1
|
Pragnere S, Courtial EJ, Dubreuil F, Errazuriz-Cerda E, Marquette C, Petiot E, Pailler-Mattei C. Tuning viscoelasticity and stiffness in bioprinted hydrogels for enhanced 3D cell culture: A multi-scale mechanical analysis. J Mech Behav Biomed Mater 2024; 159:106696. [PMID: 39205347 DOI: 10.1016/j.jmbbm.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Bioprinted hydrogels are extensively studied to provide an artificial matrix for 3D cell culture. The success of bioprinting hydrogels relies on fine-tuning their rheology and composition to achieve shear-thinning behavior. However, a challenge arises from the limited viscoelastic and stiffness range accessible from a single hydrogel formulation. Nevertheless, hydrogel mechanical properties are recognized as essential cues influencing cell phenotype, migration, and differentiation. Thus, it is crucial to develop a system to easily modulate bioprinted hydrogels' mechanical behaviors. In this work, we modulated the viscoelastic properties and stiffness of bioprinted hydrogels composed of fibrinogen, alginate, and gelatin by tuning the crosslinking bath solution. Various concentrations of calcium ionically crosslinked alginate, while transglutaminase crosslinked gelatin. Subsequently, we characterized the mechanical behavior of our bioprinted hydrogels from the nanoscale to the macroscale. This approach enabled the production of diverse bioprinted constructs, either with similar elastic behavior but different elastic moduli or with similar elastic moduli but different viscoelastic behavior from the same hydrogel formulation. Culturing fibroblasts in the hydrogels for 33 days revealed a preference for cell growth and matrix secretion in the viscoelastic hydrogels. This work demonstrates the suitability of the method to decouple the effects of material mechanical from biochemical composition cues on 3D cultured cells.
Collapse
Affiliation(s)
- Sarah Pragnere
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Edwin-Joffrey Courtial
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Frédéric Dubreuil
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France
| | | | - Christophe Marquette
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Emma Petiot
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Cyril Pailler-Mattei
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; University of Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de, Lyon, France.
| |
Collapse
|
2
|
Elfarraj H, Lizzi F, Bitter K, Zaslansky P. Effects of endodontic root canal irrigants on tooth dentin revealed by infrared spectroscopy: a systematic literature review. Dent Mater 2024; 40:1138-1163. [PMID: 38825554 DOI: 10.1016/j.dental.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Root canal irrigation endodontic solutions have effects on the chemistry of dentin. Infrared spectroscopy is a non-destructive chemical characterization method where the strength of absorption often correlates with mineral or organic composition. OBJECTIVES To survey effects of commonly used irrigation solutions on the composition of root dentin as detected by widely-available Fourier transform infrared spectroscopy (FTIR) methods. METHODS Electronic databases were searched for articles published between 1983 to 2023. After risk of bias assessments (OHAT), studies were grouped according to effects per irrigation solution. Inclusion criteria comprised in vitro studies that used extracted human or bovine teeth, treated by irrigation solutions characterized using FTIR spectroscopy and presenting spectral data. Publications that did not present spectra were excluded. RESULTS A wide range of concentrations, durations, and treatment protocols have been tested but only 30 out of 3452 studies met our inclusion criteria. Different FTIR methods were used with Attenuated Total Reflection (ATR) variant being the most common (21 studies). Investigated solutions included sodium hypochlorite (NaOCl), ethylenediaminetetraacetic-acid (EDTA), 1-hydroxyethylidene-1-1-diphosphonic-acid (HEDP), peracetic-acid (PAA), glycolic-acid (GA), and citric-acid (CA) though most focused on NaOCl and EDTA. All solutions had detectable effects in the FTIR signature of dentin. NaOCl mainly affects the organics, revealing reduced amide/phosphate ratios with increasing concentrations. EDTA mainly effects the inorganic component, with the effects increasing with time and concentration, yet glycolic acid has stronger effects than EDTA on dentin. Beyond the type of irrigant and dentin exposure durations, concentration and protocol of application had strong effects. There is a lack of studies comparing similar irrigants under conditions that mimic clinical scenarios analyzing bulk sample because FTIR of powder dentin differs from FTIR of bulk dentin. SIGNIFICANCE The ideal root-canal irrigant should combine local disinfection properties with minimal compositional effects on healthy dentin. FTIR methods appear reliable to identify important changes in root dentin chemical composition. Such information can help understand when endodontic irrigation might lead to root degradation or possibly contribute to long term failures such as vertical fractures. Awareness of chemical damage from irrigation procedures may help clinicians select procedures that reduce deleterious effects on the root canal structures.
Collapse
Affiliation(s)
- Hamza Elfarraj
- Department for Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| | - Franco Lizzi
- Department for Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany
| | - Kerstin Bitter
- University Outpatient Clinic for Operative Dentistry and Periodontology, Martin-Luther-University, Halle-Wittenberg, Germany
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| |
Collapse
|
3
|
Ge M, Liu B, Hu X, Zhang Q, Mou A, Li X, Wang Z, Zhang X, Xu Q. Biomineralization in a cold environment: Insights from shield compositions and transcriptomics of polar sternaspids (Sternaspidae, Polychaeta). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101187. [PMID: 38183966 DOI: 10.1016/j.cbd.2023.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
The survival and physiological functions of polar marine organisms are impacted by global climate changes. Investigation of the adaptation mechanisms underlying biomineralization in polar organisms at low temperatures is important for understanding mineralized organismal sensitivity to climate change. Here, we performed electron probe analysis on the shields of Antarctic polychaete Sternaspis sendalli and Arctic polychaete Sternaspis buzhinskajae (Sternaspidae), and sequenced the transcriptomes of the tissues surrounding shields to examine biomineral characteristics and adaptive mechanisms in persistently cold environments. Compared to the temperate relative species, the relative abundance of iron, phosphorus, calcium, magnesium, nitrogen, sulfur and silicon in two polar sternaspid shields was similar to Sternaspis chinensis. However, the diversity and expression levels of biomineralization-related shell matrix proteins differed between the polar and temperate species, suggesting distinct molecular mechanisms underlying shield formation in cold environments. Tubulin and cyclophilin were upregulated compared to the temperate species. Furthermore, 42 positively selected genes were identified in Antarctic S. sendalli, with functions in cytoskeletal structure, DNA repair, immunity, transcription, translation, protein synthesis, and lipid metabolism. Highly expressed genes in both polar species were associated with cytoskeleton, macromolecular complexes and cellular component biosynthesis. Overall, this study reveals conserved elemental composition yet distinct biomineralization processes in the shields of polar sternaspids. The unique expression of biomineralization related genes and other cold-adaptation related genes provide molecular insights into biomineralization in cold marine environments.
Collapse
Affiliation(s)
- Meiling Ge
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Bing Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Xuying Hu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Qian Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Anning Mou
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Xinlong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China.
| |
Collapse
|
4
|
Zhong Q, Zhou Q, Xiao T, Li X, Xu W, Li Y, Tao Y, Wu L, Zhou Z, Wong HM, Li QL. Er:YAG Laser Physical Etching and Ultra-High-Molecular-Weight Cross-Linked Sodium Polyacrylate Chemical Etching for a Reliable Dentin Dry Bonding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39127-39142. [PMID: 37565782 DOI: 10.1021/acsami.3c07091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Dentin bond interface stability is the key issue of dental adhesion in present clinical dentistry. The concept of selective extrafibrillar demineralization has opened a new way to maintain intrafibrillar minerals to prevent interface degradation. Here, using ultra-high-molecular-weight sodium polyacrylate [Carbopol (Carbo) > 40 kDa] as a calcium chelator, we challenge this concept and propose a protocol for reliable dentin dry bonding. The results of high-resolution transmission electron microscopy revealed periodic bands of 67 nm dentin collagen fibrils after Carbo etching, and the hydroxyproline concentration increasing with prolonged chelating time denied the concept of extrafibrillar demineralization. The results that wet and dry bonding with Carbo-based demineralization produced a weaker bond strength than the traditional phosphoric acid wet adhesion suggested that the Carbo-based demineralization is an unreliable adhesion strategy. A novel protocol of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion revealed that a micro-/nano-level rough, rigid, and non-collagen exposed dentin surface was produced, the micro-tensile bond strength was maintained after aging under dry and wet bonding modes, and in situ zymography and nanoleakage within the hybrid layers presented lower signals after aging. Cell culture in vitro and a rabbit deep dentin adhesion model in vivo proved that this protocol is safe and biocompatible. Taken together, the concept of extrafibrillar demineralization is limited and insufficient to use in the clinic. The strategy of Er:YAG laser physical etching followed by Carbo chemical etching for dentin adhesion produces a bonding effect with reliability, durability, and safety.
