1
|
Martín-Alonso S, Kang D, Martínez Del Río J, Luczkowiak J, Frutos-Beltrán E, Zhang L, Cheng X, Liu X, Zhan P, Menéndez-Arias L. Novel RNase H Inhibitors Blocking RNA-directed Strand Displacement DNA Synthesis by HIV-1 Reverse Transcriptase. J Mol Biol 2022; 434:167507. [PMID: 35217069 DOI: 10.1016/j.jmb.2022.167507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
In retroviruses, strand displacement DNA-dependent DNA polymerization catalyzed by the viral reverse transcriptase (RT) is required to synthesize double-stranded proviral DNA. In addition, strand displacement during RNA-dependent DNA synthesis is critical to generate high-quality cDNA for use in molecular biology and biotechnology. In this work, we show that the loss of RNase H activity due to inactivating mutations in HIV-1 RT (e.g. D443N or E478Q) has no significant effect on strand displacement while copying DNA templates, but has a large impact on DNA polymerization in reactions carried out with RNA templates. Similar effects were observed with β-thujaplicinol and other RNase H active site inhibitors, including compounds with dual activity (i.e., characterized also as inhibitors of HIV-1 integrase and/or the RT DNA polymerase). Among them, dual inhibitors of HIV-1 RT DNA polymerase/RNase H activities, containing a 7-hydroxy-6-nitro-2H-chromen-2-one pharmacophore were found to be very potent and effective strand displacement inhibitors in RNA-dependent DNA polymerization reactions. These findings might be helpful in the development of transcriptomics technologies to obtain more uniform read coverages when copying long RNAs and for the construction of more representative libraries avoiding biases towards 5' and 3' ends, while providing valuable information for the development of novel antiretroviral agents.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Javier Martínez Del Río
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Lina Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain.
| |
Collapse
|
2
|
Chiang CY, Ligunas GD, Chin WC, Ni CW. Efficient Nonviral Stable Transgenesis Mediated by Retroviral Integrase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1061-1070. [PMID: 32462054 PMCID: PMC7240061 DOI: 10.1016/j.omtm.2020.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Efficient transgene delivery is critical for genetic manipulation and therapeutic intervention of target cells. Two well-characterized integrative systems have been described that rely on viral and nonviral vectors. However, use of viral vectors for gene therapy has been associated with several safety concerns. Here, we report a virus-free method for stable transgenesis based on the reaction of retroviral integrase. We constructed a gateway cloning compatible vector containing two truncated long terminal repeat (LTR) sequences (dLTR) that flank the transgene cassette. Notably, 5′-ACTG-3′ and blunt-end restriction cutting sites were also embedded at the end of dLTR to be recognized by HIV-1 integrase. When performing coinjection of transgene cassette and integrase mRNA into zebrafish embryos at one cell stage, there were 50% to 55% of injected embryos expressing a marker gene in a desired pattern. When applying our method in mammalian cells, there were 42% of cultured human epithelial cell lines showing stable integration. These results demonstrated that our method can successfully insert an exogenous gene into the host genome with highly efficient integration. Importantly, this system operates without most of the viral components while retaining effective stable transgenesis. We anticipate this method will provide a convenient, safe, and highly efficient way for applications in transgenesis and gene therapy.
Collapse
Affiliation(s)
- Chang-Ying Chiang
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, USA
| | - Gloria Denise Ligunas
- Program of Quantitative and Systems Biology, University of California, Merced, Merced, CA, USA
| | - Wei-Chun Chin
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, USA.,Program of Quantitative and Systems Biology, University of California, Merced, Merced, CA, USA
| | - Chih-Wen Ni
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, USA.,Program of Quantitative and Systems Biology, University of California, Merced, Merced, CA, USA
| |
Collapse
|
3
|
Gao P, Cheng X, Sun L, Song S, Álvarez M, Luczkowiak J, Pannecouque C, De Clercq E, Menéndez-Arias L, Zhan P, Liu X. Design, synthesis and biological evaluation of 3-hydroxyquinazoline-2,4(1H,3H)-diones as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and integrase. Bioorg Med Chem 2019; 27:3836-3845. [PMID: 31324562 DOI: 10.1016/j.bmc.2019.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 11/25/2022]
Abstract
A novel series of 3-hydroxyquinazoline-2,4(1H,3H)-diones derivatives has been designed and synthesized. Their biochemical characterization revealed that most of the compounds were effective inhibitors of HIV-1 RNase H activity at sub to low micromolar concentrations. Among them, II-4 was the most potent in enzymatic assays, showing an IC50 value of 0.41 ± 0.13 μM, almost five times lower than the IC50 obtained with β-thujaplicinol. In addition, II-4 was also effective in inhibiting HIV-1 IN strand transfer activity (IC50 = 0.85 ± 0.18 μM) but less potent than raltegravir (IC50 = 71 ± 14 nM). Despite its relatively low cytotoxicity, the efficiency of II-4 in cell culture was limited by its poor membrane permeability. Nevertheless, structure-activity relationships and molecular modeling studies confirmed the importance of tested 3-hydroxyquinazoline-2,4(1H,3H)-diones as useful leads for further optimization.
Collapse
Affiliation(s)
- Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Shu Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China.
| |
Collapse
|
4
|
Gao P, Wang X, Sun L, Cheng X, Poongavanam V, Kongsted J, Álvarez M, Luczkowiak J, Pannecouque C, De Clercq E, Lee KH, Chen CH, Liu H, Menéndez-Arias L, Liu X, Zhan P. Design, synthesis, and biologic evaluation of novel galloyl derivatives as HIV-1 RNase H inhibitors. Chem Biol Drug Des 2019; 93:582-589. [PMID: 30560566 PMCID: PMC7441570 DOI: 10.1111/cbdd.13455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains as the only enzyme encoded within the viral genome not targeted by current antiviral drugs. In this work, we report the design, synthesis, and biologic evaluation of a novel series of galloyl derivatives with HIV-1 RNase H inhibitory activity. Most of them showed IC50 s at sub- to low-micromolar concentrations in enzymatic assays. The most potent compound was II-25 that showed an IC50 of 0.72 ± 0.07 μM in RNase H inhibition assays carried out with the HIV-1BH10 RT. II-25 was 2.8 times more potent than β-thujaplicinol in these assays. Interestingly, II-25 and other galloyl derivatives were also found to inhibit the HIV IN strand transfer activity in vitro. Structure-activity relationships (SAR) studies and molecular modeling analysis predict key interactions with RT residues His539 and Arg557, while providing helpful insight for further optimization of selected compounds.
Collapse
Affiliation(s)
- Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji’nan, China
| | - Xueshun Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji’nan, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji’nan, China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji’nan, China
| | | | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Mar Álvarez
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | | | - Erik De Clercq
- Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji’nan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji’nan, China
| |
Collapse
|
5
|
A structure-based design approach to advance the allyltyrosine-based series of HIV integrase inhibitors. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Wang Y, Klock H, Yin H, Wolff K, Bieza K, Niswonger K, Matzen J, Gunderson D, Hale J, Lesley S, Kuhen K, Caldwell J, Brinker A. Homogeneous High-Throughput Screening Assays for HIV-1 Integrase 3β-Processing and Strand Transfer Activities. ACTA ACUST UNITED AC 2016; 10:456-62. [PMID: 16093555 DOI: 10.1177/1087057105275212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
HIV-1 integrase (HIV-IN) is a well-validated antiviral drug target catalyzing a multistep reaction to incorporate the HIV-1 provirus into the genome of the host cell. Smallmolecule inhibitors of HIV-1 integrase that specifically target the strand transfer step have demonstrated efficacy in the suppression of virus propagation. However, only fewspecific strand transfer inhibitors have been identified to date, and the need to screen for novel compound scaffolds persists. Here, the authors describe 2 homogeneous time-resolved fluorescent resonance energy transfer-based assays for the measurement of HIV-1 integrase 3'-processing and strand transfer activities. Both assayswere optimized for high-throughput screening formats, and a diverse library containingmore than 1million compoundswas screened in 1536-well plates for HIV-IN strand transfer inhibitors. As a result, compounds were found that selectively affect the enzymatic strand transfer reaction over 3β processing. Moreover, several bioactivemoleculeswere identified that inhibited HIV-1 reporter virus infection in cellularmodel systems. In conclusion, the assays presented herein have proven their utility for the identification ofmechanistically interesting and biologically active inhibitors of HIV-1 integrase that hold potential for further development into potent antiviral drugs.
Collapse
Affiliation(s)
- Yu Wang
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication. J Virol 2015; 89:12058-69. [PMID: 26401032 DOI: 10.1128/jvi.01471-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/10/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle. IMPORTANCE To establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.
