1
|
Clark SJ, Curcio C, Dick AD, Doyle S, Edwards M, Flores-Bellver M, Hass D, Lennon R, Toomey CB, Rohrer B. Breaking Bruch's: How changes in Bruch's membrane influence retinal homeostasis. Exp Eye Res 2025; 255:110343. [PMID: 40107443 DOI: 10.1016/j.exer.2025.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Simon J Clark
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Christine Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, USA
| | - Andrew D Dick
- University of Bristol and UCL-Institute of Ophthalmology and NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, UK
| | - Sarah Doyle
- Department of Clinical Medicine, School of Medicine and Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Malia Edwards
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Miguel Flores-Bellver
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Hass
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Christopher B Toomey
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California at San Diego, La Jolla, CA, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston SC, USA.
| |
Collapse
|
2
|
A common finding in foveal-sparing extensive macular atrophy with pseudodrusen (EMAP) implicates basal laminar deposits. Retina 2022; 42:1319-1329. [DOI: 10.1097/iae.0000000000003463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Engel AL, Wang Y, Khuu TH, Worrall E, Manson MA, Lim RR, Knight K, Yanagida A, Qi JH, Ramakrishnan A, Weleber RG, Klein ML, Wilson DJ, Anand-Apte B, Hurley JB, Du J, Chao JR. Extracellular matrix dysfunction in Sorsby patient-derived retinal pigment epithelium. Exp Eye Res 2022; 215:108899. [PMID: 34929159 PMCID: PMC8923943 DOI: 10.1016/j.exer.2021.108899] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Sorsby Fundus Dystrophy (SFD) is a rare form of macular degeneration that is clinically similar to age-related macular degeneration (AMD), and a histologic hallmark of SFD is a thick layer of extracellular deposits beneath the retinal pigment epithelium (RPE). Previous studies of SFD patient-induced pluripotent stem cell (iPSC) derived RPE differ as to whether these cultures recapitulate this key clinical feature by forming increased drusenoid deposits. The primary purpose of this study is to examine whether SFD patient-derived iPSC-RPE form basal deposits similar to what is found in affected family member SFD globes and to determine whether SFD iPSC RPE may be more oxidatively stressed. We performed a careful comparison of iPSC RPE from three control individuals, multiple iPSC clones from two SFD patients' iPSC RPE, and post-mortem eyes of affected SFD family members. We also examined the effect of CRISPR-Cas9 gene correction of the S204C TIMP3 mutation on RPE phenotype. Finally, targeted metabolomics with liquid chromatography and mass spectrometry analysis and stable isotope-labeled metabolite analysis were performed to determine whether SFD RPE are more oxidatively stressed. We found that SFD iPSC-RPE formed significantly more sub-RPE deposits (∼6-90 μm in height) compared to control RPE at 8 weeks. These deposits were similar in composition to the thick layer of sub-RPE deposits found in SFD family member globes by immunofluorescence staining and TEM imaging. S204C TIMP3 correction by CRISPR-Cas9 gene editing in SFD iPSC RPE cells resulted in significantly reduced basal laminar and sub-RPE calcium deposits. We detected a ∼18-fold increase in TIMP3 accumulation in the extracellular matrix (ECM) of SFD RPE, and targeted metabolomics showed that intracellular 4-hydroxyproline, a major breakdown product of collagen, is significantly elevated in SFD RPE, suggesting increased ECM turnover. Finally, SFD RPE cells have decreased intracellular reduced glutathione and were found to be more vulnerable to oxidative stress. Our findings suggest that elements of SFD pathology can be demonstrated in culture which may lead to insights into disease mechanisms.
