exosome EhRRP41 protein. Our data suggest for the first time the presence of two complexes, one containing the endoribonuclease EhL-PSP and the deadenylase EhCAF1 in P-bodies; and another containing the endoribonuclease EhL-PSP and the exosome EhRRP41 exoribonuclease. Overall, these results provide novel data that may help to understand mRNA decay mechanisms in this parasite.
Collapse
Affiliation(s)
- Itzel López-Rosas
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico; Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Laurence A Marchat
- Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico; Institutional Program of Molecular Biomedicine, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Beatriz Gallo Olvera
- Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico; Institutional Program of Molecular Biomedicine, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Nancy Guillen
- Unit of Cell Biology for Parasitism, Pasteur Institute, Paris, France; INSERM U786, Paris, France
| | - Christian Weber
- Unit of Cell Biology for Parasitism, Pasteur Institute, Paris, France; INSERM U786, Paris, France
| | | | - Erika Ruíz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, Oncology Hospital, Medical Center Siglo XXI, Mexico City, Mexico
| | - César López-Camarillo
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico.
| |
Collapse
|
37
|
Shirai YT, Suzuki T, Morita M, Takahashi A, Yamamoto T. Multifunctional roles of the mammalian CCR4-NOT complex in physiological phenomena. Front Genet 2014; 5:286. [PMID: 25191340 PMCID: PMC4139912 DOI: 10.3389/fgene.2014.00286] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023] Open
Abstract
The carbon catabolite repression 4 (CCR4)–negative on TATA-less (NOT) complex serves as one of the major deadenylases of eukaryotes. Although it was originally identified and characterized in yeast, recent studies have revealed that the CCR4–NOT complex also exerts important functions in mammals, -including humans. However, there are some differences in the composition and functions of the CCR4–NOT complex between mammals and yeast. It is noteworthy that each subunit of the CCR4–NOT complex has unique, multifunctional roles and is responsible for various physiological phenomena. This heterogeneity and versatility of the CCR4–NOT complex makes an overall understanding of this complex difficult. Here, we describe the functions of each subunit of the mammalian CCR4–NOT complex and discuss the molecular mechanisms by which it regulates homeostasis in mammals. Furthermore, a possible link between the disruption of the CCR4–NOT complex and various diseases will be discussed. Finally, we propose that the analysis of mice with each CCR4–NOT subunit knocked out is an effective strategy for clarifying its complicated functions and networks in mammals.
Collapse
Affiliation(s)
- Yo-Taro Shirai
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Toru Suzuki
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Masahiro Morita
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Goodman Cancer Research Centre, McGill University Montreal, QC, Canada
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| |
Collapse
|
38
|
Dephoure N, Hwang S, O'Sullivan C, Dodgson SE, Gygi SP, Amon A, Torres EM. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife 2014; 3:e03023. [PMID: 25073701 PMCID: PMC4129440 DOI: 10.7554/elife.03023] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aneuploidy causes severe developmental defects and is a near universal feature of tumor cells. Despite its profound effects, the cellular processes affected by aneuploidy are not well characterized. Here, we examined the consequences of aneuploidy on the proteome of aneuploid budding yeast strains. We show that although protein levels largely scale with gene copy number, subunits of multi-protein complexes are notable exceptions. Posttranslational mechanisms attenuate their expression when their encoding genes are in excess. Our proteomic analyses further revealed a novel aneuploidy-associated protein expression signature characteristic of altered metabolism and redox homeostasis. Indeed aneuploid cells harbor increased levels of reactive oxygen species (ROS). Interestingly, increased protein turnover attenuates ROS levels and this novel aneuploidy-associated signature and improves the fitness of most aneuploid strains. Our results show that aneuploidy causes alterations in metabolism and redox homeostasis. Cells respond to these alterations through both transcriptional and posttranscriptional mechanisms. DOI:http://dx.doi.org/10.7554/eLife.03023.001 Nearly all tumor cells contain abnormal number of chromosomes. This state is called aneuploidy, and can also cause embryos to be miscarried, or to be born with severe