1
|
Liu R, Qiu J, Huang Y, Wang Z, Zheng P. Intracellular protein ligation and polyprotein synthesis using an asparaginyl endopeptidase core. Chem Commun (Camb) 2025; 61:4355-4358. [PMID: 39981834 DOI: 10.1039/d4cc06617k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
An intracellular protein ligation system using a truncated variant of OaAEP1 (OaAEP1 core) to ligate and polymerize Ig domains in E. coli is developed, enabling real-time polyprotein synthesis without enzyme activation and external ligation. This approach yields functional, mechanically stable polyproteins and expands AEP applications in synthetic biology and biomaterials.
Collapse
Affiliation(s)
- Renming Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Jun Qiu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Yifen Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Zuo J, Li H. Intermolecular Misfolding Captured in Parallelly Organized Titin. J Am Chem Soc 2025; 147:4853-4861. [PMID: 39893683 DOI: 10.1021/jacs.4c13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The giant muscle protein titin is largely responsible for the passive elasticity of the muscles. The I-band part of titin is elastic, and its constitutive immunoglobulin (Ig) domains undergo force-induced unfolding and refolding when the muscle is stretched toward or beyond the end of the physiological range of sarcomere length. Correct folding of the titin Ig domains is essential to the structure and functions of titin. Although our knowledge of titin elasticity at the molecular level has been largely obtained from single molecule experiments, titin does not exist as an isolated molecule. Instead, six titins are parallelly organized in the muscle sarcomeres. It remains unknown what impact such a parallel organization brings on the folding of titin Ig domains and titin elasticity. Using the two-molecule force spectroscopy technique, here, we report the direct observation of the intermolecular misfolding of titin Ig domains that are arranged in parallel. Our results reveal that when parallelly arranged, two I94 domains can misfold into an intermolecular domain-swapped state that is thermally and mechanically stable. Such intermolecular misfolding may play important structural and functional roles in titin organization and elasticity.
Collapse
Affiliation(s)
- Jiacheng Zuo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Gianni S, Brunori M. The folding and misfolding of multidomain proteins. Mol Aspects Med 2025; 101:101337. [PMID: 39793266 DOI: 10.1016/j.mam.2025.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Protein folding represents a vital process for any living organism. While significant insights have been gained from studying single-domain proteins, our current knowledge on the folding mechanisms of multidomain proteins remains relatively limited, primarily due to their inherent complexity. The principal aim of this review lies in summarizing the emerging view pertaining multi-domain folding, emphasizing their modular nature, which minimizes misfolding and facilitates evolutionary innovation. We discuss the energetic interplay between domains, highlighting particularly the cases where domain interactions lead to transient misfolded intermediates. These interactions can result in diverse effects, including cooperative folding and domain-specific perturbations, which are particularly relevant to the pathogenesis of neurodegenerative diseases like polyglutamine disorders. The review underscores the critical need to understand multidomain folding, to better comprehend and potentially mitigate the molecular underpinnings of protein misfolding diseases.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari Del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy.
| | - Maurizio Brunori
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari Del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
4
|
Vergara R, Berrocal T, Juárez Mejía EI, Romero-Romero S, Velázquez-López I, Pulido NO, López Sanchez HA, Silva DA, Costas M, Rodríguez-Romero A, Rodríguez-Sotres R, Sosa-Peinado A, Fernández-Velasco DA. Thermodynamic and kinetic analysis of the LAO binding protein and its isolated domains reveal non-additivity in stability, folding and function. FEBS J 2023; 290:4496-4512. [PMID: 37178351 DOI: 10.1111/febs.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Substrate-binding proteins (SBPs) are used by organisms from the three domains of life for transport and signalling. SBPs are composed of two domains that collectively trap ligands with high affinity and selectivity. To explore the role of the domains and the integrity of the hinge region between them in the function and conformation of SBPs, here, we describe the ligand binding, conformational stability and folding kinetics of the Lysine Arginine Ornithine (LAO) binding protein from Salmonella thiphimurium and constructs corresponding to its two independent domains. LAO is a class II SBP formed by a continuous and a discontinuous domain. Contrary to the expected behaviour based on their connectivity, the discontinuous domain shows a stable native-like structure that binds l-arginine with moderate affinity, whereas the continuous domain is barely stable and shows no detectable ligand binding. Regarding folding kinetics, studies of the entire protein revealed the presence of at least two intermediates. While the unfolding and refolding of the continuous domain exhibited only a single intermediate and simpler and faster kinetics than LAO, the folding mechanism of the discontinuous domain was complex and involved multiple intermediates. These findings suggest that in the complete protein the continuous domain nucleates folding and that its presence funnels the folding of the discontinuous domain avoiding nonproductive interactions. The strong dependence of the function, stability and folding pathway of the lobes on their covalent association is most likely the result of the coevolution of both domains as a single unit.
Collapse
Affiliation(s)
- Renan Vergara
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tania Berrocal
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Eva Isela Juárez Mejía
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Department of Biochemistry, University of Bayreuth, Germany
| | - Isabel Velázquez-López
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Nancy O Pulido
- Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Haven A López Sanchez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Sosa-Peinado
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Gani K, Chirmade T, Ughade S, Thulasiram H, Bhambure R. Understanding unfolding and refolding of the antibody fragment (Fab) III: Mapping covalent and non-covalent interactions during in-vitro refolding of light chain, heavy chain, and Fab. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
7
|
Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein. Nat Chem 2022; 14:224-231. [PMID: 34992286 DOI: 10.1038/s41557-021-00839-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2021] [Indexed: 12/13/2022]
Abstract
Highly charged intrinsically disordered proteins are essential regulators of chromatin structure and transcriptional activity. Here we identify a surprising mechanism of molecular competition that relies on the pronounced dynamical disorder present in these polyelectrolytes and their complexes. The highly positively charged human linker histone H1.0 (H1) binds to nucleosomes with ultrahigh affinity, implying residence times incompatible with efficient biological regulation. However, we show that the disordered regions of H1 retain their large-amplitude dynamics when bound to the nucleosome, which enables the highly negatively charged and disordered histone chaperone prothymosin α to efficiently invade the H1-nucleosome complex and displace H1 via a competitive substitution mechanism, vastly accelerating H1 dissociation. By integrating experiments and simulations, we establish a molecular model that rationalizes the remarkable kinetics of this process structurally and dynamically. Given the abundance of polyelectrolyte sequences in the nuclear proteome, this mechanism is likely to be widespread in cellular regulation.
Collapse
|
8
|
Zuo J, Zhan D, Xia J, Li H. Single-Molecule Force Spectroscopy Studies of Missense Titin Mutations That Are Likely Causing Cardiomyopathy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12128-12137. [PMID: 34618459 PMCID: PMC9150697 DOI: 10.1021/acs.langmuir.1c02006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The giant muscle protein titin plays important roles in heart function. Mutations in titin have emerged as a major cause of familial cardiomyopathy. Missense mutations have been identified in cardiomyopathy patients; however, it is challenging to distinguish disease-causing mutations from benign ones. Given the importance of titin mechanics in heart function, it is critically important to elucidate the mechano-phenotypes of cardiomyopathy-causing mutations found in the elastic I-band part of cardiac titin. Using single-molecule atomic force microscopy (AFM) and equilibrium chemical denaturation, we investigated the mechanical and thermodynamic effects of two missense mutations, R57C-I94 and S22P-I84, found in the elastic I-band part of cardiac titin that were predicted to be likely causing cardiomyopathy by bioinformatics analysis. Our AFM results showed that mutation R57C had a significant destabilization effect on the I94 module. R57C reduced the mechanical unfolding force of I94 by ∼30-40 pN, accelerated the unfolding kinetics, and decelerated the folding. These effects collectively increased the unfolding propensity of I94, likely resulting in altered titin elasticity. In comparison, S22P led to only modest destabilization of I84, with a decrease in unfolding force by ∼10 pN. It is unlikely that such a modest destabilization would lead to a change in titin elasticity. These results will serve as the first step toward elucidating mechano-phenotypes of cardiomyopathy-causing mutations in the elastic I-band.
