1
|
Hansen J, Xiong Y, Siddiq MM, Dhanan P, Hu B, Shewale B, Yadaw AS, Jayaraman G, Tolentino RE, Chen Y, Martinez P, Beaumont KG, Sebra R, Vidovic D, Schürer SC, Goldfarb J, Gallo JM, Birtwistle MR, Sobie EA, Azeloglu EU, Berger SI, Chan A, Schaniel C, Dubois NC, Iyengar R. Multiscale mapping of transcriptomic signatures for cardiotoxic drugs. Nat Commun 2024; 15:7968. [PMID: 39261481 PMCID: PMC11390749 DOI: 10.1038/s41467-024-52145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Drug-induced gene expression profiles can identify potential mechanisms of toxicity. We focus on obtaining signatures for cardiotoxicity of FDA-approved tyrosine kinase inhibitors (TKIs) in human induced-pluripotent-stem-cell-derived cardiomyocytes, using bulk transcriptomic profiles. We use singular value decomposition to identify drug-selective patterns across cell lines obtained from multiple healthy human subjects. Cellular pathways affected by cardiotoxic TKIs include energy metabolism, contractile, and extracellular matrix dynamics. Projecting these pathways to published single cell expression profiles indicates that TKI responses can be evoked in both cardiomyocytes and fibroblasts. Integration of transcriptomic outlier analysis with whole genomic sequencing of our six cell lines enables us to correctly reidentify a genomic variant causally linked to anthracycline-induced cardiotoxicity and predict genomic variants potentially associated with TKI-induced cardiotoxicity. We conclude that mRNA expression profiles when integrated with publicly available genomic, pathway, and single cell transcriptomic datasets, provide multiscale signatures for cardiotoxicity that could be used for drug development and patient stratification.
Collapse
Affiliation(s)
- Jens Hansen
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Yuguang Xiong
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mustafa M Siddiq
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Priyanka Dhanan
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Hu
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bhavana Shewale
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arjun S Yadaw
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gomathi Jayaraman
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rosa E Tolentino
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yibang Chen
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pedro Martinez
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dusica Vidovic
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA
| | - Stephan C Schürer
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA
| | - Joseph Goldfarb
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James M Gallo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- School of Pharmacy and Pharmaceutical Sciences, University of Buffalo SUNY System, Buffalo, NY, 14260, USA
| | - Marc R Birtwistle
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Eric A Sobie
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Evren U Azeloglu
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New, York, NY, 10029, USA
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20012, USA
| | - Angel Chan
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cardiology Division, Department of Medicine, Memorial Sloan Kettering Cancer Center New York, New York, NY, 10065, USA
| | - Christoph Schaniel
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole C Dubois
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ravi Iyengar
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Stevenson MD, Canugovi C, Vendrov AE, Hayami T, Bowles DE, Krause KH, Madamanchi NR, Runge MS. NADPH Oxidase 4 Regulates Inflammation in Ischemic Heart Failure: Role of Soluble Epoxide Hydrolase. Antioxid Redox Signal 2019; 31:39-58. [PMID: 30450923 PMCID: PMC6552006 DOI: 10.1089/ars.2018.7548] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Oxidative stress is implicated in cardiomyocyte cell death and cardiac remodeling in the failing heart. The role of NADPH oxidase 4 (NOX4) in cardiac adaptation to pressure overload is controversial, but its function in myocardial ischemic stress has not been thoroughly elucidated. This study examined the function of NOX4 in the pathogenesis of ischemic heart failure, utilizing mouse models, cell culture, and human heart samples. Results:Nox4-/- mice showed a protective phenotype in response to permanent left anterior descending coronary artery ligation with smaller infarction area, lower cardiomyocyte cross-sectional area, higher capillary density, and less cell death versus wild-type (WT) mice. Nox4-/- mice had lower activity of soluble epoxide hydrolase (sEH), a potent regulator of inflammation. Nox4-/- mice also showed a 50% reduction in the number of infiltrating CD68+ macrophages in the peri-infarct zone versus WT mice. Adenoviral overexpression of NOX4 in cardiomyoblast cells increased sEH expression and activity and CCL4 and CCL5 levels; inhibition of sEH activity in NOX4 overexpressing cells attenuated the cytokine levels. Human hearts with ischemic cardiomyopathy showed adverse cardiac remodeling, increased NOX4 and sEH protein expression and CCL4 and CCL5 levels compared with control nonfailing hearts. Innovation and Conclusion: These data from the Nox4-/- mouse model and human heart tissues show for the first time that oxidative stress from increased NOX4 expression has a functional role in ischemic heart failure. One mechanism by which NOX4 contributes to ischemic heart failure is by increasing inflammatory cytokine production via enhanced sEH activity.