Collapse
Affiliation(s)
- Qi Zhong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qingli Zhou
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Ting Xiao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaofeng Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Wu Xu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yuzhu Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yang Tao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Quan-Li Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
- Department of Stomatology, Longgang Otorhinolaryngology Hospital, Shenzhen 518172, China
| |
Collapse
|
5
|
Yan L, Zheng C, Yuan D, Guo Z, Cui Y, Xie Z, Chen Z, Tang R, Liu Z. Fast Construction of Biomimetic Organic-Inorganic Interface by Crosslinking of Calcium Phosphate Oligomers: A Strategy for Instant Regeneration of Hard Tissue. Adv Healthc Mater 2022; 11:e2201161. [PMID: 36103604 DOI: 10.1002/adhm.202201161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/09/2022] [Indexed: 01/28/2023]
Abstract
The organic-inorganic structure in biological hard tissues ensures their marvelous characteristics but these hybrids are easily destroyed by the demineralization of inorganic components, e.g., the damage of dentin. Current clinical materials for hard tissue regeneration commonly act as "fillers" and their therapeutic effect is limited by the failures of biological-linked organic-inorganic interface reconstruction. Herein, a fast in situ crosslinking of calcium phosphate oligomers (CPOs) on collagen matrixes for efficient organic-inorganic interface re-construction, which can result in a biomimetic hybrid, is demonstrated. By using damaged dentin as an example, the inorganic ionic crosslinking can instantly infiltrate into the dentin matrix to rebuild a dense and continuous calcium phosphate-collagen hybrid within only 5 min, where the structurally integrated organic-inorganic interface is identical to natural dentin. As a result, the damaged dentin can be fully recovered to a healthy one, which is superior to any current dentin treatments. The fast construction of biomimetic hybrid by inorganic ionic crosslinking provides a promising strategy for hard tissue repair and follows great potentials of CPOs as advanced biomedical materials in future.
Collapse
Affiliation(s)
- Lumiao Yan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chen Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang university, Hangzhou, Zhejiang, 310006, China
| | - Ding Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Zhengxi Guo
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang university, Hangzhou, Zhejiang, 310006, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
6
|
Assessing Collagen D-Band Periodicity with Atomic Force Microscopy. MATERIALS 2022; 15:ma15041608. [PMID: 35208148 PMCID: PMC8877100 DOI: 10.3390/ma15041608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
The collagen superfamily includes more than fifty collagen and/or collagen-like proteins with fibril-forming collagen type I being the most abundant protein within the extracellular matrix. Collagen type I plays a crucial role in a variety of functions, it has been associated with many pathological conditions and it is widely used due to its unique properties. One unique nano-scale characteristic of natural occurring collagen type I fibers is the so-called D-band periodicity, which has been associated with collagen natural structure and properties, while it seems to play a crucial role in the interactions between cells and collagen and in various pathological conditions. An accurate characterization of the surface and structure of collagen fibers, including D-band periodicity, on collagen-based tissues and/or (nano-)biomaterials can be achieved by Atomic Force Microscopy (AFM). AFM is a scanning probe microscope and is among the few techniques that can assess D-band periodicity. This review covers issues related to collagen and collagen D-band periodicity and the use of AFM for studying them. Through a systematic search in databases (PubMed and Scopus) relevant articles were identified. The study of these articles demonstrated that AFM can offer novel information concerning D-band periodicity. This study highlights the importance of studying collagen D-band periodicity and proves that AFM is a powerful tool for investigating a number of different properties related to collagen D-band periodicity.
Collapse
|
7
|
Chang R, Liu Y, Zhang Y, Zhang S, Han B, Chen F, Chen Y. Phosphorylated and Phosphonated Low-Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103829. [PMID: 34978158 PMCID: PMC8867149 DOI: 10.1002/advs.202103829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Biomimetic mineralization based on self-assembly has made great progress, providing bottom-up strategies for the construction of new organic-inorganic hybrid materials applied in the treatment of hard tissue defects. Herein, inspired by the cooperative effects of key components in biomineralization microenvironments, a new type of biocompatible peptide scaffold based on flexibly self-assembling low-complexity protein segments (LCPSs) containing phosphate or phosphonate groups is developed. These LCPSs can retard the transformation of amorphous calcium phosphate into hydroxyapatite (HAP), leading to merged mineralization structures. Moreover, the application of phosphonated LCPS over phosphorylated LCPS can prevent hydrolysis by phosphatases that are enriched in extracellular mineralization microenvironments. After being coated on the etched tooth enamel, these LCPSs facilitate the growth of HAP to generate new enamel layers comparable to the natural layers and mitigate the adhesion of Streptococcus mutans. In addition, they can effectively stimulate the differentiation pathways of osteoblasts. These results shed light on the potential biomedical applications of two LCPSs in hard tissue repair.
Collapse
Affiliation(s)
- Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang‐Jia Liu
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yun‐Lai Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Shi‐Ying Zhang
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Bei‐Bei Han
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
8
|
Reis M, Alania Y, Leme-Kraus A, Free R, Joester D, Ma W, Irving T, Bedran-Russo AK. The stoic tooth root: how the mineral and extracellular matrix counterbalance to keep aged dentin stable. Acta Biomater 2022; 138:351-360. [PMID: 34740855 PMCID: PMC8815755 DOI: 10.1016/j.actbio.2021.10.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
Aging is a physiological process with profound impact on the biology and function of biosystems, including the human dentition. While resilient, human teeth undergo wear and disease, affecting overall physical, psychological, and social human health. However, the underlying mechanisms of tooth aging remain largely unknown. Root dentin is integral to tooth function in that it anchors and dissipates mechanical load stresses of the tooth-bone system. Here, we assess the viscoelastic behavior, composition, and ultrastructure of young and old root dentin using nano-dynamic mechanical analysis, micro-Raman spectroscopy, small angle X-ray scattering, atomic force and transmission electron microscopies. We find that the root dentin overall stiffness increases with age. Unlike other mineralized tissues and even coronal dentin, however, the ability of root dentin to dissipate energy during deformation does not decay with age. Using a deconstruction method to dissect the contribution of mineral and organic matrix, we find that the damping factor of the organic matrix does deteriorate. Compositional and ultrastructural analyses revealed higher mineral-to-matrix ratio, altered enzymatic and non-enzymatic collagen cross-linking, increased collagen d-spacing and fibril diameter, and decreased abundance of proteoglycans and sulfation pattern of glycosaminoglycans . Therefore, even in the absence of remodeling, the extracellular matrix of root dentin shares traits of aging with other tissues. To explain this discrepancy, we propose that altered matrix-mineral interactions, possibly mediated by carbonate ions sequestered at the mineral interface and/or altered glycosaminoglycans counteract the deleterious effects of aging on the structural components of the extracellular matrix. STATEMENT OF SIGNIFICANCE: Globally, a quarter of the population will be over 65 years old by 2050. Because many will retain their dentition, it will become increasingly important to understand and manage how aging affects teeth. Dentin is integral to the protective, biomechanical, and regenerative features of teeth. Here, we demonstrate that older root dentin not only has altered mechanical properties, but shows characteristic shifts in mineralization, composition, and post-translational modifications of the matrix. This strongly suggests that there is a mechanistic link between mineral and matrix components to the biomechanical performance of aging dentin with implications for efforts to slow or even reverse the aging process.
Collapse
Affiliation(s)
- Mariana Reis
- Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA,Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yvette Alania
- Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA,Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ariene Leme-Kraus
- Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Free
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology. Chicago, IL, USA
| | - Thomas Irving
- Department of Biological Sciences, Illinois Institute of Technology. Chicago, IL, USA
| | - Ana K. Bedran-Russo
- Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA,Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Kahil K, Weiner S, Addadi L, Gal A. Ion Pathways in Biomineralization: Perspectives on Uptake, Transport, and Deposition of Calcium, Carbonate, and Phosphate. J Am Chem Soc 2021; 143:21100-21112. [PMID: 34881565 PMCID: PMC8704196 DOI: 10.1021/jacs.1c09174] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Minerals are formed by organisms in all of the kingdoms of life. Mineral formation pathways all involve uptake of ions from the environment, transport of ions by cells, sometimes temporary storage, and ultimately deposition in or outside of the cells. Even though the details of how all this is achieved vary enormously, all pathways need to respect both the chemical limitations of ion manipulation, as well as the many "housekeeping" roles of ions in cell functioning. Here we provide a chemical perspective on the biological pathways of biomineralization. Our approach is to compare and contrast the ion pathways involving calcium, phosphate, and carbonate in three very different organisms: the enormously abundant unicellular marine coccolithophores, the well investigated sea urchin larval model for single crystal formation, and the complex pathways used by vertebrates to form their bones. The comparison highlights both common and unique processes. Significantly, phosphate is involved in regulating calcium carbonate deposition and carbonate is involved in regulating calcium phosphate deposition. One often overlooked commonality is that, from uptake to deposition, the solutions involved are usually supersaturated. This therefore requires not only avoiding mineral deposition where it is not needed but also exploiting this saturated state to produce unstable mineral precursors that can be conveniently stored, redissolved, and manipulated into diverse shapes and upon deposition transformed into more ordered and hence often functional final deposits.