Collapse
|
8
|
Hu J, Liu M, Tang D, Chang S. Substrate recognition and motion mode analyses of PFV integrase in complex with viral DNA via coarse-grained models. PLoS One 2013; 8:e54929. [PMID: 23365687 PMCID: PMC3554684 DOI: 10.1371/journal.pone.0054929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/19/2012] [Indexed: 11/19/2022] Open
Abstract
HIV-1 integrase (IN) is an important target in the development of drugs against the AIDS virus. Drug design based on the structure of IN was markedly hampered due to the lack of three-dimensional structure information of HIV-1 IN-viral DNA complex. The prototype foamy virus (PFV) IN has a highly functional and structural homology with HIV-1 IN. Recently, the X-ray crystal complex structure of PFV IN with its cognate viral DNA has been obtained. In this study, both Gaussian network model (GNM) and anisotropy network model (ANM) have been applied to comparatively investigate the motion modes of PFV DNA-free and DNA-bound IN. The results show that the motion mode of PFV IN has only a slight change after binding with DNA. The motion of this enzyme is in favor of association with DNA, and the binding ability is determined by its intrinsic structural topology. Molecular docking experiments were performed to gain the binding modes of a series of diketo acid (DKA) inhibitors with PFV IN obtained from ANM, from which the dependability of PFV IN-DNA used in the drug screen for strand transfer (ST) inhibitors was confirmed. It is also found that the functional groups of keto-enol, bis-diketo, tetrazole and azido play a key role in aiding the recognition of viral DNA, and thus finally increase the inhibition capability for the corresponding DKA inhibitor. Our study provides some theoretical information and helps to design anti-AIDS drug based on the structure of IN.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Chemistry and Life Science, Leshan Normal University, Leshan, China
| | - Ming Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Dianyong Tang
- Department of Chemistry and Life Science, Leshan Normal University, Leshan, China
| | - Shan Chang
- College of Informatics, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Moody IS, Verde SC, Overstreet CM, Edward Robinson W, Weiss GA. In vitro evolution of an HIV integrase binding protein from a library of C-terminal domain γS-crystallin variants. Bioorg Med Chem Lett 2012; 22:5584-9. [PMID: 22858140 DOI: 10.1016/j.bmcl.2012.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/01/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
A protein without natural binding functions was engineered to bind HIV-1 integrase. Phage display selections applied a library of variants based on the C-terminal domain of the eye lens protein human γS-crystallin. Multiple loop regions were altered to encode libraries with ≈3.6 × 10(11) different variants. A crystallin variant, termed integrase binding protein-10 (IBP-10), inhibits integrase catalysis with nanomolar K(i) values. IBP-10 interacts with the integrase C-terminal domain and inhibits integrase substrate affinity. This allosteric mechanism allows IBP-10 to inhibit drug-resistant integrase variants. The results demonstrate the applicability of the crystallin scaffold for the discovery of binding partners and enzyme inhibitors.
Collapse
Affiliation(s)
- Issa S Moody
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697-3900, USA
| | | | | | | | | |
Collapse
|
10
|
Hu JP, He HQ, Tang DY, Sun GF, Zhang YQ, Fan J, Chang S. Study on the interactions between diketo-acid inhibitors and prototype foamy virus integrase-DNA complex via molecular docking and comparative molecular dynamics simulation methods. J Biomol Struct Dyn 2012; 31:734-47. [PMID: 22913375 DOI: 10.1080/07391102.2012.709458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an important drug target for anti-acquired immune deficiency disease (AIDS) treatment and diketo-acid (DKA) inhibitors are potent and selective inhibitors of HIV-1 IN. Due to lack of three-dimensional structures including detail interactions between HIV-1 IN and its substrate viral DNA, the drug design and screening platform remains incompleteness and deficient. In addition, the action mechanism of DKA inhibitors with HIV-1 IN is not well understood. In view of the high homology between the structure of prototype foamy virus (PFV) IN and that of HIV-1 IN, we used PFV IN as a surrogate model for HIV-1 IN to investigate the inhibitory mechanism of raltegravir (RLV) and the binding modes with a series of DKA inhibitors. Firstly, molecular dynamics simulations of PFV IN, IN-RLV, IN-DNA, and IN-DNA-RLV systems were performed for 10 ns each. The interactions and inhibitory mechanism of RLV to PFV IN were explored through overall dynamics behaviors, catalytic loop conformation distribution, and hydrogen bond network analysis. The results show that the coordinated interactions of RLV with IN and viral DNA slightly reduce the flexibility of catalytic loop region of IN, and remarkably restrict the mobility of the CA end of viral DNA, which may lead to the partial loss of the inhibitory activity of IN. Then, we docked a series of DKA inhibitors into PFV IN-DNA receptor and obtained the IN-DNA-inhibitor complexes. The docking results between PFV IN-DNA and DKA inhibitors agree well with the corresponding complex of HIV-1 IN, which proves the dependability of PFV IN-DNA used for the anti-AIDS drug screening. Our study may help to make clear some theoretical questions and to design anti-AIDS drug based on the structure of IN.
Collapse
Affiliation(s)
- Jian-Ping Hu
- Department of Chemistry and Life Science, Leshan Normal University, Leshan, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Knyazhanskaya ES, Kondrashina OV, Gottikh MB. Approaches to site-directed DNA integration based on transposases and retroviral integrases. Mol Biol 2011. [DOI: 10.1134/s0026893311060069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Crosby DC, Lei X, Gibbs CG, McDougall BR, Robinson WE, Reinecke MG. Design, synthesis, and biological evaluation of novel hybrid dicaffeoyltartaric/diketo acid and tetrazole-substituted L-chicoric acid analogue inhibitors of human immunodeficiency virus type 1 integrase. J Med Chem 2010; 53:8161-75. [PMID: 20977258 DOI: 10.1021/jm1010594] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fourteen analogues of the anti-HIV-1 integrase (IN) inhibitor L-chicoric acid (L-CA) were prepared. Their IC(50) values for 3'-end processing and strand transfer against recombinant HIV-1 IN were determined in vitro, and their cell toxicities and EC(50) against HIV-1 were measured in cells (ex vivo). Compounds 1-6 are catechol/β-diketoacid hybrids, the majority of which exhibit submicromolar potency against 3'-end processing and strand transfer, though only with modest antiviral activities. Compounds 7-10 are L-CA/p-fluorobenzylpyrroloyl hybrids, several of which were more potent against strand transfer than 3'-end processing, a phenomenon previously attributed to the β-diketo acid pharmacophore. Compounds 11-14 are tetrazole bioisosteres of L-CA and its analogues, whose in vitro potencies were comparable to L-CA but with enhanced antiviral potency. The trihydroxyphenyl analogue 14 was 30-fold more potent than L-CA at relatively nontoxic concentrations. These data indicate that L-CA analogues are attractive candidates for development into clinically relevant inhibitors of HIV-1 IN.
Collapse
Affiliation(s)
- David C Crosby
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California 92697-4800, USA
| | | | | | | | | | | |
Collapse
|
13
|
He H, Liu B, Zhang X, Chen W, Wang C. Development of a high-throughput assay for the HIV-1 integrase disintegration reaction. SCIENCE CHINA. LIFE SCIENCES 2010; 53:241-247. [PMID: 20596834 DOI: 10.1007/s11427-010-0006-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/02/2009] [Indexed: 05/29/2023]
Abstract
Both HIV-1 integrase (IN) and the central catalytic domain of IN (IN-CCD) catalyze the disintegration reaction in vitro. In this study, IN and IN-CCD proteins were expressed and purified, and a high-throughput format enzyme-linked immunosorbent assay (ELISA) was developed for the disintegration reaction. IN exhibited a marked preference for Mn(2+) over Mg(2+) as the divalent cation cofactor in disintegration. Baicalein, a known IN inhibitor, was found to be an IN-CCD inhibitor. The assay is sensitive and specific for the study of disintegration reaction as well as for the in vitro identification of antiviral drugs targeting IN, especially targeting IN-CCD.
Collapse
Affiliation(s)
- HongQiu He
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | | | | | | | | |
Collapse
|
14
|
Retroviral integration site selection. Viruses 2010; 2:111-130. [PMID: 21994603 PMCID: PMC3185549 DOI: 10.3390/v2010111] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/21/2009] [Accepted: 01/05/2010] [Indexed: 02/07/2023] Open
Abstract
The stable insertion of a copy of their genome into the host cell genome is an essential step of the life cycle of retroviruses. The site of viral DNA integration, mediated by the viral-encoded integrase enzyme, has important consequences for both the virus and the host cell. The analysis of retroviral integration site distribution was facilitated by the availability of the human genome sequence, revealing the non-random feature of integration site selection and identifying different favored and disfavored genomic locations for individual retroviruses. This review will summarize the current knowledge about retroviral differences in their integration site preferences as well as the mechanisms involved in this process.