Collapse
Affiliation(s)
- Mark D Stevenson
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Chandrika Canugovi
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Aleksandr E Vendrov
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Takayuki Hayami
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Dawn E Bowles
- 2 Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Karl-Heinz Krause
- 3 Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nageswara R Madamanchi
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marschall S Runge
- 1 Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Bishop S, Liu SJ. Cardioprotective action of the aqueous extract of Terminalia arjuna bark against toxicity induced by doxorubicin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:210-216. [PMID: 29157817 DOI: 10.1016/j.phymed.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/03/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The aqueous extract of Terminalia arjuna (TA) bark (TAAqE) has been shown to have a direct inotropic effect on ventricular myocytes. Active constituents of TAAqE contain various flavonoids and proanthocyanidins, some of which are known to have antioxidant activities. Whether TAAqE affords a cardioprotective action against oxidative stress (OS) remains unclear. PURPOSE Increased OS is one of the major mechanisms underlying cardiotoxicity induced by doxorubicin (DOX), a commonly-used anticancer agent. The aim of the present study was to investigate potential cardioprotective effect of TAAqE against DOX-induced OS and cardiac dysfunction. METHODS OS and cytotoxicity were induced by 1 µM DOX for 24 h in H9c2 cells, a cardiac tissue-derived cell line, and left ventricular (LV) dysfunction was induced by intrapleural injection of DOX (accumulative 20 mg/kg body weight) to mice. Cellular oxidative levels and morphology were assessed using microscopy and oxidative-sensitive fluorescent dyes with and without co-treatment with TAAqE. LV function was monitored weekly with echocardiography. RESULTS TAAqE reduced OS and preserved mitochondria and cell growth of H9c2 cells against DOX treatment. TAAqE (in drinking water) attenuated the decreased LV function and altered myocardial structure caused by DOX treatment. CONCLUSION TAAqE exerts a protective action against cardiotoxicity caused by DOX in part via suppression of OS. Thus, TAAqE is a promising cardiotonic in adjuvant cancer chemotherapy.
Collapse
Affiliation(s)
- Sarah Bishop
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shi J Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
4
|
Cao Z, Zhu H, Zhang L, Zhao X, Zweier JL, Li Y. Antioxidants and Phase 2 Enzymes in Cardiomyocytes: Chemical Inducibility and Chemoprotection Against Oxidant and Simulated Ischemia-Reperfusion Injury. Exp Biol Med (Maywood) 2016; 231:1353-64. [PMID: 16946404 DOI: 10.1177/153537020623100809] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The increasing recognition of the role for oxidative stress in cardiac disorders has led to extensive investigation on the protection by exogenous antioxidants against oxidative cardiac injury. On the other hand, another strategy for protecting against oxidative cardiac injury may be through upregulation of the endogenous antioxidants and phase 2 enzymes in the myocardium by chemical inducers. However, our current understanding of the chemical inducibility of cardiac cellular antioxidants and phase 2 enzymes is very limited. In this study, using rat cardiac H9c2 cells we have characterized the concentration- and time-dependent induction of cellular antioxidants and phase 2 enzymes by 3H-1,2-dithiole-3-thione (D3T), and the resultant chemoprotective effects on oxidative cardiac cell injury. Incubation of H9c2 cells with D3T resulted in a marked concentration- and time-dependent induction of a number of cellular antioxidants and phase 2 enzymes, including catalase, reduced glutathione (GSH), GSH peroxidase, glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NQO1). D3T treatment of H9c2 cells also caused an increase in mRNA expression of catalase, γ-glutamylcysteine ligase catalytic subunit, GR, GSTA1, M1 and P1, and NQO1. Moreover, both mRNA and protein expression of Nrf2 were induced in D3T-treated cells. D3T pretreatment led to a marked protection against H9c2 cell injury elicited by various oxidants and simulated ischemia-reperfusion. D3T pretreatment also resulted in decreased intracellular accumulation of reactive oxygen in H9c2 cells after exposure to the oxidants as well as simulated ischemia-reperfusion. This study demonstrates that a series of endogenous antioxidants and phase 2 enzymes in H9c2 cells can be induced by D3T in a concentration- and time-dependent fashion, and that the D3T-upregulated cellular defenses are accompanied by a markedly increased resistance to oxidative cardiac cell injury.