Collapse
Affiliation(s)
- Keren Kahil
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Steve Weiner
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Lia Addadi
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Assaf Gal
- Department
of Chemical and Structural Biology and Department of Plant and Environmental
Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
10
|
Millán Á, Lanzer P, Sorribas V. The Thermodynamics of Medial Vascular Calcification. Front Cell Dev Biol 2021; 9:633465. [PMID: 33937234 PMCID: PMC8080379 DOI: 10.3389/fcell.2021.633465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Medial vascular calcification (MVC) is a degenerative process that involves the deposition of calcium in the arteries, with a high prevalence in chronic kidney disease (CKD), diabetes, and aging. Calcification is the process of precipitation largely of calcium phosphate, governed by the laws of thermodynamics that should be acknowledged in studies of this disease. Amorphous calcium phosphate (ACP) is the key constituent of early calcifications, mainly composed of Ca2+ and PO4 3- ions, which over time transform into hydroxyapatite (HAP) crystals. The supersaturation of ACP related to Ca2+ and PO4 3- activities establishes the risk of MVC, which can be modulated by the presence of promoter and inhibitor biomolecules. According to the thermodynamic parameters, the process of MVC implies: (i) an increase in Ca2+ and PO4 3- activities (rather than concentrations) exceeding the solubility product at the precipitating sites in the media; (ii) focally impaired equilibrium between promoter and inhibitor biomolecules; and (iii) the progression of HAP crystallization associated with nominal irreversibility of the process, even when the levels of Ca2+ and PO4 3- ions return to normal. Thus, physical-chemical processes in the media are fundamental to understanding MVC and represent the most critical factor for treatments' considerations. Any pathogenetical proposal must therefore comply with the laws of thermodynamics and their expression within the medial layer.
Collapse
Affiliation(s)
- Ángel Millán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Peter Lanzer
- Division of Cardiovascular Disease, Department of Internal Medicine, Health Care Center Bitterfeld, Bitterfeld-Wolfen gGmbH, Bitterfeld-Wolfen, Germany
| | - Víctor Sorribas
- Molecular Toxicology Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
11
|
Hass V, da Maceno Oliveira TB, Cardenas AFM, de Siqueira FSF, Bauer JR, Abuna G, Sinhoreti MAC, de Souza JJ, Loguercio AD. Is it possible for a simultaneous biomodification during acid etching on naturally caries-affected dentin bonding? Clin Oral Investig 2020; 25:3543-3553. [PMID: 33200282 DOI: 10.1007/s00784-020-03677-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study investigated the ability of modified phosphoric acids containing chlorhexidine (CHX) or grape seed extract (GSE) for promoting simultaneous biomodification during acid etching on bonding properties in caries-affected dentin (CAD). MATERIALS AND METHODS Thirty-two human molars (8 with sound dentin [SD] and 24 naturally CAD) were selected for the study. The SD and CAD were initially exposed, then randomized and etched according to the following groups: (1) SD (SD-CT) and CAD (CAD-CT) both with 37% phosphoric acid, (2) CAD with 2% CHX containing 37% phosphoric acid (CAD-CHX), and (3) CAD with 2% GSE containing 10% phosphoric acid (CAD-GSE). The bonding procedure and composite build-ups were performed after acid etching. Subsequently, they were sectioned in resin-dentin specimens. The specimens were submitted for chemical profiling by micro-Raman, microtensile bond strength (μTBS), failure mode with chemical characterization by FEG/SEM-EDX, and in situ zymography by CLSM. The data from μTBS and CLSM were statistically analyzed (1-way ANOVA and Tukey's test; α = 0.05). RESULTS The highest μTBS results were shown for SD-CT in comparison with all CAD groups (p < 0.001), and the lowest for CAD-CT and CAD-CHX (p < 0.001). The etching with CHX did not increase the μTBS for CAD when compared with CT (p = 0.52). However, the etching with GSE improved significantly the μTBS for CAD when compared with CT and CHX (p < 0.001). The chemical profile detected chemical and structural changes in collagen peaks for CAD-CT, which were not detected when the CAD was etched by modified acids. Also, the poorest hybridization ability was detected in CAD for CT, which was significantly improved with modified acids, especially the GSE, as evaluated by chemical profile and failure mode. A significant reduction of MMP activity on CAD was promoted by modified acids in comparison with CT (both p < 0.001). CONCLUSIONS The GSE-containing acid was able to promote biomodification during the acid etching, increasing the bonding properties and reducing the activity of the MMPs within the hybrid layer. CLINICAL RELEVANCE The use of GSE-containing phosphoric acid can be a promising alternative to improve the bonding performance on caries-affected dentin, since it is capable of biomodifying the dentin during the acid etching, without adding any extra step in bonding procedures.
Collapse
Affiliation(s)
- Viviane Hass
- School of Dentistry, University of Missouri-Kansas City, 650E 25th St, Kansas City, MO, 64108, USA
| | | | | | | | - Jose Roberto Bauer
- Department of Dental Materials, School of Dentistry, Federal University of Maranhão, Av. Dos Portugueses, 1966, São Luis, Maranhão, 65085-582, Brazil
| | - Gabriel Abuna
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | | | - Jullian Josnei de Souza
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti 4748, Uvaranas, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Alessandro D Loguercio
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti 4748, Uvaranas, Ponta Grossa, Paraná, 84030-900, Brazil.
| |
Collapse
|
12
|
McCluskey AR, Hung KSW, Marzec B, Sindt JO, Sommerdijk NAJM, Camp PJ, Nudelman F. Disordered Filaments Mediate the Fibrillogenesis of Type I Collagen in Solution. Biomacromolecules 2020; 21:3631-3643. [DOI: 10.1021/acs.biomac.0c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew R. McCluskey
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Kennes S. W. Hung
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Bartosz Marzec
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Julien O. Sindt
- EPCC, University of Edinburgh, Bayes Centre, 47 Potterrow, Edinburgh EH8 9BT, U.K
| | - Nico A. J. M. Sommerdijk
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein, 6525 GA Nijmegen, The Netherlands
| | - Philip J. Camp
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Fabio Nudelman
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
13
|
Qu Y, Gu T, Du Q, Shao C, Wang J, Jin B, Kong W, Sun J, Chen C, Pan H, Tang R, Gu X. Polydopamine Promotes Dentin Remineralization via Interfacial Control. ACS Biomater Sci Eng 2020; 6:3327-3334. [PMID: 33463183 DOI: 10.1021/acsbiomaterials.0c00035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomineralization has intrigued researchers for decades. Although mineralization of type I collagen has been universally investigated, this process remains a great challenge due to the lack of mechanistic understanding of the roles of biomolecules. In our study, dentine was successfully repaired using the biomolecule polydopamine (PDA), and the remineralized dentine exhibited mechanical properties comparable to those of natural dentine. Detailed analyses of the collagen mineralization process facilitated by PDA showed that PDA can promote intrafibrillar mineralization with a decreased heterogeneous nucleation barrier for hydroxyapatite (HAP) by reducing the interfacial energy between collagen fibrils and amorphous calcium phosphate (ACP), resulting in the conversion of an increasing amount of nanoprecursors into collagen fibrils. The present work highlights the importance of interfacial control in dentine remineralization and provides profound insight into the regulatory effect of biomolecules in collagen mineralization as well as the clinical application of dentine restoration.
Collapse
Affiliation(s)
- Yinan Qu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tianyi Gu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310000, P. R. China
| | - Qiaolin Du
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Changyu Shao
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jing Wang
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Biao Jin
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Weijing Kong
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haihua Pan
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ruikang Tang
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
14
|
Xia Y, Yang ZY, Li YH, Zhou Z. The Effects of a Toothpaste Containing the Active Ingredients of Galla chinensis and Sodium Fluoride on Dentin Hypersensitivity and Sealing of Dentinal Tubules: An In Vitro Study and an Eight-Week Clinical Study in 98 Patients. Med Sci Monit 2020; 26:e920776. [PMID: 32307404 PMCID: PMC7191947 DOI: 10.12659/msm.920776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the desensitizing effect of toothpaste containing the active ingredients of an extract of Galla chinensis, both in vitro and in patients with dentin hypersensitivity. MATERIAL AND METHODS Ninety-eight patients with dentin hypersensitivity were divided into two study groups and given toothpaste containing either the active ingredients of Galla chinensis extract and sodium fluoride, or a control toothpaste containing only sodium fluoride. Assessments included the tactile stimulation test and the Schiff cold air sensitivity scale, which were conducted at the baseline examination and after 4 and 8 weeks of dental brushing. Twenty-five intact human premolars from 24 patients with dentin hypersensitivity were prepared and randomly divided into four groups, the untreated baseline group, the study group, the positive control group, and the control group. After brushing with different toothpaste for 7 days, the effects on dentinal tubule sealing in each group was determined by scanning electron microscopy (SEM), and the degree of dentinal tubule plugging and diameter of the open dentinal tubules were calculated. RESULTS Toothpaste containing the active ingredients of Galla chinensis and sodium fluoride significantly reduced the degree of dentin hypersensitivity when compared with toothpaste containing sodium fluoride alone after 4 weeks and 8 weeks of use. Toothpaste containing the active ingredients of Galla chinensis significantly reduced the number and diameter of the open dentinal tubules. CONCLUSIONS Toothpaste that contained the active ingredients of Galla chinensis and sodium fluoride reduced the symptoms of dentin hypersensitivity by sealing the dentinal tubules.