Collapse
Affiliation(s)
- Abbi L. Engel
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - YeKai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506,Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Thomas H. Khuu
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Emily Worrall
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Megan A. Manson
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Kaitlen Knight
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Aya Yanagida
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Jian Hua Qi
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - Aravind Ramakrishnan
- Center for Blood Cancers and Oncology, St. David’s South Austin Medical Center, Austin, TX 78704
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - Michael L. Klein
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - David J. Wilson
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - James B. Hurley
- Department of Ophthalmology, University of Washington, Seattle, WA 98109,Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506,Department of Biochemistry, West Virginia University, Morgantown, WV 26506,Corresponding authors: , 750 Republican Street, Box 358058, Seattle WA 98109 (206) 221-0594; or , One Medical Center Dr., PO Box 9193, WVU Eye Institute, Morgantown, WV 26505; Phone: (304)-598-6903; Fax: (304)-598- 6928
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, WA 98109,Corresponding authors: , 750 Republican Street, Box 358058, Seattle WA 98109 (206) 221-0594; or , One Medical Center Dr., PO Box 9193, WVU Eye Institute, Morgantown, WV 26505; Phone: (304)-598-6903; Fax: (304)-598- 6928
| |
Collapse
|
4
|
Chinchilla B, Fernandez-Godino R. AMD-Like Substrate Causes Epithelial Mesenchymal Transition in iPSC-Derived Retinal Pigment Epithelial Cells Wild Type but Not C3-Knockout. Int J Mol Sci 2021; 22:ijms22158183. [PMID: 34360950 PMCID: PMC8348968 DOI: 10.3390/ijms22158183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Bruch's membrane (BrM) is a five-layered extracellular matrix (ECM) that supports the retinal pigment epithelium (RPE). Normal age-related changes in the BrM may lead to RPE cell damage and ultimately to the onset and progression of age-related macular degeneration (AMD), which is the most common cause of visual loss among the elderly. A role for the complement system in AMD pathology has been established, but the disease mechanisms are poorly understood, which hampers the design of efficient therapies to treat millions of patients. In an effort to identify the mechanisms that lead from normal aging to pathology, we have developed a cell-based model using complement deficient human induced pluripotent stem cell (iPSC)-derived RPE cells cultured on an AMD-like ECM that mimics BrM. The data present evidence that changes in the ECM result in loss of differentiation and promote epithelial mesenchymal transition (EMT) of healthy RPE cells. This pathological process is mediated by complement activation and involves the formation of a randomly oriented collagen meshwork that drives the dedifferentiation of the RPE monolayer. Genetic ablation of complement component 3 has a protective effect against EMT but does not prevent the abnormal deposition of collagens. These findings offer new insights into the sequence of events that initiate AMD and may guide the design of efficient therapies to treat this disease with unmet medical needs.
Collapse
|
5
|
Sura AA, Chen L, Messinger JD, Swain TA, McGwin G, Freund KB, Curcio CA. Measuring the Contributions of Basal Laminar Deposit and Bruch's Membrane in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 33186466 PMCID: PMC7671869 DOI: 10.1167/iovs.61.13.19] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Basal laminar deposit (BLamD) is a consistent finding in age-related macular degeneration (AMD). We quantified BLamD thickness, appearance, and topography in eyes of aged donors with and without AMD and evaluated its relationship to other components of the retinal pigment epithelium-basal lamina/Bruch's membrane (RPE-BL-BrM) complex. Methods Donor eyes (n = 132) were classified as normal (n = 54), early to intermediate AMD (n = 24), geographic atrophy (GA; n = 13), and neovascular AMD (NV; n = 41). In high-resolution histology, we assessed RPE, BLamD, and BrM thicknesses and phenotypes at 3309 predefined locations in the central (foveal and perifovea) and superior (perifoveal) sections. Pre-mortem optical coherence tomography (OCT) imaging of a 90-year-old woman was compared to postmortem histopathology. Results In non-atrophic areas of AMD eyes, the RPE-BLamD is thick (normal = 13.7 µm, early-intermediate = 16.8 µm, GA = 17.4 µm, NV = 18.7 µm), because the BLamD is thick (normal = 0.3 µm, early-intermediate = 5.5 µm, GA = 4.1 µm, NV = 5.3 µm). RPE layer thickness is similar across these stages. Disease-associated variants of BLamD (thick, late, basal mounds) cluster subfoveally. A thick BLamD is visible on OCT as a hyporeflective split in the RPE-BL-BrM complex. BrM is thin (3.5 µm) in NV (normal = 4.2 µm, early to intermediate = 4.4 µm, and GA = 4.2 µm). Conclusions The RPE-BL-BrM complex is thick in AMD, driven by the accumulation and expansion of BLamD rather than expansion of either three-layer BrM, RPE-BL, or RPE. BLamD is clinically appreciable by OCT in some patients as a non-neovascular "split RPE-BL-BrM complex" or "double-layer sign." BLamD may contribute toward the formation and progression of high-risk drusen yet also exhibit protective properties.
