1
|
Xu C, Liu C, Xiong J, Yu J. Cardiovascular aspects of the (pro)renin receptor: Function and significance. FASEB J 2022; 36:e22237. [PMID: 35226776 DOI: 10.1096/fj.202101649rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs), including all types of disorders related to the heart or blood vessels, are the major public health problems and the leading causes of mortality globally. (Pro)renin receptor (PRR), a single transmembrane protein, is present in cardiomyocytes, vascular smooth muscle cells, and endothelial cells. PRR plays an essential role in cardiovascular homeostasis by regulating the renin-angiotensin system and several intracellular signals such as mitogen-activated protein kinase signaling and wnt/β-catenin signaling in various cardiovascular cells. This review discusses the current evidence for the pathophysiological roles of the cardiac and vascular PRR. Activation of PRR in cardiomyocytes may contribute to myocardial ischemia/reperfusion injury, cardiac hypertrophy, diabetic or alcoholic cardiomyopathy, salt-induced heart damage, and heart failure. Activation of PRR promotes vascular smooth muscle cell proliferation, endothelial cell dysfunction, neovascularization, and the progress of vascular diseases. In addition, phenotypes of animals transgenic for PRR and the hypertensive actions of PRR in the brain and kidney and the soluble PRR are also discussed. Targeting PRR in local tissues may offer benefits for patients with CVDs, including heart injury, atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chunju Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianhua Xiong
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Gonzalez AA, Cifuentes-Araneda F, Ibaceta-Gonzalez C, Gonzalez-Vergara A, Zamora L, Henriquez R, Rosales CB, Navar LG, Prieto MC. Vasopressin/V2 receptor stimulates renin synthesis in the collecting duct. Am J Physiol Renal Physiol 2015; 310:F284-93. [PMID: 26608789 DOI: 10.1152/ajprenal.00360.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
Renin is synthesized in the principal cells of the collecting duct (CD), and its production is increased via cAMP in angiotensin (ANG) II-dependent hypertension, despite suppression of juxtaglomerular (JG) renin. Vasopressin, one of the effector hormones of the renin-angiotensin system (RAS) via the type 2-receptor (V2R), activates the cAMP/PKA/cAMP response element-binding protein (CREB) pathway and aquaporin-2 expression in principal cells of the CD. Accordingly, we hypothesized that activation of V2R increases renin synthesis via PKA/CREB, independently of ANG II type 1 (AT1) receptor activation in CD cells. Desmopressin (DDAVP; 10(-6) M), a selective V2R agonist, increased renin mRNA (∼3-fold), prorenin (∼1.5-fold), and renin (∼2-fold) in cell lysates and cell culture media in the M-1 CD cell line. Cotreatment with DDAVP+H89 (PKA inhibitor) or CREB short hairpin (sh) RNA prevented this response. H89 also blunted DDAVP-induced CREB phosphorylation and nuclear localization. In 48-h water-deprived (WD) mice, prorenin-renin protein levels were increased in the renal inner medulla (∼1.4- and 1.8-fold). In WD mice treated with an ACE inhibitor plus AT1 receptor blockade, renin mRNA and prorenin protein levels were still higher than controls, while renin protein content was not changed. In M-1 cells, ANG II or DDAVP increased prorenin-renin protein levels; however, there were no further increases by combined treatment. These results indicate that in the CD the activation of the V2R stimulates renin synthesis via the PKA/CREB pathway independently of RAS, suggesting a critical role for vasopressin in the regulation of renin in the CD.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile;
| | | | | | - Alex Gonzalez-Vergara
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leonardo Zamora
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ricardo Henriquez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carla B Rosales
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and
| | - L Gabriel Navar
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and Hypertension and Renal Center of Excellence, Tulane University, School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and Hypertension and Renal Center of Excellence, Tulane University, School of Medicine, New Orleans, Louisiana
