1
|
Huang M, Yin J, Dai F, Cao S, Duan R, Huang W, Zhang Y. Influences of continuous and pulse atrazine exposure on intestinal flora and metabolites of Pelophylax nigromaculatus tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165757. [PMID: 37495155 DOI: 10.1016/j.scitotenv.2023.165757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Atrazine, a widely used herbicide, has adverse effects on the growth and metabolism of amphibians. Due to the cyclical application use of the pesticide atrazine in agricultural production, atrazine concentrations in water occur in the form of pulses. However, knowledge of the effects of atrazine pulse exposure on the gut microbiota and metabolism of amphibians is limited. In this study, Pelophylax nigromaculatus tadpoles (Gs 26) were exposed to continuous and pulse atrazine (100 μg/L) for 60 days. The results showed that continuous exposure and pulse exposure had different effects on the diversity of gut microbiota. At the phyla level, pulse exposure significantly increased the relative abundance of Actinobacteria, and decreased the relative abundance of Firmicutes compared to continuous exposure. At the genus level, continuous and pulse exposure to atrazine significantly altered the relative abundance of Acetobacterium, Microbacterium, Bacteroides, Eulopiscium and Leuconostoc. Compared to continuous exposure, pulse exposure significantly increased the relative abundance of Microbacterium, and significantly decreased the relative abundance of Acetobacterium and Eplopiscium. In terms of metabolism, pulse exposure significantly increased the relative abundance of creatine, guanine, and inosine and significantly decreased the relative abundance of 3-hydroxysebacic acid, ganoderic acid F, hypoxanthine, and withaperuvin H compared to continuous exposure. Continuous and pulse exposure to atrazine significantly altered the relative abundance of metabolites of the pymidine metabolism, purine metabolism, beta-alanine metabolism and other pathways in the gut of P. nigromaculatus tadpoles. In addition, changes in most metabolites had a significant correlation with changes in gut microorganisms. In conclusion, our study confirmed that pulse exposure to atrazine has a greater effect on the composition of the gut microflora and the metabolism of P. nigromaculatus tadpoles than continuous exposure.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Fugao Dai
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Songle Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| | - Wentao Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yuhao Zhang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| |
Collapse
|
2
|
Tofovic SP. Purine Nucleoside Phosphorylase: A New Pharmacological Target in Sickle Cell Disease and Hemolytic Vasculopathy. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Doyle C, Cristofaro V, Sullivan MP, Adam RM. Inosine - a Multifunctional Treatment for Complications of Neurologic Injury. Cell Physiol Biochem 2018; 49:2293-2303. [PMID: 30261493 DOI: 10.1159/000493831] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
Spinal cord injury (SCI) caused by trauma or disease leads to motor and sensory abnormalities that depend on the level, severity and duration of the lesion. The most obvious consequence of SCI is paralysis affecting lower and upper limbs. SCI also leads to loss of bladder and bowel control, both of which have a deleterious, life-long impact on the social, psychological, functional, medical and economic well being of affected individuals. Currently, there is neither a cure for SCI nor is there adequate management of its consequences. Although medications provide symptomatic relief for the complications of SCI including muscle spasms, lower urinary tract dysfunction and hyperreflexic bowel, strategies for repair of spinal injuries and recovery of normal limb and organ function are still to be realized. In this review, we discuss experimental evidence supporting the use of the naturally occurring purine nucleoside inosine to improve the devastating sequelae of SCI. Evidence suggests inosine is a safe, novel agent with multifunctional properties that is effective in treating complications of SCI and other neuropathies.
Collapse
Affiliation(s)
- Claire Doyle
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian Cristofaro
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Division of Urology, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Maryrose P Sullivan
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Division of Urology, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Bilan VP, Schneider F, Novelli EM, Kelley EE, Shiva S, Gladwin MT, Jackson EK, Tofovic SP. Experimental intravascular hemolysis induces hemodynamic and pathological pulmonary hypertension: association with accelerated purine metabolism. Pulm Circ 2018; 8:2045894018791557. [PMID: 30003836 PMCID: PMC6080084 DOI: 10.1177/2045894018791557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Pulmonary hypertension (PH) is emerging as a serious complication associated with
hemolytic disorders, and plexiform lesions (PXL) have been reported in patients
with sickle cell disease (SCD). We hypothesized that repetitive hemolysis per se
induces PH and angioproliferative vasculopathy and evaluated a new mechanism for
hemolysis-associated PH (HA-PH) that involves the release of adenosine deaminase
(ADA) and purine nucleoside phosphorylase (PNP) from erythrocytes. In healthy
rats, repetitive administration of hemolyzed autologous blood (HAB) for 10 days
produced reversible pulmonary parenchymal injury and vascular remodeling and PH.
