1
|
Matsushita K, Nakahara C, Kimura S, Sakamoto N, Ii S, Miyoshi H. Intranuclear mesoscale viscoelastic changes during osteoblastic differentiation of human mesenchymal stem cells. FASEB J 2021; 35:e22071. [PMID: 34820910 DOI: 10.1096/fj.202100536rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/11/2022]
Abstract
Cell nuclei behave as viscoelastic materials. Dynamic regulation of the viscoelastic properties of nuclei in living cells is crucial for diverse biological and biophysical processes, specifically for intranuclear mesoscale viscoelasticity, through modulation of the efficiency of force propagation to the nucleoplasm and gene expression patterns. However, how the intranuclear mesoscale viscoelasticity of stem cells changes with differentiation is unclear and so is its biological significance. Here, we quantified the changes in intranuclear mesoscale viscoelasticity during osteoblastic differentiation of human mesenchymal stem cells. This analysis revealed that the intranuclear region is a viscoelastic solid, probably with a higher efficiency of force transmission that results in high sensitivity to mechanical signals in the early stages of osteoblastic differentiation. The intranuclear region was noted to alter to a viscoelastic liquid with a lower efficiency, which is responsible for the robustness of gene expression toward terminal differentiation. Additionally, evaluation of changes in the mesoscale viscoelasticity due to chromatin decondensation and correlation between the mesoscale viscoelasticity and local DNA density suggested that size of gap and flexibility of chromatin meshwork structures, which are modulated depending on chromatin condensation state, determine mesoscale viscoelasticity, with various rates of contribution in different differentiation stages. Given that chromatin within the nucleus condenses into heterochromatin as stem cells adopt a specific lineage by restricting transcription, viscoelasticity is perhaps a key factor in cooperative regulation of the nuclear mechanosensitivity and gene expression pattern for stem cell differentiation.
Collapse
Affiliation(s)
- Kojiro Matsushita
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Chiharu Nakahara
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Shun Kimura
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Satoshi Ii
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| | - Hiromi Miyoshi
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
2
|
Computational mechanisms in genetic regulation by RNA. J Theor Biol 2018; 458:156-168. [PMID: 30240577 DOI: 10.1016/j.jtbi.2018.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/01/2018] [Accepted: 09/16/2018] [Indexed: 11/22/2022]
Abstract
The evolution of the genome has led to very sophisticated and complex regulation. Because of the abundance of non-coding RNA (ncRNA) in the cell, different species will promiscuously associate with each other, suggesting collective dynamics similar to artificial neural networks. A simple mechanism is proposed allowing ncRNA to perform computations equivalent to neural network algorithms such as Boltzmann machines and the Hopfield model. The quantities analogous to the neural couplings are the equilibrium constants between different RNA species. The relatively rapid equilibration of RNA binding and unbinding is regulated by a slower process that degrades and creates new RNA. The model requires that the creation rate for each species be an increasing function of the ratio of total to unbound RNA. Similar mechanisms have already been found to exist experimentally for ncRNA regulation. With the overall concentration of RNA regulated, equilibrium constants can be chosen to store many different patterns, or many different input-output relations. The network is also quite insensitive to random mutations in equilibrium constants. Therefore one expects that this kind of mechanism will have a much higher mutation rate than ones typically regarded as being under evolutionary constraint.
Collapse
|
3
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Abstract
We previously discovered that a set of 5 microRNAs are concentrated in the nucleolus of rat myoblasts. We now report that several mRNAs are also localized in the nucleoli of these cells as determined by microarray analysis of RNA from purified nucleoli. Among the most abundant of these nucleolus-localized mRNAs is that encoding insulin-like growth factor 2 (IGF2), a regulator of myoblast proliferation and differentiation. The presence of IGF2 mRNA in nucleoli was confirmed by fluorescence in situ hybridization, and RT-PCR experiments demonstrated that these nucleolar transcripts are spliced, thus arriving from the nucleoplasm. Bioinformatics analysis predicted canonically structured, highly thermodynamically stable interactions between IGF2 mRNA and all 5 of the nucleolus-localized microRNAs. These results raise the possibility that the nucleolus is a staging site for setting up particular mRNA-microRNA interactions prior to export to the cytoplasm.
Collapse
Affiliation(s)
- Pablo Reyes-Gutierrez
- a Program in Cell and Developmental Dynamics; Department of Biochemistry and Molecular Pharmacology; University of Massachusetts Medical School ; Worcester , MA USA
| | | | | |
Collapse
|
5
|
Abstract
This volume brings together a number of perspectives on how certain physical phenomena contribute to the functional design and operation of the nucleus. This collection could not be more timely, resonating with an increasing awareness of the opportunities that lie at the interface of cell biology and the physical sciences. For example, this was a major theme in the 2012 and 2013 annual meetings of the American Society for Cell Biology, and one that the Society aims to emphasize even further going forward. In addition, the emerging canonical relevance of the physical sciences to cell biology has in recent summers made a most conspicuous appearance in the curriculum (lectures and intense labs) of the famed Physiology Course at the Marine Biological Laboratory in Woods Hole. So, much credit is due to Ronald Hancock and Kwang Jeon, the coeditors of this volume, and all the authors for creating a work that is so au courant.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
6
|
Abstract
A mathematical model is devised to study the diffusion of mRNA in the nucleus from the site of synthesis to a nuclear pore where it is exported to the cytoplasm. This study examines the role that nuclear structure can play in determining the kinetics of export by considering models in which elements of the nuclear skeleton and confinement by chromatin direct the mRNA movement. As a rule, a dense chromatin layer favours rapid export by reducing the effective volume for diffusion. However, it may also result in a heavy tail in the export time distribution because of the low mobility of molecules that accidentally find their way deep into the dense layer. An anisotropic solid-state transport system can also assist export. There exist both an optimal ratio of the anisotropy and an optimal depth of the solid-state transport layer that favour rapid export.