Collapse
Affiliation(s)
- Yu Xia
- The College of Stomatology, Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Zheng-Yan Yang
- The College of Stomatology, Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Yue-Heng Li
- The College of Stomatology, Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| | - Zhi Zhou
- The College of Stomatology, Chongqing Medical University, Chongqing, China (mainland).,Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China (mainland).,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China (mainland)
| |
Collapse
|
15
|
Liao Z, Jiang YT, Sun Q, Fan MH, Wang JX, Liang HY. Microstructure and in-depth proteomic analysis of Perna viridis shell. PLoS One 2019; 14:e0219699. [PMID: 31323046 PMCID: PMC6641155 DOI: 10.1371/journal.pone.0219699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
For understanding the structural characteristics and the proteome of Perna shell, the microstructure, polymorph, and protein composition of the adult Perna viridis shell were investigated. The P. viridis shell have two distinct mineral layers, myostracum and nacre, with the same calcium carbonate polymorph of aragonite, determined by scanning electron microscope, Fourier transform infrared spectroscopy, and x-ray crystalline diffraction. Using Illumina sequencing, the mantle transcriptome of P. viridis was investigated and a total of 69,859 unigenes was generated. Using a combined proteomic/transcriptomic approach, a total of 378 shell proteins from P. viridis shell were identified, in which, 132 shell proteins identified with more than two matched unique peptides. Of the 132 shell proteins, 69 are exclusive to the nacre, 12 to the myostracum, and 51 are shared by both. The Myosin-tail domain containing proteins, Filament-like proteins, and Chitin-binding domain containing proteins represent the most abundant molecules. In addition, the shell matrix proteins (SMPs) containing biomineralization-related domains, such as Kunitz, A2M, WAP, EF-hand, PDZ, VWA, Collagen domain, and low complexity regions with abundant certain amino acids, were also identified from P. viridis shell. Collagenase and chitinase degradation can significantly change the morphology of the shell, indicating the important roles of collagen and chitin in the shell formation and the muscle-shell attachment. Our results present for the first time the proteome of P. viridis shell and increase the knowledge of SMPs in this genus.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Yu-ting Jiang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Qi Sun
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Mei-hua Fan
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Jian-xin Wang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Hai-ying Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
- * E-mail:
| |
Collapse
|
16
|
Yao S, Xu Y, Shao C, Nudelman F, Sommerdijk NAJM, Tang R. A Biomimetic Model for Mineralization of Type-I Collagen Fibrils. Methods Mol Biol 2019; 1944:39-54. [PMID: 30840234 DOI: 10.1007/978-1-4939-9095-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The bone and dentin mainly consist of type-I collagen fibrils mineralized by hydroxyapatite (HAP) nanocrystals. In vitro biomimetic models based on self-assembled collagen fibrils have been widely used in studying the mineralization mechanism of type-I collagen. In this chapter, the protocol we used to build a biomimetic model for the mechanistic study of type-I collagen mineralization is described. Type-I collagen extracted from rat tail tendon or horse tendon is self-assembled into fibrils and mineralized by HAP in vitro. The mineralization process is monitored by cryoTEM in combination with two-dimensional (2D) and three-dimensional (3D) stochastic optical reconstruction microscopy (STORM), which enables in situ and high-resolution visualization of the process.
Collapse
Affiliation(s)
- Shasha Yao
- Department of Chemistry, Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifei Xu
- Laboratory of Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Center for Multiscale Electron Microscopy, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Changyu Shao
- Department of Chemistry, Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fabio Nudelman
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Nico A J M Sommerdijk
- Laboratory of Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Center for Multiscale Electron Microscopy, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruikang Tang
- Department of Chemistry, Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Shao C, Zhao R, Jiang S, Yao S, Wu Z, Jin B, Yang Y, Pan H, Tang R. Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704876. [PMID: 29315839 DOI: 10.1002/adma.201704876] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic-organic composite. It is demonstrated experimentally that only collagen fibrils containing ≈8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front.
Collapse
Affiliation(s)
- Changyu Shao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ruibo Zhao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Shuqin Jiang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Shasha Yao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Zhifang Wu
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, P. R. China
| | - Biao Jin
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yuling Yang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
18
|
Bertassoni LE, Swain MV. Removal of dentin non-collagenous structures results in the unraveling of microfibril bundles in collagen type I. Connect Tissue Res 2017; 58:414-423. [PMID: 27657550 PMCID: PMC6214662 DOI: 10.1080/03008207.2016.1235566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS The structural organization of collagen from mineralized tissues, such as dentin and bone, has been a topic of debate in the recent literature. Recent reports have presented novel interpretations of the complexity of collagen type I at different hierarchical levels and in different tissues. Here, we investigate the nanostructural organization of demineralized dentin collagen following the digestion of non-collagenous components with a trypsin enzyme. MATERIALS AND METHODS Dentin specimens were obtained from healthy third-molars, cut into small cubes, and polished down to 1 µm roughness. Samples were then demineralized with 10% citric acid for 2 min. Selected specimens were further treated with a solution containing 1 mg/ml trypsin for 48 hours at 37 °C (pH 7.9-9.0). Both untreated and trypsin digested samples were analyzed using SDS-PAGE, Field Emission Scanning Electron Microscopy (FE-SEM), and nanoindentation, where surface hardness and creep properties were compared before and after treatments. RESULTS FE-SEM images of demineralized dentin showed the banded morphology of D-periodical collagen type I, which upon enzymatic digestion with trypsin appeared to dissociate longitudinally, consistently unraveling ~20 nm structures (microfibril bundles). Such nanoscale structures, to the best of our knowledge, have not been characterized in dentin previously. Mechanical characterization via nanoindentation showed that the unraveling of such microfibril bundles affected the creep displacement and creep rate of demineralized dentin. CONCLUSION In summary, our results provide novel evidence of the organization of collagen type I from dentin, which may have important implications for the interaction of dental materials with the organic dentin matrix and the mechanical properties of mineralized tissues.
Collapse
Affiliation(s)
- Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland OR, USA,Center for Regenerative Medicine, Oregon Health and Science University, Portland OR, USA,Bioengineering Laboratory, Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia
| | - Michael V. Swain
- Bioengineering Laboratory, Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia,Bioclinical Sciences Department, Faculty of Dentistry, University of Kuwait, Kuwait
| |
Collapse
|
19
|
Slimani A, Nouioua F, Desoutter A, Levallois B, Cuisinier FJG, Tassery H, Terrer E, Salehi H. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-8. [PMID: 28822139 DOI: 10.1117/1.jbo.22.8.086003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.
Collapse
Affiliation(s)
- Amel Slimani
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Fares Nouioua
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Alban Desoutter
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Bernard Levallois
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Frédéric J G Cuisinier
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Hervé Tassery
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
- Université Aix-Marseille, Department of Restorative Dentistry, Marseille, France
| | - Elodie Terrer
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
- Université Aix-Marseille, Department of Restorative Dentistry, Marseille, France
| | - Hamideh Salehi
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| |
Collapse
|
20
|
Liu X, Pu J, Zeng S, Jin C, Dong S, Li J. Hyriopsis cumingii Hic52-A novel nacreous layer matrix protein with a collagen-like structure. Int J Biol Macromol 2017; 102:667-673. [PMID: 28392384 DOI: 10.1016/j.ijbiomac.2017.03.154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/20/2022]
Abstract
Nacre is a product of a precisely regulated biomineralization process and a major contributor to the luster of pearls. Nacre is composed of calcium carbonate and an organic matrix of proteins that is secreted from mollusc mantle tissue and is exclusively associated with shell formation. In this study, hic52, a novel matrix protein gene from mantle of Hyriopsis cumingii, was cloned and functionally analyzed. The full-length cDNA of hic52 encoded 542 amino acids and contained a signal peptide of 18 amino acids. Excluding the signal peptide, the theoretical molecular mass of the polypeptide was 52.2kDa. The predicted isoelectric point was 10.37, indicating a basic shell protein. The amino acid sequence of hic52 featured high proportion of Gly (28.8%) and Gln (12.4%) residues. The predicted tertiary structure was characterized as having similarities to collagen I, alpha 1 and alpha 2 in the structure. The polypeptide sequence shared no homology with collagen. The hic52 expression pattern by quantitative real-time PCR and in situ hybridization exhibits at the dorsal epithelial cells of the mantle. Expression increased during the stages of pearl sac development. The data showed that hic52 is probably a framework shell protein that mediates and controls the nacreous biomineralization process.