Collapse
Affiliation(s)
- Zhuoxiao Cao
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
5
|
Roca-Alonso L, Castellano L, Mills A, Dabrowska AF, Sikkel MB, Pellegrino L, Jacob J, Frampton AE, Krell J, Coombes RC, Harding SE, Lyon AR, Stebbing J. Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell Death Dis 2015; 6:e1754. [PMID: 25950484 PMCID: PMC4669718 DOI: 10.1038/cddis.2015.89] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/14/2014] [Accepted: 01/12/2015] [Indexed: 12/22/2022]
Abstract
The use of anthracyclines such as doxorubicin (DOX) has improved outcome in cancer patients, yet associated risks of cardiomyopathy have limited their clinical application. DOX-associated cardiotoxicity is frequently irreversible and typically progresses to heart failure (HF) but our understanding of molecular mechanisms underlying this and essential for development of cardioprotective strategies remains largely obscure. As microRNAs (miRNAs) have been shown to play potent regulatory roles in both cardiovascular disease and cancer, we investigated miRNA changes in DOX-induced HF and the alteration of cellular processes downstream. Myocardial miRNA profiling was performed after DOX-induced injury, either via acute application to isolated cardiomyocytes or via chronic exposure in vivo, and compared with miRNA profiles from remodeled hearts following myocardial infarction. The miR-30 family was downregulated in all three models. We describe here that miR-30 act regulating the β-adrenergic pathway, where preferential β1- and β2-adrenoceptor (β1AR and β2AR) direct inhibition is combined with Giα-2 targeting for fine-tuning. Importantly, we show that miR-30 also target the pro-apoptotic gene BNIP3L/NIX. In aggregate, we demonstrate that high miR-30 levels are protective against DOX toxicity and correlate this in turn with lower reactive oxygen species generation. In addition, we identify GATA-6 as a mediator of DOX-associated reductions in miR-30 expression. In conclusion, we describe that DOX causes acute and sustained miR-30 downregulation in cardiomyocytes via GATA-6. miR-30 overexpression protects cardiac cells from DOX-induced apoptosis, and its maintenance represents a potential cardioprotective and anti-tumorigenic strategy for anthracyclines.
Collapse
Affiliation(s)
- L Roca-Alonso
- Division of Oncology, Department of Surgery and Cancer, 1st Floor, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - L Castellano
- Division of Oncology, Department of Surgery and Cancer, 1st Floor, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - A Mills
- National Heart and Lung Institute, Imperial College, 4th Floor, ICTEM, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - A F Dabrowska
- Division of Oncology, Department of Surgery and Cancer, 1st Floor, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - M B Sikkel
- National Heart and Lung Institute, Imperial College, 4th Floor, ICTEM, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - L Pellegrino
- Division of Oncology, Department of Surgery and Cancer, 1st Floor, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - J Jacob
- Division of Oncology, Department of Surgery and Cancer, 1st Floor, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - A E Frampton
- Division of Oncology, Department of Surgery and Cancer, 1st Floor, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- Hepato-Pancreato-Biliary Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - J Krell
- Division of Oncology, Department of Surgery and Cancer, 1st Floor, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - R C Coombes
- Division of Oncology, Department of Surgery and Cancer, 1st Floor, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - S E Harding
- National Heart and Lung Institute, Imperial College, 4th Floor, ICTEM, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - A R Lyon
- National Heart and Lung Institute, Imperial College, 4th Floor, ICTEM, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Imperial college, London SW3 6NP, UK
| | - J Stebbing
- Division of Oncology, Department of Surgery and Cancer, 1st Floor, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
6
|
Focaccetti C, Bruno A, Magnani E, Bartolini D, Principi E, Dallaglio K, Bucci EO, Finzi G, Sessa F, Noonan DM, Albini A. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS One 2015; 10:e0115686. [PMID: 25671635 PMCID: PMC4324934 DOI: 10.1371/journal.pone.0115686] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022] Open
Abstract
Antimetabolites are a class of effective anticancer drugs interfering in essential biochemical processes. 5-Fluorouracil (5-FU) and its prodrug Capecitabine are widely used in the treatment of several solid tumors (gastro-intestinal, gynecological, head and neck, breast carcinomas). Therapy with fluoropyrimidines is associated with a wide range of adverse effects, including diarrhea, dehydration, abdominal pain, nausea, stomatitis, and hand-foot syndrome. Among the 5-FU side effects, increasing attention is given to cardiovascular toxicities induced at different levels and intensities. Since the mechanisms related to 5-FU-induced cardiotoxicity are still unclear, we examined the effects of 5-FU on primary cell cultures of human cardiomyocytes and endothelial cells, which represent two key components of the cardiovascular system. We analyzed at the cellular and molecular level 5-FU effects on cell proliferation, cell cycle, survival and induction of apoptosis, in an experimental cardioncology approach. We observed autophagic features at the ultrastructural and molecular levels, in particular in 5-FU exposed cardiomyocytes. Reactive oxygen species (ROS) elevation characterized the endothelial response. These responses were prevented by a ROS scavenger. We found induction of a senescent phenotype on both cell types treated with 5-FU. In vivo, in a xenograft model of colon cancer, we showed that 5-FU treatment induced ultrastructural changes in the endothelium of various organs. Taken together, our data suggest that 5-FU can affect, both at the cellular and molecular levels, two key cell types of the cardiovascular system, potentially explaining some manifestations of 5-FU-induced cardiovascular toxicity.