Collapse
Affiliation(s)
- M R Roussel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada.
| | | |
Collapse
|
7
|
Steinberg G, Schuster M, Theisen U, Kilaru S, Forge A, Martin-Urdiroz M. Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport. ACTA ACUST UNITED AC 2012; 198:343-55. [PMID: 22851316 PMCID: PMC3413351 DOI: 10.1083/jcb.201201087] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exchange between the nucleus and the cytoplasm is controlled by nuclear pore complexes (NPCs). In animals, NPCs are anchored by the nuclear lamina, which ensures their even distribution and proper organization of chromosomes. Fungi do not possess a lamina and how they arrange their chromosomes and NPCs is unknown. Here, we show that motor-driven motility of NPCs organizes the fungal nucleus. In Ustilago maydis, Aspergillus nidulans, and Saccharomyces cerevisiae fluorescently labeled NPCs showed ATP-dependent movements at ~1.0 µm/s. In S. cerevisiae and U. maydis, NPC motility prevented NPCs from clustering. In budding yeast, NPC motility required F-actin, whereas in U. maydis, microtubules, kinesin-1, and dynein drove pore movements. In the latter, pore clustering resulted in chromatin organization defects and led to a significant reduction in both import and export of GFP reporter proteins. This suggests that fungi constantly rearrange their NPCs and corresponding chromosomes to ensure efficient nuclear transport and thereby overcome the need for a structural lamina.
Collapse
Affiliation(s)
- Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, England, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
9
|
Nucleocytoplasmic mRNP export is an integral part of mRNP biogenesis. Chromosoma 2010; 120:23-38. [PMID: 21079985 PMCID: PMC3028071 DOI: 10.1007/s00412-010-0298-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 01/16/2023]
Abstract
Nucleocytoplasmic export and biogenesis of mRNPs are closely coupled. At the gene, concomitant with synthesis of the pre-mRNA, the transcription machinery, hnRNP proteins, processing, quality control and export machineries cooperate to release processed and export competent mRNPs. After diffusion through the interchromatin space, the mRNPs are translocated through the nuclear pore complex and released into the cytoplasm. At the nuclear pore complex, defined compositional and conformational changes are triggered, but specific cotranscriptionally added components are retained in the mRNP and subsequently influence the cytoplasmic fate of the mRNP. Processes taking place at the gene locus and at the nuclear pore complex are crucial for integrating export as an essential part of gene expression. Spatial, temporal and structural aspects of these events have been highlighted in analyses of the Balbiani ring genes.
Collapse
|
10
|
Ben-Ari Y, Brody Y, Kinor N, Mor A, Tsukamoto T, Spector DL, Singer RH, Shav-Tal Y. The life of an mRNA in space and time. J Cell Sci 2010; 123:1761-74. [PMID: 20427315 DOI: 10.1242/jcs.062638] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nuclear transcribed genes produce mRNA transcripts destined to travel from the site of transcription to the cytoplasm for protein translation. Certain transcripts can be further localized to specific cytoplasmic regions. We examined the life cycle of a transcribed beta-actin mRNA throughout gene expression and localization, in a cell system that allows the in vivo detection of the gene locus, the transcribed mRNAs and the cytoplasmic beta-actin protein that integrates into the actin cytoskeleton. Quantification showed that RNA polymerase II elongation progressed at a rate of 3.3 kb/minute and that transactivator binding to the promoter was transient (40 seconds), and demonstrated the unique spatial structure of the coding and non-coding regions of the integrated gene within the transcription site. The rates of gene induction were measured during interphase and after mitosis, demonstrating that daughter cells were not synchronized in respect to transcription initiation of the studied gene. Comparison of the spatial and temporal kinetics of nucleoplasmic and cytoplasmic mRNA transport showed that the beta-actin-localization response initiates from the existing cytoplasmic mRNA pool and not from the newly synthesized transcripts arising after gene induction. It was also demonstrated that mechanisms of random movement were predominant in mediating the efficient translocation of mRNA in the eukaryotic cell.
Collapse
Affiliation(s)
- Ya'ara Ben-Ari
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin. Proc Natl Acad Sci U S A 2008; 105:20291-6. [PMID: 19074261 DOI: 10.1073/pnas.0810692105] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Messenger ribonucleoprotein particles (mRNPs) move randomly within nucleoplasm before they exit from the nucleus. To further understand mRNP trafficking, we have studied the intranuclear movement of a specific mRNP, the BR2 mRNP, in salivary gland cells in Chironomus tentans. Their polytene nuclei harbor giant chromosomes separated by vast regions of nucleoplasm, which allows us to study mRNP mobility without interference of chromatin. The particles were fluorescently labeled with microinjected oligonucleotides (DNA or RNA) complementary to BR2 mRNA or with the RNA-binding protein hrp36, the C. tentans homologue of hnRNP A1. Using high-speed laser microscopy, we followed the intranuclear trajectories of single mRNPs and characterized their motion within the nucleoplasm. The Balbiani ring (BR) mRNPs moved randomly, but unexpectedly, in a discontinuous manner. When mobile, they diffused with a diffusion coefficient corresponding to their size. Between mobile phases, the mRNPs were slowed down 10- to 250-fold but were never completely immobile. Earlier electron microscopy work has indicated that BR particles can attach to thin nonchromatin fibers, which are sometimes connected to discrete fibrogranular clusters. We propose that the observed discontinuous movement reflects transient interactions between freely diffusing BR particles and these submicroscopic structures.