developmental disorders. Proteins are produced from the genes contained within chromosomes, and so cells with too many chromosomes produce too many of some proteins. How do these cells cope with this excess? Previous work identified one strategy where a gene called UBP6 is mutated to prevent it from working correctly. The UBP6 gene normally encodes a protein that removes a small tag (called ubiquitin) from other proteins. This tag normally marks other proteins that should be degraded; thus, if UBP6 is not working, more proteins are broken down. Dephoure et al. investigated the effect of aneuploidy on the proteins produced by 12 different types of yeast cell, which each had an extra chromosome. In general, the amount of each protein produced by these yeast increased depending on the number of extra copies of the matching genes found on the extra chromosome. However, this was not the case for around 20% of the proteins, which were found in lower amounts than expected. Dephoure et al. revealed that this was not because fewer proteins were made, but because more were broken down. These proteins may be targeted for degradation because they are unstable, as many of these proteins need to bind to other proteins to keep them stable—but these stabilizing proteins are not also over-produced. Aneuploidy in cells also has other effects, including changing the cells' metabolism so that the cells grow more slowly and do not respond as well to stress. However, Dephoure et al. found that, as well as reducing the number of proteins produced, deleting the UBP6 gene also increased the fitness of the cells. Targeting the protein encoded by the UBP6 gene, or others that also stop proteins being broken down, could therefore help to reduce the negative effects of aneuploidy for a cell. Whether targeting these genes or proteins could also help to treat the diseases and disorders that result from aneuploidy, such as Alzheimer's and Huntington's disease, remains to be investigated. DOI:http://dx.doi.org/10.7554/eLife.03023.002
Collapse
Affiliation(s)
- Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Sunyoung Hwang
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, United States
| | - Ciara O'Sullivan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, United States
| | - Stacie E Dodgson
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Eduardo M Torres
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
39
|
Chapat C, Corbo L. Novel roles of the CCR4-NOT complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:883-901. [PMID: 25044499 DOI: 10.1002/wrna.1254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
Abstract
The CCR4-NOT complex is a multi-subunit protein complex evolutionarily conserved across eukaryotes which regulates several aspects of gene expression. A fascinating model is emerging in which this complex acts as a regulation platform, controlling gene products 'from birth to death' through the coordination of different cellular machineries involved in diverse cellular functions. Recently the CCR4-NOT functions have been extended to the control of the innate immune response through the regulation of interferon signaling. Thus, a more comprehensive picture of how CCR4-NOT allows the rapid adaptation of cells to external stress, from transcription to mRNA and protein decay, is presented and discussed here. Overall, CCR4-NOT permits the efficient and rapid adaptation of cellular gene expression in response to changes in environmental conditions and stimuli.
Collapse
Affiliation(s)
- Clément Chapat
- Université Lyon 1, Lyon, France; CNRS UMR 5286, Lyon, France; Inserm U1052, Lyon, France; Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | | |
Collapse
|
40
|
Temme C, Simonelig M, Wahle E. Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Front Genet 2014; 5:143. [PMID: 24904643 PMCID: PMC4033318 DOI: 10.3389/fgene.2014.00143] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/02/2014] [Indexed: 11/13/2022] Open
Abstract
Controlled shortening of the poly(A) tail of mRNAs is the first step in eukaryotic mRNA decay and can also be used for translational inactivation of mRNAs. The CCR4-NOT complex is the most important among a small number of deadenylases, enzymes catalyzing poly(A) tail shortening. Rates of poly(A) shortening differ between mRNAs as the CCR4-NOT complex is recruited to specific mRNAs by means of either sequence-specific RNA binding proteins or miRNAs. This review summarizes our current knowledge concerning the subunit composition and deadenylation activity of the Drosophila CCR4-NOT complex and the mechanisms by which the complex is recruited to particular mRNAs. We discuss genetic data implicating the complex in the regulation of specific mRNAs, in particular in the context of development.