Moreover, the combination of a single dose of Sugen-5416 (SU, 200 mg/kg) and
10-day HAB treatment resulted in severe and progressive obliterative PH and
formation of PXL (Day 26, right ventricular peak systolic pressure (mmHg):
26.1 ± 1.1, 41.5 ± 0.5 and 85.1 ± 5.9 in untreated, HAB treated and SU+HAB
treated rats, respectively). In rats, repetitive administration of HAB increased
plasma ADA activity and reduced urinary adenosine levels. Similarly, SCD
patients had higher plasma ADA and PNP activity and accelerated adenosine,
inosine, and guanosine metabolism than healthy controls. Our study provides
evidence that hemolysis per se leads to the development of angioproliferative
PH. We also report the development of a rat model of HA-PH that closely mimics
pulmonary vasculopathy seen in patients with HA-PH. Finally, this study suggests
that in hemolytic diseases released ADA and PNP may increase the risk of PH,
likely by abolishing the vasoprotective effects of adenosine, inosine and
guanosine. Further characterization of this new rat model of hemolysis-induced
angioproliferative PH and additional studies of the role of purines metabolism
in HA-PH are warranted.
Collapse
Affiliation(s)
- Victor P Bilan
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frank Schneider
- 4 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Enrico M Novelli
- 2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric E Kelley
- 5 Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Sruti Shiva
- 2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,6 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark T Gladwin
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin K Jackson
- 6 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stevan P Tofovic
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Otis JP, Pike AC, Torrealba JR, Carey HV. Hibernation reduces cellular damage caused by warm hepatic ischemia-reperfusion in ground squirrels. J Comp Physiol B 2017; 187:639-648. [PMID: 28144740 DOI: 10.1007/s00360-017-1056-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022]
Abstract
During the hibernation season, livers from 13-lined ground squirrels (Ictidomys tridecemlineatus) are resistant to damage induced by ex vivo, cold ischemia-warm reperfusion (IR) compared with livers from summer squirrels or rats. Here, we tested the hypothesis that hibernation also reduces damage to ground squirrel livers in an in vivo, warm IR model, which more closely resembles complications associated with traumatic injury or surgical interventions. We also examined whether protection is mediated by two metabolites, inosine and biliverdin, that are elevated in ground squirrel liver during interbout arousals. Active squirrels in spring and hibernators during natural arousals to euthermia (body temperature 37 °C) were subject to liver IR or sham treatments. A subset of hibernating squirrels was pre-treated with compounds that inhibit inosine synthesis/signaling or biliverdin production. This model of liver IR successfully induced hepatocellular damage as indicated by increased plasma liver enzymes (ALT, AST) and hepatocyte apoptosis index compared to sham in both seasons, with greater elevations in spring squirrels. In addition, liver congestion increased after IR to a similar degree in spring and hibernating groups. Microvesicular steatosis was not affected by IR within the same season but was greater in sham squirrels in both seasons. Plasma IL-6 increased ~twofold in hibernators pre-treated with a biliverdin synthesis inhibitor (SnPP) prior to IR, but was not altered by IR in untreated squirrels. The results show that hibernation provides protection to ground squirrel livers subject to warm IR. Further research is needed to clarify mechanisms responsible for endogenous protection of liver tissue under ischemic stress.
Collapse
Affiliation(s)
- Jessica P Otis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Amanda C Pike
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Jose R Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Oral administration of inosine promotes recovery after experimental spinal cord injury in rat. Neurol Sci 2014; 35:1785-91. [DOI: 10.1007/s10072-014-1840-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
|
7
|
Xie LB, Zeng DY, Wang XD, Lin T, Li YP, Lu YP. Preconditioning With Gabexate Is Superior to Inosine for Ameliorating Acute Renal Ischemia-Reperfusion Injury in Rats. Transplant Proc 2014; 46:40-5. [DOI: 10.1016/j.transproceed.2013.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/29/2013] [Accepted: 10/02/2013] [Indexed: 11/16/2022]
|
8
|
Lipopolysaccharide-induced bacterial translocation is intestine site-specific and associates with intestinal mucosal inflammation. Inflammation 2013; 35:1880-8. [PMID: 22821406 DOI: 10.1007/s10753-012-9510-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study aimed to determine whether any specific intestinal site or intestinal mucosal inflammation is highly correlated with bacterial translocation (BT). Enterostomy tubes were surgically placed in adult male Sprague-Dawley rats 5 days before induction of experimental model. After surgery, sterile water containing kanamycin (25 mg/L) was injected into each intestinal segment through the tubes for 3 days. Green fluorescent protein (GFP)-transfected Escherichia coli (n = 30 for lipopolysaccharide (LPS) group, and n = 30 for control group) or 0.9 % saline (n = 30 for blank group) were injected into each intestinal segment through the tubes for two consecutive days. Rats were then subjected to LPS-induced endotoxemia; lactulose and mannitol were injected into each intestinal segment through the tubes simultaneously. At 6 h after LPS injection, BT to distant organs and integrity of tight junctions (TJ) were examined by fluorescence and electron microscopy, respectively. The urinary excretion ratio of lactulose/mannitol (L/M) and intestinal mucosal cytokine levels were assessed. We found that the intestinal permeability, reflected by translocation rates of GFP-labeled E. coli, the levels of open TJ, the excretion ratio of L/M, and the inflammatory cytokine levels were higher in the LPS group than in the control and blank groups. The endotoxemia ileum showed the highest levels of both intestinal permeability and inflammatory cytokine, while the colon showed the lowest. The present study of endotoxemia rats suggests that LPS increases gut paracellular permeability and induces BT. The ileum is the site of greatest BT risk, while the colon is the lowest, and the difference in risk between these sites is correlated with intestinal mucosal inflammation.
