1
|
Kohansal M, Alghanimi YK, Banoon SR, Ghasemian A, Afkhami H, Daraei A, Wang Z, Nekouian N, Xie J, Deng X, Tang H. CircRNA-associated ceRNA regulatory networks as emerging mechanisms governing the development and biophysiopathology of epilepsy. CNS Neurosci Ther 2024; 30:e14735. [PMID: 38676299 PMCID: PMC11053249 DOI: 10.1111/cns.14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The etiology of epilepsy is ascribed to the synchronized aberrant neuronal activity within the brain. Circular RNAs (circRNAs), a class of non-coding RNAs characterized by their circular structures and covalent linkage, exert a substantial influence on this phenomenon. CircRNAs possess stereotyped replication, transience, repetitiveness, and paroxysm. Additionally, MicroRNA (miRNA) plays a crucial role in the regulation of diverse pathological processes, including epilepsy. CircRNA is of particular significance due to its ability to function as a competing endogenous RNA, thereby sequestering or inhibiting miRNA activity through binding to target mRNA. Our review primarily concentrates on elucidating the pathological and functional roles, as well as the underlying mechanisms, of circRNA-miRNA-mRNA networks in epilepsy. Additionally, it explores the potential utility of these networks for early detection and therapeutic intervention.
Collapse
Affiliation(s)
- Maryam Kohansal
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
- Department of BiologyPayame Noor UniversityTehranIran
| | | | - Shaimaa R. Banoon
- Department of Biology, College of ScienceUniversity of MisanAmarahIraq
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Hamed Afkhami
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
- Cellular and Molecular Research CenterQom University of Medical SciencesQomIran
- Faculty of MedicineShahed UniversityTehranIran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Zhangling Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Najmeh Nekouian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
2
|
Rezaei M, Ghafouri S, Asgari A, Barkley V, Fathollahi Y, Rostami S, Shojaei A, Mirnajafi‐Zadeh J. Involvement of dopamine D 2 -like receptors in the antiepileptogenic effects of deep brain stimulation during kindling in rats. CNS Neurosci Ther 2023; 29:587-596. [PMID: 36514209 PMCID: PMC9873507 DOI: 10.1111/cns.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Deep brain electrical stimulation (DBS), as a potential therapy for drug resistive epileptic patients, has inhibitory action on epileptogenesis. In the present investigation, the role of dopamine D2 -like receptors in the antiepileptogenic action of DBS was studied. METHODS Seizures were induced in adult rats by stimulating the perforant path in a semi-rapid kindling method. Five minutes after the last kindling stimulation, daily DBS was applied to the perforant path at the pattern of low frequency stimulation (LFS; 1 Hz; pulse duration: 0.1 ms; intensity: 50-150 μA; 4 trains of 200 pulses at 5 min intervals). Sulpiride (10 μg/1 μl, i.c.v.), a selective dopamine D2 -like receptor antagonist, was administered prior to the daily LFS application. RESULTS Kindling stimulations increased cumulative daily behavioral seizure stages, daily afterdischarge duration (dADD), and population spike amplitude (PS) in dentate gyrus following perforant path stimulation, while applying LFS decreased the kindled seizures' parameters. In addition, kindling potentiated the early (at 10-50 ms inter-pulse interval) and late (at 150-1000 ms inter-pulse interval) paired-pulse inhibition and decreased the paired-pulse facilitation (at 70-100 ms inter-pulse interval). These effects were also inhibited by applying LFS. All inhibitory effects of LFS on kindling procedure were prevented by sulpiride administration. CONCLUSION These data may suggest that LFS exerts its preventive effect on kindling development, at least partly, through the receptors on which sulpiride acts which are mainly dopamine D2 -like (including D2 , D3 , and D4 ) receptors.