Collapse
Affiliation(s)
- Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg Halle, Germany
| | - Martine Simonelig
- Genetics and Development, Institute of Human Genetics - CNRS UPR1142 Montpellier, France
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg Halle, Germany
| |
Collapse
|
41
|
Childers DS, Mundodi V, Banerjee M, Kadosh D. A 5' UTR-mediated translational efficiency mechanism inhibits the Candida albicans morphological transition. Mol Microbiol 2014; 92:570-85. [PMID: 24601998 DOI: 10.1111/mmi.12576] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2014] [Indexed: 01/09/2023]
Abstract
While virulence properties of Candida albicans, the most commonly isolated human fungal pathogen, are controlled by transcriptional and post-translational mechanisms, considerably little is known about the role of post-transcriptional, and particularly translational, mechanisms. We demonstrate that UME6, a key filament-specific transcriptional regulator whose expression level is sufficient to determine C. albicans morphology and promote virulence, has one of the longest 5' untranslated regions (UTRs) identified in fungi to date, which is predicted to form a complex and extremely stable secondary structure. The 5' UTR inhibits the ability of UME6, when expressed at constitutive high levels, to drive complete hyphal growth, but does not cause a reduction in UME6 transcript. Deletion of the 5' UTR increases C. albicans filamentation under a variety of conditions but does not affect UME6 transcript level or induction kinetics. We show that the 5' UTR functions to inhibit Ume6 protein expression under several filament-inducing conditions and specifically reduces association of the UME6 transcript with polysomes. Overall, our findings suggest that translational efficiency mechanisms, known to regulate diverse biological processes in bacterial and viral pathogens as well as higher eukaryotes, have evolved to inhibit and fine-tune morphogenesis, a key virulence trait of many human fungal pathogens.
Collapse
Affiliation(s)
- Delma S Childers
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., MC: 7758, San Antonio, TX, 78229-3900, USA
| | | | | | | |
Collapse
|
42
|
Nyambega B, Helbig C, Masiga DK, Clayton C, Levin MJ. Proteins associated with SF3a60 in T. brucei. PLoS One 2014; 9:e91956. [PMID: 24651488 PMCID: PMC3961280 DOI: 10.1371/journal.pone.0091956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/18/2014] [Indexed: 12/29/2022] Open
Abstract
Trypanosoma brucei relies on Spliced leader trans splicing to generate functional messenger RNAs. Trans splicing joins the specialized SL exon from the SL RNA to pre-mRNAs and is mediated by the trans-spliceosome, which is made up of small nuclear ribonucleoprotein particles and non-snRNP factors. Although the trans spliceosome is essential for trypanosomatid gene expression, not all spliceosomal protein factors are known and of these, only a few are completely characterized. In this study, we have characterized the trypanosome Splicing Factor, SF3a60, the only currently annotated SF3a component. As expected, epitope-tagged SF3a60 localizes in the trypanosome nucleus. SF3a60 is essential for cell viability but its depletion seem to have no detectable effect on trans-splicing. In addition, we used SF3a60 as bait in a Yeast-2-hybrid system screen and identified its interacting protein factors. The interactions with SF3a120, SF3a66 and SAP130 were confirmed by tandem affinity purification and mass spectrometry.
Collapse
Affiliation(s)
- Benson Nyambega
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigacíones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
- Molecular Biology and Biotechnology Department, International Center for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Claudia Helbig
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Daniel K. Masiga
- Molecular Biology and Biotechnology Department, International Center for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Mariano J. Levin
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigacíones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
| |
Collapse
|
43
|
Winkler GS, Balacco DL. Heterogeneity and complexity within the nuclease module of the Ccr4-Not complex. Front Genet 2013; 4:296. [PMID: 24391663 PMCID: PMC3870282 DOI: 10.3389/fgene.2013.00296] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/04/2013] [Indexed: 11/13/2022] Open
Abstract
The shortening of the poly(A) tail of cytoplasmic mRNA (deadenylation) is a pivotal step in the regulation of gene expression in eukaryotic cells. Deadenylation impacts on both regulated mRNA decay as well as the rate of mRNA translation. An important enzyme complex involved in poly(A) shortening is the Ccr4-Not deadenylase. In addition to at least six non-catalytic subunits, it contains two distinct subunits with ribonuclease activity: a Caf1 subunit, characterized by a DEDD (Asp-Glu-Asp-Asp) domain, and a Ccr4 component containing an endonuclease-exonuclease-phosphatase (EEP) domain. In vertebrate cells, the complexity of the complex is further increased by the presence of paralogs of the Caf1 subunit (encoded by either CNOT7 or CNOT8) and the occurrence of two Ccr4 paralogs (encoded by CNOT6 or CNOT6L). In plants, there are also multiple Caf1 and Ccr4 paralogs. Thus, the composition of the Ccr4-Not complex is heterogeneous. The potential differences in the intrinsic enzymatic activities of the paralogs will be discussed. In addition, the potential redundancy, cooperation, and/or the extent of unique roles for the deadenylase subunits of the Ccr4-Not complex will be reviewed. Finally, novel approaches to study the catalytic roles of the Caf1 and Ccr4 subunits will be discussed.
