1
|
Resztak JA, Wei J, Zilioli S, Sendler E, Alazizi A, Mair-Meijers HE, Wu P, Wen X, Slatcher RB, Zhou X, Luca F, Pique-Regi R. Genetic control of the dynamic transcriptional response to immune stimuli and glucocorticoids at single-cell resolution. Genome Res 2023; 33:839-856. [PMID: 37442575 PMCID: PMC10519413 DOI: 10.1101/gr.276765.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
Synthetic glucocorticoids, such as dexamethasone, have been used as a treatment for many immune conditions, such as asthma and, more recently, severe COVID-19. Single-cell data can capture more fine-grained details on transcriptional variability and dynamics to gain a better understanding of the molecular underpinnings of inter-individual variation in drug response. Here, we used single-cell RNA-seq to study the dynamics of the transcriptional response to glucocorticoids in activated peripheral blood mononuclear cells from 96 African American children. We used novel statistical approaches to calculate a mean-independent measure of gene expression variability and a measure of transcriptional response pseudotime. Using these approaches, we showed that glucocorticoids reverse the effects of immune stimulation on both gene expression mean and variability. Our novel measure of gene expression response dynamics, based on the diagonal linear discriminant analysis, separated individual cells by response status on the basis of their transcriptional profiles and allowed us to identify different dynamic patterns of gene expression along the response pseudotime. We identified genetic variants regulating gene expression mean and variability, including treatment-specific effects, and showed widespread genetic regulation of the transcriptional dynamics of the gene expression response.
Collapse
Affiliation(s)
- Justyna A Resztak
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Samuele Zilioli
- Department of Psychology, Wayne State University, Detroit, Michigan 48201, USA
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan 48201, USA
| | - Edward Sendler
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Henriette E Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Peijun Wu
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard B Slatcher
- Department of Psychology, University of Georgia, Athens, Georgia 30602, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA;
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA
- Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA;
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
2
|
Lyu M, Lai H, Wang Y, Zhou Y, Chen Y, Wu D, Chen J, Ying B. Roles of alternative splicing in infectious diseases: from hosts, pathogens to their interactions. Chin Med J (Engl) 2023; 136:767-779. [PMID: 36893312 PMCID: PMC10150853 DOI: 10.1097/cm9.0000000000002621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT Alternative splicing (AS) is an evolutionarily conserved mechanism that removes introns and ligates exons to generate mature messenger RNAs (mRNAs), extremely improving the richness of transcriptome and proteome. Both mammal hosts and pathogens require AS to maintain their life activities, and inherent physiological heterogeneity between mammals and pathogens makes them adopt different ways to perform AS. Mammals and fungi conduct a two-step transesterification reaction by spliceosomes to splice each individual mRNA (named cis -splicing). Parasites also use spliceosomes to splice, but this splicing can occur among different mRNAs (named trans -splicing). Bacteria and viruses directly hijack the host's splicing machinery to accomplish this process. Infection-related changes are reflected in the spliceosome behaviors and the characteristics of various splicing regulators (abundance, modification, distribution, movement speed, and conformation), which further radiate to alterations in the global splicing profiles. Genes with splicing changes are enriched in immune-, growth-, or metabolism-related pathways, highlighting approaches through which hosts crosstalk with pathogens. Based on these infection-specific regulators or AS events, several targeted agents have been developed to fight against pathogens. Here, we summarized recent findings in the field of infection-related splicing, including splicing mechanisms of pathogens and hosts, splicing regulation and aberrant AS events, as well as emerging targeted drugs. We aimed to systemically decode host-pathogen interactions from a perspective of splicing. We further discussed the current strategies of drug development, detection methods, analysis algorithms, and database construction, facilitating the annotation of infection-related splicing and the integration of AS with disease phenotype.