Collapse
|
9
|
Li Q, Apostolidou D, Marszalek PE. Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations. Methods 2021; 197:39-53. [PMID: 34020035 DOI: 10.1016/j.ymeth.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/29/2022] Open
Abstract
Most proteins in proteomes are large, typically consist of more than one domain and are structurally complex. This often makes studying their mechanical unfolding pathways challenging. Proteins composed of tandem repeat domains are a subgroup of multi-domain proteins that, when stretched, display a saw-tooth pattern in their mechanical unfolding force extension profiles due to their repetitive structure. However, the assignment of force peaks to specific repeats undergoing mechanical unraveling is complicated because all repeats are similar and they interact with their neighbors and form a contiguous tertiary structure. Here, we describe in detail a combination of experimental and computational single-molecule force spectroscopy methods that proved useful for examining the mechanical unfolding and refolding pathways of ankyrin repeat proteins. Specifically, we explain and delineate the use of atomic force microscope-based single molecule force spectroscopy (SMFS) to record the mechanical unfolding behavior of ankyrin repeat proteins and capture their unusually strong refolding propensity that is responsible for generating impressive refolding force peaks. We also describe Coarse Grain Steered Molecular Dynamic (CG-SMD) simulations which complement the experimental observations and provide insights in understanding the unfolding and refolding of these proteins. In addition, we advocate the use of novel coiled-coils-based mechanical polypeptide probes which we developed to demonstrate the vectorial character of folding and refolding of these repeat proteins. The combination of AFM-based SMFS on native and CC-equipped proteins with CG-SMD simulations is powerful not only for ankyrin repeat polypeptides, but also for other repeat proteins and more generally to various multidomain, non-repetitive proteins with complex topologies.
Collapse
Affiliation(s)
- Qing Li
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Dimitra Apostolidou
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States.
| |
Collapse
|
10
|
Abstract
Cooperativity is a hallmark of protein folding, but the thermodynamic origins of cooperativity are difficult to quantify. Tandem repeat proteins provide a unique experimental system to quantify cooperativity due to their internal symmetry and their tolerance of deletion, extension, and in some cases fragmentation into single repeats. Analysis of repeat proteins of different lengths with nearest-neighbor Ising models provides values for repeat folding ([Formula: see text]) and inter-repeat coupling (ΔGi-1,i). In this article, we review the architecture of repeat proteins and classify them in terms of ΔGi and ΔGi-1,i; this classification scheme groups repeat proteins according to their degree of cooperativity. We then present various statistical thermodynamic models, based on the 1D-Ising model, for analysis of different classes of repeat proteins. We use these models to analyze data for highly and moderately cooperative and noncooperative repeat proteins and relate their fitted parameters to overall structural features.
Collapse
Affiliation(s)
- Mark Petersen
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.,T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
11
|
Sottini A, Borgia A, Borgia MB, Bugge K, Nettels D, Chowdhury A, Heidarsson PO, Zosel F, Best RB, Kragelund BB, Schuler B. Polyelectrolyte interactions enable rapid association and dissociation in high-affinity disordered protein complexes. Nat Commun 2020; 11:5736. [PMID: 33184256 PMCID: PMC7661507 DOI: 10.1038/s41467-020-18859-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Highly charged intrinsically disordered proteins can form complexes with very high affinity in which both binding partners fully retain their disorder and dynamics, exemplified by the positively charged linker histone H1.0 and its chaperone, the negatively charged prothymosin α. Their interaction exhibits another surprising feature: The association/dissociation kinetics switch from slow two-state-like exchange at low protein concentrations to fast exchange at higher, physiologically relevant concentrations. Here we show that this change in mechanism can be explained by the formation of transient ternary complexes favored at high protein concentrations that accelerate the exchange between bound and unbound populations by orders of magnitude. Molecular simulations show how the extreme disorder in such polyelectrolyte complexes facilitates (i) diffusion-limited binding, (ii) transient ternary complex formation, and (iii) fast exchange of monomers by competitive substitution, which together enable rapid kinetics. Biological polyelectrolytes thus have the potential to keep regulatory networks highly responsive even for interactions with extremely high affinities.
Collapse
Affiliation(s)
- Andrea Sottini
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Madeleine B Borgia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katrine Bugge
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Aritra Chowdhury
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Pétur O Heidarsson
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| | - Franziska Zosel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
- Department of Physics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Chu X, Suo Z, Wang J. Investigating the trade-off between folding and function in a multidomain Y-family DNA polymerase. eLife 2020; 9:60434. [PMID: 33079059 PMCID: PMC7641590 DOI: 10.7554/elife.60434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023] Open
Abstract
The way in which multidomain proteins fold has been a puzzling question for decades. Until now, the mechanisms and functions of domain interactions involved in multidomain protein folding have been obscure. Here, we develop structure-based models to investigate the folding and DNA-binding processes of the multidomain Y-family DNA polymerase IV (DPO4). We uncover shifts in the folding mechanism among ordered domain-wise folding, backtracking folding, and cooperative folding, modulated by interdomain interactions. These lead to ‘U-shaped’ DPO4 folding kinetics. We characterize the effects of interdomain flexibility on the promotion of DPO4–DNA (un)binding, which probably contributes to the ability of DPO4 to bypass DNA lesions, which is a known biological role of Y-family polymerases. We suggest that the native topology of DPO4 leads to a trade-off between fast, stable folding and tight functional DNA binding. Our approach provides an effective way to quantitatively correlate the roles of protein interactions in conformational dynamics at the multidomain level.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, New York, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, United States
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, New York, United States
| |
Collapse
|
13
|
Vignesh R, Aradhyam GK. A Change in Domain Cooperativity Drives the Function of Calnuc. Biochemistry 2020; 59:2507-2517. [PMID: 32543177 DOI: 10.1021/acs.biochem.0c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With the increasing incidence of neurodegenerative disorders, there is an urgent need to understand the protein folding process. Examining the folding process of multidomain proteins remains a prime challenge, as their complex conformational dynamics make them highly susceptible to misfolding and/or aggregation. The presence of multiple domains in a protein can lead to interaction between the partially folded domains, thereby driving misfolding and/or aggregation. Calnuc is one such multidomain protein for which Ca2+ binding plays a pivotal role in governing its structural dynamics and stability and, presumably, in directing its interactions with other proteins. We demonstrate differential structural dynamics between the Ca2+-free and Ca2+-bound forms of calnuc. In the absence of Ca2+, full-length calnuc displays equilibrium structural transitions with four intermediate states, reporting a sum of the behavioral properties of its individual domains. Fragment-based studies illustrate the sequential events of structure adoption proceeding in the following order: EF domain followed by the NT and LZ domains in the apo state. On the other hand, Ca2+ binding increases domain cooperativity and enables the protein to fold as a single unit. Single-tryptophan mutant proteins, designed in a domain-dependent manner, confirm an increase in the number of interdomain interactions in the Ca2+-bound form as compared to the Ca2+-free state of the protein, thereby providing insight into its folding process. The attenuated domain crosstalk in apo-calnuc is likely to influence and regulate its physiologically important intermolecular interactions.