Collapse
Affiliation(s)
| | - Antonino Bruno
- Science and Technology Center, IRCCS MultiMedica, Milan, Italy
| | - Elena Magnani
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | | | - Elisa Principi
- Science and Technology Center, IRCCS MultiMedica, Milan, Italy
| | - Katiuscia Dallaglio
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | | | - Giovanna Finzi
- Department of Pathology, Ospedale del Circolo, Varese, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale del Circolo, Varese, Italy
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Douglas M. Noonan
- Science and Technology Center, IRCCS MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| |
Collapse
|
7
|
Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol 2014; 15:47. [PMID: 25186061 PMCID: PMC4170068 DOI: 10.1186/2050-6511-15-47] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/19/2014] [Indexed: 12/29/2022] Open
Abstract
Background Cardiotoxicity is a serious side effect to treatment with 5-fluorouracil (5-FU), but the underlying mechanisms are not fully understood. The objective of this systematic review was to evaluate the pathophysiology of 5-FU- induced cardiotoxicity. Methods We systematically searched PubMed for articles in English using the search terms: 5-FU OR 5-fluorouracil OR capecitabine AND cardiotoxicity. Papers evaluating the pathophysiology of this cardiotoxicity were included. Results We identified 27 articles of 26 studies concerning the pathophysiology of 5-FU-induced cardiotoxicity. The studies demonstrated 5-FU-induced: hemorrhagic infarction, interstitial fibrosis and inflammatory reaction in the myocardium; damage of the arterial endothelium followed by platelet aggregation; increased myocardial energy metabolism and depletion of high energy phosphate compounds; increased superoxide anion levels and a reduced antioxidant capacity; vasoconstriction of arteries; changes in red blood cell (RBC) structure, function and metabolism; alterations in plasma levels of substances involved in coagulation and fibrinolysis and increased endothelin-1 levels and N-terminal-pro brain natriuretic peptide levels. Based on these findings the proposed mechanisms are: endothelial injury followed by thrombosis, increased metabolism leading to energy depletion and ischemia, oxidative stress causing cellular damage, coronary artery spasm leading to myocardial ischemia and diminished ability of RBCs to transfer oxygen resulting in myocardial ischemia. Conclusions There is no evidence for a single mechanism responsible for 5-FU-induced cardiotoxicity, and the underlying mechanisms might be multifactorial. Further research is needed to elucidate the pathogenesis of this side effect.
Collapse
Affiliation(s)
- Anne Polk
- Departments of Cardiology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
8
|
Toldo S, Goehe RW, Lotrionte M, Mezzaroma E, Sumner ET, Biondi-Zoccai GGL, Seropian IM, Van Tassell BW, Loperfido F, Palazzoni G, Voelkel NF, Abbate A, Gewirtz DA. Comparative cardiac toxicity of anthracyclines in vitro and in vivo in the mouse. PLoS One 2013; 8:e58421. [PMID: 23516478 PMCID: PMC3597611 DOI: 10.1371/journal.pone.0058421] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/05/2013] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The antineoplastic efficacy of anthracyclines is limited by their cardiac toxicity. In this study, we evaluated the toxicity of doxorubicin, non-pegylated liposomal-delivered doxorubicin, and epirubicin in HL-1 adult cardiomyocytes in culture as well as in the mouse in vivo. METHODS The cardiomyocytes were incubated with the three anthracyclines (1 µM) to assess reactive oxygen generation, DNA damage and apoptotic cell death. CF-1 mice (10/group) received doxorubicin, epirubicin or non-pegylated liposomal-doxorubicin (10 mg/kg) and cardiac function was monitored by Doppler echocardiography to measure left ventricular ejection fraction (LVEF), heart rate (HR) and cardiac output (CO) both prior to and 10 days after drug treatment. RESULTS In HL-1 cells, non-pegylated liposomal-doxorubicin generated significantly less reactive oxygen species (ROS), as well as less DNA damage and apoptosis activation when compared with doxorubicin and epirubicin. Cultured breast tumor cells showed similar sensitivity to the three anthracyclines. In the healthy mouse, non-pegylated liposomal doxorubicin showed a minimal and non-significant decrease in LVEF with no change in HR or CO, compared to doxorubicin and epirubicin. CONCLUSION This study provides evidence for reduced cardiac toxicity of non-pegylated-liposomal doxorubicin characterized by attenuation of ROS generation, DNA damage and apoptosis in comparison to epirubicin and doxorubicin.
Collapse
Affiliation(s)
- Stefano Toldo
- Virginia Commonwealth University Pauley Heart Center and Victoria Johnson Center, Richmond, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahrami A, Karimi G. Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol 2011; 49:1102-9. [PMID: 21295102 DOI: 10.1016/j.fct.2011.01.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/09/2011] [Accepted: 01/27/2011] [Indexed: 02/08/2023]
Abstract
Doxorubicin (DOX) is a widely used chemotherapy agent. The major adverse effect of DOX treatment in cancer patients is the onset of cardiomyopathy and heart failure. Reactive oxygen species (ROS) are proposed to be responsible for DOX cardiotoxicity. Curcumin, a natural compound extracted from Curcuma Longa L., is known for its anti-oxidant properties. It has been identified as increased apoptosis in several cancer cell lines in combination with doxorubicin, but there are few studies about the effect of curcumin and doxorubicin on normal cardiac cells. Therefore, we evaluated the effects of curcumin on apoptosis induced by DOX in cardiac muscle cells. Pretreatment with curcumin significantly increased DOX-induced apoptosis of cardiac muscle cells through down regulation of Bcl-2, up-regulation of caspase-8 and caspase-9. The Bax/Bcl-2 ratio increased significantly after 1h pretreatment with curcumin. As well, curcumin increases ROS generation by DOX. In response to DOX, NF-κB was activated. However, curcumin was able to inhibit NF-κB activation. In conclusion, our results indicated that pretreatment with nontoxic concentrations of curcumin sensitized H9c2 cells to DOX-mediated apoptosis by generation of ROS.