Collapse
|
12
|
Pederson T. As functional nuclear actin comes into view, is it globular, filamentous, or both? ACTA ACUST UNITED AC 2008; 180:1061-4. [PMID: 18347069 PMCID: PMC2290836 DOI: 10.1083/jcb.200709082] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The idea that actin may have an important function in the nucleus has undergone a rapid transition from one greeted with skepticism to a now rapidly advancing research field. Actin has now been implicated in transcription by all three RNA polymerases, but the structural form it adopts in these processes remains unclear. Recently, a claim was made that monomeric nuclear actin plays a role in signal transduction, while a just-published study of RNA polymerase I transcription has implicated polymeric actin, consorting with an isoform of its classical partner myosin. Both studies are critically discussed here, and although there are several issues to be resolved, it now seems reasonable to start thinking about functions for both monomeric and assembled actin in the nucleus.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
|
14
|
Rafalska-Metcalf IU, Janicki SM. Show and tell: visualizing gene expression in living cells. J Cell Sci 2007; 120:2301-7. [PMID: 17606985 DOI: 10.1242/jcs.008664] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The development of non-invasive methods of visualizing proteins and nucleic acids in living cells has provided profound insight into how they move and interact with each other in vivo. It is possible to evaluate basic mechanisms of gene expression, and to define their temporal and spatial parameters by using this methodology to label endogenous genes and make reporter constructs that allow specific DNA and RNA regulatory elements to be localized. This Commentary highlights recent reports that have used these techniques to study nuclear organization, transcription factor dynamics and the kinetics of RNA synthesis. These studies show how imaging gene expression in single living cells can reveal new regulatory mechanisms. They also expand our understanding of the role of chromatin and RNA dynamics in modulating cellular responses to developmental and environmental signals.
Collapse
|
15
|
Royo H, Basyuk E, Marty V, Marques M, Bertrand E, Cavaillé J. Bsr, a nuclear-retained RNA with monoallelic expression. Mol Biol Cell 2007; 18:2817-27. [PMID: 17507654 PMCID: PMC1949380 DOI: 10.1091/mbc.e06-10-0920] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The imprinted Dlk1-Gtl2 and Prader-Willi syndrome (PWS) regions are characterized by a complex noncoding transcription unit spanning arrays of tandemly repeated C/D RNA genes. These noncoding RNAs (ncRNAs) are thought to play an essential but still poorly understood role. To better understand the intracellular fate of these large ncRNAs, fluorescence in situ hybridization was carried out at the rat Dlk1-Gtl2 domain. This locus contains a approximately 100-kb-long gene cluster comprising 86 homologous RBII-36 C/D RNA gene copies, all of them intron-encoded within the ncRNA gene Bsr. Here, we demonstrate that the Bsr gene is monoallelically expressed in primary rat embryonic fibroblasts as well as in hypothalamic neurons and yields a large amount of unspliced and spliced RNAs at the transcription site, mostly as elongated RNA signals. Surprisingly, spliced Bsr RNAs released from the transcription site mainly concentrate as numerous, stable nuclear foci that do not colocalize with any known subnuclear structures. On drug treatments, a fraction of Bsr RNA relocalizes to the cytoplasm and associates with stress granules (SGs), but not with P-bodies, pointing to a potential link between SGs and the metabolism of ncRNA. Thus, Bsr might represent a novel type of nuclear-retained transcript.
Collapse
Affiliation(s)
- Hélène Royo
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| | - Eugenia Basyuk
- Institut Génétique Moléculaire Montpellier-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Université Montpellier II, 34293 Montpellier Cedex 5, France
| | - Virginie Marty
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| | - Maud Marques
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| | - Edouard Bertrand
- Institut Génétique Moléculaire Montpellier-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Université Montpellier II, 34293 Montpellier Cedex 5, France
| | - Jérôme Cavaillé
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| |
Collapse
|
16
|
Sleeman J. A regulatory role for CRM1 in the multi-directional trafficking of splicing snRNPs in the mammalian nucleus. J Cell Sci 2007; 120:1540-50. [PMID: 17405816 DOI: 10.1242/jcs.001529] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Distinct pathways of ribonucleoprotein transport exist within the nucleus, connected to their biogenesis and maturation. These occur despite evidence that the major mechanism for their movement within the nucleus is passive diffusion. Using fusions of Sm proteins to YFP, CFP and photoactivatable GFP, I have demonstrated that pathways with uni-directional bulk flow of complexes can be maintained within the nucleus despite multi-directional exchange of individual complexes. Newly imported splicing small nuclear ribonucleoproteins (snRNPs) exchange between Cajal bodies (CBs) within a nucleus and access the cytoplasm, but are unable to accumulate in speckles. By contrast, snRNPs at steady-state exchange freely in any direction between CBs and speckles, but cannot leave the nucleus. In addition to these surprising qualitative observations in the behaviour of nuclear complexes, sensitive live-cell microscopy techniques can detect subtle quantitative disturbances in nuclear dynamics before they have had an effect on overall nuclear organization. Inhibition of the nuclear export factor, CRM1, using leptomycin B results in a change in the dynamics of interaction of newly imported snRNPs with CBs. Together with the detection of interactions of CRM1 with Sm proteins and the survival of motor neurons (SMN) protein, these studies suggest that the export receptor CRM1 is a key player in the molecular mechanism for maintaining these pathways. Its role in snRNP trafficking, however, appears to be distinct from its previously identified role in small nucleolar RNP (snoRNP) maturation.
Collapse
Affiliation(s)
- Judith Sleeman
- Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
17
|
Privat E, Melvin T, Asseline U, Vigny P. Oligonucleotide-conjugated Thiazole Orange Probes as “Light-up” Probes for Messenger Ribonucleic Acid Molecules in Living Cells¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740532octopa2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Matera AG, Shpargel KB. Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol 2006; 18:317-24. [PMID: 16632338 DOI: 10.1016/j.ceb.2006.03.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/01/2006] [Accepted: 03/30/2006] [Indexed: 11/16/2022]
Abstract
Cajal bodies (CBs) are nuclear subdomains involved in the biogenesis of several classes of small ribonucleoproteins (RNPs). A number of recent advances highlight progress in the understanding of the organization and dynamics of CB components. For example, a class of small Cajal body-specific (sca) RNPs has been discovered. Localization of scaRNPs to CBs was shown to depend on a conserved RNA motif. Intriguingly, this motif is also present in mammalian telomerase RNA and the evidence suggests that assembly of the active form of telomerase RNP occurs in and around CBs during S phase. Important steps in the assembly and modification of spliceosomal RNPs have also been shown to take place in CBs. Additional experiments have revealed the existence of kinetically distinct subclasses of CB components. Finally, the recent identification of novel markers for CBs in both Drosophila and Arabidopsis not only lays to rest questions about the evolutionary conservation of these nuclear suborganelles, but also should enable forward genetic screens for the identification of new components and pathways involved in their assembly, maintenance and function.