Collapse
Affiliation(s)
- Amol A Sura
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Ling Chen
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, NYU Langone School of Medicine, New York, New York, United States.,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, New York, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Pouw AE, Greiner MA, Coussa RG, Jiao C, Han IC, Skeie JM, Fingert JH, Mullins RF, Sohn EH. Cell-Matrix Interactions in the Eye: From Cornea to Choroid. Cells 2021; 10:687. [PMID: 33804633 PMCID: PMC8003714 DOI: 10.3390/cells10030687] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure maintenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch's membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon's layer as it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed, including but not limited to those related to transforming growth factor-β, vascular endothelial growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metalloproteinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis and cellular differentiation-stabilization. Alterations contributing to disease states such as wound healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis, age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are also reviewed.
Collapse
Affiliation(s)
- Andrew E. Pouw
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Razek G. Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ian C. Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliott H. Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Murali A, Krishnakumar S, Subramanian A, Parameswaran S. Bruch's membrane pathology: A mechanistic perspective. Eur J Ophthalmol 2020; 30:1195-1206. [PMID: 32345040 DOI: 10.1177/1120672120919337] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bruch's membrane, an extracellular matrix located between the retinal pigment epithelium and the choroid, plays a vital role as structural and functional support to the retinal pigment epithelium. Dysfunction of Bruch's membrane in both age-related macular degeneration and other ocular diseases is caused mostly by extracellular matrix degeneration, deposit formation, and angiogenesis. Although these factors are dealt in greater detail with respect to the cells that are degenerated such as the retinal pigment epithelium and the endothelial cells, the pathology involving the Bruch's membrane is often underrated. Since in most of the macular degenerations early degenerative changes are also observed in the Bruch's membrane, addressing only the cellular component without the underlying membrane will not yield an ideal clinical benefit. This review aims to discuss the factors and the mechanisms affecting the integrity of the Bruch's membrane, which would aid in developing an effective therapy for these pathologies.
Collapse
Affiliation(s)
- Aishwarya Murali
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| |
Collapse
|
8
|
Spaide RF, Ooto S, Curcio CA. Subretinal drusenoid deposits AKA pseudodrusen. Surv Ophthalmol 2018; 63:782-815. [PMID: 29859199 DOI: 10.1016/j.survophthal.2018.05.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/30/2023]
Abstract
A distinction between conventional drusen and pseudodrusen was first made in 1990, and more recently knowledge of pseudodrusen, more accurately called subretinal drusenoid deposits (SDDs), has expanded. Pseudodrusen have a bluish-white appearance by biomicroscopy and color fundus photography. Using optical coherence tomography, pseudodrusen were found to be accumulations of material internal to the retinal pigment epithelium that could extend internally through the ellipsoid zone. These deposits are more commonly seen in older eyes with thinner choroids. Histologic evaluation of these deposits revealed aggregations of material in the subretinal space between photoreceptors and retinal pigment epithelium. SDDs contain some proteins in common with soft drusen but differ in lipid composition. Many studies reported that SDDs are strong independent risk factors for late age-related macular degeneration. Geographic atrophy and type 3 neovascularization are particularly associated with SDD. Unlike conventional drusen, eyes with SDD show slow dark adaptation and poor contrast sensitivity. Outer retinal atrophy develops in eyes with regression of SDD, a newly recognized form of late age-related macular degeneration. Advances in imaging technology have enabled many insights into this condition, including associated photoreceptor, retinal pigment epithelium, and underlying choroidal changes.