Collapse
|
15
|
Hu J, Wang C. Molecular Dynamics Simulation of HIV-1 Integrase Dimer Complexed with Viral DNA. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Grobler JA, Stillmock KA, Hazuda DJ. Scintillation proximity assays for mechanistic and pharmacological analyses of HIV-1 integration. Methods 2009; 47:249-53. [PMID: 19285556 DOI: 10.1016/j.ymeth.2009.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022] Open
Abstract
The early events of HIV-1 replication are highlighted by reverse transcription and integration, and the reverse transcriptase and integrase enzymes are important therapeutic targets. Integration proceeds through a series of steps including assembly of integrase on the viral donor DNA ends, 3'-processing, and DNA strand transfer. First generation integrase assays typically included all biochemical reagents in solution where excess donor substrate could serve as the target for DNA strand transfer. These conditions, though valuable for understanding mechanistic aspects of HIV-1 integration, fell short of critical pharmacological designs as most early inhibitors were found to block assembly instead of enzyme function. Second generation designs, which decoupled assembly from DNA strand transfer, afforded the specificity required to identify clinically relevant compounds. Here, we describe versatile scintillation proximity-based assays whereby integrase is assembled onto donor DNA that is immobilized onto the surface of beads. Immobilization and subsequent washing of excess donor DNA eliminates its potential to serve as target DNA, allowing investigation of the DNA strand transfer reaction in isolation. Assembled complexes can be used in high-throughput DNA strand transfer assays if radio labeled target DNA is employed or in integrase binding assays using a suitable radioligand.
Collapse
Affiliation(s)
- Jay A Grobler
- Department of Antiviral Research, Merck Research Laboratories, WP26A-3000, 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, USA.
| | | | | |
Collapse
|
17
|
Merkel G, Andrake MD, Ramcharan J, Skalka AM. Oligonucleotide-based assays for integrase activity. Methods 2008; 47:243-8. [PMID: 19010419 DOI: 10.1016/j.ymeth.2008.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 12/01/2022] Open
Abstract
Oligonucleotide assays have been invaluable for elucidation of the molecular mechanisms of retroviral integrases. A suite of rapid and sensitive fluorescence assays to measure the DNA binding, processing, and joining activities of integrase (IN) is described here. The assays are especially useful for characterizing the major activities of the enzyme, and for handling large numbers of samples efficiently. They can greatly facilitate further biochemical and structural analyses for HIV-1 and other IN proteins. The assays can also be adapted for moderate-high throughput testing of various inhibitory compounds.
Collapse
Affiliation(s)
- George Merkel
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
18
|
He HQ, Ma XH, Liu B, Chen WZ, Wang CX, Cheng SH. A novel high-throughput format assay for HIV-1 integrase strand transfer reaction using magnetic beads. Acta Pharmacol Sin 2008; 29:397-404. [PMID: 18298906 DOI: 10.1111/j.1745-7254.2008.00748.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To develop a novel high-throughput format assay to monitor the integrase (IN) strand transfer (ST) reaction in vitro and apply it to a reaction character study and the identification of antiviral drugs. METHODS The donor DNA duplex, with a sequence identical to the U5 end of HIV-1 long terminal repeats, is labeled at its 5' end with biotin (BIO). The target DNA duplex is labeled at its 3' end with digoxin (DIG). IN mediates the integration of donor DNA into target DNA and results in a 5' BIO and 3' DIG-labeled duplex DNA product. Streptavidin-coated magnetic beads were used to capture the product, and the amount of DIG was measured as the ST reaction product. The assay was optimized in 96-well microplate format for high-throughput screening purpose. Moreover, the assay was applied in a ST reaction character study, and the efficiency of the assay in the identification of antiviral compounds was tested. RESULTS The end-point values, measured as absorbance at 405 nm was approximately 1.5 for the IN-mediated ST reaction as compared with no more than 0.05 of background readings. The ST reaction character and the half maximal inhibitory concentration (IC50) values of 2 known IN inhibitors obtained in our assay were similar to previously reported results using other assays. The evaluation parameter Z' factor for this assay ranged from 0.6 to 0.9. CONCLUSION The assay presented here has been proven to be rapid, sensitive, and specific for the detection of IN ST activity, the reaction character study, as well as for the identification of antiviral drugs targeting IN.
Collapse
Affiliation(s)
- Hong-qiu He
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100022, China
| | | | | | | | | | | |
Collapse
|
19
|
Hu JP, Gong XQ, Su JG, Chen WZ, Wang CX. Study on the molecular mechanism of inhibiting HIV-1 integrase by EBR28 peptide via molecular modeling approach. Biophys Chem 2008; 132:69-80. [DOI: 10.1016/j.bpc.2007.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/21/2007] [Accepted: 09/21/2007] [Indexed: 12/01/2022]
|
20
|
Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 2007; 82:764-74. [PMID: 17977962 DOI: 10.1128/jvi.01534-07] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrase (IN), an essential enzyme of human immunodeficiency virus (HIV), is an attractive antiretroviral drug target. The antiviral activity and resistance profile in vitro of a novel IN inhibitor, elvitegravir (EVG) (also known as JTK-303/GS-9137), currently being developed for the treatment of HIV-1 infection are described. EVG blocked the integration of HIV-1 cDNA through the inhibition of DNA strand transfer. EVG inhibited the replication of HIV-1, including various subtypes and multiple-drug-resistant clinical isolates, and HIV-2 strains with a 50% effective concentration in the subnanomolar to nanomolar range. EVG-resistant variants were selected in two independent inductions, and a total of 8 amino acid substitutions in the catalytic core domain of IN were observed. Among the observed IN mutations, T66I and E92Q substitutions mainly contributed to EVG resistance. These two primary resistance mutations are located in the active site, and other secondary mutations identified are proximal to these primary mutations. The EVG-selected IN mutations, some of which represent novel IN inhibitor resistance mutations, conferred reduced susceptibility to other IN inhibitors, suggesting that a common mechanism is involved in resistance and potential cross-resistance. The replication capacity of EVG-resistant variants was significantly reduced relative to both wild-type virus and other IN inhibitor-resistant variants selected by L-870,810. EVG and L-870,810 both inhibited the replication of murine leukemia virus and simian immunodeficiency virus, suggesting that IN inhibitors bind to a conformationally conserved region of various retroviral IN enzymes and are an ideal drug for a range of retroviral infections.
Collapse
|
21
|
He HQ, Ma XH, Liu B, Zhang XY, Chen WZ, Wang CX, Cheng SH. High-throughput real-time assay based on molecular beacons for HIV-1 integrase 3'-processing reaction. Acta Pharmacol Sin 2007; 28:811-7. [PMID: 17506940 DOI: 10.1111/j.1745-7254.2007.00561.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To develop a high-throughput real-time assay based on molecular beacons to monitor the integrase 3'-processing reaction in vitro and apply it to inhibitor screening. METHODS The recombinant human immunodeficiency virus (HIV)-1 integrase (IN) is incubated with a 38 mer oligonucleotide substrate, a sequence identical to the U5 end of HIV-1 long terminal repeats (LTR). Based on the fluorescence properties of molecular beacons, the substrate is designed to form a stem-loop structure labeled with a fluorophore at the 5' end and a quencher at the 3' end. IN cleaves the terminal 3'-dinucleotide containing the quencher, resulting in an increase in fluorescence which can be monitored on a spectrofluorometer. To optimize this assay, tests were performed to investigate the effects of substrates, enzyme and the metal ion concentrations on the IN activity and optimal parameters were obtained. Moreover, 2 IN inhibitors were employed to test the performance of this assay in antiviral compound screening. RESULTS The fluorescent intensity of the reaction mixture varies linearly with time and is proportional to the velocity of the 3'-processing reaction. Tests were performed and the results showed that the optimal rate was obtained for a reaction mixture containing 50 mg/L recombinant HIV-1 IN, 400 nmol/L substrate, and 10 mmol/L Mn(2+). The IN 3'-processing reaction under the optimal conditions showed a more than 18-fold increase in the fluorescence intensity compared to the enzyme-free control. The IC50 values of the IN inhibitors obtained in our assay were similar to the values obtained from a radiolabeled substrate assay. CONCLUSION Our results demonstrated that this is a fast, reliable, and sensitive method to monitor HIV IN 3'-processing reaction and that it can be used for inhibitor screening.