Collapse
Affiliation(s)
- A Gregory Matera
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106-4955, USA.
| | | |
Collapse
|
19
|
Gorski SA, Dundr M, Misteli T. The road much traveled: trafficking in the cell nucleus. Curr Opin Cell Biol 2006; 18:284-90. [PMID: 16621498 DOI: 10.1016/j.ceb.2006.03.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/27/2006] [Indexed: 11/20/2022]
Abstract
Trafficking of RNA molecules and proteins within the cell nucleus is central to genome function. Recent work has revealed the nature of RNA and protein motion within the nucleus and across the nuclear membrane. These studies have given insight into how molecules find their destinations within the nucleus and have uncovered some of the structural properties of the nuclear microenvironment. Control of RNA and protein trafficking is now emerging as a physiological regulatory mechanism in gene expression and nuclear function.
Collapse
|
20
|
Politz JCR, Tuft RA, Prasanth KV, Baudendistel N, Fogarty KE, Lifshitz LM, Langowski J, Spector DL, Pederson T. Rapid, diffusional shuttling of poly(A) RNA between nuclear speckles and the nucleoplasm. Mol Biol Cell 2006; 17:1239-49. [PMID: 16371503 PMCID: PMC1382313 DOI: 10.1091/mbc.e05-10-0952] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 12/02/2005] [Indexed: 12/28/2022] Open
Abstract
Speckles are nuclear bodies that contain pre-mRNA splicing factors and polyadenylated RNA. Because nuclear poly(A) RNA consists of both mRNA transcripts and nucleus-restricted RNAs, we tested whether poly(A) RNA in speckles is dynamic or rather an immobile, perhaps structural, component. Fluorescein-labeled oligo(dT) was introduced into HeLa cells stably expressing a red fluorescent protein chimera of the splicing factor SC35 and allowed to hybridize. Fluorescence correlation spectroscopy (FCS) showed that the mobility of the tagged poly(A) RNA was virtually identical in both speckles and at random nucleoplasmic sites. This same result was observed in photoactivation-tracking studies in which caged fluorescein-labeled oligo(dT) was used as hybridization probe, and the rate of movement away from either a speckle or nucleoplasmic site was monitored using digital imaging microscopy after photoactivation. Furthermore, the tagged poly(A) RNA was observed to rapidly distribute throughout the entire nucleoplasm and other speckles, regardless of whether the tracking observations were initiated in a speckle or the nucleoplasm. Finally, in both FCS and photoactivation-tracking studies, a temperature reduction from 37 to 22 degrees C had no discernible effect on the behavior of poly(A) RNA in either speckles or the nucleoplasm, strongly suggesting that its movement in and out of speckles does not require metabolic energy.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kuthan H. Temporal fluctuation of nuclear pore complex localization by single diffusing mRNP complexes. J Theor Biol 2006; 236:256-62. [PMID: 15913655 DOI: 10.1016/j.jtbi.2005.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 03/06/2005] [Accepted: 03/07/2005] [Indexed: 12/11/2022]
Abstract
There is now compelling evidence that messenger ribonucleoprotein (mRNP) complexes after the release from the transcription/processing sites execute essentially unhindered Brownian movements in the nucleoplasm and target nuclear pore complexes (NPCs) by chance encounter. For the majority of genes expressed in eukaryotic cells, only single/few transcript copies are generated, which reinforces the stochastic nature of NPC localization. In this paper, I analyse the NPC localization by freely diffusing single mRNPs and discuss the implications for the temporal progression of gene expression and consecutive processes associated with the gene products. To this end, a walk-and-capture model is considered, assuming a spherical nuclear compartment with a partially absorbing boundary. Perfect absorption and perfect reflection mark the extreme outcomes. For this model, the closed-form analytic solution of the first-passage time probability density function (FPT p.d.f.), the mean passage time and variance have been obtained. The FPT p.d.f. enables to calculate the probability that single mRNPs localize the nuclear boundary and dock to NPCs within certain time windows. For freely moving mRNP complexes in osteosarcoma cell nuclei, a mean apparent diffusion coefficient (D) of 0.04 microm2 s(-1) (range 0.01-0.09 microm2 s(-1)) has been reported. Assuming a nuclear radius of 8 microm and D=0.04 microm2 s(-1), the position-averaged minimum mean passage time <tau(r0)>min for the considered model is 1.8 min, which presupposes perfect absorption of the mRNP complex at the first encounter with the nuclear boundary. In this case, the probability of capture in the time interval (0, <tau(r0)>min) is 0.67. In smaller sized yeast cell nuclei with a radius of 0.8 mum and D=0.04 microm2 s(-1), single diffusing mRNPs would localize an NPC within tens of seconds, rather than minutes.
Collapse
|
22
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
23
|
Vargas DY, Raj A, Marras SAE, Kramer FR, Tyagi S. Mechanism of mRNA transport in the nucleus. Proc Natl Acad Sci U S A 2005; 102:17008-13. [PMID: 16284251 PMCID: PMC1287982 DOI: 10.1073/pnas.0505580102] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanism of transport of mRNA-protein (mRNP) complexes from transcription sites to nuclear pores has been the subject of many studies. Using molecular beacons to track single mRNA molecules in living cells, we have characterized the diffusion of mRNP complexes in the nucleus. The mRNP complexes move freely by Brownian diffusion at a rate that assures their dispersion throughout the nucleus before they exit into the cytoplasm, even when the transcription site is located near the nuclear periphery. The diffusion of mRNP complexes is restricted to the extranucleolar, interchromatin spaces. When mRNP complexes wander into dense chromatin, they tend to become stalled. Although the movement of mRNP complexes occurs without the expenditure of metabolic energy, ATP is required for the complexes to resume their motion after they become stalled. This finding provides an explanation for a number of observations in which mRNA transport appeared to be an enzymatically facilitated process.