Collapse
|
9
|
Li P, Ogino K, Hoshikawa Y, Morisaki H, Toyama K, Morisaki T, Morikawa K, Ninomiya H, Yoshida A, Hashimoto K, Shirayoshi Y, Hisatome I. AMP deaminase 3 plays a critical role in remote reperfusion lung injury. Biochem Biophys Res Commun 2013; 434:131-6. [PMID: 23542464 DOI: 10.1016/j.bbrc.2013.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 11/26/2022]
Abstract
Remote reperfusion lung injury following skeletal muscle ischemia and reperfusion accounts for high morbidity and mortality. AMP deaminase (AMPD), a key enzyme for nucleotide cycle, has been implicated in the regulation of this phenomenon. However, the function of Ampd2 and Ampd3 subtype has not been elucidated in remote reperfusion rodent lung injury. We utilized AMPD3 and AMPD2-deficient mice. The two types of AMPD-deficient mice and wild-type (WT) littermates were subjected to ischemia-reperfusion injury. After 3h bilateral hind-limb ischemia and reperfusion, AMPD3 mRNA, AMPD activity and inosine monophosphate (IMP) increased significantly in WT and AMPD2-deficient mice lungs, while they did not show significant alterations in AMPD3-deficient mice lungs. Genetic inactivation of Ampd3 resulted in markedly accelerated myeloperoxidase (MPO) activity along with exaggerated neutrophils infiltration and hemorrhage in the lungs compared to WT and AMPD2-deficient mice, furthermore, IMP treatment significantly attenuated MPO activity and neutrophils infiltration in WT and the two types of AMPD-deficient mice lungs after 3h reperfusion. These findings demonstrate for the first time in AMP-deficient mice models that AMPD3 plays a critical role in remote reperfusion lung injury via generation of IMP and validate the potential to use IMP into the clinical arena to attenuate remote ischemia-reperfusion lung injury.
Collapse
Affiliation(s)
- Peili Li
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bifidobacteria may be beneficial to intestinal microbiota and reduction of bacterial translocation in mice following ischaemia and reperfusion injury. Br J Nutr 2012; 109:1990-8. [PMID: 23122253 DOI: 10.1017/s0007114512004308] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of the present study was to determine the effect of peroral bifidobacteria on the intestinal microbiota, barrier function and bacterial translocation (BT) in a mouse model of ischaemia and reperfusion (I/R) injury. A total of twenty-four male BALB/c mice were randomly allocated into three groups: (1) sham-operated, (2) I/R and (3) I/R injury and bifidobacteria pretreatment (109 colony-forming units/d). Bifidobacteria were administered daily intragastrically for 2 weeks before induction of I/R. Subsequently, samples of caecal content, intestinal mucosa, ileal segments, blood, mesenteric lymph nodes (MLN) and distant organs (liver, spleen and kidney) were prepared for examination. In the I/R model, barrier dysfunction (caecal microbiota dysbiosis, disruption of tight junction (TJ), increased epithelial cell apoptosis, disruption of mucosa and multiple erosions) in the intestine was observed, associated with increased BT to extraintestinal sites. The ratio of BT to MLN and distant organs in mice exposed to I/R injury was 62·5 %, which was significantly higher than the sham-operated group. However, pretreatment of animals with bifidobacteria prevented I/R-induced BT, reduced pro-inflammatory cytokine release, the levels of endotoxin, intestinal epithelial cell apoptosis, disruption of TJ and increased the concentration of SCFA, resulting in recovered microbiota and mucosal integrity. Bifidobacteria may be beneficial in reducing BT in I/R injury of mice. Therefore, peroral administration of bifidobacteria is a potential strategy to prevent I/R-induced BT and intestinal barrier dysfunction.