Collapse
Affiliation(s)
- Xiaojun Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Jingwen Pu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Shimei Zeng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Can Jin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Shaojian Dong
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China; E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
21
|
Cvikl B, Hess SC, Miron RJ, Agis H, Bosshardt D, Attin T, Schmidlin PR, Lussi A. Response of human dental pulp cells to a silver-containing PLGA/TCP-nanofabric as a potential antibacterial regenerative pulp-capping material. BMC Oral Health 2017; 17:57. [PMID: 28241819 PMCID: PMC5327548 DOI: 10.1186/s12903-017-0348-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
Background Damage or exposure of the dental pulp requires immediate therapeutic intervention. Methods This study assessed the biocompatibility of a silver-containing PLGA/TCP-nanofabric scaffold (PLGA/Ag-TCP) in two in vitro models, i.e. the material adapted on pre-cultured cells and cells directly cultured on the material, respectively. Collagen saffolds with and without hyaluronan acid (Coll-HA; Coll) using both cell culturing methods and cells growing on culture plates served as reference. Cell viability and proliferation were assessed after 24, 48, and 72 h based on formazan formation and BrdU incorporation. Scaffolds were harvested. Gene expression of interleukin(IL)-6, tumor necrosis factor (TNF)-alpha, and alkaline phosphatase (AP) was assessed 24 h after stimulation. Results In both models formazan formation and BrdU incorporation was reduced by PLGA/Ag-TCP on dental pulp cells, while no significant reduction was found in cells with Coll and Coll-HA. Cells with PLGA/Ag-TCP for 72 h showed similar relative BrdU incorporation than cells stimulated with Coll and Coll-HA. A prominent increase in the pro-inflammatory genes IL-6 and TNF-α was observed when cells were cultured with PLGA/Ag-TCP compared to the other groups. This increase was parallel with a slight increase in AP expression. Overall, no differences between the two culture methods were observed. Conclusions PLGA/Ag-TCP decreased viability and proliferation rate of human dental pulp cells and increased the pro-inflammatory capacity and alkaline phosphatase expression. Whether these cellular responses observed in vitro translate into pulp regeneration in vivo will be assessed in further studies.
Collapse
Affiliation(s)
- Barbara Cvikl
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dentistry, University of Bern, Bern, Switzerland.,Department of Conservative Dentistry & Periodontology, Medical University of Vienna, Vienna, Austria
| | - Samuel C Hess
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Richard J Miron
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dentistry, University of Bern, Bern, Switzerland.,Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hermann Agis
- Department of Conservative Dentistry & Periodontology, Medical University of Vienna, Vienna, Austria
| | - Dieter Bosshardt
- Robert K. Schenk Laboratory of Oral Histology, Department of Periodontology, Department of Oral Surgery and Stomatology, University of Bern, Bern, Switzerland
| | - Thomas Attin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, CH-8032, Switzerland
| | - Patrick R Schmidlin
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dentistry, University of Bern, Bern, Switzerland. .,Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, CH-8032, Switzerland.
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dentistry, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Ding C, Chen Z, Li J. From molecules to macrostructures: recent development of bioinspired hard tissue repair. Biomater Sci 2017; 5:1435-1449. [DOI: 10.1039/c7bm00247e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the bioinspired strategies for hard tissue repair, ranging from molecule-induced mineralization, to microscale assembly to macroscaffold fabrication.
Collapse
Affiliation(s)
- Chunmei Ding
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Zhuoxin Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
23
|
Gao Y, Sahlberg C, Kiukkonen A, Alaluusua S, Pohjanvirta R, Tuomisto J, Lukinmaa PL. Lactational Exposure of Han/Wistar Rats to 2,3,7,8-Tetrachlorodibenzo-p-dioxin Interferes with Enamel Maturation and Retards Dentin Mineralization. J Dent Res 2016; 83:139-44. [PMID: 14742652 DOI: 10.1177/154405910408300211] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exposure to environmental dioxins via mother’s milk may be one causative factor of mineralization defects in children’s teeth. A prerequisite for the completion of enamel mineralization is the removal of enamel matrix. To test the hypothesis that dioxins interfere with enamel maturation, we administered lactating Han/Wistar rats a single dose of 2,3,7,8-tetrachlorodibenzo -p-dioxin (TCDD; 50 or 1000 μg/kg) on the day after delivery and analyzed tissue sections of the pup heads at post-natal days (Pn) 9 and 22. By Pn22, the first and second molars of the exposed pups, but not controls, showed retention of enamel matrix. Predentin was thicker than normal. Immunostaining for the aryl hydrocarbon/dioxin receptor (AhR) and cytochrome P4501A1 (CYP1A1) in ameloblasts and odontoblasts was reduced, suggesting that TCDD interferes with tooth mineralization via AhR. Extinction of AhR may lead to abolition of CYP1A1 expression as a sign of impaired dental cell function.
Collapse
Affiliation(s)
- Y Gao
- Department of Pedodontics and Orthodontics, Institute of Dentistry, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
24
|
Veis A. Biomineralization: On the Trail of the Phosphate. Part II: Phosphophoryn, the DMPs, and More. J Dent Res 2016; 83:6-10. [PMID: 14691105 DOI: 10.1177/154405910408300102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Arthur Veis
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Margolis HC, Beniash E, Fowler CE. Role of Macromolecular Assembly of Enamel Matrix Proteins in Enamel Formation. J Dent Res 2016; 85:775-93. [PMID: 16931858 DOI: 10.1177/154405910608500902] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Unlike other mineralized tissues, mature dental enamel is primarily (> 95% by weight) composed of apatitic crystals and has a unique hierarchical structure. Due to its high mineral content and organized structure, enamel has exceptional functional properties and is the hardest substance in the human body. Enamel formation (amelogenesis) is the result of highly orchestrated extracellular processes that regulate the nucleation, growth, and organization of forming mineral crystals. However, major aspects of the mechanism of enamel formation are not well-understood, although substantial evidence suggests that protein-protein and protein-mineral interactions play crucial roles in this process. The purpose of this review is a critical evaluation of the present state of knowledge regarding the potential role of the assembly of enamel matrix proteins in the regulation of crystal growth and the structural organization of the resulting enamel tissue. This review primarily focuses on the structure and function of amelogenin, the predominant enamel matrix protein. This review also provides a brief description of novel in vitro approaches that have used synthetic macromolecules ( i.e., surfactants and polymers) to regulate the formation of hierarchical inorganic (composite) structures in a fashion analogous to that believed to take place in biological systems, such as enamel. Accordingly, this review illustrates the potential for developing bio-inspired approaches to mineralized tissue repair and regeneration. In conclusion, the authors present a hypothesis, based on the evidence presented, that the full-length amelogenin uniquely regulates proper enamel formation through a process of cooperative mineralization, and not as a pre-formed matrix.
Collapse
Affiliation(s)
- H C Margolis
- Department of Biomineralization, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA.
| | | | | |
Collapse
|
26
|
Accelerated enamel mineralization in Dspp mutant mice. Matrix Biol 2016; 52-54:246-259. [PMID: 26780724 DOI: 10.1016/j.matbio.2016.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
Abstract
Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases - dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp(-/-) mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp(-/-) animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp(-/-) incisors compared to the Dspp(+/-) control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel.
Collapse
|
27
|
Liu X, Zeng S, Dong S, Jin C, Li J. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure. PLoS One 2015; 10:e0135123. [PMID: 26262686 PMCID: PMC4532409 DOI: 10.1371/journal.pone.0135123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/18/2015] [Indexed: 12/22/2022] Open
Abstract
In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.
Collapse
Affiliation(s)
- Xiaojun Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture (ZF1206), Shanghai Ocean University, Shanghai, China
- Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center (ZF1206), Shanghai Ocean University, Shanghai, China
| | - Shimei Zeng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai, China
| | - Shaojian Dong
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai, China
| | - Can Jin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture (ZF1206), Shanghai Ocean University, Shanghai, China
- Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center (ZF1206), Shanghai Ocean University, Shanghai, China
- E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
28
|
Quan BD, Sone ED. Structural changes in collagen fibrils across a mineralized interface revealed by cryo-TEM. Bone 2015; 77:42-9. [PMID: 25892483 DOI: 10.1016/j.bone.2015.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
The structure of the mineralized collagen fibril, which is the basic building block of mineralized connective tissues, is critical to its function. We use cryo-TEM to study collagen structure at a well-defined hard-soft tissue interface, across which collagen fibrils are continuous, in order to evaluate changes to collagen upon mineralization. To establish a basis for the analysis of collagen banding, we compared cryo-TEM images of rat-tail tendon collagen to a model based on the X-ray structure. While there is close correspondence of periodicity, differences in band intensity indicate fibril regions with high density but lacking order, providing new insight into collagen fibrillar structure. Across a mineralized interface, we show that mineralization results in an axial contraction of the fibril, concomitant with lateral expansion, and that this contraction occurs only in the more flexible gap region of the fibril. Nevertheless, the major features of the banding pattern are not significantly changed, indicating that the axial arrangement of molecules remains largely intact. These results suggest a mechanism by which collagen fibrils are able to accommodate large amounts of mineral without significant disruption of their molecular packing, leading to synergy of mechanical properties.