Collapse
Affiliation(s)
- Hong-Qiu He
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100022, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Charvat TT, Lee DJ, Robinson WE, Chamberlin AR. Design, synthesis, and biological evaluation of chicoric acid analogs as inhibitors of HIV-1 integrase. Bioorg Med Chem 2006; 14:4552-67. [PMID: 16524737 DOI: 10.1016/j.bmc.2006.02.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/09/2006] [Accepted: 02/10/2006] [Indexed: 12/31/2022]
Abstract
A series of analogs of the potent HIV-1 integrase (HIV IN) inhibitor chicoric acid (CA) was designed with the intention of ameliorating some of the parent natural product's undesirable properties, in particular its toxicity, instability, and poor membrane permeability. More than 70 analogs were synthesized and assayed for three types of activity: (1) the ability to inhibit 3'-end processing and strand transfer reactions using recombinant HIV IN in vitro, (2) toxicity against the CD4+ lymphoblastoid cell line, MT2, and (3) anti-HIV activity against HIV(LAI). CA analogs lacking one of the carboxyl groups of CA and with 3,4,5-trihydroxycinnamoyl sidechains in place of the caffeoyl group of CA exhibited the most potent inhibition of HIV replication and end-processing activity. Galloyl-substituted derivatives also displayed very potent in vitro and in vivo activities, in most cases exceeding the inhibitory effects of CA itself. Conversely, analogous monocarboxy caffeoyl analogs exhibited only modest inhibition, while the corresponding 3,4-dihydroxybenzoyl-substituted compounds were devoid of activity.
Collapse
Affiliation(s)
- Trevor T Charvat
- Department of Chemistry, University of California, Irvine, 92697, USA
| | | | | | | |
Collapse
|
23
|
Lee DJ, Robinson WE. Preliminary mapping of a putative inhibitor-binding pocket for human immunodeficiency virus type 1 integrase inhibitors. Antimicrob Agents Chemother 2006; 50:134-42. [PMID: 16377678 PMCID: PMC1346808 DOI: 10.1128/aac.50.1.134-142.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular modeling studies have identified a putative human immunodeficiency virus (HIV) integrase (IN) inhibitor-binding pocket for l-chicoric acid (l-CA) and other inhibitors of IN (C. A. Sotriffer, H. Ni, and A. McCammon, J. Med. Chem. 43:4109-4117, 2000). By using site-directed mutagenesis of several amino acid residues identified by modeling studies, a common inhibitor-binding pocket on IN was confirmed for l-CA and the diketo acid L-731,988. Specifically, the single mutations E92K, Q148A, K156A, K156R, G140S, and G149S, as well as the double mutations C65S-K156N and H67D-G140A were evaluated for their effects on enzymatic activity and inhibitor susceptibility. Each recombinant IN was attenuated for 3'-end processing and strand transfer activities. Most proteins were also attenuated for disintegration; the IN that contained K156R and C65S-K156N, however, displayed disintegration activity similar to that of IN from HIV(NL4-3). All mutant IN proteins demonstrated decreased susceptibility to l-CA, while all mutant proteins except E92K and K156R demonstrated resistance to L-731,988. These data validate the computer modeling data and demonstrate that l-CA and L-731,988 share an overlapping inhibitor-binding pocket that involves amino acids Q148, C65, and H67. The resistance studies confirm that L-731,988 fills one-half of the inhibitor-binding pocket and binds to Q148 but excludes E92, while l-CA fills the entire binding groove and thus interacts with E92. These results provide "wet laboratory" evidence that molecular models of the HIV IN inhibitor-binding pocket can be used for drug discovery.
Collapse
Affiliation(s)
- Deborah J Lee
- Department of Microbiology and Molecular Genetics, D440 Medical Sciences I, University of California, Irvine, California 92697-4800, USA.
| | | |
Collapse
|
24
|
Wielens J, Crosby IT, Chalmers DK. A three-dimensional model of the human immunodeficiency virus type 1 integration complex. J Comput Aided Mol Des 2005; 19:301-17. [PMID: 16184433 DOI: 10.1007/s10822-005-5256-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 04/07/2005] [Indexed: 01/26/2023]
Abstract
While the general features of HIV-1 integrase function are understood, there is still uncertainty about the composition of the integration complex and how integrase interacts with viral and host DNA. We propose an improved model of the integration complex based on current experimental evidence including a comparison with the homologous Tn5 transposase containing bound DNA and an analysis of DNA binding sites using Goodford's GRID. Our model comprises a pair of integrase dimers, two strands of DNA to represent the viral DNA ends and a strand of bent DNA representing the host chromosome. In our model, the terminal four base pairs of each of the viral DNA strands interact with the integrase dimer providing the active site, while bases one turn away interact with a flexible loop (residues 186-194) on the second integrase dimer. We propose that residues E152, Q148 and K156 are involved in the specific recognition of the conserved CA dinucleotide and that the active site mobile loop (residues 140-149) stabilises the integration complex by acting as a barrier to separate the two viral DNA ends. In addition, the residues responsible for DNA binding in our model show a high level of amino acid conservation.
Collapse
Affiliation(s)
- Jerome Wielens
- Department of Medicinal Chemistry, Monash University, 381 Royal Parade, 3052, Parkville, Vic., Australia.
| | | | | |
Collapse
|
25
|
Mizuarai S, Kamihira M, Nishijima K, Iijima S. Integrase-mediated nonviral gene transfection with enhanced integration efficiency. J Biosci Bioeng 2005; 88:461-7. [PMID: 16232645 DOI: 10.1016/s1389-1723(00)87659-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1999] [Accepted: 08/16/1999] [Indexed: 11/26/2022]
Abstract
Retroviruses efficiently integrate their genome into the host chromosome. Two elements of the retrovirus genome are needed for the integration: long terminal repeats (LTRs) and integrase protein. We attempted to incorporate the retrovirus integration machinery in lipid vesicle-mediated gene transfection with the aim of achieving efficient stable transfection in a nonviral gene transfection system. A DNA fragment, in which a neomycin-resistant gene was flanked between partial LTR sequences derived from the Rous sarcoma virus (RSV), was constructed. This DNA fragment was transfected together with purified recombinant RSV integrase or integrase expression vectors by means of lipid vesicle-mediated gene transfection. The integrase-mediated transfection enhanced the stable transfection efficiency. The length and the end structure of the LTR sequences were important in achieving high efficiency. Under optimal conditions, the stable transfection efficiency showed a 16-fold improvement over that without integrase.
Collapse
Affiliation(s)
- S Mizuarai
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | | | | | | |
Collapse
|
26
|
|
27
|
Phan AT, Kuryavyi V, Ma JB, Faure A, Andréola ML, Patel DJ. An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase. Proc Natl Acad Sci U S A 2005; 102:634-9. [PMID: 15637158 PMCID: PMC545538 DOI: 10.1073/pnas.0406278102] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report on the NMR-based solution structure of the 93del d(GGGGTGGGAGGAGGGT) aptamer, a potent nanomolar inhibitor of HIV-1 integrase. This guanine-rich DNA sequence adopts an unusually stable dimeric quadruplex architecture in K+ solution. Within each 16-nt monomer subunit, which contains one A.(G.G.G.G) pentad sandwiched between two G.G.G.G tetrads, all G-stretches are parallel, and all guanines are anti with the exception of G1, which is syn. Dimer formation is achieved through mutual pairing of G1 of one monomer, with G2, G6, and G13 of the other monomer, to complete G.G.G.G tetrad formation. There are three single-nucleotide double-chain-reversal loops within each monomer fold, such that the first (T5) and third (A12) loops bridge three G-tetrad layers, whereas the second (A9) loop bridges two G-tetrad layers and participates in A.(G.G.G.G) pentad formation. Results of NMR and of integrase inhibition assays on loop-modified sequences allowed us to propose a strategy toward the potential design of improved HIV-1 integrase inhibitors. Finally, we propose a model, based on molecular docking approaches, for positioning the 93del dimeric DNA quadruplex within a basic channel/canyon formed between subunits of a dimer of dimers of HIV-1 integrase.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lee DJ, Robinson WE. Human immunodeficiency virus type 1 (HIV-1) integrase: resistance to diketo acid integrase inhibitors impairs HIV-1 replication and integration and confers cross-resistance to L-chicoric acid. J Virol 2004; 78:5835-47. [PMID: 15140981 PMCID: PMC415810 DOI: 10.1128/jvi.78.11.5835-5847.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The diketo acids are potent inhibitors of human immunodeficiency virus (HIV) integrase (IN). Mutations in IN, T66I, S153Y, and M154I, as well as T66I-S153Y and T66I-M154I double mutations, confer resistance to diketo acids (D. J. Hazuda et al., Science 287:646-650, 2000). The effects of these IN mutations on viral replication, enzymatic activity, and susceptibility to other HIV inhibitors are reported herein. By immunofluorescence assay and real-time PCR, all mutant viruses demonstrated a modest delay in viral spread compared to that of reference HIV. These viruses also showed a statistically significant defect in integration without defects in reverse transcription. Recombinant IN containing S153Y, T66I, and M154I-T66I mutations had an approximately twofold decrease in both disintegration and 3'-end-processing-strand transfer activities in vitro. In contrast, IN containing M154I demonstrated a greater than twofold increase in specific activity in both reactions. All mutant HIVs were resistant to l-chicoric acid, a dicaffeoyltartaric acid IN inhibitor, both in tissue culture and in biochemical assays, yet remained susceptible to the reverse transcriptase inhibitors zidovudine and nevirapine. Thus, IN mutations conferring resistance to the diketo acids can yield integration defects, attenuated catalysis in vitro, and cross-resistance to l-chicoric acid.