Collapse
|
11
|
Yurdakan G, Tekin IO, Comert M, Acikgoz S, Sipahi EY. The presence of oxidized low-density lipoprotein and inducible nitric oxide synthase expression in renal damage after intestinal ischemia reperfusion. Kaohsiung J Med Sci 2011; 28:16-22. [PMID: 22226057 DOI: 10.1016/j.kjms.2011.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/21/2011] [Indexed: 12/25/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) is a complex phenomenon that causes destruction of both local and remote tissues. The objective of this study was to investigate the possible participation of oxidized low-density lipoproteins (oxLDLs) and inducible nitric oxide synthase (iNOS) expression in renal tissue damage after intestinal I/R. The superior mesenteric artery was blocked for 30 minutes, followed by 24 hours of reperfusion. At the end of the reperfusion period, renal tissues were removed; the presence of oxLDL, superoxide dismutase enzyme activity, malondialdehyde levels, and iNOS expression were evaluated. I/R resulted in positive oxLDL staining in renal tissue. Compared with control rats, tissue from the I/R group showed significantly higher malondialdehyde levels and lower superoxide dismutase enzyme activity. Strong and diffuse iNOS expression was present in the I/R group. Our findings support the hypothesis that I/R of intestinal tissue results in oxidative and nitrosative stress and enhances lipid peroxidation in the end organ. These data show that oxLDL accumulates in rat renal tissue after intestinal I/R. Antioxidant strategies may provide organ protection in patients with reperfusion injury, at least by affecting interactions with free radicals, nitric oxide, and oxLDL. This study demonstrates for the first time that oxLDL may play a role in renal tissue damage after intestinal I/R. Antioxidant strategies may be beneficial for protection from reperfusion injury.
Collapse
Affiliation(s)
- Gamze Yurdakan
- Department of Pathology, Faculty of Medicine, Zonguldak Karaelmas University, Zonguldak, Turkey
| | | | | | | | | |
Collapse
|
12
|
Manning E, Pham S, Li S, Vazquez-Padron RI, Mathew J, Ruiz P, Salgar SK. Interleukin-10 delivery via mesenchymal stem cells: a novel gene therapy approach to prevent lung ischemia-reperfusion injury. Hum Gene Ther 2010; 21:713-27. [PMID: 20102275 DOI: 10.1089/hum.2009.147] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ischemia-reperfusion (IR) injury is an important cause of primary graft failure in lung transplantation. In this study, viral interleukin-10 (vIL-10)-engineered mesenchymal stem cells (MSCs) were tested for their ability to prevent lung IR injury. Bone marrow-derived MSCs were transduced with rvIL-10-retrovirus. After 120 min of warm left lung ischemia, rats received approximately 15 x 10(6) vIL-10-engineered MSCs (MSC-vIL-10), empty vector-engineered MSCs (MSC-vec), or saline intravenously. Mean blood oxygenation (PaO(2)/FiO(2) ratio, mmHg) was measured at 4 hr, 24 hr, 72 hr, and 7 days. As early as 4 hr post-IR injury with MSC-vIL-10 treatment, blood oxygenation was significantly (p < 0.05) improved (319 +/- 94; n = 7) compared with untreated (saline) controls (63 +/- 19; n = 6). At 24 hr post-IR injury, in the MSC-vIL-10-treated group there was a further increase in blood oxygenation (353 +/- 105; n = 10) compared with the MSC-vec group (138 +/- 86; n = 9) and saline group (87 +/- 39; n = 10). By 72 hr, oxygenation reached normal (475 +/- 55; n = 9) in the MSC-vIL-10-treated group but not in the saline-treated and MSC-vec-treated groups. At 4 hr after IR injury, lungs with MSC-vIL10 treatment had a lower (p < 0.05) injury score (0.9 +/- 0.4) compared with lungs of the untreated (saline) group (2.5 +/- 1.4) or MSC-vec-treated group (2 +/- 0.4). Lung microvascular permeability and wet-to-dry weight ratios were markedly lower in the MSC-vIL10 group compared with untreated (saline) controls. ISOL (in situ oligonucleotide ligation for DNA fragmentation detection) and caspase-3 staining demonstrated significantly (p < 0.05) fewer apoptotic cells in MSC-vIL10-treated lungs. Animals that received MSC-vIL10 therapy had fewer (p < 0.05) CD4(+) and CD8(+) T cells in bronchoalveolar lavage fluid compared with untreated control animals. A therapeutic strategy using vIL-10-engineered MSCs to prevent IR injury in lung transplantation seems promising.