Collapse
Affiliation(s)
- Ravichandran Vignesh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Kelly CM, Manukian S, Kim E, Gage MJ. Differences in stability and calcium sensitivity of the Ig domains in titin's N2A region. Protein Sci 2020; 29:1160-1171. [PMID: 32112607 DOI: 10.1002/pro.3848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/11/2022]
Abstract
Titin is a large filamentous protein that spans half a sarcomere, from Z-disk to M-line. The N2A region within the titin molecule exists between the proximal immunoglobulin (Ig) region and the PEVK region and protein-protein interactions involving this region are required for normal muscle function. The N2A region consists of four Ig domains (I80-I83) with a 105 amino acid linker region between I80 and I81 that has a helical nature. Using chemical stability measurements, we show that predicted differences between the adjacent Ig domains (I81-I83) correlate with experimentally determined differences in chemical stability and refolding kinetics. Our work further shows that I83 has the lowest ΔGunfolding , which is increased in the presence of calcium (pCa 4.3), indicating that Ca2+ plays a role in stabilizing this immunoglobulin domain. The characteristics of N2A's three Ig domains provide insight into the stability of the binding sites for proteins that interact with the N2A region. This work also provides insights into how Ca2+ might influence binding events involving N2A.
Collapse
Affiliation(s)
- Colleen M Kelly
- Chemistry Department, University of Massachusetts Lowell, Lowell, Massachusetts, USA.,UMass Movement Center, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Sophia Manukian
- Chemistry Department, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Emily Kim
- Chemistry Department, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Matthew J Gage
- Chemistry Department, University of Massachusetts Lowell, Lowell, Massachusetts, USA.,UMass Movement Center, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
15
|
Monitoring Unfolding of Titin I27 Single and Bi Domain with High-Pressure NMR Spectroscopy. Biophys J 2019; 115:341-352. [PMID: 30021109 DOI: 10.1016/j.bpj.2018.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/26/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022] Open
Abstract
A complete description of the pathways and mechanisms of protein folding requires a detailed structural and energetic characterization of the folding energy landscape. Simulations, when corroborated by experimental data yielding global information on the folding process, can provide this level of insight. Molecular dynamics (MD) has often been combined with force spectroscopy experiments to decipher the unfolding mechanism of titin immunoglobulin-like single or multidomain, the giant multimodular protein from sarcomeres, yielding information on the sequential events during titin unfolding under stretching. Here, we used high-pressure NMR to monitor the unfolding of titin I27 Ig-like single domain and tandem. Because this method brings residue-specific information on the folding process, it can provide quasiatomic details on this process without the help of MD simulations. Globally, the results of our high-pressure analysis are in agreement with previous results obtained by the combination of experimental measurements and MD simulation and/or protein engineering, although the intermediate folding state caused by the early detachment of the AB β-sheet, often reported in previous works based on MD or force spectroscopy, cannot be detected. On the other hand, the A'G parallel β-sheet of the β-sandwich has been confirmed as the Achilles heel of the three-dimensional scaffold: its disruption yields complete unfolding with very similar characteristics (free energy, unfolding volume, kinetics rate constants) for the two constructs.
Collapse
|
16
|
Li Q, Scholl ZN, Marszalek PE. Unraveling the Mechanical Unfolding Pathways of a Multidomain Protein: Phosphoglycerate Kinase. Biophys J 2019; 115:46-58. [PMID: 29972811 DOI: 10.1016/j.bpj.2018.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/31/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023] Open
Abstract
Phosphoglycerate kinase (PGK) is a highly conserved enzyme that is crucial for glycolysis. PGK is a monomeric protein composed of two similar domains and has been the focus of many studies for investigating interdomain interactions within the native state and during folding. Previous studies used traditional biophysical methods (such as circular dichroism, tryptophan fluorescence, and NMR) to measure signals over a large ensemble of molecules, which made it difficult to observe transient changes in stability or structure during unfolding and refolding of single molecules. Here, we unfold single molecules of PGK using atomic force spectroscopy and steered molecular dynamic computer simulations to examine the conformational dynamics of PGK during its unfolding process. Our results show that after the initial forced separation of its domains, yeast PGK (yPGK) does not follow a single mechanical unfolding pathway; instead, it stochastically follows two distinct pathways: unfolding from the N-terminal domain or unfolding from the C-terminal domain. The truncated yPGK N-terminal domain unfolds via a transient intermediate, whereas the structurally similar isolated C-terminal domain has no detectable intermediates throughout its mechanical unfolding process. The N-terminal domain in the full-length yPGK displays a strong unfolding intermediate 13% of the time, whereas the truncated domain (yPGKNT) transitions through the intermediate 81% of the time. This effect indicates that the mechanical properties of yPGK cannot be simply deduced from the mechanical properties of its constituents. We also find that Escherichia coli PGK is significantly less mechanically stable as compared to yPGK, contrary to bulk unfolding measurements. Our results support the growing body of observations that the folding behavior of multidomain proteins is difficult to predict based solely on the studies of isolated domains.
Collapse
Affiliation(s)
- Qing Li
- Center for Biologically Inspired Materials and Material Systems, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| | - Zackary N Scholl
- Program in Computational Biology and Bioinformatics, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| | - Piotr E Marszalek
- Center for Biologically Inspired Materials and Material Systems, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
17
|
Abstract
Most proteins need to fold into a specific 3D structure to function. The mechanism by which isolated proteins fold has been thoroughly studied by experiment and theory. However, in the cell proteins do not fold in isolation but are synthesized as linear chains by the ribosome during translation. It is therefore natural to ask at which point during synthesis proteins fold, and whether this differs from the folding of isolated protein molecules. By studying folding of a well-characterized protein domain, titin I27, stalled at different points during translation, we show that it already folds in the mouth of the ribosome exit tunnel and that the mechanism is almost identical to that of the isolated protein. Proteins that fold cotranslationally may do so in a restricted configurational space, due to the volume occupied by the ribosome. How does this environment, coupled with the close proximity of the ribosome, affect the folding pathway of a protein? Previous studies have shown that the cotranslational folding process for many proteins, including small, single domains, is directly affected by the ribosome. Here, we investigate the cotranslational folding of an all-β Ig domain, titin I27. Using an arrest peptide-based assay and structural studies by cryo-EM, we show that I27 folds in the mouth of the ribosome exit tunnel. Simulations that use a kinetic model for the force dependence of escape from arrest accurately predict the fraction of folded protein as a function of length. We used these simulations to probe the folding pathway on and off the ribosome. Our simulations—which also reproduce experiments on mutant forms of I27—show that I27 folds, while still sequestered in the mouth of the ribosome exit tunnel, by essentially the same pathway as free I27, with only subtle shifts of critical contacts from the C to the N terminus.