Collapse
Affiliation(s)
- Mahmoud Rezaei
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Samireh Ghafouri
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Azam Asgari
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Victoria Barkley
- Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sareh Rostami
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Javad Mirnajafi‐Zadeh
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
3
|
An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis. Eur J Pharmacol 2021; 910:174469. [PMID: 34478688 DOI: 10.1016/j.ejphar.2021.174469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
Despite the years of research, epilepsy remains uncontrolled in one-third of afflicted individuals and poses a health and economic burden on society. Currently available anti-epileptic drugs mainly target the excitatory-inhibitory imbalance despite targeting the underlying pathophysiology of the disease. Recent research focuses on understanding the pathophysiologic mechanisms that lead to seizure generation and on possible new treatment avenues for preventing epilepsy after a brain injury. Various signaling pathways, including the mechanistic target of rapamycin (mTOR) pathway, mitogen-activated protein kinase (MAP-ERK) pathway, JAK-STAT pathway, wnt/β-catenin signaling, cAMP pathway, and jun kinase pathway, have been suggested to play an essential role in this regard. Recent work suggests that the mTOR pathway intervenes epileptogenesis and proposes that mTOR inhibitors may have antiepileptogenic properties for epilepsy. In the same way, several animal studies have indicated the involvement of the Wnt signaling pathway in neurogenesis and neuronal death induced by seizures in different phases (acute and chronic) of seizure development. Various studies have also documented the activation of JAK-STAT signaling in epilepsy and cAMP involvement in epileptogenesis through CREB (cAMP response element-binding protein). Although studies are there, the mechanism for how components of these pathways mediate epileptogenesis requires further investigation. This review summarises the current role of various signaling pathways involved in epileptogenesis and the crosstalk among them. Furthermore, we will also discuss the mechanical base for the interaction between these pathways and how these interactions could be a new emerging promising target for future epilepsy therapies.
Collapse
|
4
|
Liu P, Qin D, Lv H, Fan W, Tao Z, Xu Y. Neuroprotective effects of dopamine D2 receptor agonist on neuroinflammatory injury in olfactory bulb neurons in vitro and in vivo in a mouse model of allergic rhinitis. Neurotoxicology 2021; 87:174-181. [PMID: 34624383 DOI: 10.1016/j.neuro.2021.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
Available evidence indicates that dopamine D2 receptor modulates the neurotoxic effects induced by glutamate. However, neurotoxicity mediated by AMPA-subtype glutamate receptor has rarely been studied in the olfactory bulb. This study mainly explores the neuroprotective effects of dopamine D2 receptor agonist on AMPA receptor-mediated neurotoxicity in the olfactory bulb in a mouse model of allergic rhinitis (AR) with olfactory dysfunction (OD). In our study, we found that AR with OD was closely associated with increased surface expression of the AMPA receptor GluR1, reduced surface expression of GluR2, and apoptosis damage in the olfactory bulb in vivo. Quinpirole (a dopamine D2 receptor agonist) improved olfactory function in mice, ameliorated apoptosis injury in the olfactory bulb but not in the olfactory mucosa, and inhibited the internalization of GluR2-containing AMPA receptor in vitro and in vivo. In addition, phosphorylation plays a crucial role in the regulation of AMPA receptor trafficking. Our results showed that quinpirole reduced the phosphorylation of GluR1 S845 and GluR2 S880 in olfactory bulb neurons in vitro, but it had no obvious effect on GluR1 S831. Therefore, dopamine D2 receptor agonist may inhibit the phosphorylation of GluR1 S845 and GluR2 S880, thereby reducing AMPA receptor-mediated neurotoxicity and alleviating neurotoxic injury to the olfactory bulb caused by AR.
Collapse
Affiliation(s)
- Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Butler-Ryan R, Wood IC. The functions of repressor element 1-silencing transcription factor in models of epileptogenesis and post-ischemia. Metab Brain Dis 2021; 36:1135-1150. [PMID: 33813634 PMCID: PMC8272694 DOI: 10.1007/s11011-021-00719-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Epilepsy is a debilitating neurological disorder characterised by recurrent seizures for which 30% of patients are refractory to current treatments. The genetic and molecular aetiologies behind epilepsy are under investigation with the goal of developing new epilepsy medications. The transcriptional repressor REST (Repressor Element 1-Silencing Transcription factor) is a focus of interest as it is consistently upregulated in epilepsy patients and following brain insult in animal models of epilepsy and ischemia. This review analyses data from different epilepsy models and discusses the contribution of REST to epileptogenesis. We propose that in healthy brains REST acts in a protective manner to homeostatically downregulate increases in excitability, to protect against seizure through downregulation of BDNF (Brain-Derived Neurotrophic Factor) and its receptor, TrkB (Tropomyosin receptor kinase B). However, in epilepsy patients and post-seizure, REST may increase to a larger degree, which allows downregulation of the glutamate receptor subunit GluR2. This leads to AMPA glutamate receptors lacking GluR2 subunits, which have increased permeability to Ca2+, causing excitotoxicity, cell death and seizure. This concept highlights therapeutic potential of REST modulation through gene therapy in epilepsy patients.
