1
|
Wang Z, Wang H, Zhou Y, Li L, Lyu M, Wu C, He T, Tan L, Zhu Y, Guo T, Wu H, Zhang H, Sun Y. An individualized protein-based prognostic model to stratify pediatric patients with papillary thyroid carcinoma. Nat Commun 2024; 15:3560. [PMID: 38671151 PMCID: PMC11053152 DOI: 10.1038/s41467-024-47926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Pediatric papillary thyroid carcinomas (PPTCs) exhibit high inter-tumor heterogeneity and currently lack widely adopted recurrence risk stratification criteria. Hence, we propose a machine learning-based objective method to individually predict their recurrence risk. We retrospectively collect and evaluate the clinical factors and proteomes of 83 pediatric benign (PB), 85 pediatric malignant (PM) and 66 adult malignant (AM) nodules, and quantify 10,426 proteins by mass spectrometry. We find 243 and 121 significantly dysregulated proteins from PM vs. PB and PM vs. AM, respectively. Function and pathway analyses show the enhanced activation of the inflammatory and immune system in PM patients compared with the others. Nineteen proteins are selected to predict recurrence using a machine learning model with an accuracy of 88.24%. Our study generates a protein-based personalized prognostic prediction model that can stratify PPTC patients into high- or low-recurrence risk groups, providing a reference for clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - He Wang
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Yan Zhou
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Lu Li
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mengge Lyu
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Chunlong Wu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, China
| | - Tianen He
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Lingling Tan
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, China
| | - Yi Zhu
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Tiannan Guo
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Hongkun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Yaoting Sun
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
MYOC Promotes the Differentiation of C2C12 Cells by Regulation of the TGF-β Signaling Pathways via CAV1. BIOLOGY 2021; 10:biology10070686. [PMID: 34356541 PMCID: PMC8301362 DOI: 10.3390/biology10070686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary MYOC is a secreted glycoprotein and it expresses at high levels in skeletal muscle cells. However, the function of MYOC in muscle is still unclear. Accordingly, in this study, we examined that MYOC expression increased gradually during C2C12 differentiation and it could promote the differentiation of C2C12. Furthermore, we demonstrated that MYOC could bind to CAV1. We further confirmed that CAV1 could positively regulate C2C12 differentiation through the TGF-β pathway. At last, we determined the relationship among MYOC, CAV1 and TGF-β. We found that MYOC promoted the differentiation of C2C12 cells by regulation of the TGF-β signaling pathways via CAV1. The present study is the first to demonstrate the mechanism of action of MYOC in C2C12 cells. It provides a novel method of exploring the mechanism of muscle differentiation and represents a potential novel method for the treatment of muscle diseases. Abstract Myocilin (MYOC) is a glycoprotein encoded by a gene associated with glaucoma pathology. In addition to the eyes, it also expresses at high transcription levels in the heart and skeletal muscle. MYOC affects the formation of the murine gastrocnemius muscle and is associated with the differentiation of mouse osteoblasts, but its role in the differentiation of C2C12 cells has not yet been reported. Here, MYOC expression was found to increase gradually during the differentiation of C2C12 cells. Overexpression of MYOC resulted in enhanced differentiation of C2C12 cells while its inhibition caused reduced differentiation. Furthermore, immunoprecipitation indicated that MYOC binds to Caveolin-1 (CAV1), a protein that influences the TGF-β pathway. Laser confocal microscopy also revealed the common sites of action of the two during the differentiation of C2C12 cells. Additionally, CAV1 was upregulated significantly as C2C12 cells differentiated, with CAV1 able to influence the differentiation of the cells. Furthermore, the Western blotting analysis demonstrated that the expression of MYOC affected the TGF-β pathway. Finally, MYOC was overexpressed while CAV1 was inhibited. The results indicate that reduced CAV1 expression blocked the promotion of C2C12 cell differentiation by MYOC. In conclusion, the results demonstrated that MYOC regulates TGF-β by influencing CAV1 to promote the differentiation of C2C12 cells.