Collapse
Affiliation(s)
- Richard F Spaide
- Vitreous Retina Macula Consultants of New York and LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, USA.
| | - Sotaro Ooto
- Vitreous Retina Macula Consultants of New York and LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, USA; Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Christine A Curcio
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabamas, USA
| |
Collapse
|
9
|
Sosa I, Grubesic A. How could analyzing the activity of two matrix metalloproteinases unveil the cause of sudden cardiac death. Int J Immunopathol Pharmacol 2016; 29:712-714. [PMID: 27271976 DOI: 10.1177/0394632016651878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/05/2016] [Indexed: 01/25/2023] Open
Abstract
Sudden cardiac death is natural, unexpected death, related to cardiovascular disease. Its postmortem elucidation is significant, as the family of the deceased aspires to prevent other sudden deaths. Irrespective of the proper etiological entity, the myocardial collagen matrix remodels, associated with the progression of cardiovascular diseases. It has become evident that many mediators such as humoral factors, transforming growth factor (TGF)-β1 among them, are involved in the remodeling process. Cardiac remodeling is the balance of regenerative and eliminatory processes that include enzymes involved in the degradation of extracellular matrix (ECM) components. Enzymes capable of degrading native fibrillar collagen are interstitial collagenases, specifically matrix metalloproteinases (MMP)-1 and MMP-8. Here, we suggest a technique of visualizing turnover of collagen in cardiac tissue.
Collapse
Affiliation(s)
- Ivan Sosa
- Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Aron Grubesic
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| |
Collapse
|
10
|
Abstract
PURPOSE To evaluate eyes with refractile drusen using clinical imaging and to identify candidate histologic correlates of refractile drusen. METHODS Refractile drusen were defined as drusenoid material containing small refractile spherules. Retrospective analysis of color, autofluorescence, and spectral domain optical coherence tomography images of eyes with refractile drusen was performed to characterize the morphology and topography of these lesions. Macular sections from donor eyes were processed with a von Kossa stain for calcium phosphate and viewed by light microscopy. Punches of retinal pigment epithelium-choroid from donors with geographic atrophy were prepared for transmission electron microscopy. RESULTS Fundus findings of 14 eyes of 10 patients with age-related macular degeneration (age, 82.9 ± 5.6 years) were evaluated. A generalized loss of autofluorescence signal over refractile drusen appeared to spread over a larger area than each druse, for drusen located centrally. By color fundus photography, refractile drusen showed corresponding depigmentation around drusen that were located in the center of the macula. Optical coherence tomography imaging of refractile drusen showed hyperreflective dots. In the histologic specimens, drusen contained many small spherules rich in calcium phosphate. Ultrastructural examination of the spherules showed complex assemblies consisting of concentric shells containing thin layers of calcium. CONCLUSION Refractile drusen appear to be a stage of drusen regression marked by loss of retinal pigment epithelium, thus contributing to the development of geographic atrophy. Calcium-containing spherules appear to account for the glistening appearance.
Collapse
|
11
|
Can Novel Treatment of Age-Related Macular Degeneration Be Developed by Better Understanding of Sorsby's Fundus Dystrophy. J Clin Med 2015; 4:874-83. [PMID: 26239453 PMCID: PMC4470204 DOI: 10.3390/jcm4050874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
Sorsby’s Fundus Dystrophy (SFD) is a rare autosomal dominant maculopathy that shares many clinical features with Age-Related Macular Degeneration (AMD). It is caused by a mutation in a single gene, TIMP-3, which accumulates in Bruch’s membrane (BM). BM thickening and TIMP-3 accumulation can also be found in AMD. From our understanding of the pathophysiology of SFD we hypothesize that BM thickening could be responsible for making the elastic layer vulnerable to invasion by choriocapillaris, thereby leading to choroidal neovascularization in some cases of AMD, whilst in others it could deprive the retinal pigment epithelium of its blood supply, thereby causing geographic atrophy.