Collapse
Affiliation(s)
- Deborah J Lee
- Department of Pathology, D440 Med. Sci. I, University of California, Irvine, CA 92697-4800, USA
| | | |
Collapse
|
29
|
Taganov KD, Cuesta I, Daniel R, Cirillo LA, Katz RA, Zaret KS, Skalka AM. Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro. J Virol 2004; 78:5848-55. [PMID: 15140982 PMCID: PMC415796 DOI: 10.1128/jvi.78.11.5848-5855.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 01/23/2004] [Indexed: 01/26/2023] Open
Abstract
Integration of viral DNA into the host chromosome is an obligatory step in retroviral replication and is dependent on the activity of the viral enzyme integrase. To examine the influence of chromatin structure on retroviral DNA integration in vitro, we used a model target comprising a 13-nucleosome extended array that includes binding sites for specific transcription factors and can be compacted into a higher-ordered structure. We found that the efficiency of in vitro integration catalyzed by human immunodeficiency virus type 1 (HIV-1) integrase was decreased after compaction of this target with histone H1. In contrast, integration by avian sarcoma virus (ASV) integrase was more efficient after compaction by either histone H1 or a high salt concentration, suggesting that the compacted structure enhances this reaction. Furthermore, although site-specific binding of transcription factors HNF3 and GATA4 blocked ASV DNA integration in extended nucleosome arrays, local opening of H1-compacted chromatin by HNF3 had no detectable effect on integration, underscoring the preference of ASV for compacted chromatin. Our results indicate that chromatin structure affects integration site selection of the HIV-1 and ASV integrases in opposite ways. These distinct properties of integrases may also affect target site selection in vivo, resulting in an important bias against or in favor of integration into actively transcribed host DNA.
Collapse
Affiliation(s)
- Konstantin D Taganov
- Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Ave., Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhu K, Dobard C, Chow SA. Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and the effect of cysteine mutations of integrase on its interactions with reverse transcriptase. J Virol 2004; 78:5045-55. [PMID: 15113886 PMCID: PMC400327 DOI: 10.1128/jvi.78.10.5045-5055.2004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral integrase catalyzes the essential step of integrating a double-stranded DNA copy of the viral genome into a host cell chromosome. Mutational studies have revealed that integrase is involved in additional steps of viral replication, but the mechanism for the pleiotropic effect is not well characterized. Since Cys residues generally play crucial roles in protein structure and function, we introduced Cys-to-Ser substitutions at positions 56, 65, and 130 of human immunodeficiency virus type 1 (HIV-1) integrase to determine their effects on integration activity and viral replication. None of the substitutions significantly affected the enzymatic activities in vitro. When introduced into the NL4-3 molecular clone of HIV-1, mutant viruses encoding Cys mutations at positions 56 and 65 of integrase replicated similarly to the wild-type virus in CD4(+)-T-cell lines, whereas the C130S-containing virus was noninfectious. The entry and postintegration steps of the viral life cycle for all mutant viruses were normal, and all had particle-associated reverse transcriptase (RT) activity. However, early reverse-transcribed DNA products were absent in the lysate of cells infected with the C130S mutant virus, indicating that the mutation abolished the ability of the virus to initiate endogenous reverse transcription. Coimmunoprecipitation using purified integrase and RT showed that the C-terminal domain of wild-type HIV-1 integrase interacted with RT. The interaction between integrase and RT was not affected in the presence of a reducing or alkylating agent, suggesting that the interaction did not involve a disulfide linkage. The C130S substitution within the core region may disrupt the protein recognition interface of the C-terminal domain and abolish its ability to interact with RT. Our results indicate that integrase plays an important role during the reverse-transcription step of the viral life cycle, possibly through physical interactions with RT.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
31
|
Calmels C, de Soultrait VR, Caumont A, Desjobert C, Faure A, Fournier M, Tarrago-Litvak L, Parissi V. Biochemical and random mutagenesis analysis of the region carrying the catalytic E152 amino acid of HIV-1 integrase. Nucleic Acids Res 2004; 32:1527-38. [PMID: 14999095 PMCID: PMC390286 DOI: 10.1093/nar/gkh298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HIV-1 integrase (IN) catalyzes the integration of the proviral DNA into the cellular genome. The catalytic triad D64, D116 and E152 of HIV-1 IN is involved in the reaction mechanism and the DNA binding. Since the integration and substrate binding processes are not yet exactly known, we studied the role of amino acids localized in the catalytic site. We focused our interest on the V151E152S153 region. We generated random mutations inside this domain and selected mutated active INs by using the IN-induced yeast lethality assay. In vitro analysis of the selected enzymes showed that the IN nuclease activities (specific 3'-processing and non-sequence-specific endonuclease), the integration and disintegration reactions and the binding of the various DNA substrates were affected differently. Our results support the hypothesis that the three reactions may involve different DNA binding sites, enzyme conformations or mechanisms. We also show that the V151E152S153 region involvement in the integration reaction is more important than for the 3'-processing activity and can be involved in the recognition of DNA. The IN mutants may lead to the development of new tools for studying the integration reaction, and could serve as the basis for the discovery of integration-specific inhibitors.
Collapse
Affiliation(s)
- C Calmels
- UMR-5097, CNRS-Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux cedex, and IFR 66 Pathologies Infectieuses et Cancers, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tan W, Zhu K, Segal DJ, Barbas CF, Chow SA. Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J Virol 2004; 78:1301-13. [PMID: 14722285 PMCID: PMC321411 DOI: 10.1128/jvi.78.3.1301-1313.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 10/14/2003] [Indexed: 11/20/2022] Open
Abstract
In order to establish a productive infection, a retrovirus must integrate the cDNA of its RNA genome into the host cell chromosome. While this critical process makes retroviruses an attractive vector for gene delivery, the nonspecific nature of integration presents inherent hazards and variations in gene expression. One approach to alleviating the problem involves fusing retroviral integrase to a sequence-specific DNA-binding protein that targets a defined chromosomal site. We prepared proteins consisting of wild-type or truncated human immunodeficiency virus type 1 (HIV-1) integrase fused to the synthetic polydactyl zinc finger protein E2C. The purified fusion proteins bound specifically to the 18-bp E2C recognition sequence as analyzed by DNase I footprinting. The fusion proteins were catalytically active and biased integration of retroviral DNA near the E2C-binding site in vitro. The distribution was asymmetric, and the major integration hot spots were localized within a 20-bp region upstream of the C-rich strand of the E2C recognition sequence. Integration bias was not observed with target plasmids bearing a mutated E2C-binding site or when HIV-1 integrase and E2C were added to the reaction as separate proteins. The results demonstrate that the integrase-E2C fusion proteins offer an efficient approach and a versatile framework for directing the integration of retroviral DNA into a predetermined DNA site.
Collapse
Affiliation(s)
- Wenjie Tan
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
33
|
Carmel AB, Matthews BW. Crystal structure of the BstDEAD N-terminal domain: a novel DEAD protein from Bacillus stearothermophilus. RNA (NEW YORK, N.Y.) 2004; 10:66-74. [PMID: 14681586 PMCID: PMC1370519 DOI: 10.1261/rna.5134304] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 09/22/2003] [Indexed: 05/19/2023]
Abstract
Most cellular processes requiring RNA structure rearrangement necessitate the action of Asp-Glu-Ala-Asp (DEAD) proteins. Members of the family, named originally for the conserved DEAD amino acid sequence, are thought to disrupt RNA structure and facilitate its rearrangement by unwinding short stretches of duplex RNA. BstDEAD is a novel 436 amino acid representative of the DEAD protein family from Bacillus stearothermophilus that contains all eight conserved motifs found in DEAD proteins and is homologous with other members of the family. Here, we describe the 1.85 A resolution structure of the N-terminal domain (residues 1-211) of BstDEAD (BstDEAD-NT). Similar to the corresponding domains of related helicases, BstDEAD-NT adopts a parallel alpha/beta structure with RecA-like topology. In general, the conserved motifs superimpose on closely related DEAD proteins and on more distantly related helicases such as RecA. This affirms the current belief that the core helicase domains, responsible for mechanistic activity, are structurally similar in DEAD proteins. In contrast, however, the so-called Walker A P-loop, which binds the beta- and gamma-phosphates of ATP, adopts a rarely seen "closed" conformation that would sterically block ATP binding. The closed conformation may be indicative of a general regulatory feature among DEAD proteins (and RNA helicases) that differs from that used by DNA helicases. BstDEAD also contains a unique extension of approximately 60 residues at the C terminus that is highly basic, suggesting that it might bind nucleic acids and, in so doing, confer specificity to the helicase activity of the core region.