Collapse
|
3
|
Resch ZT, Fautsch MP. Glaucoma-associated myocilin: a better understanding but much more to learn. Exp Eye Res 2009; 88:704-12. [PMID: 18804106 PMCID: PMC2682697 DOI: 10.1016/j.exer.2008.08.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 01/20/2023]
Abstract
Over a decade has passed since myocilin was identified as the first gene linked to early and late-onset primary open-angle glaucoma. During this time, considerable effort has been put forth to understand the functional role myocilin has in normal and glaucomatous eyes. Myocilin is expressed in many ocular and non-ocular tissues, is found in both intracellular and extracellular spaces, and has been linked to elevations in intraocular pressure. Mutations in the myocilin gene that have been associated with glaucoma appear to confer a gain-of-functional activity rather than loss of function. Unfortunately, what the normal function of myocilin is and how alterations in the function can confer a glaucoma phenotype have yet to be elucidated. We will review the current understanding of myocilin with special emphasis on the structural makeup of the myocilin gene and protein, its possible physiological roles internal and external to ocular cells, the regulation of intraocular pressure as evidenced through the use of perfusion culture systems and animal models, and as a causative agent in some forms of glaucoma.
Collapse
Affiliation(s)
- Zachary T Resch
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
4
|
|
5
|
Kato K, Sasaki N, Matsunaga S, Nishimura R, Ogawa H. Cloning of canine myocilin cDNA and molecular analysis of the myocilin gene in Shiba Inu dogs. Vet Ophthalmol 2008; 10 Suppl 1:53-62. [PMID: 17973835 DOI: 10.1111/j.1463-5224.2007.00530.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To identify canine myocilin cDNA and compare its sequence in glaucomatous and nonglaucomatous Shiba Inu dogs with closed and open iridocorneal angles (ICAs). PROCEDURES Total RNA was extracted from the ciliary body of the eyes of a healthy Beagle, and the canine myocilin gene was cloned and sequenced. Of the Shiba Inu dogs tested, five were glaucomatous with closed ICA, three were nonglaucomatous with open ICA, and two were nonglaucomatous with closed ICA. The genomic DNA of these dogs was extracted from peripheral blood leukocytes. The exons of the canine myocilin gene were amplified using the polymerase chain reaction (PCR), and sequenced. The frequency of mutation in canine myocilin DNA was verified in these dogs by using the myocilin cDNA of a Beagle. RESULTS The canine myocilin cDNA was 1452 bp long and contained the entire open reading frame encoding 483 amino acids. A leucine zipper-like motif and olfactomedin-like domain were conserved in the amino acid residues. The presence of sequence variants in the genomic DNA of Shiba Inu dogs was independent of the occurrence of glaucoma and ICA grading. CONCLUSIONS Myocilin RNA was detected in the ciliary body and trabecular meshwork (TM) of a Beagle. The myocilin sequence of Shiba Inu dogs suggests that myocilin mutations are unlikely to play a significant role in the pathogenesis of primary closed-angle glaucoma in this breed. However, several mutations in the myocilin gene in exon 1 of Shiba Inu dogs may predispose them to an obstruction in the anterior aqueous outflow.
Collapse
Affiliation(s)
- Kumiko Kato
- The Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Fautsch MP, Vrabel AM, Johnson DH. Characterization of the Felix domesticus (cat) glaucoma-associated protein myocilin. Exp Eye Res 2006; 82:1037-45. [PMID: 16289048 DOI: 10.1016/j.exer.2005.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 08/29/2005] [Accepted: 08/29/2005] [Indexed: 11/18/2022]
Abstract
The domestic cat (Felix domesticus) is a useful model for understanding the implications of long-term expression and function of normal and mutant myocilin. To better understand the role myocilin has in the cat eye, we isolated and characterized cat myocilin. Oligonucleotides designed against conserved nucleotide regions of myocilin mammalian orthologs were used to PCR amplify a partial cat myocilin cDNA clone. Rapid amplification of cDNA ends (5' and 3' RACE) was used to obtain full-length cat myocilin. The 2125 nucleotide cat myocilin cDNA contains a 490 amino acid open reading frame. Comparison of cat myocilin to human myocilin shows a 87% similarity, including conservation of the N-terminal leucine zipper, N-linked glycosylation site, C-terminal olfactomedin domain, and all five cysteine residues thought to be involved in disulfide bond formation. Expression in a transformed human trabecular cell line or in Crandall feline kidney cells showed cat myocilin was secreted from these cells, similar to human myocilin, suggesting cat myocilin contains a functional signal peptide sequence. In contrast, expression of cat myocilin containing a known human glaucoma-associated mutation (Y423H in cat; Y437H in human) was not secreted. Characterization of cat myocilin will enable long-term studies be performed in Felix domesticus to analyze changes to intraocular pressure and the aqueous outflow pathway following expression of myocilin and glaucoma causing mutations.