Collapse
|
12
|
Quantock AJ, Winkler M, Parfitt GJ, Young RD, Brown DJ, Boote C, Jester JV. From nano to macro: studying the hierarchical structure of the corneal extracellular matrix. Exp Eye Res 2015; 133:81-99. [PMID: 25819457 PMCID: PMC4379421 DOI: 10.1016/j.exer.2014.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/22/2023]
Abstract
In this review, we discuss current methods for studying ocular extracellular matrix (ECM) assembly from the 'nano' to the 'macro' levels of hierarchical organization. Since collagen is the major structural protein in the eye, providing mechanical strength and controlling ocular shape, the methods presented focus on understanding the molecular assembly of collagen at the nanometre level using X-ray scattering through to the millimetre to centimetre level using non-linear optical (NLO) imaging of second harmonic generated (SHG) signals. Three-dimensional analysis of ECM structure is also discussed, including electron tomography, serial block face scanning electron microscopy (SBF-SEM) and digital image reconstruction. Techniques to detect non-collagenous structural components of the ECM are also presented, and these include immunoelectron microscopy and staining with cationic dyes. Together, these various approaches are providing new insights into the structural blueprint of the ocular ECM, and in particular that of the cornea, which impacts upon our current understanding of the control of corneal shape, pathogenic mechanisms underlying ectatic disorders of the cornea and the potential for corneal tissue engineering.
Collapse
Affiliation(s)
- Andrew J Quantock
- Structural Biophysics Group, Cardiff Centre for Vision Science, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Moritz Winkler
- Department of Ophthalmology and Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Geraint J Parfitt
- Department of Ophthalmology and Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Robert D Young
- Structural Biophysics Group, Cardiff Centre for Vision Science, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Donald J Brown
- Department of Ophthalmology and Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Craig Boote
- Structural Biophysics Group, Cardiff Centre for Vision Science, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - James V Jester
- Department of Ophthalmology and Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
13
|
Nita M, Michalska-Małecka K, Mazurek U, Kimsa M, Strzałka-Mrozik B, Grzybowski A, Romaniuk D. Influence of ranibizumab treatment on the extracellular matrix in patients with neovascular age-related macular degeneration. Med Sci Monit 2014; 20:875-83. [PMID: 24866589 PMCID: PMC4049949 DOI: 10.12659/msm.890031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/13/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND We know the influence of the intravitreal anti-vascular endothelial growth factor (VEGF) injections on the choroidal neovascularization in the course of exudative age-related macular degeneration (AMD). However, the influence of the ranibizumab therapy in question on the extracellular matrix (ECM) remains unknown. We aimed to estimate the influence of Lucentis intravitreal injections on the gene expression of structural components of the extracellular matrix in patients with neovascular AMD. MATERIAL AND METHODS Patients with subfoveal localization of neovascularization in AMD, which was clinically active and observed using optical coherence tomography, were treated with ranibizumab (0.5 mg/0.05 mL) in accordance with the PrONTO scheme. Total RNA was extracted from peripheral blood mononuclear cells, and an oligonucleotide microarray technique enabled comparison of the expression level of genes encoding collagens, elastin, and laminins in AMD patients compared to control subjects. RESULTS After 3 intravitreal injections of ranibizumab (Lucentis), COL1A1 and COL6A1 genes showed increased expression, whereas decreased expression mainly occurred for the following genes: COL4A5, COL11A1, OL4A6C, LAMB4, and LAMC2. CONCLUSIONS Anti-VEGF local therapy influences the gene expression of structural components of the ECM as measured from blood samples. The loading dose of ranibizumab for the retina changes the expression of collagen and laminin genes, but does not influence the expression of the elastin gene.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre “Dilmed”, Katowice, Poland
| | - Katarzyna Michalska-Małecka
- Department of Ophthalmology, Medical University of Silesia, Independent Public Clinical Hospital, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Sosnowiec, Poland
| | - Małgorzata Kimsa
- Department of Molecular Biology, Medical University of Silesia, Sosnowiec, Poland
| | | | - Andrzej Grzybowski
- Department of Ophthalmology, Poznań City Hospital, Poznań, Poland
- Medical Faculty, University of Warmia and Mazury, Olsztyn, Poland
| | - Dorota Romaniuk
- Department of Ophthalmology, Medical University of Silesia, Independent Public Clinical Hospital, Katowice, Poland
| |
Collapse
|
14
|