Collapse
Affiliation(s)
- Bryan D Quan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Eli D Sone
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada; Department of Materials Science and Engineering, University of Toronto, 170 College St., Toronto, ON, M5S 3E3 Canada; Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
29
|
Margolis HC, Kwak SY, Yamazaki H. Role of mineralization inhibitors in the regulation of hard tissue biomineralization: relevance to initial enamel formation and maturation. Front Physiol 2014; 5:339. [PMID: 25309443 PMCID: PMC4159985 DOI: 10.3389/fphys.2014.00339] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023] Open
Abstract
Vertebrate mineralized tissues, i.e., enamel, dentin, cementum, and bone, have unique hierarchical structures and chemical compositions. Although these tissues are similarly comprised of a crystalline calcium apatite mineral phase and a protein component, they differ with respect to crystal size and shape, level and distribution of trace mineral ions, the nature of the proteins present, and their relative proportions of mineral and protein components. Despite apparent differences, mineralized tissues are similarly derived by highly concerted extracellular processes involving matrix proteins, proteases, and mineral ion fluxes that collectively regulate the nucleation, growth and organization of forming mineral crystals. Nature, however, provides multiple ways to control the onset, rate, location, and organization of mineral deposits in developing mineralized tissues. Although our knowledge is quite limited in some of these areas, recent evidence suggests that hard tissue formation is, in part, controlled through the regulation of specific molecules that inhibit the mineralization process. This paper addresses the role of mineralization inhibitors in the regulation of biological mineralization with emphasis on the relevance of current findings to the process of amelogenesis. Mineralization inhibitors can also serve to maintain driving forces for calcium phosphate precipitation and prevent unwanted mineralization. Recent evidence shows that native phosphorylated amelogenins have the capacity to prevent mineralization through the stabilization of an amorphous calcium phosphate precursor phase, as observed in vitro and in developing teeth. Based on present findings, the authors propose that the transformation of initially formed amorphous mineral deposits to enamel crystals is an active process associated with the enzymatic processing of amelogenins. Such processing may serve to control both initial enamel crystal formation and subsequent maturation.
Collapse
Affiliation(s)
- Henry C. Margolis
- Department of Applied Oral Sciences, Center for Biomineralization, The Forsyth InstituteCambridge, MA, USA
- Department of Developmental Biology, Harvard School of Dental MedicineBoston, MA, USA
| | - Seo-Young Kwak
- Department of Applied Oral Sciences, Center for Biomineralization, The Forsyth InstituteCambridge, MA, USA
- Department of Developmental Biology, Harvard School of Dental MedicineBoston, MA, USA
| | - Hajime Yamazaki
- Department of Applied Oral Sciences, Center for Biomineralization, The Forsyth InstituteCambridge, MA, USA
- Department of Developmental Biology, Harvard School of Dental MedicineBoston, MA, USA
| |
Collapse
|
30
|
de La Dure-Molla M, Philippe Fournier B, Berdal A. Isolated dentinogenesis imperfecta and dentin dysplasia: revision of the classification. Eur J Hum Genet 2014; 23:445-51. [PMID: 25118030 DOI: 10.1038/ejhg.2014.159] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/09/2022] Open
Abstract
Dentinogenesis imperfecta is an autosomal dominant disease characterized by severe hypomineralization of dentin and altered dentin structure. Dentin extra cellular matrix is composed of 90% of collagen type I and 10% of non-collagenous proteins among which dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP) are crucial in dentinogenesis. These proteins are encoded by a single gene: dentin sialophosphoprotein (DSPP) and undergo several post-translational modifications such as glycosylation and phosphorylation to contribute and to control mineralization. Human mutations of this DSPP gene are responsible for three isolated dentinal diseases classified by Shield in 1973: type II and III dentinogenesis imperfecta and type II dentin dysplasia. Shield classification was based on clinical phenotypes observed in patient. Genetics results show now that these three diseases are a severity variation of the same pathology. So this review aims to revise and to propose a new classification of the isolated forms of DI to simplify diagnosis for practitioners.
Collapse
Affiliation(s)
- Muriel de La Dure-Molla
- 1] Centre de Recherche des Cordeliers, INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology, Paris, France [2] Paris-Descartes University, Paris, France [3] The Pierre-and-Marie-Curie University, Paris, France [4] Paris-Diderot, School of Dentistry, Paris, France [5] Reference Center for Dental Rare Disease, MAFACE Rothschild Hospital, AP-HP, Paris, France
| | - Benjamin Philippe Fournier
- 1] Centre de Recherche des Cordeliers, INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology, Paris, France [2] Paris-Descartes University, Paris, France [3] The Pierre-and-Marie-Curie University, Paris, France [4] Paris-Diderot, School of Dentistry, Paris, France [5] Reference Center for Dental Rare Disease, MAFACE Rothschild Hospital, AP-HP, Paris, France
| | - Ariane Berdal
- 1] Centre de Recherche des Cordeliers, INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology, Paris, France [2] Paris-Descartes University, Paris, France [3] The Pierre-and-Marie-Curie University, Paris, France [4] Paris-Diderot, School of Dentistry, Paris, France [5] Reference Center for Dental Rare Disease, MAFACE Rothschild Hospital, AP-HP, Paris, France
| |
Collapse
|
31
|
Cantaert B, Beniash E, Meldrum FC. The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement. J Mater Chem B 2013; 1:10.1039/C3TB21296C. [PMID: 24409343 PMCID: PMC3881609 DOI: 10.1039/c3tb21296c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP.
Collapse
Affiliation(s)
- Bram Cantaert
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. ; Tel: 440113 3436414;
| | - Elia Beniash
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, 3501 Terrace Street, 15261 PA, USA.; Tel: 01 412 6480108;
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. ; Tel: 440113 3436414;
| |
Collapse
|
32
|
Takahashi M, Nakajima M, Tagami J, Scheffel D, Carvalho R, Mazzoni A, Cadenaro M, Tezvergil-Mutluay A, Breschi L, Tjäderhane L, Jang S, Tay F, Agee K, Pashley D. The importance of size-exclusion characteristics of type I collagen in bonding to dentin matrices. Acta Biomater 2013; 9:9522-8. [PMID: 23928333 DOI: 10.1016/j.actbio.2013.07.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/11/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than ∼1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives in water-saturated matrices.
Collapse
|
33
|
Farbod K, Nejadnik MR, Jansen JA, Leeuwenburgh SCG. Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:173-88. [PMID: 23902258 DOI: 10.1089/ten.teb.2013.0221] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mimicking the nanostructure of bone and understanding the interactions between the nanoscale inorganic and organic components of the extracellular bone matrix are crucial for the design of biomaterials with structural properties and a functionality similar to the natural bone tissue. Generally, these interactions involve anionic and/or cationic functional groups as present in the organic matrix, which exhibit a strong affinity for either calcium or phosphate ions from the mineral phase of bone. This study reviews the interactions between the mineral and organic extracellular matrix components in bone tissue as a source of inspiration for the design of novel nanocomposites. After providing a brief description of the various structural levels of bone and its main constituents, a concise overview is presented on the process of bone mineralization as well as the interactions between calcium phosphate (CaP) nanocrystals and the organic matrix of bone tissue. Bioinspired synthetic approaches for obtaining nanocomposites are subsequently addressed, with specific focus on chemical groups that have affinity for CaPs or are involved in stimulating and controlling mineral formation, that is, anionic functional groups, including carboxyl, phosphate, sulfate, hydroxyl, and catechol groups.
Collapse
Affiliation(s)
- Kambiz Farbod
- Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Fang M, Holl MMB. Variation in type I collagen fibril nanomorphology: the significance and origin. BONEKEY REPORTS 2013; 2:394. [PMID: 24422113 DOI: 10.1038/bonekey.2013.128] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022]
Abstract
Although the axial D-periodic spacing is a well-recognized nanomorphological feature of type I collagen fibrils, the existence of a distribution of values has been largely overlooked since its discovery seven decades ago. Studies based on single fibril measurements occasionally noted variation in D-spacing values, but accredited it with no biological significance. Recent quantitative characterizations supported that a 10-nm collagen D-spacing distribution is intrinsic to collagen fibrils in various tissues as well as in vitro self-assembly of reconstituted collagen. In addition, the distribution is altered in Osteogenesis Imperfecta and long-term estrogen deprivation. Bone collagen is organized into lamellar sheets of bundles at the micro-scale, and D-spacings within a bundle of a lamella are mostly identical, whereas variations among different bundles contribute to the full-scale distribution. This seems to be a very general phenomenon for the protein as the same type of D-spacing/bundle organization is observed for dermal and tendon collagen. More research investigation of collagen nanomorphology in connection to bone biology is required to fully understand these new observations. Here we review the data demonstrating the existence of a D-spacing distribution, the impact of disease on the distribution and possible explanations for the origin of D-spacing variations based on various collagen fibrillogenesis models.