Collapse
|
18
|
Herzog W. The multiple roles of titin in muscle contraction and force production. Biophys Rev 2018; 10:1187-1199. [PMID: 29353351 PMCID: PMC6082311 DOI: 10.1007/s12551-017-0395-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 11/27/2022] Open
Abstract
Titin is a filamentous protein spanning the half-sarcomere, with spring-like properties in the I-band region. Various structural, signaling, and mechanical functions have been associated with titin, but not all of these are fully elucidated and accepted in the scientific community. Here, I discuss the primary mechanical functions of titin, including its accepted role in passive force production, stabilization of half-sarcomeres and sarcomeres, and its controversial contribution to residual force enhancement, passive force enhancement, energetics, and work production in shortening muscle. Finally, I provide evidence that titin is a molecular spring whose stiffness changes with muscle activation and actin-myosin-based force production, suggesting a novel model of force production that, aside from actin and myosin, includes titin as a "third contractile" filament. Using this three-filament model of sarcomeres, the stability of (half-) sarcomeres, passive force enhancement, residual force enhancement, and the decrease in metabolic energy during and following eccentric contractions can be explained readily.
Collapse
Affiliation(s)
- Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
19
|
Kumar V, Chaudhuri TK. Spontaneous refolding of the large multidomain protein malate synthase G proceeds through misfolding traps. J Biol Chem 2018; 293:13270-13283. [PMID: 29959230 DOI: 10.1074/jbc.ra118.003903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Most protein folding studies until now focus on single domain or truncated proteins. Although great insights in the folding of such systems has been accumulated, very little is known regarding the proteins containing multiple domains. It has been shown that the high stability of domains, in conjunction with inter-domain interactions, manifests as a frustrated energy landscape, causing complexity in the global folding pathway. However, multidomain proteins despite containing independently foldable, loosely cooperative sections can fold into native states with amazing speed and accuracy. To understand the complexity in mechanism, studies were conducted previously on the multidomain protein malate synthase G (MSG), an enzyme of the glyoxylate pathway with four distinct and adjacent domains. It was shown that the protein refolds to a functionally active intermediate state at a fast rate, which slowly produces the native state. Although experiments decoded the nature of the intermediate, a full description of the folding pathway was not elucidated. In this study, we use a battery of biophysical techniques to examine the protein's folding pathway. By using multiprobe kinetics studies and comparison with the equilibrium behavior of protein against urea, we demonstrate that the unfolded polypeptide undergoes conformational compaction to a misfolded intermediate within milliseconds of refolding. The misfolded product appears to be stabilized under moderate denaturant concentrations. Further folding of the protein produces a stable intermediate, which undergoes partial unfolding-assisted large segmental rearrangements to achieve the native state. This study reveals an evolved folding pathway of the multidomain protein MSG, which involves surpassing the multiple misfolding traps during refolding.
Collapse
Affiliation(s)
- Vipul Kumar
- From the Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Tapan K Chaudhuri
- From the Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
20
|
Makabe K, Nakamura T, Dhar D, Ikura T, Koide S, Kuwajima K. An Overlapping Region between the Two Terminal Folding Units of the Outer Surface Protein A (OspA) Controls Its Folding Behavior. J Mol Biol 2018; 430:1799-1813. [PMID: 29709572 DOI: 10.1016/j.jmb.2018.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding-unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions.
Collapse
Affiliation(s)
- Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, Jyonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan; Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
| | - Takashi Nakamura
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Debanjan Dhar
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Teikichi Ikura
- Laboratory of Structural Biology, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, and Perlmutter Cancer Center at NYU Langone Health, New York, NY 10016, USA
| | - Kunihiro Kuwajima
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Physics, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Dongdaemun-gu, Seoul 130-722, Korea
| |
Collapse
|
21
|
Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B. Extreme disorder in an ultrahigh-affinity protein complex. Nature 2018; 555:61-66. [PMID: 29466338 DOI: 10.1038/nature25762] [Citation(s) in RCA: 478] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.
Collapse
Affiliation(s)
- Alessandro Borgia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Madeleine B Borgia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Vera M Kissling
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Pétur O Heidarsson
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Catarina B Fernandes
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andrea Soranno
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Karin J Buholzer
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland.,Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
22
|
Vishwanath S, de Brevern AG, Srinivasan N. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains. PLoS Comput Biol 2018; 14:e1006008. [PMID: 29432415 PMCID: PMC5825166 DOI: 10.1371/journal.pcbi.1006008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/23/2018] [Accepted: 01/29/2018] [Indexed: 02/01/2023] Open
Abstract
The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in function or regulatory properties. High prevalence of multi-domain proteins in proteomes has been attributed to higher stability and functional and folding advantages of the multi-domain proteins. Influence of tethering of domains on the overall properties of proteins has been well studied but its influence on the properties of the constituent domains is largely unaddressed. Here, we investigate the influence of tethering of domains in multi-domain proteins on the structural, dynamics and energetics properties of the constituent domains and its implications on the functions of proteins. To this end, comparative analyses were carried out for identical protein domains crystallized in tethered and untethered forms. Also, comparative analyses of single-domain proteins and their homologous multi-domain proteins were performed. The analyses suggest that tethering influences the structural, dynamic and energetic properties of constituent protein domains. Our observations hint at regulation of protein domains by tethered domains in multi-domain systems, which may manifest at the differential function observed between single-domain and homologous multi-domain proteins.
Collapse
Grants
- IISc-DBT partnership programme
- DST, India (Mathematical Biology Initiative & J.C. Bose National Fellowship, FIST program)
- UGC, India – Centre for Advanced Studies
- Ministry of Human Resource Development
- Ministry of Research (France), University of Paris Diderot, Sorbonne Paris Cité
- National Institute for Blood Transfusion (INTS, France), Institute for Health and Medical Research (INSERM, France), Laboratory of Excellence GR-Ex
- The labex GR-Ex is funded by the program Investissements d’avenir of the French National Research Agency,
- Indo-French Centre for the Promotion of Advanced Research/CEFIPRA for a collaborative grant
Collapse
Affiliation(s)
- Sneha Vishwanath
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Alexandre G. de Brevern
- INSERM, U 1134, DSIMB, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Univ de la Réunion, Univ des Antilles, UMR_S 1134, Paris, France
- Institut National de la Transfusion Sanguine (INTS), Paris, France
- Laboratoire d' Excellence GR-Ex, Paris, France
| | | |
Collapse
|
23
|
Levy Y. Protein Assembly and Building Blocks: Beyond the Limits of the LEGO Brick Metaphor. Biochemistry 2017; 56:5040-5048. [PMID: 28809494 DOI: 10.1021/acs.biochem.7b00666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteins, like other biomolecules, have a modular and hierarchical structure. Various building blocks are used to construct proteins of high structural complexity and diverse functionality. In multidomain proteins, for example, domains are fused to each other in different combinations to achieve different functions. Although the LEGO brick metaphor is justified as a means of simplifying the complexity of three-dimensional protein structures, several fundamental properties (such as allostery or the induced-fit mechanism) make deviation from it necessary to respect the plasticity, softness, and cross-talk that are essential to protein function. In this work, we illustrate recently reported protein behavior in multidomain proteins that deviates from the LEGO brick analogy. While earlier studies showed that a protein domain is often unaffected by being fused to another domain or becomes more stable following the formation of a new interface between the tethered domains, destabilization due to tethering has been reported for several systems. We illustrate that tethering may sometimes result in a multidomain protein behaving as "less than the sum of its parts". We survey these cases for which structure additivity does not guarantee thermodynamic additivity. Protein destabilization due to fusion to other domains may be linked in some cases to biological function and should be taken into account when designing large assemblies.