| |
Collapse
|
3
|
Saito S, Yisireyili M, Shimizu H, Ng HY, Niwa T. Indoxyl Sulfate Upregulates Prorenin Expression via Nuclear Factor-κB p65, Signal Transducer and Activator of Transcription 3, and Reactive Oxygen Species in Proximal Tubular Cells. J Ren Nutr 2015; 25:145-8. [DOI: 10.1053/j.jrn.2014.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022] Open
|
4
|
Balakumar P, Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal 2014; 26:2147-60. [PMID: 25007996 DOI: 10.1016/j.cellsig.2014.06.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022]
Abstract
Ang II, the primary effector pleiotropic hormone of the renin-angiotensin system (RAS) cascade, mediates physiological control of blood pressure and electrolyte balance through its action on vascular tone, aldosterone secretion, renal sodium absorption, water intake, sympathetic activity and vasopressin release. It affects the function of most of the organs far beyond blood pressure control including heart, blood vessels, kidney and brain, thus, causing both beneficial and deleterious effects. However, the protective axis of the RAS composed of ACE2, Ang (1-7), alamandine, and Mas and MargD receptors might oppose some harmful effects of Ang II and might promote beneficial cardiovascular effects. Newly identified RAS family peptides, Ang A and angioprotectin, further extend the complexities in understanding the cardiovascular physiopathology of RAS. Most of the diverse actions of Ang II are mediated by AT1 receptors, which couple to classical Gq/11 protein and activate multiple downstream signals, including PKC, ERK1/2, Raf, tyrosine kinases, receptor tyrosine kinases (EGFR, PDGF, insulin receptor), nuclear factor κB and reactive oxygen species (ROS). Receptor activation via G12/13 stimulates Rho-kinase, which causes vascular contraction and hypertrophy. The AT1 receptor activation also stimulates G protein-independent signaling pathways such as β-arrestin-mediated MAPK activation and Src-JAK/STAT. AT1 receptor-mediated activation of NADPH oxidase releases ROS, resulting in the activation of pro-inflammatory transcription factors and stimulation of small G proteins such as Ras, Rac and RhoA. The components of the RAS and the major Ang II-induced signaling cascades of AT1 receptors are reviewed.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia.
| | - Gowraganahalli Jagadeesh
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
5
|
Long-term effects of early overnutrition in the heart of male adult rats: role of the renin-angiotensin system. PLoS One 2013; 8:e65172. [PMID: 23755190 PMCID: PMC3670836 DOI: 10.1371/journal.pone.0065172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/22/2013] [Indexed: 12/29/2022] Open
Abstract
To analyze the long-term effects of early overfeeding on the heart and coronary circulation, the effect of ischemia-reperfusion (I/R) and the role of the renin-angiotensin system (RAS) was studied in isolated hearts from control and overfed rats during lactation. On the day of birth litters were adjusted to twelve pups per mother (controls) or to three pups per mother (overfed). At 5 months of age, the rats from reduced litters showed higher body weight and body fat than the controls. The hearts from these rats were perfused in a Langendorff system and subjected to 30 min of ischemia followed by 15 min of reperfusion (I/R). The myocardial contractility (dP/dt) and the coronary vasoconstriction to angiotensin II were lower, and the expression of the apoptotic marker was higher, in the hearts from overfed rats compared to controls. I/R reduced the myocardial contractily, the coronary vasoconstriction to angiotensin II and the vasodilatation to bradykinin, and increased the expression of (pro)renin receptor and of apoptotic and antiapoptotic markers, in both experimental groups. I/R also increased the expression of angiotensinogen in control but not in overfed rats. In summary, the results of this study suggest that early overnutrition induces reduced activity of the RAS and impairment of myocardial and coronary function in adult life, due to increased apoptosis. Ischemia-reperfusion produced myocardial and coronary impairment and apoptosis, which may be related to activation of RAS in control but not in overfed rats, and there may be protective mechanisms in both experimental groups.