Collapse
Affiliation(s)
- Ruth Butler-Ryan
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT UK
| | - Ian C. Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
6
|
Gomes-Duarte A, Bauer S, Venø MT, Norwood BA, Henshall DC, Kjems J, Rosenow F, Vangoor VR, Pasterkamp RJ. Enrichment of Circular RNA Expression Deregulation at the Transition to Recurrent Spontaneous Seizures in Experimental Temporal Lobe Epilepsy. Front Genet 2021; 12:627907. [PMID: 33584828 PMCID: PMC7876452 DOI: 10.3389/fgene.2021.627907] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a common form of epilepsy and is characterized by recurrent spontaneous seizures originating from the temporal lobe. The majority of mTLE patients develop pharmacoresistance to available anti-epileptic drugs (AEDs) while exhibiting severe pathological changes that can include hippocampal atrophy, neuronal death, gliosis and chronic seizures. The molecular mechanisms leading to mTLE remain incompletely understood, but are known to include defects in post-transcriptional gene expression regulation, including in non-coding RNAs (ncRNAs). Circular RNAs (circRNAs) are a class of recently rediscovered ncRNAs with high levels of expression in the brain and proposed roles in diverse neuronal processes. To explore a potential role for circRNAs in epilepsy, RNA-sequencing (RNA-seq) was performed on hippocampal tissue from a rat perforant pathway stimulation (PPS) model of TLE at different post-stimulation time points. This analysis revealed 218 differentially expressed (DE) circRNAs. Remarkably, the majority of these circRNAs were changed at the time of the occurrence of the first spontaneous seizure (DOFS). The expression pattern of two circRNAs, circ_Arhgap4 and circ_Nav3, was further validated and linked to miR-6328 and miR-10b-3p target regulation, respectively. This is the first study to examine the regulation of circRNAs during the development of epilepsy. It reveals an intriguing link between circRNA deregulation and the transition of brain networks into the state of spontaneous seizure activity. Together, our results provide a molecular framework for further understanding the role and mechanism-of-action of circRNAs in TLE.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sebastian Bauer
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Morten T. Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Braxton A. Norwood
- Department of Neuroscience, Expesicor Inc., Kalispell, MT, United States
- Diagnostics Development, FYR Diagnostics, Missoula, MT, United States
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Vamshidhar R. Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Litvinova SA, Narkevich BV, Gaidukov IO, Kudrin VS, Voronina TA. A Study of the Effect of Derivative of Oximes Pyridine (GIZh-298) on the Contents of Monoamines and Their Metabolites in the Rat Brain during Seizures Induced by Maximal Electroshock. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
9
|
Alcantara JA, Vincentis S, Kerr DS, dos Santos B, Alessi R, van der Linden Jr H, Chaim T, Serpa MH, Busatto GF, Gattaz WF, Demarque R, Valente KD. Association study of functional polymorphisms of dopaminergic pathway in epilepsy-related factors of temporal lobe epilepsy in Brazilian population. Eur J Neurol 2018; 25:895-901. [DOI: 10.1111/ene.13631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Affiliation(s)
- J. A. Alcantara
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - S. Vincentis
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - D. S. Kerr
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - B. dos Santos
- Escola de Enfermagem EEUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - R. Alessi
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
| | | | - T. Chaim
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - M. H. Serpa
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - G. F. Busatto
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - W. F. Gattaz
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| | - R. Demarque
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
| | - K. D. Valente
- Hospital das Clinicas HCFMUSP; Faculdade de Medicina; Universidade de Sao Paulo; Sao Paulo SP
- Faculdade de Medicina FMUSP; Universidade de Sao Paulo; Sao Paulo SP
| |
Collapse
|
10
|
Neuroimaging in animal models of epilepsy. Neuroscience 2017; 358:277-299. [DOI: 10.1016/j.neuroscience.2017.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
11
|