Collapse
Affiliation(s)
- Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
24
|
Oroz J, Bruix M, Laurents D, Galera-Prat A, Schönfelder J, Cañada F, Carrión-Vázquez M. The Y9P Variant of the Titin I27 Module: Structural Determinants of Its Revisited Nanomechanics. Structure 2016; 24:606-616. [DOI: 10.1016/j.str.2016.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/30/2015] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
|
25
|
Transient misfolding dominates multidomain protein folding. Nat Commun 2015; 6:8861. [PMID: 26572969 PMCID: PMC4660218 DOI: 10.1038/ncomms9861] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
Neighbouring domains of multidomain proteins with homologous tandem repeats have divergent sequences, probably as a result of evolutionary pressure to avoid misfolding and aggregation, particularly at the high cellular protein concentrations. Here we combine microfluidic-mixing single-molecule kinetics, ensemble experiments and molecular simulations to investigate how misfolding between the immunoglobulin-like domains of titin is prevented. Surprisingly, we find that during refolding of tandem repeats, independent of sequence identity, more than half of all molecules transiently form a wide range of misfolded conformations. Simulations suggest that a large fraction of these misfolds resemble an intramolecular amyloid-like state reported in computational studies. However, for naturally occurring neighbours with low sequence identity, these transient misfolds disappear much more rapidly than for identical neighbours. We thus propose that evolutionary sequence divergence between domains is required to suppress the population of long-lived, potentially harmful misfolded states, whereas large populations of transient misfolded states appear to be tolerated. Single molecule kinetics investigations and molecular simulations are useful tools in elucidating protein assembly mechanisms. Here, the authors use these to show that even naturally occurring tandem repeats undergo transient misfolding and that assembly is much more complex than we previously understood.
Collapse
|
26
|
Gruszka DT, Whelan F, Farrance OE, Fung HKH, Paci E, Jeffries CM, Svergun DI, Baldock C, Baumann CG, Brockwell DJ, Potts JR, Clarke J. Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein. Nat Commun 2015; 6:7271. [PMID: 26027519 PMCID: PMC4458895 DOI: 10.1038/ncomms8271] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/23/2015] [Indexed: 11/09/2022] Open
Abstract
Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed 'clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length.
Collapse
Affiliation(s)
- Dominika T. Gruszka
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Fiona Whelan
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Oliver E. Farrance
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Herman K. H. Fung
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Cy M. Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22603 Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22603 Hamburg, Germany
| | - Clair Baldock
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Michael Smith Building, Greater Manchester M13 9PT, UK
| | | | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jennifer R. Potts
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
27
|
Patra M, Mukhopadhyay C, Chakrabarti A. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride. PLoS One 2015; 10:e0116991. [PMID: 25617632 PMCID: PMC4305312 DOI: 10.1371/journal.pone.0116991] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGuH20) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department, University of Calcutta, Kolkata, West Bengal, India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| |
Collapse
|
28
|
Herzog W. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. J Appl Physiol (1985) 2014; 116:1407-17. [DOI: 10.1152/japplphysiol.00069.2013] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In contrast to isometric and shortening contractions, many observations made on actively lengthening muscles cannot be readily explained with the sliding filament and cross-bridge theory. Specifically, residual force enhancement, the persistent increase in force following active muscle lengthening, beyond what one would expect based on muscle length, has not been explained satisfactorily. Here, we summarize the experimental evidence on residual force enhancement, critically evaluate proposed mechanisms for the residual force enhancement, and propose a mechanism for residual force enhancement that explains all currently agreed upon experimental observations. The proposed mechanism is based on the engagement of the structural protein titin upon muscle activation and an increase in titin's resistance to active compared with passive stretching. This change in resistance from the passive to the active state is suggested to be based on 1) calcium binding by titin upon activation, 2) binding of titin to actin upon activation, and 3) as a consequence of titin-actin binding—a shift toward stiffer titin segments that are used in active compared with passive muscle elongation. Although there is some experimental evidence for the proposed mechanism, it must be stressed that much of the details proposed here remain unclear and should provide ample research opportunities for scientists in the future. Nevertheless, the proposed mechanism for residual force enhancement explains all basic findings in this area of research.
Collapse
Affiliation(s)
- Walter Herzog
- Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
29
|
Mary RD, Saravanan MK, Selvaraj S. Conservation of inter-residue interactions and prediction of folding rates of domain repeats. J Biomol Struct Dyn 2014; 33:534-51. [PMID: 24702623 DOI: 10.1080/07391102.2014.894944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Domains are the main structural and functional units of larger proteins. They tend to be contiguous in primary structure and can fold and function independently. It has been observed that 10-20% of all encoded proteins contain duplicated domains and the average pairwise sequence identity between them is usually low. In the present study, we have analyzed the structural similarity between domain repeats of proteins with known structures available in the Protein Data Bank using structure-based inter-residue interaction measures such as the number of long-range contacts, surrounding hydrophobicity, and pairwise interaction energy. We used RADAR program for detecting the repeats in a protein sequence which were further validated using Pfam domain assignments. The sequence identity between the repeats in domains ranges from 20 to 40% and their secondary structural elements are well conserved. The number of long-range contacts, surrounding hydrophobicity calculations and pairwise interaction energy of the domain repeats clearly reveal the conservation of 3-D structure environment in the repeats of domains. The proportions of mainchain-mainchain hydrogen bonds and hydrophobic interactions are also highly conserved between the repeats. The present study has suggested that the computation of these structure-based parameters will give better clues about the tertiary environment of the repeats in domains. The folding rates of individual domains in the repeats predicted using the long-range order parameter indicate that the predicted folding rates correlate well with most of the experimentally observed folding rates for the analyzed independently folded domains.
Collapse
Affiliation(s)
- Rajathei David Mary
- a Department of Bioinformatics , School of Life Sciences, Bharathidasan University , Tiruchirappalli , Tamilnadu 620 024 , India
| | | | | |
Collapse
|
30
|
Scharner J, Lu HC, Fraternali F, Ellis JA, Zammit PS. Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies. Proteins 2013; 82:904-15. [DOI: 10.1002/prot.24465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Juergen Scharner
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| | - Juliet A. Ellis
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| | - Peter S. Zammit
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| |
Collapse
|
31
|
Borgia MB, Nickson AA, Clarke J, Hounslow MJ. A mechanistic model for amorphous protein aggregation of immunoglobulin-like domains. J Am Chem Soc 2013; 135:6456-64. [PMID: 23510407 PMCID: PMC3759167 DOI: 10.1021/ja308852b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein aggregation is associated with many debilitating diseases including Alzheimer's, Parkinson's, and light-chain amyloidosis (AL). Additionally, such aggregation is a major problem in an industrial setting where antibody therapeutics often require high local concentrations of protein domains to be stable for substantial periods of time. However, despite a plethora of research in this field, dating back over 50 years, there is still no consensus on the mechanistic basis for protein aggregation. Here we use experimental data to derive a mechanistic model that well describes the aggregation of Titin I27, an immunoglobulin-like domain. Importantly, we find that models that are suitable for nucleated fibril formation do not fit our aggregation data. Instead, we show that aggregation proceeds via the addition of activated dimers, and that the rate of aggregation is dependent on the surface area of the aggregate. Moreover, we suggest that the "lag time" seen in these studies is not the time needed for a nucleation event to occur, but rather it is the time taken for the concentration of activated dimers to cross a particular solubility limit. These findings are reminiscent of the Finke-Watzky aggregation mechanism, originally based on nanocluster formation and suggest that amorphous aggregation processes may require mechanistic schemes that are substantially different from those of linear fibril formation.