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongli Lai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dongsheng Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Liu G, Zuo DY, Yang P, He WJ, Yang Z, Zhang JB, Wu AB, Yi SY, Li HP, Huang T, Liao YC. A Novel Deoxynivalenol-Activated Wheat Arl6ip4 Gene Encodes an Antifungal Peptide with Deoxynivalenol Affinity and Protects Plants against Fusarium Pathogens and Mycotoxins. J Fungi (Basel) 2021; 7:jof7110941. [PMID: 34829228 PMCID: PMC8618893 DOI: 10.3390/jof7110941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Deoxynivalenol (DON) is one of the most widespread trichothecene mycotoxins in contaminated cereal products. DON plays a vital role in the pathogenesis of Fusarium graminearum, but the molecular mechanisms of DON underlying Fusarium–wheat interactions are not yet well understood. In this study, a novel wheat ADP-ribosylation factor-like protein 6-interacting protein 4 gene, TaArl6ip4, was identified from DON-treated wheat suspension cells by suppression subtractive hybridization (SSH). The qRT-PCR result suggested that TaArl6ip4 expression is specifically activated by DON in both the Fusarium intermediate susceptible wheat cultivar Zhengmai9023 and the Fusarium resistant cultivar Sumai3. The transient expression results of the TaARL6IP4::GFP fusion protein indicate that TaArl6ip4 encodes a plasma membrane and nucleus-localized protein. Multiple sequence alignment using microscale thermophoresis showed that TaARL6IP4 comprises a conserved DON binding motif, 67HXXXG71, and exhibits DON affinity with a dissociation constant (KD) of 91 ± 2.6 µM. Moreover, TaARL6IP4 exhibited antifungal activity with IC50 values of 22 ± 1.5 µM and 25 ± 2.6 µM against Fusarium graminearum and Alternaria alternata, respectively. Furthermore, TaArl6ip4 interacted with the plasma membrane of Fusarium graminearum spores, resulting in membrane disruption and the leakage of cytoplasmic materials. The heterologous over-expression of TaArl6ip4 conferred greater DON tolerance and Fusarium resistance in Arabidopsis. Finally, we describe a novel DON-induced wheat gene, TaArl6ip4, exhibiting antifungal function and DON affinity that may play a key role in Fusarium–wheat interactions.
Collapse
Affiliation(s)
- Gang Liu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong-Yun Zuo
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Yang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Jie He
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Yang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ai-Bo Wu
- Key Laboratory of Food Safety Research Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Shu-Yuan Yi
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Huang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (T.H.); (Y.-C.L.)
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (T.H.); (Y.-C.L.)
| |
Collapse
|
4
|
Resztak JA, Wei J, Zilioli S, Sendler E, Alazizi A, Mair-meijers HE, Wu P, Slatcher RB, Zhou X, Luca F, Pique-regi R. Genetic control of the dynamic transcriptional response to immune stimuli and glucocorticoids at single cell resolution.. [PMID: 35313584 PMCID: PMC8936121 DOI: 10.1101/2021.09.30.462672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic glucocorticoids, such as dexamethasone, have been used as treatment for many immune conditions, such as asthma and more recently severe COVID-19. Single cell data can capture more fine-grained details on transcriptional variability and dynamics to gain a better understanding of the molecular underpinnings of inter-individual variation in drug response. Here, we used single cell RNA-seq to study the dynamics of the transcriptional response to glucocorticoids in activated Peripheral Blood Mononuclear Cells from 96 African American children. We employed novel statistical approaches to calculate a mean-independent measure of gene expression variability and a measure of transcriptional response pseudotime. Using these approaches, we demonstrated that glucocorticoids reverse the effects of immune stimulation on both gene expression mean and variability. Our novel measure of gene expression response dynamics, based on the diagonal linear discriminant analysis, separated individual cells by response status on the basis of their transcriptional profiles and allowed us to identify different dynamic patterns of gene expression along the response pseudotime. We identified genetic variants regulating gene expression mean and variability, including treatment-specific effects, and demonstrated widespread genetic regulation of the transcriptional dynamics of the gene expression response.