Collapse
Affiliation(s)
- Andrew B Carmel
- Institute of Molecular Biology, Howard Hughes Medical Institute and Departments of Chemistry and Physics, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
34
|
Semenova EA, Plyasunova OA, Petrenko NI, Uzenkova NV, Shul'ts EE, Tolstikov GA, Pokrovskii AG. Inhibition of the activity of recombinant HIV-1 integrase by derivatives of higher terpenoids. DOKL BIOCHEM BIOPHYS 2003; 391:218-20. [PMID: 14531072 DOI: 10.1023/a:1025113525466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- E A Semenova
- Vector State Scientific Center of Virology and Biotechnology, pos. Kol'tsovo, Novosibirsk Oblast, 630559 Russia
| | | | | | | | | | | | | |
Collapse
|
35
|
King PJ, Lee DJ, Reinke RA, Victoria JG, Beale K, Robinson WE. Human immunodeficiency virus type-1 integrase containing a glycine to serine mutation at position 140 is attenuated for catalysis and resistant to integrase inhibitors. Virology 2003; 306:147-61. [PMID: 12620807 DOI: 10.1016/s0042-6822(02)00042-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
L-chicoric acid (L-CA) is a potent inhibitor of HIV integrase (IN) in vitro. In this report, the effects of a glycine to serine mutation at position 140 (G140S) on HIV IN and its effects on IN inhibitor resistance are described. HIV containing the G140S mutation showed a delay in replication. Using real-time polymerase chain reaction, the delay was secondary to a failure in integration. The mutant protein (IN(G140S)) was attenuated approximately four-fold for catalysis under equilibrium conditions compared to wild-type IN (IN(WT)) and attenuated five-fold in steady-state kinetic analysis of disintegration. Fifty percent inhibitory concentration assays were performed with IN inhibitors against both IN proteins in disintegration and strand transfer reactions. IN(G140S) was resistant to both L-CA and L-731,988, a diketoacid. HIV containing the mutation was resistant to both inhibitors as well. The G140S mutation attenuates IN activity and confers resistance to IN inhibitors, suggesting that diketoacids and L-CA interact with a similar binding site on HIV IN.
Collapse
Affiliation(s)
- Peter J King
- Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bao KK, Wang H, Miller JK, Erie DA, Skalka AM, Wong I. Functional oligomeric state of avian sarcoma virus integrase. J Biol Chem 2003; 278:1323-7. [PMID: 12446721 DOI: 10.1074/jbc.c200550200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Retroviral integrase, one of only three enzymes encoded by the virus, catalyzes the essential step of inserting a DNA copy of the viral genome into the host during infection. Using the avian sarcoma virus integrase, we demonstrate that the enzyme functions as a tetramer. In presteady-state active site titrations, four integrase protomers were required for a single catalytic turnover. Volumetric determination of integrase-DNA complexes imaged by atomic force microscopy during the initial turnover additionally revealed substrate-induced assembly of a tetramer. These results suggest that tetramer formation may be a requisite step during catalysis with ramifications for antiviral design strategies targeting the structurally homologous human immunodeficiency virus, type 1 (HIV-1) integrase.
Collapse
Affiliation(s)
- Kogan K Bao
- Department of Biochemistry and Biophysics, Oregon State University, Oregon 97331, USA
| | | | | | | | | | | |
Collapse
|
37
|
de Soultrait VR, Lozach PY, Altmeyer R, Tarrago-Litvak L, Litvak S, Andréola ML. DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents. J Mol Biol 2002; 324:195-203. [PMID: 12441099 DOI: 10.1016/s0022-2836(02)01064-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HIV-1 integrase, the retroviral-encoded enzyme involved in the integration of the retrotranscribed viral genome into the host nuclear DNA, is an attractive and still unexploited target. To date, very few inhibitors of this enzyme with a potential therapeutic value have been described. During the search for new HIV-1 targets, we recently described DNA oligodeoxynucleotide aptamers (ODN 93 and ODN 112) that are strong inhibitors of the RNase H activity associated with HIV-1 reverse transcriptase. The striking structural homology between RNase H and integrase led us to study the effect of the RNase H inhibitors on the integrase. Shorter DNA aptamers derived from ODNs 93 and 112 (ODNs 93del and 112del) were able to inhibit HIV-1 integrase in the nanomolar range. They had G-rich sequences able to form G-quartets stabilized by the presence of K(+). The presence of these ions increased the inhibitory efficiency of these agents dramatically. Inhibition of enzymatic activities by ODN 93del and ODN 112del was observed in a cell-free assay system using a recombinant integrase and HIV-1 replication was abolished in infected human cells. Moreover, cell fusion assays showed that these agents do not block viral cell entry at concentrations where viral replication is stopped.
Collapse
Affiliation(s)
- V R de Soultrait
- UMR 5097, CNRS-Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
38
|
Vercammen J, Maertens G, Gerard M, De Clercq E, Debyser Z, Engelborghs Y. DNA-induced polymerization of HIV-1 integrase analyzed with fluorescence fluctuation spectroscopy. J Biol Chem 2002; 277:38045-52. [PMID: 12147698 DOI: 10.1074/jbc.m205842200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase is essential for viral replication. Integrase inserts the viral DNA into the host DNA. We studied the association of integrase to fluorescently labeled oligonucleotides using fluorescence correlation spectroscopy. The binding of integrase to the fluorescent oligonucleotides resulted in the appearance of bright spikes during fluorescence correlation spectroscopy measurements. These spikes arise from the formation of high molecular mass protein-DNA complexes. The fluorescence of the free DNA was separated from the spikes with a statistical method. From the decrease of the concentration of free oligonucleotides, a site association constant was determined. The DNA-protein complexes were formed rapidly in a salt-dependent manner with site association constants ranging between 5 and 40 microm(-1) under different conditions. We also analyzed the kinetics of the DNA-protein complex assembly and the effect of different buffer components. The formation of the fluorescent protein-DNA complex was inhibited by guanosine quartets, and the inhibition constant was determined at 1.8 +/- 0.6 x 10(8) m(-1). Displacement of bound DNA with G-quartets allowed the determination of the dissociation rate constant and proves the reversibility of the association process.
Collapse
Affiliation(s)
- Jo Vercammen
- Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
39
|
Abd-Elazem IS, Chen HS, Bates RB, Huang RCC. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antiviral Res 2002; 55:91-106. [PMID: 12076754 DOI: 10.1016/s0166-3542(02)00011-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water soluble extracts of the herbal plant, Salvia miltiorrhiza (Danshen) exhibited potent effect against HIV-1 integrase activity in vitro and viral replication in vivo. We have developed an extensive purification scheme to isolate effective, non-toxic inhibitors against human immunodeficiency virus type 1 (HIV-1) using the 3'-processing activity of integrase as a purification guide and assay. Two water soluble compounds, M(5)22 and M(5)32, have been discovered by isolating them from S. miltiorrhiza roots in purities of >99.5% as shown by NMR spectral analysis with yields of 0.018 and 0.038%, respectively. Structural determination revealed that M(5)22 is lithospermic acid and M(5)32 is lithospermic acid B. These two structurally related compounds are potent anti-HIV inhibitors and showed no cytotoxicity to H9 cells at high concentrations (CC(100)>297 microM for M(5)22 and >223 microM for M(5)32). The IC50 for inhibition of 3'-processing by HIV-1 integrase was found to be 0.83 microM for M(5)22 and 0.48 microM for M(5)32. In addition, M(5)22 and M(5)32 inhibited HIV-1 integrase catalytic activities of 3'-joining to the target DNA with IC50 of 0.48 microM for M(5)22 and 0.37 microM for M(5)32. Furthermore, kinetic and mechanistic studies suggested that drug binding to HIV-1 integrase and inhibition of enzymatic activity occur at a fast rate. Both M(5)22 and M(5)32 do not prevent HIV entry in H9 cells. They also show no inhibition of reverse transcriptase activity in infected cells. The levels of intracellular strong stop and full-length viral DNA remained unchanged following drug treatment. However, both inhibitors strongly suppressed the acute HIV-1 infection of H9 cells with IC50 values of 2 and 6.9 microM for M(5)22 and M(5)32, respectively. Thus these two selective integrase inhibitors hold promise as a novel class of therapeutic drugs for AIDS based on their high potencies and absence of cytotoxicity.