Collapse
Affiliation(s)
- Madeleine B Borgia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | |
Collapse
|
32
|
Randles LG, Dawes GJS, Wensley BG, Steward A, Nickson AA, Clarke J. Understanding pathogenic single-nucleotide polymorphisms in multidomain proteins--studies of isolated domains are not enough. FEBS J 2013; 280:1018-27. [PMID: 23241237 PMCID: PMC3790955 DOI: 10.1111/febs.12094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/10/2012] [Indexed: 11/29/2022]
Abstract
Studying the effects of pathogenic mutations is more complex in multidomain proteins when compared with single domains: mutations occurring at domain boundaries may have a large effect on a neighbouring domain that will not be detected in a single-domain system. To demonstrate this, we present a study that utilizes well-characterized model protein domains from human spectrin to investigate the effect of disease-and non-disease-causing single point mutations occurring at the boundaries of human spectrin repeats. Our results show that mutations in the single domains have no clear correlation with stability and disease; however, when studied in a tandem model system, the disease-causing mutations are shown to disrupt stabilizing interactions that exist between domains. This results in a much larger decrease in stability than would otherwise have been predicted, and demonstrates the importance of studying such mutations in the correct protein context.
Collapse
Affiliation(s)
- Lucy G Randles
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
33
|
DuVall MM, Gifford JL, Amrein M, Herzog W. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:301-7. [DOI: 10.1007/s00249-012-0875-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 12/18/2022]
|
34
|
Arviv O, Levy Y. Folding of multidomain proteins: Biophysical consequences of tethering even in apparently independent folding. Proteins 2012; 80:2780-98. [DOI: 10.1002/prot.24161] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 01/09/2023]
|
35
|
Oroz J, Hervás R, Carrión-Vázquez M. Unequivocal single-molecule force spectroscopy of proteins by AFM using pFS vectors. Biophys J 2012; 102:682-90. [PMID: 22325292 DOI: 10.1016/j.bpj.2011.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/28/2011] [Accepted: 12/12/2011] [Indexed: 11/28/2022] Open
Abstract
Nanomechanical analysis of proteins by single-molecule force spectroscopy based on atomic force microscopy is increasingly being used to investigate the inner workings of mechanical proteins and substrate proteins of unfoldase machines as well as to gain new insight into the process of protein folding. However, such studies are hindered by a number of technical problems, including the noise of the proximal region, ambiguous single-molecule identification, as well as difficulties in protein expression/folding and full-length purification. To overcome these major drawbacks in protein nanomechanics, we designed a family of cloning/expression vectors, termed pFS (plasmid for force spectroscopy), that essentially has an unstructured region to surmount the noisy proximal region, a homomeric polyprotein marker, a carrier to mechanically protect the protein of interest (only the pFS-2 version) that also acts as a reporter, and two purification tags. pFS-2 enables the unambiguous analysis of proteins with low mechanical stability or/and complex force spectra, such as the increasingly abundant class of intrinsically disordered proteins, which are hard to characterize by traditional bulk techniques and have important biological and clinical implications. The advantages, applications, and potential of this ready-to-go system are illustrated through the analysis of representative proteins.
Collapse
Affiliation(s)
- Javier Oroz
- Instituto Cajal/CSIC, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, IMDEA Nanociencia, Madrid, Spain
| | | | | |
Collapse
|
36
|
|
37
|
Two immunoglobulin tandem proteins with a linking β-strand reveal unexpected differences in cooperativity and folding pathways. J Mol Biol 2011; 416:137-47. [PMID: 22197372 PMCID: PMC3277889 DOI: 10.1016/j.jmb.2011.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 11/23/2022]
Abstract
The study of the folding of single domains, in the context of their multidomain environment, is important because more than 70% of eukaryotic proteins are composed of multiple domains. The structures of the tandem immunoglobulin (Ig) domain pairs A164–A165 and A168–A169, from the A-band of the giant muscle protein titin, reveal that they form tightly associated domain arrangements, connected by a continuous β-strand. We investigate the thermodynamic and kinetic properties of these tandem domain pairs. While A164–A165 apparently behaves as a single cooperative unit at equilibrium, unfolding without the accumulation of a large population of intermediates, domains in A168–A169 behave independently. Although A169 appears to be stabilized in the tandem protein, we show that this is due to nonspecific stabilization by extension. We elucidate the folding and unfolding pathways of both tandem pairs and show that cooperativity in A164–A165 is a manifestation of the relative refolding and unfolding rate constants of each individual domain. We infer that the differences between the two tandem pairs result from a different pattern of interactions at the domain/domain interface.
Collapse
|
38
|
Borgia MB, Borgia A, Best RB, Steward A, Nettels D, Wunderlich B, Schuler B, Clarke J. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 2011; 474:662-5. [PMID: 21623368 PMCID: PMC3160465 DOI: 10.1038/nature10099] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/01/2011] [Indexed: 12/16/2022]
Abstract
A large range of debilitating medical conditions is linked to protein misfolding, which may compete with productive folding particularly in proteins containing multiple domains. Seventy-five per cent of the eukaryotic proteome consists of multidomain proteins, yet it is not understood how interdomain misfolding is avoided. It has been proposed that maintaining low sequence identity between covalently linked domains is a mechanism to avoid misfolding. Here we use single-molecule Förster resonance energy transfer to detect and quantify rare misfolding events in tandem immunoglobulin domains from the I band of titin under native conditions. About 5.5 per cent of molecules with identical domains misfold during refolding in vitro and form an unexpectedly stable state with an unfolding half-time of several days. Tandem arrays of immunoglobulin-like domains in humans show significantly lower sequence identity between neighbouring domains than between non-adjacent domains. In particular, the sequence identity of neighbouring domains has been found to be preferentially below 40 per cent. We observe no misfolding for a tandem of naturally neighbouring domains with low sequence identity (24 per cent), whereas misfolding occurs between domains that are 42 per cent identical. Coarse-grained molecular simulations predict the formation of domain-swapped structures that are in excellent agreement with the observed transfer efficiency of the misfolded species. We infer that the interactions underlying misfolding are very specific and result in a sequence-specific domain-swapping mechanism. Diversifying the sequence between neighbouring domains seems to be a successful evolutionary strategy to avoid misfolding in multidomain proteins.
Collapse
Affiliation(s)
- Madeleine B Borgia
- University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Investigation of an anomalously accelerating substitution in the folding of a prototypical two-state protein. J Mol Biol 2010; 403:446-58. [PMID: 20816985 DOI: 10.1016/j.jmb.2010.08.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 11/22/2022]
Abstract
The folding rates of two-state single-domain proteins are generally resistant to small-scale changes in amino acid sequence. For example, having surveyed here over 700 single-residue substitutions in 24 well-characterized two-state proteins, we find that the majority (55%) of these substitutions affect folding rates by less than a factor of 2, and that only 9% affect folding rates by more than a factor of 8. Among those substitutions that significantly affect folding rates, we find that accelerating substitutions are an order of magnitude less common than those that decelerate the process. One of the most extreme outliers in this data set, an arginine-to-phenylalanine substitution at position 48 (R48F) of chymotrypsin inhibitor 2 (CI2), accelerates the protein's folding rate by a factor of 36 relative to that of the wild-type protein and is the most accelerating substitution reported to date in a two-state protein. In order to better understand the origins of this anomalous behavior, we have characterized the kinetics of multiple additional substitutions at this position. We find that substitutions at position 48 in CI2 fall into two distinct classes. The first, comprising residues that ablate the charge of the wild-type arginine but retain the hydrophobicity of its alkane chain, accelerate folding by at least 10-fold. The second class, comprising all other residues, produces folding rates within a factor of two of the wild-type rate. A significant positive correlation between hydrophobicity and folding rate across all of the residues we have characterized at this position suggests that the hydrophobic methylene units of the wild-type arginine play a significant role in stabilizing the folding transition state. Likewise, studies of the pH dependence of the histidine substitution indicate a strong correlation between folding rate and charge state. Thus, mutations that ablate the arginine's positive charge while retaining the hydrophobic contacts of its methylene units tend to dramatically accelerate folding. Previous studies have suggested that arginine 48 plays an important functional role in CI2, which may explain why it is highly conserved despite the anomalously large deceleration it produces in the folding of this protein.