Collapse
|
5
|
Ma L, Shcherbina A, Chetty S. Variations and expression features of CYP2D6 contribute to schizophrenia risk. Mol Psychiatry 2021; 26:2605-2615. [PMID: 32047265 PMCID: PMC8440189 DOI: 10.1038/s41380-020-0675-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Genome-wide association studies (GWAS) have successfully identified 145 loci implicated in schizophrenia (SCZ). However, the underlying mechanisms remain largely unknown. Here, we analyze 1497 RNA-seq data in combination with their genotype data and identify SNPs that are associated with expression throughout the genome by dissecting expression features to genes (eGene) and exon-exon junctions (eJunction). Then, we colocalize eGene and eJunction with SCZ GWAS using SMR and fine mapping. Multiple ChIP-seq data and DNA methylation data generated from brain were used for identifying the causal variants. Finally, we used a hypothesis-free (no SCZ risk loci considered) enrichment analysis to determine implicated pathways. We identified 171 genes and eight splicing junctions located within four genes (SNX19, ARL6IP4, APOPT1, and CYP2D6) that potentially contribute to SCZ susceptibility. Among the genes, CYP2D6 is significantly associated with SCZ SNPs in eGene and eJunction. In-depth examination of the CYP2D6 region revealed that a nonsynonymous single nucleotide variant rs16947 is strongly associated with a higher abundance of CYP2D6 exon 3 skipping junctions. While we found rs133377 and other functional SNPs in high linkage disequilibrium with rs16947 (r2 = 0.9539), histone acetylation analysis showed they are located within active transcription start sites. Furthermore, our data-driven enrichment analysis showed that CYP2D6 is significantly involved in drug metabolism of codeine, tamoxifen, and citalopram. Our study facilitates an understanding of the genetic architecture of SCZ and provides new drug targets.
Collapse
Affiliation(s)
- Liang Ma
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Anna Shcherbina
- grid.168010.e0000000419368956Department of Biomedical Informatics, Stanford University, Stanford, CA 94305 USA
| | - Sundari Chetty
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Xu K, Jin L, Xiong M. Functional regression method for whole genome eQTL epistasis analysis with sequencing data. BMC Genomics 2017; 18:385. [PMID: 28521784 PMCID: PMC5436462 DOI: 10.1186/s12864-017-3777-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/09/2017] [Indexed: 12/02/2022] Open
Abstract
Background Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges. Methods We develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions. Results By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction identified using FRGM, RPKM and DESeq were 16,2361, 260 and 51, respectively, from the 350 European samples. Conclusions The proposed FRGM for epistasis analysis of RNA-seq can capture isoform and position-level information and will have a broad application. Both simulations and real data analysis highlight the potential for the FRGM to be a good choice of the epistatic analysis with sequencing data. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3777-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelin Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.,School of Data Science and Institute for Big Data, Fudan University, Shanghai, 200433, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Momiao Xiong
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Department of Biostatistics, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Human Genetics Center, The University of Texas Health Science Center at Houston, P.O. Box 20186, Houston, TX, 77225, USA.
| |
Collapse
|
7
|
Thakar NY, Ovchinnikov DA, Hastie ML, Kobe B, Gorman JJ, Wolvetang EJ. TRAF2 recruitment via T61 in CD30 drives NFκB activation and enhances hESC survival and proliferation. Mol Biol Cell 2015; 26:993-1006. [PMID: 25568342 PMCID: PMC4342033 DOI: 10.1091/mbc.e14-08-1290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CD30 activates NFκB signaling in human embryonic stem cells. A single threonine residue in the CD30v protein is critical for this and recruitment of TRAF2. The data reveal the importance of this interaction for hESC survival and proliferation. CD30 (TNFRSF8), a tumor necrosis factor receptor family protein, and CD30 variant (CD30v), a ligand-independent form encoding only the cytoplasmic signaling domain, are concurrently overexpressed in transformed human embryonic stem cells (hESCs) or hESCs cultured in the presence of ascorbate. CD30 and CD30v are believed to increase hESC survival and proliferation through NFκB activation, but how this occurs is largely unknown. Here we demonstrate that hESCs that endogenously express CD30v and hESCs that artificially overexpress CD30v exhibit increased ERK phosphorylation levels, activation of the canonical NFκB pathway, down-regulation of the noncanonical NFκB pathway, and reduced expression of the full-length CD30 protein. We further find that CD30v, surprisingly, resides predominantly in the nucleus of hESC. We demonstrate that alanine substitution of a single threonine residue at position 61 (T61) in CD30v abrogates CD30v-mediated NFκB activation, CD30v-mediated resistance to apoptosis, and CD30v-enhanced proliferation, as well as restores normal G2/M-checkpoint arrest upon H2O2 treatment while maintaining its unexpected subcellular distribution. Using an affinity purification strategy and LC-MS, we identified TRAF2 as the predominant protein that interacts with WT CD30v but not the T61A-mutant form in hESCs. The identification of Thr-61 as a critical residue for TRAF2 recruitment and canonical NFκB signaling by CD30v reveals the substantial contribution that this molecule makes to overall NFκB activity, cell cycle changes, and survival in hESCs.