Svob Strac D, Pivac N, Smolders IJ, Fogel WA, De Deurwaerdere P, Di Giovanni G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front Neurosci 2016; 10:492. [PMID: 27891070 PMCID: PMC5102907 DOI: 10.3389/fnins.2016.00492] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of "one-molecule-one-target," have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | | | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
12
|
Gangarossa G, Ceolin L, Paucard A, Lerner-Natoli M, Perroy J, Fagni L, Valjent E. Repeated stimulation of dopamine D1-like receptor and hyperactivation of mTOR signaling lead to generalized seizures, altered dentate gyrus plasticity, and memory deficits. Hippocampus 2014; 24:1466-81. [DOI: 10.1002/hipo.22327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Giuseppe Gangarossa
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Laura Ceolin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Alexia Paucard
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Mireille Lerner-Natoli
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Laurent Fagni
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Emmanuel Valjent
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| |
Collapse
|
13
|
Bozzi Y, Borrelli E. The role of dopamine signaling in epileptogenesis. Front Cell Neurosci 2013; 7:157. [PMID: 24062645 PMCID: PMC3774988 DOI: 10.3389/fncel.2013.00157] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/29/2013] [Indexed: 01/11/2023] Open
Abstract
Clinical and experimental studies implicate most neuromodulatory systems in epileptogenesis. The dopaminergic system has a seizure-modulating effect that crucially depends on the different subtypes of dopamine (DA) receptors involved and the brain regions in which they are activated. Specifically, DA plays a major role in the control of seizures arising in the limbic system. Studies performed in a wide variety of animal models contributed to illustrate the opposite actions of D1-like and D2-like receptor signaling in limbic epileptogenesis. Indeed, signaling from D1-like receptors is generally pro-epileptogenic, whereas D2-like receptor signaling exerts an anti-epileptogenic effect. However, this view might appear quite simplistic as the complex neuromodulatory action of DA in the control of epileptogenesis likely requires a physiological balance in the activation of circuits modulated by these two major DA receptor subtypes, which determines the response to seizure-promoting stimuli. Here we will review recent evidences on the identification of molecules activated by DA transduction pathways in the generation and spread of seizures in the limbic system. We will discuss the intracellular signaling pathways triggered by activation of different DA receptors in relation to their role in limbic epileptogenesis, which lead to the activation of neuronal death/survival cascades. A deep understanding of the signaling pathways involved in epileptogenesis is crucial for the identification of novel targets for the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy ; Neuroscience Institute, National Research Council Pisa, Italy
| | | |
Collapse
|
14
|
Delis F, Benveniste H, Xenos M, Grandy D, Wang GJ, Volkow ND, Thanos PK. Loss of dopamine D2 receptors induces atrophy in the temporal and parietal cortices and the caudal thalamus of ethanol-consuming mice. Alcohol Clin Exp Res 2011; 36:815-25. [PMID: 22017419 DOI: 10.1111/j.1530-0277.2011.01667.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The need of an animal model of alcoholism becomes apparent when we consider the genetic diversity of the human populations, an example being dopamine D2 receptor (DRD2) expression levels. Research suggests that low DRD2 availability is associated with alcohol abuse, while higher DRD2 levels may be protective against alcoholism. This study aims to establish whether (i) the ethanol-consuming mouse is a suitable model of alcohol-induced brain atrophy and (ii) DRD2 protect the brain against alcohol toxicity. METHODS Adult Drd2+/+ and Drd2-/- mice drank either water or 20% ethanol solution for 6 months. At the end of the treatment period, the mice underwent magnetic resonance (MR) imaging under anesthesia. MR images were registered to a common space, and regions of interest were manually segmented. RESULTS We found that chronic ethanol intake induced a decrease in the volume of the temporal and parietal cortices as well as the caudal thalamus in Drd2-/- mice. CONCLUSIONS The result suggests that (i) normal DRD2 expression has a protective role against alcohol-induced brain atrophy and (ii) in the absence of Drd2 expression, prolonged ethanol intake reproduces a distinct feature of human brain pathology in alcoholism, the atrophy of the temporal and parietal cortices.