Collapse
|
40
|
Patel MM, Sgourakis NG, Garcia AE, Makhatadze GI. Experimental Test of the Thermodynamic Model of Protein Cooperativity Using Temperature-Induced Unfolding of a Ubq−UIM Fusion Protein. Biochemistry 2010; 49:8455-67. [DOI: 10.1021/bi101163u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mayank M. Patel
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology
| | | | | | - George I. Makhatadze
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology
| |
Collapse
|
41
|
Lukman S, Grant GH, Bui JM. Unraveling evolutionary constraints: A heterogeneous conservation in dynamics of the titin Ig domains. FEBS Lett 2010; 584:1235-9. [DOI: 10.1016/j.febslet.2010.02.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/03/2010] [Accepted: 02/12/2010] [Indexed: 11/30/2022]
|
42
|
Wensley BG, Gärtner M, Choo WX, Batey S, Clarke J. Different members of a simple three-helix bundle protein family have very different folding rate constants and fold by different mechanisms. J Mol Biol 2009; 390:1074-85. [PMID: 19445951 PMCID: PMC2852649 DOI: 10.1016/j.jmb.2009.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 11/24/2022]
Abstract
The 15th, 16th, and 17th repeats of chicken brain alpha-spectrin (R15, R16, and R17, respectively) are very similar in terms of structure and stability. However, R15 folds and unfolds 3 orders of magnitude faster than R16 and R17. This is unexpected. The rate-limiting transition state for R15 folding is investigated using protein engineering methods (Phi-value analysis) and compared with previously completed analyses of R16 and R17. Characterisation of many mutants suggests that all three proteins have similar complexity in the folding landscape. The early rate-limiting transition states of the three domains are similar in terms of overall structure, but there are significant differences in the patterns of Phi-values. R15 apparently folds via a nucleation-condensation mechanism, which involves concomitant folding and packing of the A- and C-helices, establishing the correct topology. R16 and R17 fold via a more framework-like mechanism, which may impede the search to find the correct packing of the helices, providing a possible explanation for the fast folding of R15.
Collapse
Affiliation(s)
| | | | | | | | - Jane Clarke
- Department of Chemistry, MRC Centre for Protein Engineering, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
43
|
Makarov DE. A theoretical model for the mechanical unfolding of repeat proteins. Biophys J 2009; 96:2160-7. [PMID: 19289042 DOI: 10.1016/j.bpj.2008.12.3899] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/26/2008] [Accepted: 12/08/2008] [Indexed: 11/18/2022] Open
Abstract
We consider the mechanical stretching of a polypeptide chain formed by multiple interacting repeats. The folding thermodynamics and the interactions among the repeats are described by the Ising model. Unfolded repeats act as soft entropic springs, whereas folded repeats respond to a force as stiffer springs. We show that the resulting force-extension curve may exhibit a pronounced force maximum corresponding to the unfolding of the first repeat. This event is followed by the unfolding of the remaining repeats, which takes place at a lower force. As the protein extension is increased, the force-extension curve of a sufficiently long repeat protein displays a plateau, where the force remains nearly constant and the protein unfolds sequentially so that the number of unfolded repeats is proportional to the extension. Such a sequential mechanical unfolding mechanism is displayed even by the repeat proteins whose thermal denaturation is highly cooperative, provided that they are long enough. By contrast, the unfolding of short repeat progressions can be cooperative.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Biochemistry and Institute for Theoretical Chemistry, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
44
|
Li H, Fast W, Benkovic SJ. Structural and functional modularity of proteins in the de novo purine biosynthetic pathway. Protein Sci 2009; 18:881-92. [PMID: 19384989 PMCID: PMC2771292 DOI: 10.1002/pro.95] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 11/08/2022]
Abstract
It is generally accepted that naturally existing functional domains can serve as building blocks for complex protein structures, and that novel functions can arise from assembly of different combinations of these functional domains. To inform our understanding of protein evolution and explore the modular nature of protein structure, two model enzymes were chosen for study, purT-encoded glycinamide ribonucleotide formyltransferase (PurT) and purK-encoded N(5)-carboxylaminoimidazole ribonucleotide synthetase (PurK). Both enzymes are found in the de novo purine biosynthetic pathway of Escherichia coli. In spite of their low sequence identity, PurT and PurK share significant similarity in terms of tertiary structure, active site organization, and reaction mechanism. Their characteristic three domain structures categorize both PurT and PurK as members of the ATP-grasp protein superfamily. In this study, we investigate the exchangeability of individual protein domains between these two enzymes and the in vivo and in vitro functional properties of the resulting hybrids. Six domain-swapped hybrids were unable to catalyze full wild-type reactions, but each hybrid protein could catalyze partial reactions. Notably, an additional loop replacement in one of the domain-swapped hybrid proteins was able to restore near wild-type PurK activity. Therefore, in this model system, domain-swapped proteins retained the ability to catalyze partial reactions, but further modifications were required to efficiently couple the reaction intermediates and achieve catalysis of the full reaction. Implications for understanding the role of domain swapping in protein evolution are discussed.
Collapse
Affiliation(s)
| | | | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University ParkPennsylvania 16802
| |
Collapse
|
45
|
Batey S, Nickson AA, Clarke J. Studying the folding of multidomain proteins. HFSP JOURNAL 2008; 2:365-77. [PMID: 19436439 PMCID: PMC2645590 DOI: 10.2976/1.2991513] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Indexed: 11/19/2022]
Abstract
There have been relatively few detailed comprehensive studies of the folding of protein domains (or modules) in the context of their natural covalently linked neighbors. This is despite the fact that a significant proportion of the proteome consists of multidomain proteins. In this review we highlight some key experimental investigations of the folding of multidomain proteins to draw attention to the difficulties that can arise in analyzing such systems. The evidence suggests that interdomain interactions can significantly affect stability, folding, and unfolding rates. However, preliminary studies suggest that folding pathways are unaffected-to this extent domains can be truly considered to be independent folding units. Nonetheless, it is clear that interactions between domains cannot be ignored, in particular when considering the effects of mutations.