Collapse
Affiliation(s)
- Michael P Fautsch
- Department of Ophthalmology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
8
|
Sawaguchi K, Nakamura Y, Nakamura Y, Sakai H, Sawaguchi S. Myocilin gene expression in the trabecular meshwork of rats in a steroid-induced ocular hypertension model. Ophthalmic Res 2005; 37:235-42. [PMID: 16020952 DOI: 10.1159/000086946] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 04/20/2005] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the expression pattern of myocilin in the trabecular meshwork of normal and dexamethasone-induced ocular hypertensive rat eyes. MATERIALS AND METHODS An ocular hypertension model was generated by application of topical dexamethasone to rat eyes 4 times daily for 1, 2, and 4 weeks. Age-matched untreated eyes served as controls. The intraocular pressure (IOP) was monitored by electronic Tono-pen under anesthesia. The protein and mRNA levels of myocilin in the trabecular meshwork and endothelial lining of Schlemm's canal were investigated by immunohistochemistry and in situ hybridization, respectively. For semiquantitative evaluation, areas with positive staining were analyzed by a computer-assisted image-processing system with NIH software. RESULTS The IOP in rat eyes was elevated after 2 weeks of topical dexamethasone treatment. Despite the IOP elevation, the protein and mRNA levels of myocilin in the trabecular meshwork and around Schlemm's canal in the steroid-treated eyes were not different from those of controls. CONCLUSION No discernible changes in myocilin expression in the chamber angle indicate that myocilin may not be directly linked to ocular hypertension, at least not in rat eyes after relatively short-term steroid application.
Collapse
Affiliation(s)
- Keiko Sawaguchi
- Department of Ophthalmology and Visual Sciences, Ryukyu University School of Medicine, Okinawa, Japan
| | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Pratap Challa
- Duke University Medical Center, Box 3802, Durham, NC 27710, USA
| |
Collapse
|
10
|
Shepard AR, Jacobson N, Sui R, Steely HT, Lotery AJ, Stone EM, Clark AF. Characterization of rabbit myocilin: Implications for human myocilin glycosylation and signal peptide usage. BMC Genet 2003; 4:5. [PMID: 12697062 PMCID: PMC156599 DOI: 10.1186/1471-2156-4-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 04/02/2003] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Mutations in the gene encoding human myocilin (MYOC) have been shown to cause juvenile- and adult-onset glaucoma. In addition, myocilin has been associated with glucocorticoid-induced ocular hypertension and steroid-induced glaucoma. To better understand the role myocilin plays in steroid-induced glaucoma and open-angle glaucoma, we examined rabbit myocilin for use in the rabbit animal model of steroid-induced glaucoma. RESULTS We have cloned the rabbit ortholog of human MYOC. Rabbit MYOC consists of three exons and an open reading frame encoding a 490 amino acid, 54,882-Da protein, which is 14 amino acids shorter at the N-terminus than human myocilin but 84% identical overall. Rabbit myocilin migrates as a single electrophoretic band, vs. double-banded human myocilin, by SDS-PAGE/immunoblot analysis. We determined that the differential migration exhibited is due to an N-glycosylation site that is present in human (Asn57), monkey and mouse myocilin but absent in rabbit (Ser43), rat and bovine myocilin. Rabbit myocilin is secreted in vitro in trabecular meshwork cell culture and in vivo in aqueous humor. Secretion of human myocilin is shown to be dependent on the signal peptide and independent of the extra 14 amino acids not found in rabbit myocilin. Many of the amino acids in myocilin that are mutated in glaucoma patients are conserved across species. CONCLUSION We have cloned the rabbit MYOC cDNA and determined that rabbit myocilin is secreted but not N-linked glycosylated. Knowledge of the rabbit MYOC cDNA sequence will facilitate future studies in the rabbit animal model examining the role of myocilin in steroid-induced glaucoma and the gain-of-function hypothesis in open-angle glaucoma.