Collapse
Affiliation(s)
- Foteini Delis
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Bozzi Y, Dunleavy M, Henshall DC. Cell signaling underlying epileptic behavior. Front Behav Neurosci 2011; 5:45. [PMID: 21852968 PMCID: PMC3151612 DOI: 10.3389/fnbeh.2011.00045] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a complex disease, characterized by the repeated occurrence of bursts of electrical activity (seizures) in specific brain areas. The behavioral outcome of seizure events strongly depends on the brain regions that are affected by overactivity. Here we review the intracellular signaling pathways involved in the generation of seizures in epileptogenic areas. Pathways activated by modulatory neurotransmitters (dopamine, norepinephrine, and serotonin), involving the activation of extracellular-regulated kinases and the induction of immediate early genes (IEGs) will be first discussed in relation to the occurrence of acute seizure events. Activation of IEGs has been proposed to lead to long-term molecular and behavioral responses induced by acute seizures. We also review deleterious consequences of seizure activity, focusing on the contribution of apoptosis-associated signaling pathways to the progression of the disease. A deep understanding of signaling pathways involved in both acute- and long-term responses to seizures continues to be crucial to unravel the origins of epileptic behaviors and ultimately identify novel therapeutic targets for the cure of epilepsy.
Collapse
Affiliation(s)
- Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | | | | |
Collapse
|
16
|
Yakushev IY, Dupont E, Buchholz HG, Tillmanns J, Debus F, Cumming P, Heimann A, Fellgiebel A, Luhmann HJ, Landvogt C, Werhahn KJ, Schreckenberger M, Potschka H, Bartenstein P. In vivo imaging of dopamine receptors in a model of temporal lobe epilepsy. Epilepsia 2009; 51:415-22. [PMID: 19694792 DOI: 10.1111/j.1528-1167.2009.02272.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Alterations in dopamine neurotransmission in animal models of epilepsies have been frequently demonstrated using invasive neuroscience or ex vivo techniques. We aimed to test whether corresponding alterations could be detected by noninvasive in vivo brain imaging with positron emission tomography (PET) in the chronic phase of the rat pilocarpine model of temporal lobe epilepsy. METHODS Six pilocarpine-treated Wistar rats exhibiting spontaneous recurrent seizures and nine control rats were studied with PET using [(18)F]-fallypride, a high-affinity dopamine D(2/3) receptor ligand. Parametric images of [(18)F]-fallypride specific binding were calculated using a reference tissue method, and the two groups were contrasted by whole-brain voxel-based analysis implemented in statistical parametric mapping (SPM5). RESULTS Dopamine D(2/3) receptor availability was 27% lower in the bilateral anterior caudate-putamen of pilocarpine-treated rats as compared to controls (p < 0.05), but binding was unaffected in other striatal or extrastriatal regions. CONCLUSIONS The finding of substantially reduced availability of dopamine D(2/3) receptors in the anterior caudate-putamen of rats during the chronic phase of the pilocarpine model is in agreement with results of invasive (microinjection, microdialysis) animal studies that have revealed increased dopamine tonus and a D(2/3) receptor-mediated anticonvulsant action of dopamine in the anterior segment of the rat striatum. The present PET approach could be prospectively applied for monitoring dopamine receptor changes longitudinally, that is, at different phases of the epileptogenic process, and opens perspectives for testing dopaminergic agents as potential antiepileptogenic drugs.