Collapse
Affiliation(s)
- Leila Hosseinzadeh
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | | | | | | |
Collapse
|
10
|
Borchi E, Parri M, Papucci L, Becatti M, Nassi N, Nassi P, Nediani C. Role of NADPH oxidase in H9c2 cardiac muscle cells exposed to simulated ischaemia-reperfusion. J Cell Mol Med 2010; 13:2724-2735. [PMID: 18754815 DOI: 10.1111/j.1582-4934.2008.00485.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress is associated with several cardiovascular pathologies, including hypertension, cardiac hypertrophy and heart failure. Although oxidative stress is also increased after ischaemia-reperfusion (I/R), little is known about the role and the activation mechanisms, in cardiac myocytes under these conditions, of NADPH oxidase, a superoxide-producing enzyme. We found that rat cardiac muscle cells (H9c2) subjected to an in vitro simulated ischaemia (substrate-free medium plus hypoxia) followed by 'reperfusion', displayed increased reactive oxygen species (ROS) production attributable to a parallel increase of NADPH oxidase activity. Our investigation on mechanisms responsible for NADPH oxidase activation showed a contribution of both the increase of NOX2 expression and p47(phox) translocation to the membrane. We also found that the increase of NADPH oxidase activity was associated with higher levels of lipid peroxidation, the activation of redox-sensitive kinases, in particular ERK and JNK, and with cell death. Diphenyleneiodonium (DPI), a flavoprotein inhibitor used as NADPH oxidase inhibitor, prevented I/R-induced ROS formation in treated cells, together with the related lipoperoxidative damage, and JNK phosphorylation without affecting ERK activation, resulting in protection against cell death. Our results provide evidence that NADPH oxidase is a key enzyme involved in I/R-induced oxidant generation and suggest it can be a possible target in cardioprotective strategies against I/R injury, a condition of great importance in human pathology.
Collapse
Affiliation(s)
- Elisabetta Borchi
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Matteo Parri
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Laura Papucci
- Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Niccolò Nassi
- Department of Pediatrics, University of Florence, Florence, Italy
| | - Paolo Nassi
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Chiara Nediani
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Simůnek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Gersl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 2009; 61:154-71. [PMID: 19307704 DOI: 10.1016/s1734-1140(09)70018-0] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/02/2009] [Indexed: 12/23/2022]
Abstract
The risk of cardiotoxicity is the most serious drawback to the clinical usefulness of anthracycline antineoplastic antibiotics, which include doxorubicin (adriamycin), daunorubicin or epirubicin. Nevertheless, these compounds remain among the most widely used anticancer drugs. The molecular pathogenesis of anthracycline cardiotoxicity remains highly controversial, although the oxidative stress-based hypothesis involving intramyocardial production of reactive oxygen species (ROS) has gained the widest acceptance. Anthracyclines may promote the formation of ROS through redox cycling of their aglycones as well as their anthracycline-iron complexes. This proposed mechanism has become particularly popular in light of the high cardioprotective efficacy of dexrazoxane (ICRF-187). The mechanism of action of this drug has been attributed to its hydrolytic transformation into the iron-chelating metabolite ADR-925, which may act by displacing iron from anthracycline-iron complexes or by chelating free or loosely bound cellular iron, thus preventing site-specific iron-catalyzed ROS damage. However, during the last decade, calls for the critical reassessment of this "ROS and iron" hypothesis have emerged. Numerous antioxidants, although efficient in cellular or acute animal experiments, have failed to alleviate anthracycline cardiotoxicity in clinically relevant chronic animal models or clinical trials. In addition, studies with chelators that are stronger and more selective for iron than ADR-925 have also yielded negative or, at best, mixed outcomes. Hence, several lines of evidence suggest that mechanisms other than the traditionally emphasized "ROS and iron" hypothesis are involved in anthracycline-induced cardiotoxicity and that these alternative mechanisms may be better bases for designing approaches to achieve efficient and safe cardioprotection.