Collapse
Affiliation(s)
- Diana Y Vargas
- Department of Molecular Genetics, Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
24
|
Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 2005; 114:212-29. [PMID: 16133352 DOI: 10.1007/s00412-005-0016-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/29/2005] [Accepted: 07/04/2005] [Indexed: 01/15/2023]
Abstract
Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.
Collapse
Affiliation(s)
- Helen A Foster
- Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | |
Collapse
|
25
|
Abstract
Within the past two years, actin has been implicated in eukaryotic gene transcription by all three classes of RNA polymerase. Moreover, within just the past year, actin has been identified as a constituent of filaments attached to the nuclear pore complexes and extending into the nucleus. This review summarizes these and other very recent advances in the nuclear actin field and emphasizes the key present issues. On the one hand, we are confronted with a body of evidence for a role of actin in gene transcription but with no known structural basis; on the other hand, there is now evidence for polymeric actin--not likely in the classical F-actin conformation--in the nuclear periphery with no known function. In addition, numerous proteins that interact with either G- or F-actin are increasingly being detected in the nucleus, suggesting that both monomeric and oligomeric or polymeric forms of actin are at play and raising the possibility that the equilibrium between them, perhaps differentially regulated at various intranuclear sites, may be a major determinant of nuclear function.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
26
|
Dupont JM. [Topographical organisation of the chromatin in human interphase nuclei: architecture meets function]. Morphologie 2005; 88:127-34. [PMID: 15641649 DOI: 10.1016/s1286-0115(04)98135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There are an estimated number of 30,000 genes in the human genome, accounting for as few as 5% of the whole DNA content. Determining the exact role of the vast majority of untranscribed DNA is a major goal for upcoming years. Among various evolutionary constrains which could explain the presence of such a quantity of so-called "junk DNA", one hypothesis is the necessary controlled topographical arrangement of the genome during interphase, leading to a non-random, reproducible position of chromosomal regions inside the nucleus. This hypothesis relies on recent progresses in imaging technologies such as fluorescence confocal microscopy, allowing for the first time the identification of each chromosome-specific chromatin during interphase. This review focuses on the past years advances leading to the actual model of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- J M Dupont
- Laboratoire d'Histologie Embryologie Cytogénétique, CHU Cochin, 123 Bd Port Royal, Paris.
| |
Collapse
|
27
|
Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH. Dynamics of single mRNPs in nuclei of living cells. Science 2004; 304:1797-800. [PMID: 15205532 PMCID: PMC4765737 DOI: 10.1126/science.1099754] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Understanding gene expression requires the ability to follow the fate of individual molecules. Here we use a cellular system for monitoring messenger RNA (mRNA)expression to characterize the movement in real time of single mRNA-protein complexes (mRNPs) in the nucleus of living mammalian cells. This mobility was not directed but was governed by simple diffusion. Some mRNPs were partially corralled throughout the nonhomogenous nuclear environment, but no accumulation at subnuclear domains was observed. Following energy deprivation, energy-independent motion of mRNPs was observed in a highly ATP-dependent nuclear environment; movements were constrained to chromatin-poor domains and excluded by newly formed chromatin barriers. This observation resolves a controversy, showing that the energetic requirements of nuclear mRNP trafficking are consistent with a diffusional model.
Collapse
Affiliation(s)
- Yaron Shav-Tal
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xavier Darzacq
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shailesh M. Shenoy
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dahlene Fusco
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susan M. Janicki
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David L. Spector
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Robert H. Singer
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
28
|
Kiseleva E, Drummond SP, Goldberg MW, Rutherford SA, Allen TD, Wilson KL. Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles inXenopusoocyte nuclei. J Cell Sci 2004; 117:2481-90. [PMID: 15128868 DOI: 10.1242/jcs.01098] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We imaged the interiors of relatively intact Xenopus oocyte nuclei by field emission scanning electron microscopy (feSEM) and visualized a network of filaments that attach to nuclear pore complexes and extend throughout the nucleus. Within the nucleus, these `pore-linked filaments' (PLFs) were embedded into spherical structures 100 nm to ∼5 μm in diameter. A subset of spheres was identified as Cajal bodies by immuno-gold labeling; the rest were inferred to be nucleoli and snurposomes both of which are abundant in Xenopus oocyte nuclei. Most PLFs were independent of chromatin. The thickness of a typical PLF was 40 nm (range, ∼12-100 nm), including the 4 nm chromium coat. PLFs located inside the nucleus merged, bundled and forked, suggesting architectural adaptability. The PLF network collapsed upon treatment with latrunculin A, which depolymerizes actin filaments. Jasplakinolide, which stabilizes actin filaments, produced PLFs with more open substructure including individual filaments with evenly-spaced rows of radially projecting short filaments. Immuno-gold labeling of untreated oocyte nuclei showed that actin and protein 4.1 each localized on PLFs. Protein 4.1-gold epitopes were spaced at ∼120 nm intervals along filaments, and were often paired (∼70 nm apart) at filament junctions. We suggest that protein 4.1 and actin contribute to the structure of a network of heterogeneous filaments that link nuclear pore complexes to subnuclear organelles, and discuss possible functions for PLFs in nuclear assembly and intranuclear traffic.