Collapse
Affiliation(s)
- Eddie Manning
- Interdisciplinary Stem Cell Institute, Department of Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Santandreu FM, Oliver J, Roca P. Improvement of mitochondrial energy and oxidative balance during intestinal differentiation. Mitochondrion 2010; 11:89-96. [PMID: 20696280 DOI: 10.1016/j.mito.2010.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/05/2010] [Accepted: 07/23/2010] [Indexed: 02/01/2023]
Abstract
Mitochondria vary in their number and function, but how these variations are associated with intestinal cell differentiation remains elusive. The object of this study was to investigate the underlying mechanisms of inosine-mediated intestinal cell maturation, analysing the effects of this nutrient on metabolic functionality, mitochondrial biogenesis and mitochondrial function in human colonic cells. The role of oxidative stress in the control of intestinal cell growth was also explored. We report the novel finding that inosine-mediated differentiation improves aerobic metabolism through an increase in mitochondrial bioenergetics and biogenesis in colonic cells, which probably confers them greater resistance to cytotoxic oxidative stress.
Collapse
Affiliation(s)
- Francisca M Santandreu
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | | | | |
Collapse
|
14
|
McCarty MF, Barroso-Aranda J, Contreras F. High-dose folate and dietary purines promote scavenging of peroxynitrite-derived radicals – Clinical potential in inflammatory disorders. Med Hypotheses 2009; 73:824-34. [DOI: 10.1016/j.mehy.2008.09.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 01/02/2023]
|
15
|
Zhang W, Zhu W, Zhang J, Li N, Li J. Protective effects of glucagon-like peptide 2 on intestinal ischemia-reperfusion rats. Microsurgery 2008; 28:285-90. [DOI: 10.1002/micr.20491] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Abstract
Several studies have reported differing data on the effect of exogenous nucleosides and nucleotides on the proliferation and differentiation in various intestinal cell lines and explants. To study whether exogenous nucleosides modulate intestinal cell differentiation, IEC-6 cells were differentiated in the presence or absence of a nucleoside mixture (cytidine, uridine, guanosine and inosine, 30 microM each), and the concentrations of nucleoside derivatives were determined by HPLC. Cell differentiation was assessed by electron microscopy, alkaline phosphatase activity and Rnd3 gene expression. The present results showed that uridine, guanosine and inosine were cleared from culture media (up to 32, 63 and 100 % in proliferating cells, and 31, 80 and 94 % in differentiated cells, respectively) whereas cytidine concentrations increased. Differentiation of IEC-6 cells was associated with a significant increase in intracellular nucleotide concentrations. Clearance of nucleosides correlated with a significant increase in the intracellular nucleotide pool in proliferating and differentiated IEC-6 cells. Intracellular guanosine nucleotides increased 2.5- and 5-fold in nucleoside-supplemented proliferating and differentiated cells, respectively. At 24 h, nucleoside-supplemented differentiated IEC-6 cells had significantly higher energy charge and GTP levels than non-supplemented ones. These modifications paralleled changes in cell differentiation as indicated by increased alkaline phosphatase activity, prolonged microvilli formation and accelerated down-regulation of Rnd3 gene expression. The present findings suggest that exogenous nucleosides were selectively taken up by IEC-6 cells, increased the intracellular nucleotide pool, GTP and energy charge, and favoured cell morphological and functional changes during differentiation.
Collapse
|
17
|
Teke Z, Kabay B, Aytekin FO, Yenisey C, Demirkan NC, Sacar M, Erdem E, Ozden A. Pyrrolidine dithiocarbamate prevents 60 minutes of warm mesenteric ischemia/reperfusion injury in rats. Am J Surg 2007; 194:255-62. [PMID: 17618816 DOI: 10.1016/j.amjsurg.2006.06.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pyrrolidine dithiocarbamate (PDTC) is a low-molecular-weight thiol antioxidant and potent inhibitor of nuclear factor-kappaB (NF-kappaB) activation. It has been shown to attenuate harmful effects of ischemia/reperfusion (I/R) injury in many organs. In recent animal studies, destructive effects of reperfusion injury has been demonstrated. In this study, we aimed to investigate whether PDTC prevents harmful effects of superior mesenteric I/R injury in rats. METHODS Wistar-albino rats were randomly allocated into the following 4 groups: (1) sham-operated group--these animals underwent laparotomy without I/R injury (group I, n = 12); (2) sham+PDTC group--identical to sham-operated rats except for the administration of PDTC (100 mg/kg intravenous bolus) 30 minutes prior to the commencement of the experimental period (group II, n = 12); (3) I/R group--these animals underwent laparotomy and 60 minutes of ischemia followed by 120 minutes of reperfusion (group III, n = 12); (4) PDTC-treated group (100 mg/kg, intravenously, before the I/R, group IV, n = 12). All animals were killed, and intestinal tissue samples were obtained for investigation of intestinal mucosal injury, myeloperoxidase (MPO) activity, malondialdehyde (MDA) levels, glutathione (GSH) levels, and intestinal edema. RESULTS There was a statistically significant decrease in GSH levels, along with an increase in intestinal mucosal injury scores, MPO activity, MDA levels, and intestinal tissue wet-to-dry weight ratios in group III when compared to groups I, II, and IV (P < .05). However, PDTC treatment led to a statistically significant increase in GSH levels, along with a decrease in intestinal mucosal injury scores, MPO activity, MDA levels, and intestinal tissue wet-to-dry weight ratios in group IV (P < .05). CONCLUSIONS This study showed that PDTC treatment significantly prevented the reperfusion injury caused by superior mesenteric I/R. Further clinical studies are needed to clarify whether PDTC may be a useful therapeutic agent to use in particular operations where the reperfusion injury occurs.