Collapse
Affiliation(s)
- Ibrahim S Abd-Elazem
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
40
|
de Soultrait VR, Caumont A, Parissi V, Morellet N, Ventura M, Lenoir C, Litvak S, Fournier M, Roques B. A novel short peptide is a specific inhibitor of the human immunodeficiency virus type 1 integrase. J Mol Biol 2002; 318:45-58. [PMID: 12054767 DOI: 10.1016/s0022-2836(02)00033-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The retroviral encoded protein integrase (IN) is required for the insertion of the human immunodeficiency virus type 1 (HIV-1) proviral DNA into the host genome. In spite of the crucial role played by IN in the retroviral life cycle, which makes this enzyme an attractive target for the development of new anti-AIDS agents, very few inhibitors have been described and none seems to have a potential use in anti-HIV therapy. To obtain potent and specific IN inhibitors, we used the two-hybrid system to isolate short peptides. Using HIV-1 IN as a bait and a yeast genomic library as the source of inhibitory peptides (prey), we isolated a 33-mer peptide (I33) that bound tightly to the enzyme. I33 inhibited both in vitro IN activities, i.e. 3' end processing and strand transfer. Further analysis led us to select a shorter peptide, EBR28, corresponding to the N-terminal region of I33. Truncated variants showed that EBR28 interacted with the catalytic domain of IN interfering with the binding of the DNA substrate. Alanine single substitution of each EBR28 residue (alanine scanning) allowed the identification of essential amino acids involved in the inhibition. The EBR28 NMR structure shows that this peptide adopts an alpha-helical conformation with amphipathic properties. Additionally, EBR28 showed a significant antiviral effect when assayed on HIV-1 infected human cells. Thus, this potentially important short lead peptide may not only be helpful to design new anti-HIV agents, but also could prove very useful in further studies of the structural and functional characteristics of HIV-1 IN.
Collapse
|
41
|
Bao KK, Skalka AM, Wong I. Presteady-state analysis of avian sarcoma virus integrase. I. A splicing activity and structure-function implications for cognate site recognition. J Biol Chem 2002; 277:12089-98. [PMID: 11821409 DOI: 10.1074/jbc.m111315200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrase catalyzes insertion of a retroviral genome into the host chromosome. After reverse transcription, integrase binds specifically to the ends of the duplex retroviral DNA, endonucleolytically cleaves two nucleotides from each 3'-end (the processing activity), and inserts these ends into the host DNA (the joining activity) in a concerted manner. In first-turnover experiments with synapsed DNA substrates, we observed a novel splicing activity that resembles an integrase joining reaction but uses unprocessed ends. This splicing reaction showed an initial exponential phase (k(splicing) = 0.02 s(-1)) of product formation and generated products macroscopically indistinguishable from those created by the processing and joining activities, thus bringing into question methods previously used to quantitate these reactions in a time regime where multiple turnovers of the enzyme have occurred. With a presteady-state assay, however, we were able to distinguish between different pathways that led to formation of identical products. Furthermore, the splicing reaction allowed characterization of substrate binding and specificity. Although integrase requires only a 3' hydroxyl with respect to nucleophiles derived from DNA, it specifically favors the cognate sequence CATT as the electrophile. These experimental results support a two-site "switching" model for binding and catalysis of all three integrase activities.
Collapse
Affiliation(s)
- Kogan K Bao
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
42
|
Bao KK, Skalka AM, Wong I. Presteady-state analysis of avian sarcoma virus integrase. II. Reverse-polarity substrates identify preferential processing of the U3-U5 pair. J Biol Chem 2002; 277:12099-108. [PMID: 11821408 DOI: 10.1074/jbc.m111314200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrase-catalyzed insertion of the retroviral genome into the host chromosome involves two reactions in vivo: 1) the binding and endonucleolytic removal of the terminal dinucleotides of the viral DNA termini and 2) the recombination of the ends with the host DNA. Kukolj and Skalka (Kukolj, G., and Skalka, A. M. (1995) Genes Dev. 9, 2556-2567) have previously shown that tethering of the termini enhances the endonucleolytic activities of integrase. We have used 5'-5' phosphoramidites to design reverse-polarity tethers that allowed us to examine the reactivity of two viral long terminal repeat-derived sequences when concurrently bound to integrase and, additionally, developed presteady-state assays to analyze the initial exponential phase of the reaction, which is a measure of the amount of productive nucleoprotein complexes formed during preincubation of integrase and DNA. Furthermore, the reverse-polarity tether circumvents the integrase-catalyzed splicing reaction (Bao, K., Skalka, A. M., and Wong, I. (2002) J. Biol. Chem. 277, 12089-12098) that obscures accurate analysis of the reactivities of synapsed DNA substrates. Consequently, we were able to establish a lower limit of 0.2 s(-1) for the rate constant of the processing reaction. The analysis showed the physiologically relevant U3/U5 pair of viral ends to be the preferred substrate for integrase with the U3/U3 combination favored over the U5/U5 pair.
Collapse
Affiliation(s)
- Kogan K Bao
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
43
|
Holmes-Son ML, Chow SA. Correct integration mediated by integrase-LexA fusion proteins incorporated into HIV-1. Mol Ther 2002; 5:360-70. [PMID: 11945062 DOI: 10.1006/mthe.2002.0559] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fusion of wild-type or truncated integrase to a sequence-specific DNA-binding protein, such as the Escherichia coli LexA repressor, results in an integration bias toward the recognition site of the DNA-binding protein in vitro. Integrase-defective HIV-1 could become integration-competent by supplying the fusion protein in trans. To understand the mechanism of complementation, the virus-host DNA junctions of cells infected with the integrase-LexA containing virus were sequenced. The characteristic hallmarks of wild-type integration were present, a 5'-TG/CA-3' at the ends of the viral sequence and a 5-bp direct repeat in the immediately flanking cellular DNA. Experiments were also carried out to determine the mechanism by which the amino- or carboxy-terminal truncated integrase fused to LexA restored integration to the integrase-mutant viral clone. Complementation experiments using purified fusion proteins in vitro, or viruses encoding a C-terminal truncated integrase and containing various fusion proteins in trans, indicated that the truncated integrase-LexA proteins are inactive per se and they restore integration by forming mixed multimers with the virally encoded mutant integrase. Correct integration of retroviral DNA by the in trans method illustrates the feasibility of introducing integrase fusion proteins into retroviral vectors to achieve site-directed integration without interfering with the attributes of the integration reaction.
Collapse
Affiliation(s)
- Michelle L Holmes-Son
- Department of Molecular and Medical Pharmacology, UCLA AIDS Institute, Los Angeles, California, 90095, USA
| | | |
Collapse
|
44
|
Oz I, Avidan O, Hizi A. Inhibition of the integrases of human immunodeficiency viruses type 1 and type 2 by reverse transcriptases. Biochem J 2002; 361:557-66. [PMID: 11802785 PMCID: PMC1222338 DOI: 10.1042/0264-6021:3610557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present evidence that the integrases (INs) of HIV types 1 and 2 are inhibited in vitro by the reverse transcriptases (RTs) of HIV-1, HIV-2 and murine leukaemia virus. Both 3'-end processing and 3'-end joining (strand transfer) activities of IN were affected by the RTs. Full inhibitions were accomplished with most RT and IN combinations tested at around equimolar RT/IN ratios. The disintegration activity of IN was also inhibited by RTs. Neither DNA synthesis nor the ribonuclease H (RNase H) domain of RT were involved in IN inhibition, since specific DNA polymerase inhibitors did not affect the level of IN inhibition, and the p51 isoform of HIV-1 RT (which lacks the RNase H domain) is as effective in inhibiting IN as the heterodimeric p66/p51 isoform. On the other hand, the catalytic activities of HIV RTs were not affected by the INs, showing that RTs can inhibit IN activities, whereas INs do not inhibit RTs. We postulate that sequences and/or three-dimensional protein structures common to RTs interact with INs and inhibit their activities. We show evidence for this hypothesis and discuss the possible sites of IN involved in this interaction.