Collapse
Affiliation(s)
- Allan R Shepard
- Alcon Research, Ltd., 6201 South Freeway, Fort Worth, TX 76134, USA
| | - Nasreen Jacobson
- Alcon Research, Ltd., 6201 South Freeway, Fort Worth, TX 76134, USA
| | - Ruifang Sui
- Department of Ophthalmology, The University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - H Thomas Steely
- Alcon Research, Ltd., 6201 South Freeway, Fort Worth, TX 76134, USA
| | - Andrew J Lotery
- Department of Ophthalmology, The University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Edwin M Stone
- Department of Ophthalmology, The University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | - Abbot F Clark
- Alcon Research, Ltd., 6201 South Freeway, Fort Worth, TX 76134, USA
| |
Collapse
|
11
|
Abstract
Mutations in the MYOC gene that encodes for myocilin are causative for some forms of juvenile and adult-onset primary open-angle glaucoma (POAG). Myocilin is a secreted 55-57kDa glycoprotein that forms dimers and multimers. Characteristic structural motifs include a myosin-like domain, a leucine zipper region and an olfactomedin domain. Most of the mutations that have been identified in patients with POAG are localized in the olfactomedin domain, which is highly conserved among species. In the eye, myocilin is expressed in high amounts in the trabecular meshwork (TM), sclera, ciliary body and iris, and at considerable lower amounts in retina and optic nerve head. Secreted myocilin is present in the aqueous humor. In the TM, myocilin is found within the cytoplasm of TM cells and in the juxtacanalicular region in association with fibrillar extracellular matrix components. Since patients with mutations in myocilin may have high intraocular pressures, the role of myocilin for aqueous humor outflow has been investigated and conflicting results have been obtained. Recombinant myocilin increases outflow resistance in perfused anterior segment organ cultures, while overexpression of myocilin after viral gene transfer appears to reduce outflow resistance. In TM cells, the expression of myocilin is induced upon treatment with dexamethasone at a time course similar to that observed in steroid-induced glaucoma. Other factors that induce myocilin expression are transforming growth factor-beta and mechanical stretch. Promoter elements that are important for the glucocorticoid induction have not been identified, but it has been shown that upstream stimulatory factor is critical for the basal promoter activity of MYOC. Mice with a targeted disruption of the myocilin gene do not express a phenotype, indicating that the glaucomatous phenotype in humans is not because of a loss-of-function effect. Experimental studies show that mutated myocilin is not secreted, but appears to accumulate in the cells. Such an accumulation might interfere with TM function and lead to impaired outflow resistance, but, so far, experimental evidence for such a scenario is lacking. In addition, the normal function(s) of myocilin is (are) still elusive.
Collapse
Affiliation(s)
- Ernst R Tamm
- Department of Anatomy, Molecular Anatomy and Embryology, University of Erlangen-Nürnberg, Universitätstr. 19, D-91054 Erlangen, Germany.
| |
Collapse
|
12
|
Tamm ER, Russell P. The role of myocilin/TIGR in glaucoma: results of the Glaucoma Research Foundation catalyst meeting in Berkeley, California, March 2000. J Glaucoma 2001; 10:329-39. [PMID: 11558819 DOI: 10.1097/00061198-200108000-00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Approximately 3 years ago, the first major (biochemical, molecular biologic, and biologic) insight into primary open-angle glaucoma was the finding that mutations in the myocilin (MYOC/TIGR) gene were related to certain forms of juvenile onset of this disease. Since then, a great deal of work has been done to determine the possible mechanisms by which MYOC/TIGR might cause not only juvenile but also adult-onset primary open-angle glaucoma. To assess the current knowledge and those areas in which more research is necessary, a meeting of scientists was held by the Glaucoma Research Foundation of San Francisco, California in the spring of 2000. This meeting attempted to concentrate on the MYOC/TIGR protein rather than the genetics of this gene. Possible functions and roles of this protein intracellularly and extracellularly were critically examined and discussed. Normal transcriptional and translational events and the effect of mutations on these events were explored. The discussions yielded insight not only in those areas in which important information is known but also in vital areas in which little is currently understood. This review attempts to summarize the current knowledge regarding MYOC/TIGR and to elucidate the points that the people attending the meeting thought needed further study.
Collapse
Affiliation(s)
- E R Tamm
- Department of Anatomy, Molecular Anatomy and Embryology, University of Erlangen-Nürnberg, Germany.
| | | |
Collapse
|