Collapse
Affiliation(s)
- Elena Kiseleva
- Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital, Manchester, M20 9BX, UK
| | | | | | | | | | | |
Collapse
|
29
|
Kiesler E, Visa N. Intranuclear pre-mRNA trafficking in an insect model system. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 35:99-118. [PMID: 15113081 DOI: 10.1007/978-3-540-74266-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Eva Kiesler
- Department of Molecular Biology and Functional Genomics, Stockholm University, 10961 Stockholm, Sweden
| | | |
Collapse
|
30
|
Politz JCR, Tuft RA, Pederson T. Diffusion-based transport of nascent ribosomes in the nucleus. Mol Biol Cell 2003; 14:4805-12. [PMID: 12960421 PMCID: PMC284785 DOI: 10.1091/mbc.e03-06-0395] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 07/18/2003] [Accepted: 08/08/2003] [Indexed: 11/11/2022] Open
Abstract
Although the complex process of ribosome assembly in the nucleolus is beginning to be understood, little is known about how the ribosomal subunits move from the nucleolus to the nuclear membrane for transport to the cytoplasm. We show here that large ribosomal subunits move out from the nucleolus and into the nucleoplasm in all directions, with no evidence of concentrated movement along directed paths. Mobility was slowed compared with that expected in aqueous solution in a manner consistent with anomalous diffusion. Once nucleoplasmic, the subunits moved in the same random manner and also sometimes visited another nucleolus before leaving the nucleus.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
31
|
Pederson T. Nuclear impressionism: how the active genome creates the very canvas on which gene expression is painted. J Appl Biomed 2003. [DOI: 10.32725/jab.2003.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
O'Brien TP, Bult CJ, Cremer C, Grunze M, Knowles BB, Langowski J, McNally J, Pederson T, Politz JC, Pombo A, Schmahl G, Spatz JP, van Driel R. Genome function and nuclear architecture: from gene expression to nanoscience. Genome Res 2003; 13:1029-41. [PMID: 12743020 DOI: 10.1101/gr.946403] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Biophysical, chemical, and nanoscience approaches to the study of nuclear structure and activity have been developing recently and hold considerable promise. A selection of fundamental problems in genome organization and function are reviewed and discussed in the context of these new perspectives and approaches. Advancing these concepts will require coordinated networks of physicists, chemists, and materials scientists collaborating with cell, developmental, and genome biologists.
Collapse
|
33
|
Taylor TJ, McNamee EE, Day C, Knipe DM. Herpes simplex virus replication compartments can form by coalescence of smaller compartments. Virology 2003; 309:232-47. [PMID: 12758171 DOI: 10.1016/s0042-6822(03)00107-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herpes simplex virus (HSV) uses intranuclear compartmentalization to concentrate the viral and cellular factors required for the progression of the viral life cycle. Processes as varied as viral DNA replication, late gene expression, and capsid assembly take place within discrete structures within the nucleus called replication compartments. Replication compartments are hypothesized to mature from a few distinct structures, called prereplicative sites, that form adjacent to cellular nuclear matrix-associated ND10 sites. During productive infection, the HSV single-stranded DNA-binding protein ICP8 localizes to replication compartments. To further the understanding of replication compartment maturation, we have constructed and characterized a recombinant HSV-1 strain that expresses an ICP8 molecule with green fluorescent protein (GFP) fused to its C terminus. In transfected Vero cells that were infected with HSV, the ICP8-GFP protein localized to prereplicative sites in the presence of the viral DNA synthesis inhibitor phosphonoacetic acid (PAA) or to replication compartments in the absence of PAA. A recombinant HSV-1 strain expressing the ICP8-GFP virus replicated in Vero cells, but the yield was increased by 150-fold in an ICP8-complementing cell line. Using the ICP8-GFP protein as a marker for replication compartments, we show here that these structures start as punctate structures early in infection and grow into large, globular structures that eventually fill the nucleus. Large replication compartments were formed by small structures that either moved through the nucleus to merge with adjacent compartments or remained relatively stationary within the nucleus and grew by accretion and fused with neighboring structures.
Collapse
Affiliation(s)
- Travis J Taylor
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Actin is an abundant protein in most nonmuscle cells. It has often been observed in isolated nuclei, yet cytoplasmic contamination was of course initially regarded as the most plausible origin. Numerous studies on nuclear actin appeared in the 1970s and 1980s, but the picture remained rather muddy. The viewpoint at that time was that actin-shown to move freely between cytoplasm and nucleus-was a mere "thermodynamic wanderer," transiently occupying the nucleus. More recently, evidence has been mounting that actin's presence in the nucleus is not simply governed by the laws of diffusion. The same holds true for the finding of various actin-related proteins in the nucleus, and the case for nuclear myosin, specifically myosin I, is now quite convincing. Moreover, the first intimations of functional roles of nuclear actin are now emerging. Here we examine the overall subject from cell biological and chemical perspectives. The major issue is no longer the presence of actin in the nucleus but rather its supramolecular organization, intranuclear locations, and, of course, functions. These issues interface with recent findings that reveal a surprisingly diverse repertoire of actin conformations and oligomer and polymer forms beyond monomeric G-actin and polymeric F-actin. We present ideas for advancing the nuclear actin field and call for a renewed attack on this major problem in cell biology.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605-2300, USA.
| | | |
Collapse
|
35
|
Faustino RS, Czubryt MP, Pierce GN. Determining influence of oxidants on nuclear transport using digitonin-permeabilized cell assay. Methods Enzymol 2002; 352:123-34. [PMID: 12125341 DOI: 10.1016/s0076-6879(02)52013-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Randolph S Faustino
- Division of Stroke and Vascular Disease, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6
| | | | | |
Collapse
|
36
|
Sabri N, Farrants AKO, Hellman U, Visa N. Evidence for a posttranscriptional role of a TFIIICalpha-like protein in Chironomus tentans. Mol Biol Cell 2002; 13:1765-77. [PMID: 12006668 PMCID: PMC111142 DOI: 10.1091/mbc.01-09-0436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have cloned and sequenced a cDNA that encodes for a nuclear protein of 238 kDa in the dipteran Chironomus tentans. This protein, that we call p2D10, is structurally similar to the alpha subunit of the general transcription factor TFIIIC. Using immunoelectron microscopy we have shown that a fraction of p2D10 is located at sites of transcription, which is consistent with a possible role of this protein in transcription initiation. We have also found that a large fraction of p2D10 is located in the nucleoplasm and in the nuclear pore complexes. Using gel filtration chromatography and coimmunoprecipitation methods, we have identified and characterized two p2D10-containing complexes that differ in molecular mass and composition. The heavy p2D10-containing complex contains at least one other component of the TFIIIC complex, TFIIIC-epsilon. Based on its molecular mass and composition, the heavy p2D10-containing complex may be the Pol III holoenzyme. The light p2D10-containing complex contains RNA together with at least two proteins that are thought to be involved in mRNA trafficking, RAE1 and hrp65. The observations reported here suggest that this new TFIIIC-alpha-like protein is involved in posttranscriptional steps of premRNA metabolism in Chironomus tentans.