Garland DL, Fernandez-Godino R, Kaur I, Speicher KD, Harnly JM, Lambris JD, Speicher DW, Pierce EA. Mouse genetics and proteomic analyses demonstrate a critical role for complement in a model of DHRD/ML, an inherited macular degeneration. Hum Mol Genet 2013; 23:52-68. [PMID: 23943789 DOI: 10.1093/hmg/ddt395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macular degenerations, inherited and age related, are important causes of vision loss. Human genetic studies have suggested perturbation of the complement system is important in the pathogenesis of age-related macular degeneration. The mechanisms underlying the involvement of the complement system are not understood, although complement and inflammation have been implicated in drusen formation. Drusen are an early clinical hallmark of inherited and age-related forms of macular degeneration. We studied one of the earliest stages of macular degeneration which precedes and leads to the formation of drusen, i.e. the formation of basal deposits. The studies were done using a mouse model of the inherited macular dystrophy Doyne Honeycomb Retinal Dystrophy/Malattia Leventinese (DHRD/ML) which is caused by a p.Arg345Trp mutation in EFEMP1. The hallmark of DHRD/ML is the formation of drusen at an early age, and gene targeted Efemp1(R345W/R345W) mice develop extensive basal deposits. Proteomic analyses of Bruch's membrane/choroid and Bruch's membrane in the Efemp1(R345W/R345W) mice indicate that the basal deposits comprise normal extracellular matrix (ECM) components present in abnormal amounts. The proteomic analyses also identified significant changes in proteins with immune-related function, including complement components, in the diseased tissue samples. Genetic ablation of the complement response via generation of Efemp1(R345W/R345W):C3(-/-) double-mutant mice inhibited the formation of basal deposits. The results demonstrate a critical role for the complement system in basal deposit formation, and suggest that complement-mediated recognition of abnormal ECM may participate in basal deposit formation in DHRD/ML and perhaps other macular degenerations.
Collapse
|
15
|
Wavre-Shapton ST, Tolmachova T, da Silva ML, Futter CE, Seabra MC. Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium. PLoS One 2013; 8:e57769. [PMID: 23460904 PMCID: PMC3584022 DOI: 10.1371/journal.pone.0057769] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/25/2013] [Indexed: 01/25/2023] Open
Abstract
The retinal pigment epithelium (RPE) is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM) is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1). REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (ChmFlox, Tyr-Cre+). Transmission electron microscopy (TEM) was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch’s membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5–6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the ChmFlox, Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD) suggest that membrane traffic defects may contribute to the pathogenesis of AMD.
Collapse
Affiliation(s)
- Silène T. Wavre-Shapton
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Tanya Tolmachova
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mafalda Lopes da Silva
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Clare E. Futter
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- * E-mail: (CEF); (MCS)
| | - Miguel C. Seabra
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (CEF); (MCS)
| |
Collapse
|
16
|
|
17
|
Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res 2013; 32:22-47. [DOI: 10.1016/j.preteyeres.2012.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 02/08/2023]
|
18
|
|
19
|
Kritzenberger M, Junglas B, Framme C, Helbig H, Gabel VP, Fuchshofer R, Tamm ER, Hillenkamp J. Different collagen types define two types of idiopathic epiretinal membranes. Histopathology 2011; 58:953-65. [PMID: 21480957 DOI: 10.1111/j.1365-2559.2011.03820.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIMS To identify differences in extracellular matrix contents between idiopathic epiretinal membranes (IEM) of cellophane macular reflex (CMRM) or preretinal macular fibrosis (PMFM) type. METHODS AND RESULTS Idiopathic epiretinal membranes were analysed by light and quantitative transmission electron microscopy, immunohistochemistry and Western blotting. Substantial differences between CMRM and PMFM were observed regarding the nature of extracellular fibrils. In CMRM the fibrils were thin, with diameters between 6 and 15 nm. Between the fibrils, aggregates of long-spacing collagen were observed. In PMFM the diameters of fibrils measured either 18-26 or 36-56 nm. Using immunogold electron microscopy, 6-15 nm fibrils in CMRM were labelled for collagen type VI, while the fibrils in PMFM remained unstained. Using Western blotting and immunohistochemistry, a strong signal for collagen type VI was observed in all CMRM, while immunoreactivity was weak or absent in PMFM. In contrast, PMFM showed immunoreactivity for collagen types I and II, which was weak or absent in CMRM. Both types of membranes showed immunoreactivity for collagen types III and IV, laminin and fibronectin with similar intensity. CONCLUSION The presence of high amounts of collagen type VI in CMRM and the relative absence of collagen types I and II is the major structural difference to PMFM.