Collapse
Affiliation(s)
- Tomás Simůnek
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|
12
|
Kim DS, Chae SW, Kim HR, Chae HJ. CO and bilirubin inhibit doxorubicin-induced cardiac cell death. Immunopharmacol Immunotoxicol 2009; 31:64-70. [DOI: 10.1080/08923970802354762] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother Pharmacol 2009; 64:811-27. [DOI: 10.1007/s00280-009-0932-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 01/09/2009] [Indexed: 01/24/2023]
|
14
|
Bernuzzi F, Recalcati S, Alberghini A, Cairo G. Reactive oxygen species-independent apoptosis in doxorubicin-treated H9c2 cardiomyocytes: role for heme oxygenase-1 down-modulation. Chem Biol Interact 2008; 177:12-20. [PMID: 18845130 DOI: 10.1016/j.cbi.2008.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
Increased oxidative stress and apoptosis have been implicated in the cardiotoxicity that limits the clinical use of doxorubicin (DOX) as an anti-tumoral drug, but the mechanism of DOX-mediated apoptosis remains unclear. We examined the interplay between oxidative stress and cell death in cardiac-derived H9c2 myocytes exposed to DOX doses in the range of the plasma levels found in patients undergoing chemotherapy. A low DOX concentration (0.25 microM) induced apoptosis, whereas the cells treated with the high dose of 2 microM also showed necrosis. The production of reactive oxygen species (ROS) and induction of oxidative stress markers was increased in the cells treated with 2 microM DOX but not in those treated with the low dose. Surprisingly, heme oxygenase (HO-1) expression was down-modulated in the cells exposed to 0.25 microM DOX, and its Bach 1 transcriptional repressor was induced. In line with the role of HO-1 as an anti-apoptotic protein, inhibiting HO-1 activity with SnPPIX was sufficient to induce apoptosis and increased DOX-mediated apoptosis, whereas hemin-induced HO-1 activation prevented DOX-mediated apoptotic cell death. In brief, our findings do not support the hypothesis that oxidative stress plays a role in the apoptotic cell death occurring in cardiomyocytes exposed to low concentrations of DOX, but suggest that DOX may facilitate the apoptosis of cardiomyocytes by inhibiting the anti-apoptotic HO-1.
Collapse
Affiliation(s)
- Francesca Bernuzzi
- Institute of General Pathology, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | | | | | | |
Collapse
|
15
|
Will Y, Dykens JA, Nadanaciva S, Hirakawa B, Jamieson J, Marroquin LD, Hynes J, Patyna S, Jessen BA. Effect of the Multitargeted Tyrosine Kinase Inhibitors Imatinib, Dasatinib, Sunitinib, and Sorafenib on Mitochondrial Function in Isolated Rat Heart Mitochondria and H9c2 Cells. Toxicol Sci 2008; 106:153-61. [DOI: 10.1093/toxsci/kfn157] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biol Toxicol 2008; 25:227-43. [DOI: 10.1007/s10565-008-9070-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/28/2008] [Indexed: 11/24/2022]
|
17
|
Sardão VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB. Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide--characterization of morphological features of cell death. BMC Cell Biol 2007; 8:11. [PMID: 17362523 PMCID: PMC1831770 DOI: 10.1186/1471-2121-8-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 03/16/2007] [Indexed: 11/10/2022] Open
Abstract
Background When exposed to oxidative conditions, cells suffer not only biochemical alterations, but also morphologic changes. Oxidative stress is a condition induced by some pro-oxidant compounds, such as by tert-butylhydroperoxide (tBHP) and can also be induced in vivo by ischemia/reperfusion conditions, which is very common in cardiac tissue. The cell line H9c2 has been used as an in vitro cellular model for both skeletal and cardiac muscle. Understanding how these cells respond to oxidative agents may furnish novel insights into how cardiac and skeletal tissues respond to oxidative stress conditions. The objective of this work was to characterize, through vital imaging, morphological alterations and the appearance of apoptotic hallmarks, with a special focus on mitochondrial changes, upon exposure of H9c2 cells to tBHP. Results When exposed to tBHP, an increase in intracellular oxidative stress was detected in H9c2 cells by epifluorescence microscopy, which was accompanied by an increase in cell death that was prevented by the antioxidants Trolox and N-acetylcysteine. Several morphological alterations characteristic of apoptosis were noted, including changes in nuclear morphology, translocation of phosphatidylserine to the outer leaflet of the cell membrane, and cell blebbing. An increase in the exposure period or in tBHP concentration resulted in a clear loss of membrane integrity, which is characteristic of necrosis. Changes in mitochondrial morphology, consisting of a transition from long filaments to small and round fragments, were also detected in H9c2 cells after treatment with tBHP. Bax aggregates near mitochondrial networks were formed after short periods of incubation. Conclusion Vital imaging of alterations in cell morphology is a useful method to characterize cellular responses to oxidative stress. In the present work, we report two distinct patterns of morphological alterations in H9c2 cells exposed to tBHP, a pro-oxidant agent frequently used as model to induce oxidative stress. In particular, dynamic changes in mitochondrial networks could be visualized, which appear to be centrally involved in how these cells respond to oxidative stress. The data also indicate that the cause of H9c2 cell death following tBHP exposure is increased intracellular oxidative stress.