Collapse
Affiliation(s)
- Nafiseh Sabri
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691, Sweden
| | | | | | | |
Collapse
|
37
|
Adilakshmi T, Laine RO. Ribosomal protein S25 mRNA partners with MTF-1 and La to provide a p53-mediated mechanism for survival or death. J Biol Chem 2002; 277:4147-51. [PMID: 11741912 DOI: 10.1074/jbc.m109785200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Coordinate regulation of the ribosomal protein genes is entrusted to a number of signal transduction pathways that can abruptly induce or silence the ribosomal genes. We have uncovered a cellular model system, which selectively induces the ribosomal protein S25 gene in hepatoma cells that are stressed by nutrient deprivation. Our results indicate that p53 along with two other identified proteins, MTF-1 and La, post-transcriptionally regulate the synthesis of the S25 protein by controlling the nuclear export of the stress-induced S25 mRNA. This system is unique in that the nuclear-retained S25 mRNA is exported to the cytosol only upon replenishment or alternatively after prolonged starvation to participate in a p53-mediated apoptotic sequence of events. This p53-dependent survival or death pathway involves a previously unreported protein relationship among these three actors, one of which, MTF-1, has not yet been shown to have RNA-binding characteristics.
Collapse
|
38
|
Privat E, Melvin T, Asseline U, Vigny P. Oligonucleotide-conjugated thiazole orange probes as "light-up" probes for messenger ribonucleic acid molecules in living cells. Photochem Photobiol 2001; 74:532-41. [PMID: 11683032 DOI: 10.1562/0031-8655(2001)074<0532:octopa>2.0.co;2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
"Light-up" probes, icosa-alpha-thymidylate-thiazole orange conjugates, for the in situ time-resolved detection of messenger ribonucleic acid (mRNA) in living cells are evaluated. Upon annealing with polyA in aqueous solutions, the icosa-alpha-thymidylate-thiazole orange conjugates were shown to be up to 15 times more fluorescent. Microinjection of these probes into adherent fibroblasts resulted in high yields of hybridization and fluorescent signals. Incubation of cells in the presence of these probes resulted in facile internalization of the probe and similar painting of the messenger RNA in the nuclear and cytosolic regions.
Collapse
MESH Headings
- Absorptiometry, Photon
- Animals
- Base Pairing
- Benzothiazoles
- Chromatography, High Pressure Liquid
- Coleoptera/enzymology
- DNA Probes/chemistry
- Fluorescein/chemistry
- Fluorescent Dyes/analysis
- Fluorescent Dyes/chemistry
- Humans
- In Situ Hybridization, Fluorescence
- Luciferases
- Microscopy, Confocal/methods
- Microscopy, Fluorescence
- Molecular Structure
- Nucleic Acid Hybridization/methods
- Oligonucleotides/analysis
- Oligonucleotides/chemistry
- Osteosarcoma
- Quinolines
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- RNA, Messenger/radiation effects
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/radiation effects
- Saccharomyces cerevisiae
- Spectrometry, Fluorescence
- Stereoisomerism
- Thiazoles/chemistry
- Time Factors
- Tumor Cells, Cultured/radiation effects
Collapse
Affiliation(s)
- E Privat
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Conventionnée avec l'Université d'Orléans et Affilée à l'Inserm, Orléans, France
| | | | | | | |
Collapse
|
39
|
Verheggen C, Mouaikel J, Thiry M, Blanchard JM, Tollervey D, Bordonné R, Lafontaine DL, Bertrand E. Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J 2001; 20:5480-90. [PMID: 11574480 PMCID: PMC125276 DOI: 10.1093/emboj/20.19.5480] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nucleolar localization of box C/D small nucleolar (sno) RNAs requires the box C/D motif and, in vertebrates, involves transit through Cajal bodies (CB). We report that in yeast, overexpression of a box C/D reporter leads to a block in the localization pathway with snoRNA accumulation in a specific sub-nucleolar structure, the nucleolar body (NB). The human survival of motor neuron protein (SMN), a marker of gems/CB, specifically localizes to the NB when expressed in yeast, supporting similarities between these structures. Box C/D snoRNA accumulation in the NB was decreased by mutation of Srp40 and increased by mutation of Nsr1p, two related nucleolar proteins that are homologous to human Nopp140 and nucleolin, respectively. Box C/D snoRNAs also failed to accumulate in the NB, and became delocalized to the nucleoplasm, upon depletion of any of the core snoRNP proteins, Nop1p/fibrillarin, Snu13p, Nop56p and Nop5p/Nop58p. We conclude that snoRNP assembly occurs either in the nucleoplasm, or during transit of snoRNAs through the NB, followed by routing of the complete snoRNP to functional sites of ribosome synthesis.