Collapse
|
6
|
Krop M, Lu X, Danser AJ, Meima ME. The (pro)renin receptor. A decade of research: what have we learned? Pflugers Arch 2012; 465:87-97. [PMID: 22543358 PMCID: PMC3553411 DOI: 10.1007/s00424-012-1105-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/02/2012] [Indexed: 01/26/2023]
Abstract
The discovery of a (pro)renin receptor ((P)RR) in 2002 provided a long-sought explanation for tissue renin–angiotensin system (RAS) activity and a function for circulating prorenin, the inactive precursor of renin, in end-organ damage. Binding of renin and prorenin (referred to as (pro)renin) to the (P)RR increases angiotensin I formation and induces intracellular signalling, resulting in the production of profibrotic factors. However, the (pro)renin concentrations required for intracellular signalling in vitro are several orders of magnitude above (patho)physiological plasma levels. Moreover, the phenotype of prorenin-overexpressing animals could be completely attributed to angiotensin generation, possibly even without the need for a receptor. The efficacy of the only available putative (pro)renin receptor blocker handle region peptide remains doubtful, leading to inconclusive results. The fact that, in contrast to other RAS components, (P)RR knock-outs, even tissue-specific, are lethal, points to an important, (pro)renin-independent, function of the (P)RR. Indeed, recent research has highlighted ancillary functions of the (P)RR as an essential accessory protein of the vacuolar-type H+-ATPase (V-ATPase), and in this role, it acts as an intermediate in Wnt signalling independent of (pro)renin. In conclusion, (pro)renin-dependent signalling is unlikely in non-(pro)renin synthesizing organs, and the (P)RR role in V-ATPase integrity and Wnt signalling may explain some, if not all of the phenotypes previously associated with (pro)renin-(P)RR interaction.
Collapse
Affiliation(s)
- Manne Krop
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Xifeng Lu
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - A.H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Marcel E. Meima
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
7
|
Ellis B, Li XC, Miguel-Qin E, Gu V, Zhuo JL. Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney. Am J Physiol Regul Integr Comp Physiol 2011; 302:R494-509. [PMID: 22170616 DOI: 10.1152/ajpregu.00487.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ANG II is the most potent and important member of the classical renin-angiotensin system (RAS). ANG II, once considered to be an endocrine hormone, is now increasingly recognized to also play novel and important paracrine (cell-to-cell) and intracrine (intracellular) roles in cardiovascular and renal physiology and blood pressure regulation. Although an intracrine role of ANG II remains an issue of continuous debates and requires further confirmation, a great deal of research has recently been devoted to uncover the novel actions and elucidate underlying signaling mechanisms of the so-called intracellular ANG II in cardiovascular, neural, and renal systems. The purpose of this article is to provide a comprehensive review of the intracellular actions of ANG II, either administered directly into the cells or expressed as an intracellularly functional fusion protein, and its effects throughout a variety of target tissues susceptible to the impacts of an overactive ANG II, with a particular focus on the proximal tubules of the kidney. While continuously reaffirming the roles of extracellular or circulating ANG II in the proximal tubules, our review will focus on recent evidence obtained for the novel biological roles of intracellular ANG II in cultured proximal tubule cells in vitro and the potential physiological roles of intracellular ANG II in the regulation of proximal tubular reabsorption and blood pressure in rats and mice. It is our hope that the new knowledge on the roles of intracellular ANG II in proximal tubules will serve as a catalyst to stimulate further studies and debates in the field and to help us better understand how extracellular and intracellular ANG II acts independently or interacts with each other, to regulate proximal tubular transport and blood pressure in both physiological and diseased states.
Collapse
Affiliation(s)
- Brianne Ellis
- Laboratoory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
8
|
Cardiovascular and Renal Pathologic Implications of Prorenin, Renin, and the (Pro)renin Receptor: Promising Young Players From the Old Renin-Angiotensin-Aldosterone System. J Cardiovasc Pharmacol 2010; 56:570-9. [DOI: 10.1097/fjc.0b013e3181f21576] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Mazza R, Imbrogno S, Tota B. The interplay between chromogranin A-derived peptides and cardiac natriuretic peptides in cardioprotection against catecholamine-evoked stress. ACTA ACUST UNITED AC 2010; 165:86-94. [PMID: 20594992 DOI: 10.1016/j.regpep.2010.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 11/26/2022]
Abstract
Chromogranin A (CgA) is the major soluble protein co-stored and co-released with catecholamines (CAs) from secretory vesicles in the adrenal medulla chromaffin cells. Present in the diffuse neuroendocrine system, it has also been detected in rat and human cardiac secretory granules where it co-stores with natriuretic peptide hormones (NPs). Mounting evidence shows that CgA is a marker of cardiovascular dysfunctions (essential hypertension, hypertrophic and dilatative cardiomyopathy, heart failure) and precursor of the cardioactive peptides vasostatin-1 (VS-1) and catestatin (Cts). This review focuses on recent knowledge regarding the myocardial, coronary and anti-adrenergic actions of VS-1. In particular, the negative inotropism, lusitropism and coronary dilation effects of rat CgA1-64 (rCgA) and human recombinant STACgA1-78 (hrSTACgA1-78) are summarized with attention on their counteracting isoproterenol- and endothelin-1-induced positive inotropism, as well as ET-1-dependent coronary constriction. The interactions between vasostatins (VSs), NPs and CA receptors are proposed as a paradigm of the heart capacity to organize complex connection-integration processes for maintaining homeostasis under intense cardio-excitatory stimuli (myocardial stress).