Collapse
Affiliation(s)
- Iris Oz
- Department of Cell Biology and Histology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | | | | |
Collapse
|
45
|
Appa RS, Shin CG, Lee P, Chow SA. Role of the nonspecific DNA-binding region and alpha helices within the core domain of retroviral integrase in selecting target DNA sites for integration. J Biol Chem 2001; 276:45848-55. [PMID: 11585830 DOI: 10.1074/jbc.m107365200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Retroviral integrase plays an important role in choosing host chromosomal sites for integration of the cDNA copy of the viral genome. The domain responsible for target site selection has been previously mapped to the central core of the protein (amino acid residues 49-238). Chimeric integrases between human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) were prepared to examine the involvement of a nonspecific DNA-binding region (residues 213-266) and certain alpha helices within the core domain in target site selection. Determination of the distribution and frequency of integration events of the chimeric integrases narrowed the target site-specifying motif to within residues 49-187 and showed that alpha 3 and alpha 4 helices (residues 123-166) were not involved in target site selection. Furthermore, the chimera with the alpha 2 helix (residues 118-121) of FIV identity displayed characteristic integration events from both HIV-1 and FIV integrases. The results indicate that the alpha 2 helix plays a role in target site preference as either part of a larger or multiple target site-specifying motif.
Collapse
Affiliation(s)
- R S Appa
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
46
|
Parissi V, Calmels C, De Soultrait VR, Caumont A, Fournier M, Chaignepain S, Litvak S. Functional interactions of human immunodeficiency virus type 1 integrase with human and yeast HSP60. J Virol 2001; 75:11344-53. [PMID: 11689615 PMCID: PMC114720 DOI: 10.1128/jvi.75.23.11344-11353.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of human immunodeficiency virus type 1 (HIV-1) proviral DNA in the nuclear genome is catalyzed by the retroviral integrase (IN). In addition to IN, viral and cellular proteins associated in the high-molecular-weight preintegration complex have been suggested to be involved in this process. In an attempt to define host factors interacting with IN, we used an in vitro system to identify cellular proteins in interaction with HIV-1 IN. The yeast Saccharomyces cerevisiae was chosen since (i) its complete sequence has been established and the primary structure of all the putative proteins from this eucaryote has been deduced, (ii) there is a significant degree of homology between human and yeast proteins, and (iii) we have previously shown that the expression of HIV-1 IN in yeast induces a lethal phenotype. Strong evidences suggest that this lethality is linked to IN activity in infected human cells where integration requires the cleavage of genomic DNA. Using IN-affinity chromatography we identified four yeast proteins interacting with HIV-1 IN, including the yeast chaperonin yHSP60, which is the counterpart of human hHSP60. Yeast lethality induced by HIV-1 IN was abolished when a mutated HSP60 was coexpressed, therefore suggesting that both proteins interact in vivo. Besides interacting with HIV-1 IN, the hHSP60 was able to stimulate the in vitro processing and joining activities of IN and protected this enzyme from thermal denaturation. In addition, the functional human HSP60-HSP10 complex in the presence of ATP was able to recognize the HIV-1 IN as a substrate.
Collapse
Affiliation(s)
- V Parissi
- REGER, UMR-5097 Centre National de la Recherche Scientifique (CNRS)-Université Victor Segalen Bordeaux 2, Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Holmes-Son ML, Appa RS, Chow SA. Molecular genetics and target site specificity of retroviral integration. ADVANCES IN GENETICS 2001; 43:33-69. [PMID: 11037298 DOI: 10.1016/s0065-2660(01)43003-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Integration is an essential step in the life cycle of retroviruses, resulting in the stable joining of the viral cDNA to the host cell chromosomes. While this critical process makes retroviruses an attractive vector for gene delivery, it also presents a potential hazard. The sites where integration occurs are nonspecific. Therefore,it is possible that integration of retroviral DNA will affect host gene expression and disrupt normal cellular functions. The mechanism by which integration sites are chosen is not well understood, and is influenced by several factors, including DNA sequence and structure, DNA-binding proteins, DNA methylation, and transcription. Integrase, the viral enzyme responsible for catalyzing integration, also plays a key role in controlling the choice of target sites. The integrase domain responsible for target site selection has been mapped to the central core region. A better understanding of the interaction between the target-specifying motif of integrase and the target DNA may allow a means to manipulate integration into particular chromosomal sites. Another approach to directing integration is to fuse integrase with a sequence-specific DNA-binding protein, which results in a bias of integration in vitro into the recognition site of the fusion partner. Successful incorporation of the fusion protein into infectious virions and the identification of optimal proteins that can be fused to integrase will advance the development of site-specific vectors. Retroviruses are promising for the delivery of genes in experimental and therapeutic protocols. A better understanding of integration will aid in the design of safer and more effective gene transfer vectors.
Collapse
Affiliation(s)
- M L Holmes-Son
- Department of Molecular and Medical Pharmacology, UCLA AIDS Institute and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
48
|
Neamati N, Marchand C, Pommier Y. HIV-1 integrase inhibitors: past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:147-65. [PMID: 11013763 DOI: 10.1016/s1054-3589(00)49026-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- N Neamati
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
49
|
Akiyama T, Takasawa S, Nata K, Kobayashi S, Abe M, Shervani NJ, Ikeda T, Nakagawa K, Unno M, Matsuno S, Okamoto H. Activation of Reg gene, a gene for insulin-producing -cell regeneration: Poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation. Proc Natl Acad Sci U S A 2001; 98:48-53. [PMID: 11134536 PMCID: PMC14542 DOI: 10.1073/pnas.98.1.48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regeneration of pancreatic islet beta cells is important for the prevention and cure of diabetes mellitus. We have demonstrated that the administration of poly(ADP-ribose) synthetase/polymerase (PARP) inhibitors such as nicotinamide to 90% depancreatized rats induces islet regeneration. From the regenerating islet-derived cDNA library, we have isolated Reg (regenerating gene) and demonstrated that Reg protein induces beta-cell replication via the Reg receptor and ameliorates experimental diabetes. However, the mechanism by which Reg gene is activated in beta cells has been elusive. In this study, we found that the combined addition of IL-6 and dexamethasone induced the expression of Reg gene in beta cells and that PARP inhibitors enhanced the expression. Reporter gene assays revealed that the -81 approximately -70 region (TGCCCCTCCCAT) of the Reg gene promoter is a cis-element for the expression of Reg gene. Gel mobility shift assays showed that the active transcriptional DNA/protein complex was formed by the stimulation with IL-6 and dexamethasone. Surprisingly, PARP bound to the cis-element and was involved in the active transcriptional DNA/protein complex. The DNA/protein complex formation was inhibited depending on the autopoly(ADP-ribosyl)ation of PARP in the complex. Thus, PARP inhibitors enhance the DNA/protein complex formation for Reg gene transcription and stabilize the complex by inhibiting the autopoly(ADP-ribosyl)ation of PARP.
Collapse
Affiliation(s)
- T Akiyama
- Departments of Biochemistry and Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Parissi V, Caumont A, Richard de Soultrait V, Dupont CH, Pichuantes S, Litvak S. Inactivation of the SNF5 transcription factor gene abolishes the lethal phenotype induced by the expression of HIV-1 integrase in yeast. Gene 2000; 247:129-36. [PMID: 10773452 DOI: 10.1016/s0378-1119(00)00108-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitous human transcription factor Ini1 has been shown to interact with HIV-1 integrase (IN) and to stimulate in vitro the reactions catalyzed by this enzyme. We have previously used a yeast model to study the effect of HIV-1 IN expression (Caumont, A.B., Jamieson, G.A., Pichuantes, S., Nguyen, A.T., Litvak, S., Dupont, C. -H., 1996. Expression of functional HIV-1 integrase in the yeast Saccharomyces cerevisiae leads to the emergence of a lethal phenotype: potential use for inhibitor screening. Curr. Genet. 29, 503-510). Here, we describe the effect of the inactivation of the gene encoding for SNF5, a yeast transcription factor homologous to Ini1, on the lethality induced by the expression of HIV-1 IN in yeast. We observed that the retroviral IN was unable to perform its lethal activity in cells where the SNF5 gene has been disrupted, suggesting that SNF5 may play a role in the lethal effect induced by IN in yeast. SNF5 inactivation affects neither yeast viability nor expression of HIV-1 IN. Given the homology between SNF5 and its human counterpart Ini1, our results suggest that this factor may be important for IN activity in infected cells. Moreover, given the important role proposed for this transcription factor in the integration step and the fact that it is dispensable for cell viability, the interaction between Ini1/ySNF5 and HIV-1 IN should become a potential target in the search for new antiretroviral agents.
Collapse
Affiliation(s)
- V Parissi
- CNRS UMR-5097. IFR 66 'Pathologies Infectieuses', Université Victor Segalen Bordeaux 2. 146 rue Leo Saignat, 33076, Bordeaux, France.
| | | | | | | | | | | |
Collapse
|