Collapse
Affiliation(s)
- Ming Fang
- Department of Chemistry, University of Michigan , Ann Arbor, MI, USA
| | | |
Collapse
|
35
|
Li Y, Douglas EP. Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils. Colloids Surf B Biointerfaces 2013; 112:42-50. [PMID: 23948153 DOI: 10.1016/j.colsurfb.2013.07.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 02/01/2023]
Abstract
Even though the behavior of collagen monomers self-assembling into fibrils is commonly understood in terms of hydrophobic and electrostatic interactions, the mechanisms that drive their ordered, longitudinal alignment to form a characteristic periodicity are still unclear. By introducing various salts into the collagen fibrillogenesis system, the intermolecular interactions of fibril formation were studied. We found that the pH and ion species play a critical role in forming native fibrils. Turbidity and electron microscopy revealed that collagen self-assembled into fibrils with a native banding pattern in the presence of multivalent ions. The isoelectric point of collagen in 12mM of NaCl is pH 8.9; it shifted to pH 9.4 and pH 7.0 after adding 10mM CaCl2 and Na2SO4, respectively. Native fibrils were reconstituted at pH 7.4 in salts with divalent anions and at pH 9.0 in salts with divalent cations. Circular dichroism spectroscopy showed a loss of helicity in the conditions where fibrillogenesis was unable to be achieved. The multivalent ions not only change the surface charge of collagen, but also facilitate the formation of fibrils with the native D-periodic banding pattern. It is likely that the binding multivalent ions induce the like-charge attraction and facilitate monomers' longitudinal registration to form fibrils with the native banding.
Collapse
Affiliation(s)
- Yuping Li
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, USA.
| | | |
Collapse
|
36
|
Nudelman F, Lausch AJ, Sommerdijk NAJM, Sone ED. In vitro models of collagen biomineralization. J Struct Biol 2013; 183:258-69. [PMID: 23597833 DOI: 10.1016/j.jsb.2013.04.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 11/27/2022]
Abstract
Over the last several years, significant progress has been made toward understanding the mechanisms involved in the mineralization of hard collagenous tissues, such as bone and dentin. Particularly notable are the identification of transient mineral phases that are precursors to carbonated hydroxyapatite, the identification and characterization of non-collagenous proteins that are involved in controlling mineralization, and significant improvements in our understanding of the structure of collagen. These advances not only represent a paradigm shift in the way collagen mineralization is viewed and understood, but have also brought new challenges to light. In this review, we discuss how recent in vitro models have addressed critical questions regarding the role of the non-collagenous proteins in controlling mineralization, the nature of the interactions between amorphous calcium phosphate and collagen during the early stages of mineralization, and the role of collagen in the mineralization process. We discuss the significance of these findings in expanding our understanding of collagen biomineralization, while addressing some of the limitations that are inherent to in vitro systems.
Collapse
Affiliation(s)
- Fabio Nudelman
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Characterization of Dentin Matrix Biomodified by Galla Chinensis Extract. J Endod 2013; 39:542-7. [DOI: 10.1016/j.joen.2012.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/14/2012] [Accepted: 12/30/2012] [Indexed: 11/18/2022]
|
38
|
|
39
|
Bedran-Russo AK, Ravindran S, George A. Imaging analysis of early DMP1 mediated dentine remineralization. Arch Oral Biol 2012; 58:254-60. [PMID: 23107046 DOI: 10.1016/j.archoralbio.2012.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/31/2012] [Accepted: 09/20/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study assessed the micro-morphological changes in demineralized dentine scaffold following incubation with recombinant dentine matrix protein 1 (rDMP1). DESIGN Extracted human molar crowns were sectioned into 6 beams (dimensions: 0.50mm×1.70mm×6.00mm), demineralized and incubated overnight in 3 different media (n=4): rDMP1 in bovine serum albumin (BSA), BSA and distilled water. Samples were placed in a chamber with simulated physiological concentrations of calcium and phosphate ions at constant pH 7.4. Samples were immediately processed for transmission electron microscopy (TEM) and field emission-scanning electron microscopy (FE-SEM) after 1 and 2 weeks. RESULTS Analysis of the scaffold showed that decalcification process retained the majority of endogenous proteoglycans and phosphoproteins. rDMP1 treated samples promoted deposition of amorphous calcium phosphate (ACP) precursors and needle shaped hydroxyapatite crystals surrounding collagen fibrils. The BSA group presented ACP bound to collagen with no needle-like apatite crystals. Samples kept in distilled water showed no evidence of ACP and crystal apatite. Results from rDMP1 immobilized on dentine matrix suggests that the acidic protein was able to bind to collagen fibrils and control formation of amorphous calcium phosphate and its subsequent transformation into hydroxyapatite crystals after 2 weeks. CONCLUSION These findings suggest a possible bio-inspired strategy to promote remineralization of dentine for reparative and regenerative purposes.
Collapse
Affiliation(s)
- Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina street, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
40
|
Abstract
Abstract
The size, morphology and species-specific texture of mollusc shell biominerals is one of the unresolved questions in nature. In search of molecular control principles, chitin has been identified by Weiner and Traub (FEBS Lett. 1980, 111:311–316) as one of the organic compounds with a defined co-organization with mineral phases. Chitin fibers can be aligned with certain mineralogical axes of crystalline calcium carbonate in a species-specific manner. These original observations motivated the functional characterization of chitin forming enzymes in molluscs. The full-length cDNA cloning of mollusc chitin synthases identified unique myosin domains as part of the biological control system. The potential impact of molecular motors and other conserved domains of these complex transmembrane enzymes on the evolution of shell biomineralization is investigated and discussed in this article.
Collapse
|
41
|
Tjäderhane L, Haapasalo M. The dentin-pulp border: a dynamic interface between hard and soft tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Srot V, Bussmann B, Salzberger U, Koch CT, van Aken PA. Linking microstructure and nanochemistry in human dental tissues. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:509-523. [PMID: 22494533 DOI: 10.1017/s1431927612000116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mineralized dental tissues and dental pulp were characterized using advanced analytical transmission electron microscopy (TEM) methods. Quantitative X-ray energy dispersive spectroscopy was employed to determine the Ca/P and Mg/P concentration ratios. Significantly lower Ca/P concentration ratios were measured in peritubular dentine compared to intertubular dentine, which is accompanied by higher and variable Mg/P concentration ratios. There is strong evidence that magnesium is partially substituting calcium in the hydroxyapatite structure. Electron energy-loss near-edge structures (ELNES) of C-K and O-K from enamel and dentine are noticeably different. We observe a strong influence of beam damage on mineralized dental tissues and dental pulp, causing changes of the composition and consequently also differences in the ELNES. In this article, the importance of TEM sample preparation and specimen damage through electron irradiation is demonstrated.
Collapse
Affiliation(s)
- Vesna Srot
- Stuttgart Center for Electron Microscopy, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
43
|
Deshpande AS, Fang PA, Zhang X, Jayaraman T, Sfeir C, Beniash E. Primary structure and phosphorylation of dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP) uniquely determine their role in biomineralization. Biomacromolecules 2011; 12:2933-45. [PMID: 21736373 PMCID: PMC3171794 DOI: 10.1021/bm2005214] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The SIBLING (small integrin-binding ligand N-linked glycoproteins) family is the major group of noncollagenous proteins in bone and dentin. These extremely acidic and highly phosphorylated extracellular proteins play critical roles in the formation of collagenous mineralized tissues. Whereas the lack of individual SIBLINGs causes significant mineralization defects in vivo, none of them led to a complete cessation of mineralization suggesting that these proteins have overlapping functions. To assess whether different SIBLINGs regulate biomineralization in a similar manner and how phosphorylation impacts their activity, we studied the effects of two SIBLINGs, dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP), on mineral morphology and organization in vitro. Our results demonstrate distinct differences in the effects of these proteins on mineralization. We show that phosphorylation has a profound effect on the regulation of mineralization by both proteins. Specifically, both phosphorylated proteins facilitated organized mineralization of collagen fibrils and phosphorylated DMP1-induced formation of organized mineral bundles in the absence of collagen. In summary, these results indicate that the primary structure and phosphorylation uniquely determine functions of individual SIBLINGs in regulation of mineral morphology and organization.