Collapse
Affiliation(s)
- Rosa Mazza
- Dept of Cell Biology, University of Calabria, 87030 Arcavacata di Rende (CS), Italy.
| | | | | |
Collapse
|
10
|
Dietze GJ, Henriksen EJ. Angiotensin-converting enzyme in skeletal muscle: sentinel of blood pressure control and glucose homeostasis. J Renin Angiotensin Aldosterone Syst 2008; 9:75-88. [PMID: 18584583 DOI: 10.3317/jraas.2008.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Recent evidence suggests a coordinated regulation by the local renin-angiotensin system (RAS) and tissue kallikrein-kinin system (TKKS) of blood flow and substrate supply in oxidative red myofibres of skeletal muscle tissue during endurance exercise. The performance of these myofibres is dependent on the increased oxidation of substrates facilitated by augmenting nutritive blood flow and glucose uptake. Humoral factors released by the contracting fibres, such as adenosine and kinins, are suggested to be responsible for this metabolic adjustment. The considerable drain of blood volume and the enormous consumption of glucose during endurance exercise require a control mechanism for the maintenance of blood pressure (BP) and glucose homeostasis. This is achieved by the sympathetic nervous system and its subordinate RAS, which is located in the nutritive vessels and parenchyma of the red myofibres. The angiotensin-converting enzyme (ACE) is the primary enzyme responsible for kinin degradation during exercise, underscoring the important interrelationship between the RAS and the TKKS in the critical role of kinins in the multifactorial regulation of muscle bioenergetics and glucose and BP homeostasis. Importantly, overactivity of the ACE, as occurs in individuals displaying risk factors such as overweight, causes exaggerated BP response and reduced glucose disposal. If they persist over years, compensatory responses to this ACE overactivity, such as hypersecretion of insulin and compliance of the vessel walls, will inevitably be exhausted, leading ultimately to the manifestation of type 2 diabetes and hypertension. This concept also provides a unifying explanation for the beneficial effects of ACE-inhibitors and Angiotensin II receptor antagonists in the treatment of hypertension and insulin resistance.
Collapse
Affiliation(s)
- Guenther J Dietze
- Hypertension and Diabetes Research Unit, Max Grundig Clinic, Buehl, Germany
| | | |
Collapse
|
11
|
Ikeda K, Tojo K, Udagawa T, Otsubo C, Ishikawa M, Tokudome G, Hosoya T, Tajima N, Nakao K, Kawamura M. Cellular physiology of rat cardiac myocytes in cardiac fibrosis: in vitro simulation using the cardiac myocyte/cardiac non-myocyte co-culture system. Hypertens Res 2008; 31:693-706. [PMID: 18633182 DOI: 10.1291/hypres.31.693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An understanding of the cellular physiology of cardiac myocytes (MCs) and non-myocytes (NMCs) may help to explain the mechanisms underlying cardiac hypertrophy. Despite numerous studies using MC/NMC co-culture systems, it is difficult to precisely evaluate the influence of each cell type because of the inherent cellular heterogeneity of such a system. Here we developed a co-culture system using Wistar rat neonatal MCs and NMCs isolated by discontinuous Percoll gradient and adhesion separation methods and cultured on either side of insert well membranes. Co-culture of MCs and NMCs resulted in significant increases in [3H]-leucine incorporation by MCs, in the amount of protein synthesized by MCs, and in the secretion of natriuretic peptides, while the addition of MCs to NMC cultures significantly reduced [3H]-thymidine incorporation by NMCs. Interestingly, the percentage of the brain natriuretic peptide (BNP) component of total natriuretic peptide secreted (atrial natriuretic peptide+BNP) increased as the number of NMCs placed in the MC/NMC co-culture system increased. However, MCs did not affect production of angiotensin II (Ang II) by NMCs or secretion of endothelin-1 and transforming growth factor-beta1 into the MC/NMC co-culture system. This finding was supported by the anti-hypertrophic and anti-fibrotic actions of RNH6270, an active form of olmesartan, on MCs in the MC/NMC co-culture system and on NMCs that may synthesize Ang II in the heart. The present data indicate that cardiac fibrosis may not only facilitate MC hypertrophy (possibly through the local angiotensin system) but may also change particular pathophysiological properties of MCs, such as the secretory pattern of natriuretic peptides.