Collapse
Affiliation(s)
- Igor Y Yakushev
- Department of Nuclear Medicine, University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wood PB, Glabus MF, Simpson R, Patterson JC. Changes in Gray Matter Density in Fibromyalgia: Correlation With Dopamine Metabolism. THE JOURNAL OF PAIN 2009; 10:609-18. [DOI: 10.1016/j.jpain.2008.12.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 11/17/2008] [Accepted: 12/06/2008] [Indexed: 11/24/2022]
|
18
|
Tripathi PP, Sgadò P, Scali M, Viaggi C, Casarosa S, Simon HH, Vaglini F, Corsini GU, Bozzi Y. Increased susceptibility to kainic acid-induced seizures in Engrailed-2 knockout mice. Neuroscience 2009; 159:842-9. [PMID: 19186208 DOI: 10.1016/j.neuroscience.2009.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 12/30/2008] [Accepted: 01/01/2009] [Indexed: 12/27/2022]
Abstract
The En2 gene, coding for the homeobox-containing transcription factor Engrailed-2 (EN2), has been associated to autism spectrum disorder (ASD). Due to neuroanatomical and behavioral abnormalities, which partly resemble those observed in ASD patients, En2 knockout (En2(-/-)) mice have been proposed as a model for ASD. In the mouse embryo, En2 is involved in the specification of midbrain/hindbrain regions, being predominantly expressed in the developing cerebellum and ventral midbrain, and its expression is maintained in these structures until adulthood. Here we show that in the adult mouse brain, En2 mRNA is expressed also in the hippocampus and cerebral cortex. Hippocampal En2 mRNA content decreased after seizures induced by kainic acid (KA). This suggests that En2 might also influence the functioning of forebrain areas during adulthood and in response to seizures. Indeed, a reduced expression of parvalbumin and somatostatin was detected in the hippocampus of En2(-/-) mice as compared to wild-type (WT) mice, indicating an altered GABAergic innervation of limbic circuits in En2(-/-) mice. In keeping with these results, En2(-/-) mice displayed an increased susceptibility to KA-induced seizures. KA (20 mg/kg) determined more severe and prolonged generalized seizures in En2(-/-) mice, when compared to WT animals. Seizures were accompanied by a widespread c-fos and c-jun mRNA induction in the brain of En2(-/-) but not WT mice. Long-term histopathological changes (CA1 cell loss, upregulation of neuropeptide Y) also occurred in the hippocampus of KA-treated En2(-/-) but not WT mice. These findings suggest that En2(-/-) mice might be used as a novel tool to study the link between epilepsy and ASD.
Collapse
Affiliation(s)
- P P Tripathi
- Institute of Neuroscience, C.N.R., Pisa, Italy; Laboratory of Neurobiology, Scuola Normale Superiore, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zou S, Li L, Pei L, Vukusic B, Van Tol HHM, Lee FJS, Wan Q, Liu F. Protein-protein coupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptor-mediated excitotoxicity. J Neurosci 2006; 25:4385-95. [PMID: 15858065 PMCID: PMC6725121 DOI: 10.1523/jneurosci.5099-04.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
here is considerable evidence that dopamine D2 receptors can modulate AMPA receptor-mediated neurotoxicity. However, the molecular mechanism underlying this process remains essentially unclear. Here we report that D2 receptors inhibit AMPA-mediated neurotoxicity through two pathways: the activation of phosphoinositide-3 kinase (PI-3K) and downregulation of AMPA receptor plasma membrane expression, both involving a series of protein-protein coupling/uncoupling events. Agonist stimulation of D2 receptors promotes the formation of the direct protein-protein interaction between the third intracellular loop of the D2 receptor and the ATPase N-ethylmaleimide-sensitive factor (NSF) while uncoupling the NSF interaction with the carboxyl tail (CT) of the glutamate receptor GluR2 subunit of AMPA receptors. Previous studies have shown that full-length NSF directly couples to the GluR2CT and facilitates AMPA receptor plasma membrane expression. Furthermore, the CT region of GluR2 subunit is also responsible for several other intracellular protein couplings, including p85 subunit of PI-3K. Therefore, the direct coupling of D2-NSF and concomitant decrease in the NSF-GluR2 interaction results in a decrease of AMPA receptor membrane expression and an increase in the interaction between GluR2 and the p85 and subsequent activation of PI-3K. Disruption of the D2-NSF interaction abolished the ability of D2 receptor to attenuate AMPA-mediated neurotoxicity by blocking the D2 activation-induced changes in PI-3K activity and AMPA receptor plasma membrane expression. Furthermore, the D2-NSF-GluR2-p85 interactions are also responsible for the D2 inhibition of ischemia-induced cell death. These data may provide a new avenue to identify specific targets for therapeutics to modulate glutamate receptor-governed diseases, such as stroke.
Collapse
Affiliation(s)
- Shengwei Zou
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bozzi Y, Borrelli E. Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci 2006; 29:167-74. [PMID: 16443286 DOI: 10.1016/j.tins.2006.01.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/09/2005] [Accepted: 01/06/2006] [Indexed: 11/19/2022]
Abstract
Accurate control of dopamine levels and/or the resulting dopamine-receptor interaction is essential for brain function. Indeed, several human neurological and psychiatric disorders are characterized by dysfunctions of the dopaminergic system. Dopamine has been reported to exert either protective or toxic effects on neurons, yet it is unclear whether these effects are receptor-dependent and, if so, which dopamine receptor could be involved. The D(2) dopamine receptor occupies a privileged position because its signalling might be neuroprotective in human diseases, such as Parkinson's disease, ischaemia and epilepsy. Unravelling the role of D(2) receptors in neuronal death and survival might be central to understanding the mechanisms that underlie several neuropathologies.