Collapse
Affiliation(s)
- Nilay Y Thakar
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Dmitry A Ovchinnikov
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcus L Hastie
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, QLD 4029, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4067 QLD, Australia
| | - Jeffrey J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, QLD 4029, Australia
| | - Ernst J Wolvetang
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Wu L, Zhang X, Che Y, Zhang Y, Tang S, Liao Y, Na R, Xiong X, Liu L, Li Q. A cellular response protein induced during HSV-1 infection inhibits viral replication by interacting with ATF5. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1124-33. [PMID: 24302293 DOI: 10.1007/s11427-013-4569-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/05/2013] [Indexed: 01/24/2023]
Abstract
Studies of herpes simplex virus type 1 (HSV-1) infection have shown that many known and unknown cellular molecules involved in viral proliferation are up-regulated following HSV-1 infection. In this study, using two-dimensional polyacrylamide gel electrophoresis, we found that the expression of the HSV-1 infection response repressive protein (HIRRP, GI 16552881) was up-regulated in human L02 cells infected with HSV-1. HIRRP, an unknown protein, was initially localized in the cytoplasm and then translocated into the nucleus of HSV-1-infected cells. Further analysis showed that HIRRP represses HSV-1 proliferation by inhibiting transcription of the viral genome by interacting with the cellular transcription factor, ATF5, via its N-terminal domain. ATF5 represses the transcription of many host genes but can also act as an activator of genes containing a specific motif. We found that ATF5 promotes the proliferation of HSV-1 via a potential mechanism by which ATF5 enhances the transcription of viral genes during the course of an HSV-1 infection; HIRRP then induces feedback repression of this transcription by interacting with ATF5.
Collapse
Affiliation(s)
- LianQiu Wu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen J, Li YM, Li JF, Liu LD, Liao Y, Na RX, Wang JJ, Wang LC, Li QH. Transcriptional regulation by HSV-1 induced HTRP via acetylation system. Virol Sin 2010; 25:417-24. [PMID: 21221920 DOI: 10.1007/s12250-010-3147-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/28/2010] [Indexed: 11/26/2022] Open
Abstract
The protein HTRP (human transcription regulator protein) is encoded by the differential gene htrp and induced by Herpes simplex virus type 1 (HSV-1) infection in KMB-17 cells. HTRP was found to interact with SAP30 (mSin3A Association Protein), one of the components of co-repressor complex mSin3A, which is part of the deacetylation transfer enzyme HDAC. To reveal the biological significance of the interaction between HTRP and SAP30, real- time PCR and a dual-luciferase detecting system was used. The results indicate that HTRP could inhibit the transcription of a viral promoter, whose interaction with SAP30 synergistically affects transcriptional inhibition of the viral genes, and is related to HDAC enzyme activity. ChIP experiments demonstrate that HTRP could promote HDAC activity by increasing the deacetylation level of lysine 14 and lysine 9 in histone H3.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ouyang P. SRrp37, a novel splicing regulator located in the nuclear speckles and nucleoli, interacts with SC35 and modulates alternative pre-mRNA splicing in vivo. J Cell Biochem 2009; 108:304-14. [DOI: 10.1002/jcb.22255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Buratti E, Stuani C, De Prato G, Baralle FE. SR protein-mediated inhibition of CFTR exon 9 inclusion: molecular characterization of the intronic splicing silencer. Nucleic Acids Res 2007; 35:4359-68. [PMID: 17576688 PMCID: PMC1935002 DOI: 10.1093/nar/gkm444] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/14/2007] [Accepted: 05/18/2007] [Indexed: 11/13/2022] Open
Abstract
The intronic splicing silencer (ISS) of CFTR exon 9 promotes exclusion of this exon from the mature mRNA. This negative influence has important consequences with regards to human pathologic events, as lack of exon 9 correlates well with the occurrence of monosymptomatic and full forms of CF disease. We have previously shown that the ISS element interacts with members of the SR protein family. In this work, we now provide the identification of SF2/ASF and SRp40 as the specific SR proteins binding to this element and map their precise binding sites in IVS9. We have also performed a functional analysis of the ISS element using a variety of unrelated SR-binding sequences and different splicing systems. Our results suggest that SR proteins mediate CFTR exon 9 exclusion by providing a 'decoy' sequence in the vicinity of its suboptimal donor site. The results of this study give an insight on intron 'exonization' mechanisms and provide useful indications for the development of novel therapeutic strategies aimed at the recovery of exon inclusion.