Collapse
Affiliation(s)
- Keiichi Ikeda
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cerra MC, Gallo MP, Angelone T, Quintieri AM, Pulerà E, Filice E, Guérold B, Shooshtarizadeh P, Levi R, Ramella R, Brero A, Boero O, Metz-Boutigue MH, Tota B, Alloatti G. The homologous rat chromogranin A1-64 (rCGA1-64) modulates myocardial and coronary function in rat heart to counteract adrenergic stimulation indirectly via endothelium-derived nitric oxide. FASEB J 2008; 22:3992-4004. [PMID: 18697842 DOI: 10.1096/fj.08-110239] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chromogranin A (CGA), produced by human and rat myocardium, generates several biologically active peptides processed at specific proteolytic cleavage sites. A highly conserved cleavage N-terminal site is the bond 64-65 that reproduces the native rat CGA sequence (rCGA1-64), corresponding to human N-terminal CGA-derived vasostatin-1. rCGA1-64 cardiotropic activity has been explored in rat cardiac preparations. In Langendorff perfused rat heart, rCGA1-64 (from 33 nM) induced negative inotropism and lusitropism as well as coronary dilation, counteracting isoproterenol (Iso) - and endothelin-1 (ET-1) -induced positive inotropic effects and ET-1-dependent coronary constriction. rCGA1-64 also depressed basal and Iso-induced contractility on rat papillary muscles, without affecting calcium transients on isolated ventricular cells. Structure-function analysis using three modified peptides on both rat heart and papillary muscles revealed the disulfide bridge requirement for the cardiotropic action. A decline in Iso intrinsic activity in the presence of the peptides indicates a noncompetitive antagonistic action. Experiments on rat isolated cardiomyocytes and bovine aortic endothelial cells indicate that the negative inotropism observed in rat papillary muscle is probably due to an endothelial phosphatidylinositol 3-kinase-dependent nitric oxide release, rather than to a direct action on cardiomyocytes. Taken together, our data strongly suggest that in the rat heart the homologous rCGA1-64 fragment exerts an autocrine/paracrine modulation of myocardial and coronary performance acting as stabilizer against intense excitatory stimuli.
Collapse
Affiliation(s)
- M C Cerra
- B.T., Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende (CS), Calabria, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhuo JL, Li XC. Novel roles of intracrine angiotensin II and signalling mechanisms in kidney cells. J Renin Angiotensin Aldosterone Syst 2007; 8:23-33. [PMID: 17487823 PMCID: PMC2276849 DOI: 10.3317/jraas.2007.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin II (Ang II) has powerful sodium-retaining, growth-promoting and pro- inflammatory properties in addition to its physiological role in maintaining body salt and fluid balance and blood pressure homeostasis. Increased circulating and local tissue Ang II is one of the most important factors contributing to the development of sodium and fluid retention, hypertension and target organ damage. The importance of Ang II in the pathogenesis of hypertension and target organ injury is best demonstrated by the effectiveness of angiotensin- converting enzyme (ACE) inhibitors and AT1-receptor antagonists in treating hypertension and progressive renal disease including diabetic nephropathy. The detrimental effects of Ang II are mediated primarily by the AT1-receptor, while the AT2-receptor may oppose the AT1-receptor. The classical view of the AT1-receptor-mediated effects of Ang II is that the agonist binds its receptors at the cell surface, and following receptor phosphorylation, activates downstream signal transduction pathways and intracellular responses. However, evidence is emerging that binding of Ang II to its cell surface AT1-receptors also activates endocytotic (or internalisation) processes that promote trafficking of both the effector and the receptor into intracellular compartments. Whether internalised Ang II has important intracrine and signalling actions is not well understood. The purpose of this article is to review recent advances in Ang II research with focus on the mechanisms underlying high levels of intracellular Ang II in proximal tubule cells and the contribution of receptor-mediated endocytosis of extracellular Ang II. Further attention is devoted to the question whether intracellular and/or internalised Ang II plays a physiological role by activating cytoplasmic or nuclear receptors in proximal tubule cells. This information may aid future development of drugs to prevent and treat Ang II-induced target organ injury in cardiovascular and renal diseases by blocking intracellular and/or nuclear actions of Ang II.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Henry Ford Hospital, and Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48202, USA.