Collapse
Affiliation(s)
- Yuri Bozzi
- Istituto di Neuroscienze del CNR, via Moruzzi 1, 56100 Pisa, Italy
| | | |
Collapse
|
21
|
Holmes A, Lachowicz JE, Sibley DR. Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 2005; 47:1117-34. [PMID: 15567422 DOI: 10.1016/j.neuropharm.2004.07.034] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/20/2004] [Accepted: 07/28/2004] [Indexed: 12/11/2022]
Abstract
The functional specificity of dopamine receptor subtypes remains incompletely understood, in part due to the absence of highly selective agonists and antagonists. Phenotypic analysis of dopamine receptor knockout mice has been instrumental in identifying the role of dopamine receptor subtypes in mediating dopamine's effects on motor function, cognition, reward, and emotional behaviors. In this article, we provide an update of recent studies in dopamine receptor knockout mice and discuss the limitations and future promise of this approach.
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Science and Genetics, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
22
|
|
23
|
Crosio C, Heitz E, Allis CD, Borrelli E, Sassone-Corsi P. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 2003; 116:4905-14. [PMID: 14625384 DOI: 10.1242/jcs.00804] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasticity in gene expression is achieved by a complex array of molecular mechanisms by which intracellular signaling pathways directly govern transcriptional regulation. In addition to the remarkable variety of transcription factors and co-regulators, and their combinatorial interaction at specific promoter loci, the role of chromatin remodeling has been increasingly appreciated. The N-terminal tails of histones, the building blocks of nucleosomes, contain conserved residues that can be post-translationally modified by phosphorylation, acetylation, methylation and other modifications. Depending on their nature, these modifications have been linked to activation or silencing of gene expression. We wanted to investigate whether neuronal stimulation by various signaling pathways elicits chromatin modifications that would allow transcriptional activation of immediate early response genes. We have analysed the capacity of three drugs - SKF82958 (a dopaminergic receptor agonist), pilocarpine (a muscarinic acetylcholine receptor agonist) and kainic acid (a kainate glutamate receptor agonist) - to induce chromatin remodeling in hippocampal neurons. We show that all stimulations induce rapid, transient phosphorylation of histone H3 at serine 10. Importantly, the same agonists induce rapid activation of the mitogen-activated protein kinase pathway with similar kinetics to extracellular-regulated-kinase phosphorylation. In the same neurons where this dynamic signaling cascade is activated, there is induction of c-fos transcription. Histone H3 Ser10 phosphorylation is coupled to acetylation at the nearby Lys14 residue, an event that has been linked to local opening of chromatin structure. Our results underscore the importance of dynamic chromatin remodeling in the transcriptional response to various stimuli in neuronal cells.
Collapse
Affiliation(s)
- Claudia Crosio
- Department of Gene Expression, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS - INSERM - Université Louis Pasteur, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | | | | | | | | |
Collapse
|
24
|
Abstract
The present study systematically and quantitatively analyzed the immunohistochemical distribution of various substances involved in synthesis, binding, and transport of dopamine in the forebrain of epileptic mice (EL mouse strain) using a brain mapping analyzer. A reduction in serum calcium levels decreases calcium/calmodulin-dependent-dopamine synthesis in the brain and subsequently increases susceptibility to epileptic convulsions and induces abnormal behavior in EL mice. The immunohistochemical levels of D(2) receptors in the medial area of the neostriatum were significantly higher in EL mice than in ddY mice (mother strain of EL mice), while there were no differences in the levels of tyrosine hydroxylase, calcium/calmodulin-dependent protein kinase II, calmodulin, D(1) receptors, and dopamine transporters. Together with our previous findings, the results suggest that the decrease in serum calcium levels and subsequent decrease in brain dopamine synthesis comprise the primary physiologic disorder in EL mice, and convulsions or increased D(2) receptors are secondarily-induced phenomena to improve or compensate for the principal disorder.
Collapse
Affiliation(s)
- Den'etsu Sutoo
- Institute of Medical Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | | |
Collapse
|