Collapse
Affiliation(s)
- Vilma A Sardão
- Center for Neurosciences and Cellular Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- Center for Neurosciences and Cellular Biology, University of Coimbra, Coimbra, Portugal
| | - Jon Holy
- Department of Anatomy, Microbiology and Pathology, University of Minnesota-Medical School, Duluth, USA
| | - Catarina R Oliveira
- Center for Neurosciences and Cellular Biology, University of Coimbra, Coimbra, Portugal
| | - Kendall B Wallace
- Department of Biochemistry and Molecular Biology, University of Minnesota-Medical Medical School, Duluth, USA
| |
Collapse
|
18
|
Kee HJ, Kim JR, Nam KI, Park HY, Shin S, Kim JC, Shimono Y, Takahashi M, Jeong MH, Kim N, Kim KK, Kook H. Enhancer of polycomb1, a novel homeodomain only protein-binding partner, induces skeletal muscle differentiation. J Biol Chem 2006; 282:7700-9. [PMID: 17192267 DOI: 10.1074/jbc.m611198200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Homeodomain only protein, Hop, is an unusual small protein that modulates target gene transcription without direct binding to DNA. Here we show that Hop interacts with Enhancer of Polycomb1 (Epc1), a homolog of a Drosophila polycomb group gene product that regulates transcription, to induce the skeletal muscle differentiation. Yeast two-hybrid assay with the human adult heart cDNA library revealed that Hop can associate with Epc1. The amino-terminal domain of Epc1 as well as full Epc1 physically interacted with Hop in mammalian cells and in yeast. Epc1 is highly expressed in the embryonic heart and adult skeletal muscles. Serum deprivation induced differentiation of H9c2, a myoblast cell line, into skeletal myocytes, and Epc1 was up-regulated. Differentiation of H9c2 was induced by Epc1 overexpression, although it was severely impaired in Epc1-knockdown cells. Co-transfection of Hop potentiated Epc1-induced transactivation of myogenin and myotube formation. Hop knock-out mice elicited a decrease in myosin heavy chain and myogenin expressions in skeletal muscle and showed delay in hamstring muscle healing after injury. Differentiation was impaired in skeletal myoblasts from Hop knock-out mice. These results suggest that Epc1 plays a role in the initiation of skeletal muscle differentiation, and its interaction with Hop is required for the full activity.
Collapse
Affiliation(s)
- Hae Jin Kee
- Medical Research Center for Gene Regulation, Research Institute of Medical Sciences, and Brain Korea 21 Project, Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
L'Ecuyer T, Sanjeev S, Thomas R, Novak R, Das L, Campbell W, Heide RV. DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 2006; 291:H1273-80. [PMID: 16565313 DOI: 10.1152/ajpheart.00738.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anthracyclines are antitumor agents the main clinical limitation of which is cardiac toxicity. The mechanism of this cardiotoxicity is thought to be related to generation of oxidative stress, causing lethal injury to cardiac myocytes. Although protein and lipid oxidation have been documented in anthracycline-treated cardiac myocytes, DNA damage has not been directly demonstrated. This study was undertaken to determine whether anthracyclines induce cardiac myocyte DNA damage and whether this damage is linked to a signaling pathway culminating in cell death. H9c2 cardiac myocytes were treated with the anthracycline doxorubicin at clinically relevant concentrations, and DNA damage was assessed using the alkaline comet assay. Doxorubicin induced DNA damage, as shown by a significant increase in the mean tail moment above control, an effect ameliorated by inclusion of a free radical scavenger. Repair of DNA damage was incomplete after doxorubicin treatment in contrast to the complete repair observed in H2O2-treated myocytes after removal of the agent. Immunoblot analysis revealed that p53 activation occurred subsequent in time to DNA damage. By a fluorescent assay, doxorubicin induced loss of mitochondrial membrane potential after p53 activation. Chemical inhibition of p53 prevented doxorubicin-induced cell death and loss of mitochondrial membrane potential without preventing DNA damage, indicating that DNA damage was proximal in the events leading from doxorubicin treatment to cardiac myocyte death. Specific doxorubicin-induced DNA lesions included oxidized pyrimidines and 8-hydroxyguanine. DNA damage therefore appears to play an important early role in anthracycline-induced lethal cardiac myocyte injury through a pathway involving p53 and the mitochondria.