| | | |
Collapse
|
14
|
Abstract
Activation of the renin-angiotensin system (RAS) and generation of angiotensin II (Ang II) play a crucial role in fibrotic renal disease beyond this system's hemodynamic actions. Ang II blockade was a great therapeutic breakthrough for renal and cardiovascular diseases; however, this slows, but does not stop, disease progression. These limitations leave other molecules unopposed to sustain disease progression. One is renin, which is markedly elevated by Ang II blockade. Recently, a new renin receptor was cloned in renal mesangial cells. This receptor acts as a renin/prorenin cofactor on the cell surface, enhancing efficiency of angiotensinogen cleavage by renin and unmasking prorenin catalytic activity. Unexpectedly, the receptor induces angiotensin-independent cellular effects in renal mesangial cells, suggesting that renin has novel receptor-mediated actions that could play a role in renal fibrosis. Proof of this could lead to a pharmacological compound blocking renin/prorenin binding and activity as an alternative or adjunct to classical inhibitors of the RAS.
Collapse
Affiliation(s)
- Yufeng Huang
- Fibrosis Research Laboratory, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
15
|
Huang Y, Noble NA, Zhang J, Xu C, Border WA. Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 2007; 72:45-52. [PMID: 17396111 DOI: 10.1038/sj.ki.5002243] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent evidence indicates that renin itself might be profibrotic, independent of angiotensin II; however, the signaling system by which renin exerts a direct effect is not known. We tested the hypothesis that renin receptor activation, in turn, activates the extracellular-signal regulated kinase 1 and 2 (ERK1/2) of the mitogen-activated protein kinase system in mesangial cells. Recombinant rat renin induced a rapid phosphorylation of ERK1/2 and subsequent cell proliferation in a dose- and time-dependent manner. ERK1/2 activation by renin addition was not altered by angiotensin-converting enzyme inhibition or angiotensin receptor blockade. An ERK kinase inhibitor significantly reduced the renin-induced ERK1/2 phosphorylation and the subsequent increase in transforming growth factor-beta1 (TGF-beta1) and plasminogen activator inhibitor-1 mRNA expression. A small-inhibiting RNA, siRNA, against the renin receptor completely blocked ERK1/2 activation by rat renin. We conclude that renin induces ERK1/2 activation though a receptor-mediated, angiotensin II-independent mechanism in mesangial cells. This renin-activated pathway triggers cell proliferation along with TGF-beta1 and plasminogen activator inhibitor-1 gene expression. This system may play an important role in the overall profibrotic actions of renin.
Collapse
Affiliation(s)
- Y Huang
- Division of Nephrology, Fibrosis Research Laboratory, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
Since the first identification of renin by Tigerstedt and Bergmann in 1898, the renin-angiotensin system (RAS) has been extensively studied. The current view of the system is characterized by an increased complexity, as evidenced by the discovery of new functional components and pathways of the RAS. In recent years, the pathophysiological implications of the system have been the main focus of attention, and inhibitors of the RAS such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin (ANG) II receptor blockers have become important clinical tools in the treatment of cardiovascular and renal diseases such as hypertension, heart failure, and diabetic nephropathy. Nevertheless, the tissue RAS also plays an important role in mediating diverse physiological functions. These focus not only on the classical actions of ANG on the cardiovascular system, namely, the maintenance of cardiovascular homeostasis, but also on other functions. Recently, the research efforts studying these noncardiovascular effects of the RAS have intensified, and a large body of data are now available to support the existence of numerous organ-based RAS exerting diverse physiological effects. ANG II has direct effects at the cellular level and can influence, for example, cell growth and differentiation, but also may play a role as a mediator of apoptosis. These universal paracrine and autocrine actions may be important in many organ systems and can mediate important physiological stimuli. Transgenic overexpression and knock-out strategies of RAS genes in animals have also shown a central functional role of the RAS in prenatal development. Taken together, these findings may become increasingly important in the study of organ physiology but also for a fresh look at the implications of these findings for organ pathophysiology.