Collapse
Affiliation(s)
- Zafer Teke
- Faculty of Medicine, Department of General Surgery, Pamukkale University, 20070 Denizli, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Charalambous BM, Stephens RCM, Feavers IM, Montgomery HE. ROLE OF BACTERIAL ENDOTOXIN IN CHRONIC HEART FAILURE. Shock 2007; 28:15-23. [PMID: 17510602 DOI: 10.1097/shk.0b013e318033ebc5] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proinflammatory cytokines are now thought to play a key role in the pathophysiology of chronic heart failure, driving both symptomatic presentation and disease progression. We propose that this proinflammatory state, in turn, may be sustained through a chronic release of enterically derived bacterial endotoxin. Human trials have indicated that bacterial decontamination of the gut with concomitant decrease in lipopolysaccharide (LPS) has a positive outcome on heart disease patients. Antiendotoxin antibodies may thus represent therapeutic agents in this setting. Previously, antiendotoxin antibodies were targeted to the inner hydrophobic lipid A moiety of endotoxin in an attempt to neutralize its toxicity. These antibodies failed because they lacked specificity and bound to LPS weakly. In contrast, our studies on antiendotoxin antibodies have revealed that antibodies targeted to the hydrophilic oligosaccharides of the endotoxin have the potential to bind specifically with high affinity. Development of immunotherapeutics that can reduce systemic LPS or other agents, such as bactericidal/permeability-increasing protein that can neutralize LPS and limit inflammation safely, will enable the role of LPS in chronic heart failure to be elucidated and may pave the way to develop a new generation of effective therapeutic agents that may be directed to the treatment of chronic heart failure.
Collapse
|
19
|
Li P, Ogino K, Hoshikawa Y, Morisaki H, Cheng J, Toyama K, Morisaki T, Hashimoto K, Ninomiya H, Tomikura-Shimoyama Y, Igawa O, Shigemasa C, Hisatome I. Remote reperfusion lung injury is associated with AMP deaminase 3 activation and attenuated by inosine monophosphate. Circ J 2007; 71:591-6. [PMID: 17384464 DOI: 10.1253/circj.71.591] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Remote reperfusion lung injury occurs in patients with vascular occlusion and surgical procedures. Inosine monophosphate (IMP) produced by adenosine monophosphate deaminase (AMPD) 3 is involved in the remote reperfusion injury. The purpose of the present study was to identify whether IMP administration attenuated the remote reperfusion lung injury in a skeletal muscle ischemia-reperfusion model. METHODS AND RESULTS A remote reperfusion lung injury was created using reperfusion after the bilateral ligation of the hind-limb. AMPD activity, myeloperoxidase (MPO) activity, IMP, AMPD3 mRNA and tumor necrosis factor (TNF)-alpha in the lungs before and after reperfusion were analyzed. Furthermore, the effects of IMP on these parameters were examined. AMPD3 mRNA, AMPD activity and IMP production in the lungs significantly increased after ischemia-reperfusion with increases in MPO activity, TNF-alpha level and decreased oxygen saturation (SpO(2)). Histological examination of the lungs demonstrated significant neutrophil infiltration and accumulation. IMP administration significantly reduced MPO activity, TNF-alpha and neutrophil infiltration, with ameliorated SpO(2). CONCLUSIONS Along with the activation of AMPD3, ischemia-reperfusion-induced lung inflammation is associated with increased MPO activity and TNF-alpha level. IMP significantly decreased the lung injury, MPO activity, TNF-alpha and increased SpO(2). These findings may lead to the development of a new therapeutic strategy for remote reperfusion lung injury.