Collapse
Affiliation(s)
| | | | - Marc Thiry
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
Laboratoire de biologie cellulaire et tissulaire, Université de Liège, Liège, Belgium and ICMB, The University of Edinburgh, Edinburgh EH9 3JR, UK Present address: IRMW, FNRS-Université Libre de Bruxelles, B-1070 Brussels, Belgium Corresponding author e-mail:
D.L.J.Lafontaine and E.Bertrand contributed equally to this work
| | | | - David Tollervey
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
Laboratoire de biologie cellulaire et tissulaire, Université de Liège, Liège, Belgium and ICMB, The University of Edinburgh, Edinburgh EH9 3JR, UK Present address: IRMW, FNRS-Université Libre de Bruxelles, B-1070 Brussels, Belgium Corresponding author e-mail:
D.L.J.Lafontaine and E.Bertrand contributed equally to this work
| | | | - Denis L.J. Lafontaine
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
Laboratoire de biologie cellulaire et tissulaire, Université de Liège, Liège, Belgium and ICMB, The University of Edinburgh, Edinburgh EH9 3JR, UK Present address: IRMW, FNRS-Université Libre de Bruxelles, B-1070 Brussels, Belgium Corresponding author e-mail:
D.L.J.Lafontaine and E.Bertrand contributed equally to this work
| | - Edouard Bertrand
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
Laboratoire de biologie cellulaire et tissulaire, Université de Liège, Liège, Belgium and ICMB, The University of Edinburgh, Edinburgh EH9 3JR, UK Present address: IRMW, FNRS-Université Libre de Bruxelles, B-1070 Brussels, Belgium Corresponding author e-mail:
D.L.J.Lafontaine and E.Bertrand contributed equally to this work
| |
Collapse
|
40
|
Abstract
The major functions of the cell nucleus, including transcription, pre-mRNA splicing and ribosome assembly, have been studied extensively by biochemical, genetic and molecular methods. An overwhelming amount of information about their molecular mechanisms is available. In stark contrast, very little is known about how these processes are integrated into the structural framework of the cell nucleus and how they are spatially and temporally co-ordinated within the three-dimensional confines of the nucleus. It is also largely unknown how nuclear architecture affects gene expression. In order to understand how genomes are organized, and how they function, the basic principles that govern nuclear architecture and function must be uncovered. Recent work combining molecular, biochemical and cell biological methods is beginning to shed light on how the nucleus functions and how genes are expressed in vivo. It has become clear that the nucleus contains distinct compartments and that many nuclear components are highly dynamic. Here we describe the major structural compartments of the cell nucleus and discuss their established and proposed functions. We summarize recent observations regarding the dynamic properties of chromatin, mRNA and nuclear proteins, and we consider the implications these findings have for the organization of nuclear processes and gene expression. Finally, we speculate that self-organization might play a substantial role in establishing and maintaining nuclear organization.
Collapse
Affiliation(s)
- M Dundr
- National Cancer Institute, NIH, 41 Library Drive, Building 41, Bethesda, MD 20892, USA
| | | |
Collapse
|
41
|
Abstract
Proteins are responsible for most cellular and extra-cellular functions. If altered, proteins can loose their normal activity and/or gain new properties. Either way the consequences may be deleterious for the cell and lead to disease at the organism level. Not surprisingly, eukaryotes have evolved mechanisms to recognize abnormal messenger RNAs and prevent them from producing faulty proteins. Protein-encoding genes are transcribed in the nucleus by RNA polymerase II as precursor RNAs that undergo extensive processing before being translocated to the cytoplasm for translation by the ribosomes. This spatial and temporal separation between RNA and protein synthesis offers an immense opportunity for control and regulation. Here we review recent studies that are beginning to unravel how the coupling between transcription, processing and transport of mRNAs contributes to control the quality of gene expression in the nucleus.
Collapse
Affiliation(s)
- N Custódio
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | |
Collapse
|
42
|
Mühlemann O, Mock-Casagrande CS, Wang J, Li S, Custódio N, Carmo-Fonseca M, Wilkinson MF, Moore MJ. Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol Cell 2001; 8:33-43. [PMID: 11511358 DOI: 10.1016/s1097-2765(01)00288-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Messenger RNAs containing premature termination codons (PTCs) are selectively eliminated by nonsense-mediated mRNA decay (NMD). Paradoxically, although cytoplasmic ribosomes are the only known species capable of PTC recognition, in mammals many PTC-containing mRNAs are apparently eliminated prior to release from the nucleus. To determine whether PTCs can influence events within the nucleus proper, we studied the immunoglobulin (Ig)-mu and T cell receptor (TCR)-beta genes using fluorescent in situ hybridization (FISH). Alleles containing PTCs, but not those containing a missense mutation or a frameshift followed by frame-correcting mutations, exhibited elevated levels of pre-mRNA, which accumulated at or near the site of transcription. Our data indicate that mRNA reading frame can influence events at or near the site of gene transcription.
Collapse
Affiliation(s)
- O Mühlemann
- Howard Hughes Medical Institute, W.M. Keck Center for Cellular Visualization, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The advent of jellyfish green fluorescent protein and its spectral variants, together with promising new fluorescent proteins from other classes of the Cnidarian phylum (coral and anemones), has greatly enhanced and promises to further boost the detection and localization of proteins in cell biology. It has been less widely appreciated that highly sensitive methods have also recently been developed for detecting the movement and localization in living cells of the very molecules that precede proteins in the gene expression pathway, i.e. RNAs. These approaches include the microinjection of fluorescent RNAs into living cells, the in vivo hybridization of fluorescent oligonucleotides to endogenous RNAs and the expression in cells of fluorescent RNA-binding proteins. This new field of 'fluorescent RNA cytochemistry' is summarized in this article, with emphasis on the biological insights it has already provided. These new techniques are likely to soon collaborate with other emerging approaches to advance the investigation of RNA birth, RNA-protein assembly and ribonucleoprotein particle transport in systems such as oocytes, embryos, neurons and other somatic cells, and may even permit the observation of viral replication and transcription pathways as they proceed in living cells, ushering in a new era of nucleic acids research in vivo.
Collapse
Affiliation(s)
- T Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
44
|
Abstract
A cell fraction that would today be termed "the nuclear matrix" was first described and patented in 1948 by Russian investigators. In 1974 this fraction was rediscovered and promoted as a fundamental organizing principle of eukaryotic gene expression. Yet, convincing evidence for this functional role of the nuclear matrix has been elusive and has recently been further challenged. What do we really know about the nonchromatin elements (if any) of internal nuclear structure? Are there objective reasons (as opposed to thinly veiled disdain) to question experiments that use harsh nuclear extraction steps and precipitation-prone conditions? Are the known biophysical properties of the nucleoplasm in vivo consistent with the existence of an extensive network of anastomosing filaments coursing dendritically throughout the interchromatin space? To what extent may the genome itself contribute information for its own quarternary structure in the interphase nucleus? These questions and recent work that bears on the mystique of the nuclear matrix are addressed in this essay. The degree to which gene expression literally depends on nonchromatin nuclear structure as a facilitating organizational format remains an intriguing but unsolved issue in eukaryotic cell biology, and considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the in vivo situation.
Collapse
Affiliation(s)
- T Pederson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|