Collapse
Affiliation(s)
- Atul Suresh Deshpande
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, McGowan Institute for Regenerative Medicine, Pittsburgh, PA
| | - Ping-An Fang
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, McGowan Institute for Regenerative Medicine, Pittsburgh, PA
| | - Xiaoyuan Zhang
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, McGowan Institute for Regenerative Medicine, Pittsburgh, PA
| | - Thottala Jayaraman
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, McGowan Institute for Regenerative Medicine, Pittsburgh, PA
| | - Charles Sfeir
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, McGowan Institute for Regenerative Medicine, Pittsburgh, PA
| | - Elia Beniash
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, McGowan Institute for Regenerative Medicine, Pittsburgh, PA
| |
Collapse
|
44
|
Bedran-Russo AKB, Castellan CS, Shinohara MS, Hassan L, Antunes A. Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta Biomater 2011; 7:1735-41. [PMID: 21167964 PMCID: PMC3050116 DOI: 10.1016/j.actbio.2010.12.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interaction, biodegradation rates, proteoglycan interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent-dentin interaction was observed with GSE, which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates decreased remarkably following biomodification of dentin matrices after 24h collagenase digestion. A significant decrease in the proteoglycan content of GSE-treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and the control. The tensile strength properties of GD-biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD- and GSE-treated samples were observed following exposure to collagenase and 8 months water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry, but also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities.
Collapse
Affiliation(s)
- Ana Karina B Bedran-Russo
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
45
|
Beniash E. Biominerals--hierarchical nanocomposites: the example of bone. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:47-69. [PMID: 20827739 PMCID: PMC3012754 DOI: 10.1002/wnan.105] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many organisms incorporate inorganic solids in their tissues to enhance their functional, primarily mechanical, properties. These mineralized tissues, also called biominerals, are unique organo-mineral nanocomposites, organized at several hierarchical levels, from nano- to macroscale. Unlike man-made composite materials, which often are simple physical blends of their components, the organic and inorganic phases in biominerals interface at the molecular level. Although these tissues are made of relatively weak components under ambient conditions, their hierarchical structural organization and intimate interactions between different elements lead to superior mechanical properties. Understanding basic principles of formation, structure, and functional properties of these tissues might lead to novel bioinspired strategies for material design and better treatments for diseases of the mineralized tissues. This review focuses on general principles of structural organization, formation, and functional properties of biominerals on the example the bone tissues.
Collapse
Affiliation(s)
- Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Wallace JM, Orr BG, Marini JC, Banaszak Holl MM. Nanoscale morphology of Type I collagen is altered in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol 2011; 173:146-52. [PMID: 20696252 PMCID: PMC2997118 DOI: 10.1016/j.jsb.2010.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 01/20/2023]
Abstract
Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine substitutions (80%) and splice site mutations (20%) in the genes encoding the α1 or α2 chains of Type I collagen. Genotype-phenotype correlations using over 830 collagen mutations have revealed that lethal mutations are located in regions crucial for collagen-ligand binding in the matrix. However, few of these correlations have been extended to collagen structure in bone. Here, an atomic force microscopy-based approach was used to image and quantitatively analyze the D-periodic spacing of Type I collagen fibrils in femora from heterozygous (Brtl/+) mice (α1(I)G349C), compared to wild type (WT) littermates. This disease system has a well-defined change in the col1α1 allele, leading to a well characterized alteration in collagen protein structure, which are directly related to altered Type I collagen nanoscale morphology, as measured by the D-periodic spacing. In Brtl/+ bone, the D-periodic spacing shows significantly greater variability on average and along the length of the bone compared to WT, although the average spacing was unchanged. Brtl/+ bone also had a significant difference in the population distribution of collagen D-period spacings. These changes may be due to the mutant collagen structure, or to the heterogeneity of collagen monomers in the Brtl/+ matrix. These observations at the nanoscale level provide insight into the structural basis for changes present in bone composition, geometry and mechanical integrity in Brtl/+ bones. Further studies are necessary to link these morphological observations to nanoscale mechanical integrity.
Collapse
Affiliation(s)
- Joseph M. Wallace
- University of Michigan, Department of Chemistry
- University of Michigan, Michigan Nanotechnology Institute for Medicine and Biological Science
| | - Bradford G. Orr
- University of Michigan, Michigan Nanotechnology Institute for Medicine and Biological Science
- University of Michigan, Department of Physics
- University of Michigan, Program in Applied Physics
| | - Joan C. Marini
- Bone and Extracellular Matrix Branch, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH
| | - Mark M. Banaszak Holl
- University of Michigan, Department of Chemistry
- University of Michigan, Michigan Nanotechnology Institute for Medicine and Biological Science
- University of Michigan, Program in Applied Physics
- University of Michigan, Program in Biophysics
- University of Michigan, Program Macromolecular Science and Engineering
| |
Collapse
|
47
|
Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ, de With G, Sommerdijk NAJM. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. NATURE MATERIALS 2010; 9:1004-9. [PMID: 20972429 PMCID: PMC3084378 DOI: 10.1038/nmat2875] [Citation(s) in RCA: 753] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/07/2010] [Indexed: 05/18/2023]
Abstract
Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67 nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins; however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.
Collapse
Affiliation(s)
- Fabio Nudelman
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Koen Pieterse
- Biomodeling and Bioinformatics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anne George
- Department of Oral Biology, University of Illinois, Chicago, USA
| | - Paul H. H. Bomans
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Laura J. Brylka
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter A. J. Hilbers
- Biomodeling and Bioinformatics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Gijsbertus de With
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nico A. J. M. Sommerdijk
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
48
|
Campi G, Mari A, Amenitsch H, Pifferi A, Cannas C, Suber L. Monitoring early stages of silver particle formation in a polymer solution by in situ and time resolved small angle X-ray scattering. NANOSCALE 2010; 2:2447-2455. [PMID: 20938556 DOI: 10.1039/c0nr00390e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Silver particles have been prepared by reduction of silver nitrate with ascorbic acid in acidic aqueous solution containing a low concentration of a commercial polynaphthalene sulfonate polymer (Daxad 19) as dispersant agent. The reduction has been induced and controlled by the slow addition of ascorbic acid at a fixed rate; in this way, we were able to monitor the formation of a silver crystalline colloidal dispersion by in situ and time resolved Small Angle X-ray Scattering measurements. Modeling the scattering intensity with interacting spherical particles in a polymer-Ag like-fractal template allowed us to distinguish different stages involving liquid-like ordered cluster nucleation, cluster growth up to primary particle formation and particle coalescence. Between primary particle formation and particle coalescence, we observed the occurrence of a transient phase of core-shell type structures having primary particles as stable cores in expanding shells built by the organic polymer. We discuss these results in a twofold perspective pertaining both to technology, relative to controlled fabrication of metal nanoparticles and to basic chemical physics, dealing with non standard stepwise crystallization from solutions.
Collapse
Affiliation(s)
- Gaetano Campi
- CNR-Istituto di Cristallografia, Via Salaria, Km 29.300, Monterotondo Stazione, RM I-00015, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Märten A, Fratzl P, Paris O, Zaslansky P. On the mineral in collagen of human crown dentine. Biomaterials 2010; 31:5479-90. [DOI: 10.1016/j.biomaterials.2010.03.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/15/2010] [Indexed: 11/30/2022]
|
50
|
Deshpande AS, Fang PA, Simmer JP, Margolis HC, Beniash E. Amelogenin-collagen interactions regulate calcium phosphate mineralization in vitro. J Biol Chem 2010; 285:19277-87. [PMID: 20404336 DOI: 10.1074/jbc.m109.079939] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen and amelogenin are two major extracellular organic matrix proteins of dentin and enamel, the mineralized tissues comprising a tooth crown. They both are present at the dentin-enamel boundary (DEB), a remarkably robust interface holding dentin and enamel together. It is believed that interactions of dentin and enamel protein assemblies regulate growth and structural organization of mineral crystals at the DEB, leading to a continuum at the molecular level between dentin and enamel organic and mineral phases. To gain insight into the mechanisms of the DEB formation and structural basis of its mechanical resiliency we have studied the interactions between collagen fibrils, amelogenin assemblies, and forming mineral in vitro, using electron microscopy. Our data indicate that collagen fibrils guide assembly of amelogenin into elongated chain or filament-like structures oriented along the long axes of the fibrils. We also show that the interactions between collagen fibrils and amelogenin-calcium phosphate mineral complexes lead to oriented deposition of elongated amorphous mineral particles along the fibril axes, triggering mineralization of the bulk of collagen fibril. The resulting structure was similar to the mineralized collagen fibrils found at the DEB, with arrays of smaller well organized crystals inside the collagen fibrils and bundles of larger crystals on the outside of the fibrils. These data suggest that interactions between collagen and amelogenin might play an important role in the formation of the DEB providing structural continuity between dentin and enamel.
Collapse
Affiliation(s)
- Atul S Deshpande
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|