Collapse
Affiliation(s)
- Sarah Batey
- Department of Chemistry, MRC Centre for Protein Engineering, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Adrian A. Nickson
- Department of Chemistry, MRC Centre for Protein Engineering, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jane Clarke
- Department of Chemistry, MRC Centre for Protein Engineering, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
46
|
Balamurali MM, Sharma D, Chang A, Khor D, Chu R, Li H. Recombination of protein fragments: a promising approach toward engineering proteins with novel nanomechanical properties. Protein Sci 2008; 17:1815-26. [PMID: 18628239 DOI: 10.1110/ps.036376.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Combining single molecule atomic force microscopy (AFM) and protein engineering techniques, here we demonstrate that we can use recombination-based techniques to engineer novel elastomeric proteins by recombining protein fragments from structurally homologous parent proteins. Using I27 and I32 domains from the muscle protein titin as parent template proteins, we systematically shuffled the secondary structural elements of the two parent proteins and engineered 13 hybrid daughter proteins. Although I27 and I32 are highly homologous, and homology modeling predicted that the hybrid daughter proteins fold into structures that are similar to that of parent protein, we found that only eight of the 13 daughter proteins showed beta-sheet dominated structures that are similar to parent proteins, and the other five recombined proteins showed signatures of the formation of significant alpha-helical or random coil-like structure. Single molecule AFM revealed that six recombined daughter proteins are mechanically stable and exhibit mechanical properties that are different from the parent proteins. In contrast, another four of the hybrid proteins were found to be mechanically labile and unfold at forces that are lower than the approximately 20 pN, as we could not detect any unfolding force peaks. The last three hybrid proteins showed interesting duality in their mechanical unfolding behaviors. These results demonstrate the great potential of using recombination-based approaches to engineer novel elastomeric protein domains of diverse mechanical properties. Moreover, our results also revealed the challenges and complexity of developing a recombination-based approach into a laboratory-based directed evolution approach to engineer novel elastomeric proteins.
Collapse
Affiliation(s)
- M M Balamurali
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Sattin BD, Zhao W, Travers K, Chu S, Herschlag D. Direct measurement of tertiary contact cooperativity in RNA folding. J Am Chem Soc 2008; 130:6085-7. [PMID: 18429611 PMCID: PMC2835547 DOI: 10.1021/ja800919q] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All structured biological macromolecules must overcome the thermodynamic folding problem to populate a unique functional state among a vast ensemble of unfolded and alternate conformations. The exploration of cooperativity in protein folding has helped reveal and distinguish the underlying mechanistic solutions to this folding problem. Analogous dissections of RNA tertiary stability remain elusive, however, despite the central biological importance of folded RNA molecules and the potential to reveal fundamental properties of structured macromolecules via comparisons of protein and RNA folding. We report a direct quantitative measure of tertiary contact cooperativity in a folded RNA. We precisely measured the stability of an independently folding P4-P6 domain from the Tetrahymena thermophila group I intron by single molecule fluorescence resonance energy transfer (smFRET). Using wild-type and mutant RNAs, we found that cooperativity between the two tertiary contacts enhances P4-P6 stability by 3.2 +/- 0.2 kcal/mol.
Collapse
|
48
|
Anderson E, Cole JL. Domain stabilities in protein kinase R (PKR): evidence for weak interdomain interactions. Biochemistry 2008; 47:4887-97. [PMID: 18393532 PMCID: PMC2729556 DOI: 10.1021/bi702211j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PKR (protein kinase R) is induced by interferon and is a key component of the innate immunity antiviral pathway. Upon binding dsRNA, PKR undergoes autophosphorylation reactions that activate the kinase, leading it to phosphorylate eIF2alpha, thus inhibiting protein synthesis in virally infected cells. PKR contains a dsRNA-binding domain (dsRBD) and a kinase domain. The dsRBD is composed of two tandem dsRNA-binding motifs. An autoinhibition model for PKR has been proposed, whereby dsRNA binding activates the enzyme by inducing a conformational change that relieves the latent enzyme of the inhibition that is mediated by the interaction of the dsRBD with the kinase. However, recent biophysical data support an open conformation for the latent enzyme, where activation is mediated by dimerization of PKR induced upon binding dsRNA. We have probed the importance of interdomain contacts by comparing the relative stabilities of isolated domains with the same domain in the context of the intact enzyme using equilibrium chemical denaturation experiments. The two dsRNA-binding motifs fold independently, with the C-terminal motif exhibiting greater stability. The kinase domain is stabilized by about 1.5 kcal/mol in the context of the holenzyme, and we detect low-affinity binding of the kinase and dsRBD constructs in solution, indicating that these domains interact weakly. Limited proteolysis measurements confirm the expected domain boundaries and reveal that the activation loop in the kinase is accessible to cleavage and unstructured. Autophosphorylation induces a conformation change that blocks proteolysis of the activation loop.
Collapse
Affiliation(s)
- Eric Anderson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
| | - James L. Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125
- National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, Connecticut 06269-3125
| |
Collapse
|
49
|
Batey S, Clarke J. The folding pathway of a single domain in a multidomain protein is not affected by its neighbouring domain. J Mol Biol 2008; 378:297-301. [PMID: 18371978 PMCID: PMC2828540 DOI: 10.1016/j.jmb.2008.02.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/21/2008] [Accepted: 02/15/2008] [Indexed: 11/24/2022]
Abstract
Domains are the structural, functional, and evolutionary components of proteins. Most folding studies to date have concentrated on the folding of single domains, but more than 70% of human proteins contain more than one domain, and interdomain interactions can affect both the stability and the folding kinetics. Whether the folding pathway is altered by interdomain interactions is not yet known. Here we investigated the effect of a folded neighbouring domain on the folding pathway of spectrin R16 (the 16th α-helical repeat from chicken brain α-spectrin) by using the two-domain construct R1516. The R16 folds faster and unfolds more slowly in the presence of its folded neighbour R15 (the 15th α-helical repeat from chicken brain α-spectrin). An extensive Φ-value analysis of the R16 domain in R1516 was completed to compare the transition state of the R16 domain alone with that of the R16 domain in a multidomain construct. The results indicate that the folding pathways are the same. This result validates the current approach of breaking up larger proteins into domains for the study of protein folding pathways.
Collapse
|
50
|
Marchetti S, Sbrana F, Raccis R, Lanzi L, Gambi CMC, Vassalli M, Tiribilli B, Pacini A, Toscano A. Dynamic light scattering and atomic force microscopy imaging on fragments of beta-connectin from human cardiac muscle. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:021910. [PMID: 18352054 DOI: 10.1103/physreve.77.021910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 12/20/2007] [Indexed: 05/26/2023]
Abstract
In order to investigate the protein folding-unfolding process, dynamic light scattering (DLS) and atomic force microscopy (AFM) imaging were used to study two fragments of the muscle cardiac protein beta-connectin, also known as titin. Both fragments belong to the I band of the sarcomer, and they are composed of four domains from I(27) to I(30) (tetramer) and eight domains from I(27) to I(34) (octamer). DLS measurements provide the size of both fragments as a function of temperature from 20 up to 86 degrees C, and show a thermal denaturation due to temperature increase. AFM imaging of both fragments in the native state reveals a homogeneous and uniform distribution of comparable structures. The DLS and AFM techniques turn out to be complementary for size measurements of the fragments and fragment aggregates. An unexpected result is that the octamer folds into a smaller structure than the tetramer and the unfolded octamer is also smaller than the unfolded tetramer. This feature seems related to the significance of the hydrophobic interactions between domains of the fragment. The longer the fragment, the more easily the hydrophobic parts of the domains interact with each other. The fragment aggregation behavior, in particular conditions, is also revealed by both DLS and AFM as a process that is parallel to the folding-unfolding transition.
Collapse
Affiliation(s)
- S Marchetti
- Department of Physics and CNISM, University of Florence, Via G Sansone 1, Sesto Fiorentino, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|