Collapse
Affiliation(s)
- Peili Li
- Division of Molecular Medicine and Therapeutics, Tottori University
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hou B, Xu ZW, Yang CW, Gao Y, Zhao SF, Zhang CG. Protective effects of inosine on mice subjected to lethal total-body ionizing irradiation. JOURNAL OF RADIATION RESEARCH 2007; 48:57-62. [PMID: 17179648 DOI: 10.1269/jrr.06067] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mammals can barely survive total-body ionizing irradiation greater than 10 Gy. To date, there are few drugs available for radioprotective therapy under such circumstances. Inosine, a natural derivative of adenosine, has been known to provide powerful protection for many kinds of cells and tissues against various insults both in vitro and in vivo. In the present study, we examined whether inosine was also beneficial for mammals subjected to an absolutely lethal total-body ionizing irradiation. Immediately after adult Balb/c mice were exposed to (60)Co gamma-rays at a single dose of 12 Gy, a moiety of them were administered daily with inosine or adenosine, either at doses of 375 or 750 micromol/kg up to death, and their body weight and survival time were recorded. Some irradiated mice were administered inosine or adenosine daily at doses of 750 micromol/kg and assessed for spatial memory abilities using the Morris water maze. The results demonstrated that, although inosine could not prevent body weight loss in irradiated mice, it was able to significantly prolong their survival time at doses of 750 micromol/kg. Moreover, inosine but not adenosine could suppress spatial memory deficit in irradiated mice. The data suggested that inosine had protective effects on mammals suffering from total-body ionizing irradiation at a single lethal dose.
Collapse
Affiliation(s)
- Bing Hou
- Beijing Institute of Radiation Medicine, Beijing, P R China
| | | | | | | | | | | |
Collapse
|
21
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 787] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Kabay B, Aytekin FO, Aydin C, Ozer A, Kabay N, Tekin K, Sungurtekin U, Erdem E, Ozden A. Interleukin-10 gene therapy attenuates pulmonary tissue injury caused by mesenteric ischemia-reperfusion in a mouse model. TOHOKU J EXP MED 2005; 207:133-42. [PMID: 16141682 DOI: 10.1620/tjem.207.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate the role of interleukin (IL)-10 gene therapy on the reperfusion-induced lung injury, we utilised the technique of liposomal gene delivery before the induction of intestinal ischemia. Plasmid DNA encoding human IL10 (hIL-10) or empy vector was injected intraperitoneally 24 h before the study. Male Balb/c mice randomized into three groups: Sham operated control (n = 12), empty plasmid vector (n = 12), and hIL-10 gene therapy group (n = 12). The ischemia was generated by selective occlusion of superior mesenteric artery for 60 min and followed by reperfusion for 30 min. Lung tissue neutrophil infiltration was determined by myeloperoxidase assay and neutrophil counts. For the determination of lung tissue microvascular permeability, Evans blue dye injection was made and the lung edema was assessed by wet/dry ratio. hIL-10 protein expression was studied by immunostaining and ELISA. We found that pre-ischemic hIL-10 overexpression attenuated dye extravasation, leukocyte sequestration and reduced pulmonary tissue injury compared to the empty vector-injected control. Our study indicates that pre-ischemic hIL-10 overexpression attenuates lung injury caused by intestinal ischemia-reperfusion.
Collapse
Affiliation(s)
- Burhan Kabay
- Department of General Surgery, Pamukkale University Faculty of Medicine, Denizli, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kalia N, Brown NJ, Wood RFM, Pockley AG. Ketotifen abrogates local and systemic consequences of rat intestinal ischemia-reperfusion injury. J Gastroenterol Hepatol 2005; 20:1032-8. [PMID: 15955211 DOI: 10.1111/j.1440-1746.2005.03767.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mast cell-derived vasoactive and pro-inflammatory mediators, particularly histamine, might contribute to local tissue damage and multiorgan dysfunction induced by intestinal ischemia/reperfusion (I/R). The purpose of the present study was to evaluate the effects of the mast cell stabilizer, ketotifen, on leukocyte adhesion within, and tissue leakage from the mucosal villous microcirculation after intestinal I/R. METHODS Superior mesenteric arteries of untreated and ketotifen-pretreated (1 mg/kg orally twice daily for 3 days, and 90 min prior to ischemia) Piebald-Viral-Glaxo (PVG) rats were clamped for 30 min (n = 12 per group; sham operated controls n = 12). Mucosal surfaces of exteriorized ileal segments were visualized, and leukocyte adherence in, and macromolecular leakage (MML) from individual villi were followed for 2 h after clamp removal using in vivo microscopy. Blood pressure and heart rate were monitored, and lung tissue damage was assessed by histology. RESULTS Ten untreated animals subjected to intestinal I/R failed to survive the reperfusion period, leukocyte adhesion (P < 0.001) and MML (P < 0.001) were increased at all time-points and blood flow stasis eventually ensued. In contrast, all ketotifen-pretreated I/R animals survived the duration of the study. Ketotifen abrogated I/R-induced leukocyte adherence within the villus mucosal capillaries and supplying arterioles and largely prevented pulmonary injury, yet surprisingly had no effect on intestinal vascular leakage. CONCLUSIONS This is the first study to demonstrate that ketotifen is a powerful inhibitor of I/R-induced leukocyte adhesion and can prevent localized and reduce remote organ damage after intestinal I/R injury. However, its effects are manifested in the absence of any influence on intestinal I/R-induced vascular leakage.