Collapse
Affiliation(s)
- G Sebastiaan Winkler
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park Nottingham, UK
| | - Dario L Balacco
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park Nottingham, UK
| |
Collapse
|
44
|
Panepinto JC, Heinz E, Traven A. The cellular roles of Ccr4-NOT in model and pathogenic fungi-implications for fungal virulence. Front Genet 2013; 4:302. [PMID: 24391665 PMCID: PMC3868889 DOI: 10.3389/fgene.2013.00302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
The fungal Ccr4-NOT complex has been implicated in orchestrating gene expression networks that impact on pathways key for virulence in pathogenic species. The activity of Ccr4-NOT regulates cell wall integrity, antifungal drug susceptibility, adaptation to host temperature, and the developmental switches that enable the formation of pathogenic structures, such as filamentous hyphae. Moreover, Ccr4-NOT impacts on DNA repair pathways and genome stability, opening the possibility that this gene regulator could control adaptive responses in pathogens that are driven by chromosomal alterations. Here we provide a synthesis of the cellular roles of the fungal Ccr4-NOT, focusing on pathways important for virulence toward animals. Our review is based on studies in models yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and two species that cause serious human infections, Candida albicans and Cryptococcus neoformans. We hypothesize that the activity of Ccr4-NOT could be targeted for future antifungal drug discovery, a proposition supported by the fact that inactivation of the genes encoding subunits of Ccr4-NOT in C. albicans and C. neoformans reduces virulence in the mouse infection model. We performed bioinformatics analysis to identify similarities and differences between Ccr4-NOT subunits in fungi and animals, and discuss this knowledge in the context of future antifungal strategies.
Collapse
Affiliation(s)
- John C Panepinto
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York Buffalo, NY, USA
| | - Eva Heinz
- Department of Microbiology, Monash University Clayton, VIC, Australia ; Victorian Bioinformatics Consortium, School of Biomedical Sciences, Monash University Clayton, VIC, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|
45
|
Abstract
The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50°. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H+-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance.
Collapse
|
46
|
Rochette S, Gagnon-Arsenault I, Diss G, Landry CR. Modulation of the yeast protein interactome in response to DNA damage. J Proteomics 2013; 100:25-36. [PMID: 24262151 DOI: 10.1016/j.jprot.2013.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/10/2013] [Accepted: 11/05/2013] [Indexed: 01/24/2023]
Abstract
UNLABELLED Cells deploy diverse mechanisms to physiologically adapt to potentially detrimental perturbations. These mechanisms include changes in the organization of protein-protein interaction networks (PINs). Most PINs characterized to date are portrayed in a single environmental condition and are thus likely to miss important connections among biological processes. In this report, we show that the yeast DHFR-PCA on high-density arrays allows to detects modulations of protein-protein interactions (PPIs) in different conditions by testing more than 1000 PPIs in standard and in a drug-inducing DNA damage conditions. We identify 156 PPIs that show significant modulation in response to DNA damage. We provide evidence that modulated PPIs involve essential genes (NOP7, EXO84 and LAS17) playing critical roles in response to DNA damage. Additionally, we show that a significant proportion of PPI changes are likely explained by changes in protein localization and, to a lesser extent, protein abundance. The protein interaction modules affected by changing PPIs support the role of mRNA stability and translation, protein degradation and ubiquitylation and the regulation of the actin cytoskeleton in response to DNA damage. Overall, we provide a valuable tool and dataset for the study of the rewiring of PINs in response to environmental perturbations. BIOLOGICAL SIGNIFICANCE We show that the DHFR-PCA is a high-throughput method that allows the detection of changes in PPIs associated with different environmental conditions using DNA damage response as a testbed. We provide a valuable resource for the study of DNA damage in eukaryotic cells. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- Samuel Rochette
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Guillaume Diss
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
47
|
Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex. Nat Struct Mol Biol 2013; 20:1281-8. [PMID: 24121231 DOI: 10.1038/nsmb.2686] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/05/2013] [Indexed: 02/01/2023]
Abstract
The Ccr4-Not complex is involved in several aspects of gene expression, including mRNA decay, translational repression and transcription. We determined the 2.8-Å-resolution crystal structure of a 120-kDa core complex of the Saccharomyces cerevisiae Not module comprising the C-terminal arm of Not1, Not2 and Not5. Not1 is a HEAT-repeat scaffold. Not2 and Not5 have extended regions that wrap around Not1 and around their globular domains, the Not boxes. The Not boxes resemble Sm folds and interact with each other with a noncanonical dimerization surface. Disruption of the interactions within the ternary complex has severe effects on growth in vivo. The ternary complex forms a composite surface that binds poly(U) RNA in vitro, with a site at the Not5 Not box. The results suggest that the Not module forms a versatile platform for macromolecular interactions.