Collapse
Affiliation(s)
- Michaela Kritzenberger
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Knupp C, Pinali C, Lewis PN, Parfitt GJ, Young RD, Meek KM, Quantock AJ. The architecture of the cornea and structural basis of its transparency. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 78:25-49. [PMID: 20663483 DOI: 10.1016/s1876-1623(08)78002-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cornea is the transparent connective tissue window at the front of the eye. In the extracellular matrix of the corneal stroma, hybrid type I/V collagen fibrils are remarkably uniform in diameter at approximately 30 nm and are regularly arranged into a pseudolattice. Fibrils are believed to be kept at defined distances by the influence of proteoglycans. Light entering the cornea is scattered by the collagen fibrils, but their spatial distribution is such that the scattered light interferes destructively in all directions except from the forward direction. In this way, light travels forward through the cornea to reach the retina. In this chapter, we will review the macromolecular components of the corneal stroma, the way they are organized into a stacked lamellar array, and how this organization guarantees corneal transparency.
Collapse
Affiliation(s)
- Carlo Knupp
- Structural Biophysics Group, School of Optometry & Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Knupp C, Pinali C, Munro PM, Gruber HE, Sherratt MJ, Baldock C, Squire JM. Reprint of "Structural correlation between collagen VI microfibrils and collagen VI banded aggregates" [J. Struct. Biol. 154 (2006) 312-326]. J Struct Biol 2006; 155:379-93. [PMID: 16934714 DOI: 10.1016/s1047-8477(06)00256-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/20/2006] [Indexed: 11/24/2022]
Abstract
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.
Collapse
Affiliation(s)
- Carlo Knupp
- Structural Biophysics Group, School of Optometry and Vision Sciences, Redwood Building, Cardiff University, Cardiff CF10 3NB, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Knupp C, Pinali C, Munro PM, Gruber HE, Sherratt MJ, Baldock C, Squire JM. Structural correlation between collagen VI microfibrils and collagen VI banded aggregates. J Struct Biol 2006; 154:312-26. [PMID: 16713302 DOI: 10.1016/j.jsb.2006.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/20/2006] [Indexed: 01/22/2023]
Abstract
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.
Collapse
Affiliation(s)
- Carlo Knupp
- Structural Biophysics Group, School of Optometry and Vision Sciences, Redwood Building, Cardiff University, Cardiff CF10 3NB, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Different collagen types can vary considerably in length, molecular weight, chemical composition, and the way they interact with each other to form molecular aggregates. Collagen Types IV, VI, VIII, X, and dogfish egg case collagen make linear and lateral associations to form open networks rather than fibers. The roles played by these network-forming collagens are diverse: they can act as support and anchorage for cells and tissues, serve as molecular filters, and even provide protective permeable barriers for developing embryos. Their functional properties are intimately linked to their molecular organization. This Chapter reviews what is known about the molecular structure of this group of collagens, describes the ways the molecules interact to form networks, and-despite the large variations in molecular size-identifies common aggregation themes.
Collapse
Affiliation(s)
- Carlo Knupp
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NX, United Kingdom
| | | |
Collapse
|
24
|
Pulido JS, Sanders D, Klingel R. Rheopheresis for age-related macular degeneration: clinical results and putative mechanism of action. CANADIAN JOURNAL OF OPHTHALMOLOGY 2005; 40:332-40. [PMID: 15947803 DOI: 10.1016/s0008-4182(05)80076-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Rheopheresis is being evaluated in a clinical trial. The rationale and available results are presented. METHODS We reviewed the literature about the pathophysiology of age-related macular degeneration (AMD) that might support the use of rheopheresis. In addition, we reviewed the previously published results of the use of rheopheresis for AMD. RESULTS There appears to be a diffusion barrier caused by accumulation of cross-linked proteins known as advanced macular oxidation products (AMOPS) in AMD. Rheopheresis allows removal of uncross-linked proteins and facilitates antioxidant entry into Bruch's membrane, preventing further accumulation of AMOPS. The Multicenter Investigation of Rheopheresis for AMD (MIRA-1), an ongoing double-masked randomized trial, should determine the efficacy of rheopheresis in preventing the progression of AMD. The interim results, from an analysis of visual acuity data for 43 patients, are encouraging, confirming the potential of rheopheresis as a therapeutic option for dry AMD. The benefit was evident immediately after treatment and remained essentially stable throughout the 12-month period of evaluation. Eyes with late-stage, high-risk, dry AMD appeared to be at significant risk for substantial vision loss over the 12 months if not treated. Subgroup analysis demonstrated that the timing of rheopheresis in the course of a patient's disease may have a pronounced effect on outcome. INTERPRETATION There appears to be a rationale for the use of rheopheresis in AMD. Further results of the clinical trial are awaited.