Collapse
Affiliation(s)
- Martin Paul
- Institute of Clinical Pharmacology and Toxicology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
18
|
Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, Metz-Boutigue MH, Goumon Y. Characterization of natural vasostatin-containing peptides in rat heart. FEBS J 2006; 273:3311-21. [PMID: 16857014 DOI: 10.1111/j.1742-4658.2006.05334.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromogranin A (CGA) is a protein that is stored and released together with neurotransmitters and hormones in the nervous, endocrine and diffuse neuroendocrine systems. As human vasostatins I and II [CGA(1-76) and CGA(1-113), respectively] have been reported to affect vessel motility and exert concentration-dependent cardiosuppressive effects on isolated whole heart preparations of eel, frog and rat (i.e. negative inotropism and antiadrenergic activity), we investigated the presence of vasostatin-containing peptides in rat heart. Rat heart extracts were purified by RP-HPLC, and the resulting fractions analyzed for the presence of CGA N-terminal fragments using dot-blot analysis. CGA-immunoreactive fractions were submitted to western blot and MS analysis using the TOF/TOF technique. Four endogenous N-terminal CGA-derived peptides [CGA(4-113), CGA(1-124), CGA(1-135) and CGA(1-199)] containing the vasostatin sequence were characterized. The following post-translational modifications of these fragments were identified: phosphorylation at Ser96, O-glycosylation (trisaccharide, NAcGal-Gal-NeuAc) at Thr126, and oxidation at three methionine residues. This first identification of CGA-derived peptides containing the vasostatin motif in rat heart supports their role in cardiac physiology by an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- Elise Glattard
- Inserm U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- A H Jan Danser
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands.
| | | |
Collapse
|
20
|
Sherrod M, Liu X, Zhang X, Sigmund CD. Nuclear localization of angiotensinogen in astrocytes. Am J Physiol Regul Integr Comp Physiol 2004; 288:R539-46. [PMID: 15388495 DOI: 10.1152/ajpregu.00594.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the brain, angiotensinogen (AGT) is primarily expressed in astrocytes; brain ANG II derived from locally produced AGT has been shown to influence blood pressure. To better understand the molecular basis of AGT expression in the brain, we identified a human astrocytoma cell line, CCF-STTG1, that expresses endogenous AGT mRNA and produces AGT protein. Studies examining CCF-STTG1 cell AGT after N- and O-glycosidase suggest that AGT may not be posttranslationally modified by glycosylation in these cells as it is in plasma. Small amounts of AGT (5% of HepG2) were detected in the culture medium, suggesting a low rate of AGT secretion. Immunocytochemical examination of AGT in CCF-STTG1 cells revealed mainly nuclear localization. Although this has not been previously reported, it is consistent with nuclear localization of other serpin family members. To examine this further, we generated a fusion protein consisting of green fluorescent protein (GFP) and human AGT and examined subcellular localization by confocal microscopy after confirming expression of the fusion protein by Western blot. In CCF-STTG1 cells, a control GFP construct lacking AGT was mainly localized in the cytoplasm, whereas the GFP-AGT fusion protein was primarily localized in the nucleus. To map the location of a potential nuclear localization signal, overlapping 500-bp fragments of human AGT cDNA were fused in frame downstream of GFP. Although four of the fusion proteins exhibited either perinuclear or cytoplasmic localization, one fusion protein encoding the COOH terminus of AGT was localized in the nucleus. Importantly, nuclear localization of human AGT was confirmed in primary cultures of glial cells isolated from transgenic mice expressing the human AGT under the control of its own endogenous promoter. Our results suggest that AGT may have a novel intracellular role in the brain apart from its predicted endocrine function.
Collapse
Affiliation(s)
- Mikhiela Sherrod
- Genetics Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|