Collapse
|
48
|
Wahle E, Winkler GS. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:561-70. [PMID: 23337855 DOI: 10.1016/j.bbagrm.2013.01.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/14/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022]
Abstract
Shortening and removal of the 3' poly(A) tail of mature mRNA by poly(A)-specific 3' exonucleases (deadenylases) is the initial and often rate-limiting step in mRNA degradation. The majority of cytoplasmic deadenylase activity is associated with the Ccr4-Not and Pan2-Pan3 complexes. Two distinct catalytic subunits, Caf1/Pop2 and Ccr4, are associated with the Ccr4-Not complex, whereas the Pan2 enzymatic subunit forms a stable complex with Pan3. In this review, we discuss the composition and activity of these two deadenylases. In addition, we comment on generic and specific mechanisms of recruitment of Ccr4-Not and Pan2-Pan3 to mRNAs. Finally, we discuss specialised and redundant functions of the deadenylases and review the importance of Ccr4-Not subunits in the regulation of physiological processes. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | |
Collapse
|
49
|
Bawankar P, Loh B, Wohlbold L, Schmidt S, Izaurralde E. NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain. RNA Biol 2013; 10:228-44. [PMID: 23303381 PMCID: PMC3594282 DOI: 10.4161/rna.23018] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CCR4-NOT complex plays a crucial role in post-transcriptional mRNA regulation in eukaryotes. This complex catalyzes the removal of mRNA poly(A) tails, thereby repressing translation and committing an mRNA to degradation. The conserved core of the complex is assembled by the interaction of at least two modules: the NOT module, which minimally consists of NOT1, NOT2 and NOT3, and a catalytic module comprising two deadenylases, CCR4 and POP2/CAF1. Additional complex subunits include CAF40 and two newly identified human subunits, NOT10 and C2orf29. The role of the NOT10 and C2orf29 subunits and how they are integrated into the complex are unknown. Here, we show that the Drosophila melanogaster NOT10 and C2orf29 orthologs form a complex that interacts with the N-terminal domain of NOT1 through C2orf29. These interactions are conserved in human cells, indicating that NOT10 and C2orf29 define a conserved module of the CCR4-NOT complex. We further investigated the assembly of the D. melanogaster CCR4-NOT complex, and demonstrate that the conserved armadillo repeat domain of CAF40 interacts with a region of NOT1, comprising a domain of unknown function, DUF3819. Using tethering assays, we show that each subunit of the CCR4-NOT complex causes translational repression of an unadenylated mRNA reporter and deadenylation and degradation of a polyadenylated reporter. Therefore, the recruitment of a single subunit of the complex to an mRNA target induces the assembly of the complete CCR4-NOT complex, resulting in a similar regulatory outcome.
Collapse
Affiliation(s)
- Praveen Bawankar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | |
Collapse
|
50
|
Reese JC. The control of elongation by the yeast Ccr4-not complex. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:127-33. [PMID: 22975735 PMCID: PMC3545033 DOI: 10.1016/j.bbagrm.2012.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 12/12/2022]
Abstract
The Ccr4-Not complex is a highly conserved nine-subunit protein complex that has been implicated in virtually all aspects of gene control, including transcription, mRNA decay and quality control, RNA export, translational repression and protein ubiquitylation. Understanding its mechanisms of action has been difficult due to the size of the complex and the fact that it regulates mRNAs and proteins at many levels in both the cytoplasm and the nucleus. Recently, biochemical and genetic studies on the yeast Ccr4-Not complex have revealed insights into its role in promoting elongation by RNA polymerase II. This review will describe what is known about the Ccr4-Not complex in regulating transcription elongation and its possible collaboration with other factors traveling with RNAPII across genes. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Joseph C Reese
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|