Collapse
Affiliation(s)
- Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, and Department of Ophthalmology, University of Illinois, College of Medicine, Chicago, USA.
| | | | | |
Collapse
|
25
|
Pulido J, Sanders D, Winters JL, Klingel R. Clinical outcomes and mechanism of action for rheopheresis treatment of age-related macular degeneration (AMD). J Clin Apher 2005; 20:185-94. [PMID: 15892078 DOI: 10.1002/jca.20047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The primary goals are to provide a comprehensive explanation of the potential role of therapeutic apheresis in the treatment of Age-Related Macular Degeneration (AMD). Initial clinical results with this technique and a summary of current literature that addresses the mechanism of action for the Rheopheresis approach are presented. Rheopheresis has been found to be a safe and effective application of double filtration plasmapheresis (DFPP) for extracorporeal hemorheotherapy. In this report, it is proposed that Rheopheresis results in an immediate decrease in the proportion of high molecular weight proteins that could combine with the TIMP-3 fibulin complex allowing for the barely functioning retinal pigment epithelial (RPE) cells to function better and diminish the release of vascular endothelial growth factor (VEGF). Interim results from the randomized, double-masked MIRA-1 clinical trial include (1) improved vision restoration; 28.0% of Treated Primary Eyes increased by > or = 2 lines of best corrected visual acuity (BCVA) compared to 18.2% of Placebo Eyes; (2) a decline in progressive vision loss; 0.0% of treated eyes progressing to worse than 20/200 vision over the 12-month study compared to 18.2% of Placebo Eyes; (3) 57.9% of Treatment Eyes obtained improvement in their BCVA to 20/40 or better (driver's license qualification), compared to only 14.3% of Placebo Eyes 12-month post-treatment. Rheopheresis treatment shows strong promise as a viable clinical option for patients suffering from the dry form of AMD in terms of minimizing vision loss, vision restoration, and overall quality of life factors. Expanded clinical outcomes from the ongoing MIRA-1 clinical study will be valuable in the assessment of this new clinical tool for ophthalmic applications.
Collapse
Affiliation(s)
- Jose Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
26
|
Knupp C, Amin SZ, Munro PMG, Luthert PJ, Squire JM. Collagen VI assemblies in age-related macular degeneration. J Struct Biol 2002; 139:181-9. [PMID: 12457848 DOI: 10.1016/s1047-8477(02)00534-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is the most common cause of incurable blindness in the developed world. Little is known about the pathogenesis of this condition, but deposits in Bruch's membrane and immediately beneath the retinal pigment epithelium are frequent findings associated with this disease. Within these deposits, molecular assemblies with an approximately 100-nm axial periodicity are seen. Two types of assembly are present: one exhibiting transverse double bands of protein density that are 30nm apart and repeat axially every approximately 100nm; the other with transverse double bands of protein density, 30nm apart and repeating axially every approximately 50nm. In this second type of assembly, more prominent pairs of bands alternate with less prominent ones. By comparison with analogous aggregates found in the vitreous of a patient with a full-thickness macular hole, collagen VI was singled out as the most probable protein constituent of the AMD aggregates. Possible models for the aggregation patterns of these assemblies are discussed in terms of collagen VI dimers and tetramers. Understanding the structure and chemical composition of the assemblies within the AMD basal deposits may prove of great help in understanding the pathophysiology of AMD itself.
Collapse
Affiliation(s)
- Carlo Knupp
- Biological Structure and Function Section, Biomedical Sciences Division, Imperial College Faculty of Medicine, London, UK.
| | | | | | | | | |
Collapse
|