Collapse
Affiliation(s)
| | | | | | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB) 34012 Trieste, Italy
| |
Collapse
|
12
|
Guo HX, Cun W, Liu LD, Dong SZ, Wang LC, Dong CH, Li QH. Protein encoded by HSV-1 stimulation-related gene 1 (HSRG1) interacts with and inhibits SV40 large T antigen. Cell Prolif 2007; 39:507-18. [PMID: 17109635 PMCID: PMC6496204 DOI: 10.1111/j.1365-2184.2006.00408.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Herpes simplex virus (HSV)-1 stimulation-related gene 1 (HSRG1) protein expression is induced in HSV-1 infected cells. We found that HSRG1 interacts with SV40 large T antigen (LT) in yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) assay. This interaction alters LT's regulation of the SV40 promoter and its ability to influence the cell cycle. Choramphenicol acetyl-transferase (CAT) assays revealed that initiation of gene transcription by LT is changed by HSRG1 expression. HSRG1 inhibits the ability of LT to activate SV40 late gene transcription. Further data indicate that the ability of LT protein to stimulate S-phase entry is also inhibited by the expression of HSRG1. The results of a colony-forming assay suggested that expression of HSRG1 in cells transfected by LT gene decreased the rate of colony formation. Yeast two-hybrid beta-galactosidase assay revealed that amino acid residues 132-450 in LT bind HSRG1.
Collapse
Affiliation(s)
- H. X. Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - W. Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - L. D. Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - S. Z. Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - L. C. Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - C. H. Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Q. H. Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| |
Collapse
|
13
|
Li Q, Wang L, Dong C, Che Y, Jiang L, Liu L, Zhao H, Liao Y, Sheng Y, Dong S, Ma S. The interaction of the SARS coronavirus non-structural protein 10 with the cellular oxido-reductase system causes an extensive cytopathic effect. J Clin Virol 2005; 34:133-9. [PMID: 16157265 PMCID: PMC7108382 DOI: 10.1016/j.jcv.2004.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 12/23/2004] [Accepted: 12/31/2004] [Indexed: 02/04/2023]
Abstract
The pathological mechanism of SARS-CoV infection was investigated. The gene for the SARS-CoV non-structural protein 10, which is located in the open reading frame of pp1a/pp1ab gene, was synthesized and used to screen for the specific cellular gene coding for the protein interacting with this nsp10 protein in a human embryo lung cDNA library using a yeast trap method. The results indicated that apart from the two subunits of cellular RNA polymerase complex, BTF3 and ATF5, this nsp10 protein was also able to interact specifically with the NADH 4L subunit and cytochrome oxidase II. Further study revealed that the activity of the NADH-cytochrome was altered and the inner mitochondrial membrane was depolarized in the transfected human embryo lung fibroblast by the nsp10 protein gene. The cytopathic effect of the Coronavirus 229E strain appeared more extensive in these cells than in the control cells.
Collapse
Key Words
- sars-cov, severe acute respiratory syndrome coronavirus
- btf3, basic transcription factor-3
- atf5, activation transcription factor-5
- nadh, nicotinamide adenine dinucleotide dehydrogenase
- fbs, fetal bovine serum
- dmem, double minimal essential media
- qdo, quart-drop-out
- nc, nitrocellulose
- he, hematoxyline and eosin method
- gfp, green fluorescence protein
- gst, glutathione s-transferase
- sars coronavirus
- non-structural protein 10
- cellular oxido-reductase
- cytopathic effect
- viral infection
Collapse
Affiliation(s)
- Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|