Collapse
Affiliation(s)
- Neena Kalia
- Academic Unit of Surgical Oncology, Division of Clinical Sciences (South), Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | |
Collapse
|
24
|
Guan L, Gong D, Tian N, Zou Y. Uncoupling protein 2 involved in protection of glucagon-like peptide 2 in small intestine with ischemia-reperfusion injury in mice. Dig Dis Sci 2005; 50:554-60. [PMID: 15810642 DOI: 10.1007/s10620-005-2474-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide 2 (GLP-2) is an intestinal epithelium-specific growth factor. However, its protective effects and related mechanism on the small intestine injured by ischemia-reperfusion (I/R) in mice remain unclear. This study aimed to reveal the effects of GLP-2 and its functional relationship with uncoupling protein 2 (UCP2) on the small intestine after I/R injury in mice. Male Balb/c mice were given GLP-2 (250 microg/kg/day, ip) for 3 days and underwent 30 min of superior mesenteric artery occlusion followed by 1 hr of reperfusion on day 4. Histological damage, bacterial translocation, diamine oxidase, and malondialdehyde level were assessed, and UCP2 expression was measured by immunohistochemistry and Western blot. GLP-2 attenuated the intestinal histological damage caused by I/R and increased the villous height by 28% and the crypt depth by 10%, respectively. Compared to the I/R group, diamine oxidase activity was increased, the incidence of bacterial translocation and malondialdehyde level were decreased, and UCP2 expression was increased in GLP-2-treated mice. GLP-2 protected the small intestine from I/R injury and increased UCP2 expression. These results suggested that effects of GLP-2 should be related to the upregulation of mitochondrial UCP2, which antagonized reactive oxygen species production.
Collapse
Affiliation(s)
- Lili Guan
- Department of Physiology, Dalian Medical University, Dalian 116027, China
| | | | | | | |
Collapse
|
25
|
Aytekin FO, Tekin K, Kabay B, Erdem E, Guney Y, Firat P, Sungurtekin U, Kaya SO, Ozden A. Antithrombin III attenuates pulmonary tissue injury caused by mesenteric ischemia-reperfusion. Am J Surg 2005; 189:161-6. [PMID: 15720983 DOI: 10.1016/j.amjsurg.2004.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 04/30/2004] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mesenteric ischemia-reperfusion (I/R) is a well-known event causing both local and remote organ injuries, including the lungs. Recently, several studies indicated that activated leukocyte-endothelial cell interactions play an important role in the mechanisms of these injuries. As a natural inhibitor of serine proteases, antithrombin was shown previously to attenuate the tissue damage after local I/R in several organ systems. Here, we examined the effects of antithrombin on pulmonary injury after mesenteric I/R. METHODS Wistar albino rats underwent median laparotomy and were randomized into 3 groups: (1) sham-operated control (n = 12), (2) 60 minutes of mesenteric ischemia and 3 hours of reperfusion (n = 12), and (3) antithrombin-pretreated (250 U/kg) group before the I/R (n = 12). At the end of reperfusion, animals were killed and neutrophil sequestration, myeloperoxidase (MPO) activity, and Evans blue dye extravasation in the lung parenchyma were assessed and compared. RESULTS There was a statistically significant increase in the quantity of Evans blue dye concentration, leukocyte sequestration, and MPO activity in the I/R group when compared with the control group. The pretreatment of animals with antithrombin significantly decreased the pulmonary injury characterized by increased Evans blue dye extravasation, leukocyte sequestration, and MPO activity. CONCLUSION The data of the present study suggest that mesenteric ischemia and reperfusion induces pulmonary injury characterized by activated neutrophil sequestration and increased microvascular leakage in the lungs. A significant attenuation of intestinal I/R-related lung injury with the use of antithrombin concentrate warrants further studies to elucidate the potential role of this natural serine protease inhibitor in clinical settings.
Collapse
Affiliation(s)
- Faruk O Aytekin
- Department of General Surgery, Pamukkale University, Medical School, Denizli, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- György Haskó
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10/11N311, 10 Center Drive, Bethesda, MD 20892-1892, USA
| | | | | |
Collapse
|