Collapse
Affiliation(s)
- Thomas L'Ecuyer
- Department of Pediatrics, Institute of Environmental Health Sciences, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Youn HJ, Kim HS, Jeon MH, Lee JH, Seo YJ, Lee YJ, Lee JH. Induction of caspase-independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment. Mol Cell Biochem 2005; 270:13-9. [PMID: 15792349 DOI: 10.1007/s11010-005-2541-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The cardiotoxicity of adriamycin limits its clinical use as a powerful drug for solid tumors and malignant hematological disease. Although the precise mechanism by which it causes cardiac damage is not yet known, it has been suggested that apoptosis is the principal process in adriamycin-induced cardiomyopathy, which involves DNA fragmentation, cytochrome C release, and caspase activation. However, there has been no direct evidence for the critical involvement of caspase-3 in adriamycin-induced apoptosis. To determine the requirements for the activation of caspase-3 in adriamycin-treated cardiac cells, the effect of a caspase inhibitor on the survival of and apoptotic changes in H9c2 cells was examined. Exposure of H9c2 cells to adriamycin resulted in a time- and dose-dependent cell death, and the cleavage of pro-caspase-3 and of the nuclear protein poly (ADP'ribose) polymerase (PARP). However, neither the reduction of cell viability nor the characteristic morphological changes induced by adriamycin were prevented by pretreatment with the general caspase inhibitor z-VAD.FMK. In contrast, caspase inhibition effectively blocked the apoptosis induced by H202 in H9c2 cells, as determined by an MTT assay or microscopy. We also observed that p53 expression was increased by adriamycin, and this increase was not affected by the inhibition of caspase activity, suggesting a role for p53 in adriamycin-induced caspase-independent apoptosis in cardiac toxicity.
Collapse
Affiliation(s)
- Ho-Joong Youn
- Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
L'Ecuyer T, Allebban Z, Thomas R, Vander Heide R. Glutathione S-transferase overexpression protects against anthracycline-induced H9C2 cell death. Am J Physiol Heart Circ Physiol 2004; 286:H2057-64. [PMID: 14726301 DOI: 10.1152/ajpheart.00778.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anthracyclines (AC) are antitumor antibiotics with significant activity against solid and hematologic malignancies. One problem preventing more widespread use has been the development of cardiac toxicity. Experimental evidence supports oxidant stress as an important trigger and/or mediator of AC-induced cardiotoxicity (ACT). Therefore, reducing oxidant stress should be protective against ACT. To determine whether antioxidant protein overexpression can reduce ACT, we developed a cell culture model system using the H9C2 cardiac cell line exhibiting controlled overexpression of the α4-isoform of glutathione- S-transferase (GST). Treatment with the AC doxorubicin (DOX) produced both oncosis, manifested by an increase in the number of cells staining positive for Trypan blue, and apoptosis, indicated by the presence of positive terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. In both cases, the loss of cell viability was preceded by an AC-induced increase in fluorescence with carboxy-2′,7′-dichlorofluorescein diacetate, demonstrating the presence of high levels of reactive oxygen species (ROS). The DOX-induced increase in ROS was reduced to control levels by maximal GST overexpression. Coincident with this elimination of oxidative stress, there was a reduction in both Trypan blue and TUNEL-positive cells, indicating that GST overexpression reduced both ROS and cell death in this model system. We conclude that GST overexpression may be an important part of a protective strategy against ACT and that this model system will aid in defining steps in the pathway(s) leading to AC-induced cell death that can be therapeutically manipulated.
Collapse
Affiliation(s)
- Thomas L'Ecuyer
- Division of Cardiology, Children's Hospital of Michigan, 3901 Beaubien Boulevard, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
22
|
Brostrom MA, Pan Z, Meiners S, Drumm C, Ahmed I, Brostrom CO. Ca2+ dynamics of thrombin-stimulated rat heart-derived embryonic myocytes: relationship to protein synthesis and cell growth. Int J Biochem Cell Biol 2003; 35:1573-87. [PMID: 12824066 DOI: 10.1016/s1357-2725(03)00132-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various cell types respond to the serum protease, thrombin, with increased proliferation rates. In non-dividing postnatal mammalian cardiomyocytes, however, thrombin induces cellular hypertrophy. Both growth responses are associated with early Ca2+ signaling. The present study was conducted to characterize Ca2+ dynamics in thrombin stimulated, dividing embryonic cardiomyocytes, and to ascertain whether such dynamics support hypertrophic or hyperplastic growth. H9c2 rat cardiomyoblasts responded to thrombin with immediate, large increments in free Ca2+ that arose principally from the release of S(E)R sequestered Ca2+ and that persisted for only a few min. Ca2+ stores were refilled within 1h. Thrombin also increased rates of overall protein synthesis for several hours. This translational up-regulation, which required gene transcription, was abolished if cells were incubated at low extracellular Ca2+ during the first hour with thrombin. The protease conferred protective effects against toxicity resulting from serum deprivation and doxorubicin treatment. However, thrombin induced neither cellular hypertrophy, as is seen with arginine vasopressin, nor hyperplasia, as is observed with platelet-derived growth factor (PDGF-BB), in H9c2 cardiomyocytes. In comparison with vasopressin or PDGF-BB, thrombin promoted brief Ca2+ signaling, little cation movement to the extracellular fluid, and more rapid refilling of the S(E)R. It is concluded that the Ca2+ signaling generated by thrombin and the translational stimulation shown in this report to depend on this Ca2+ signaling are insufficient to sustain a major growth response in these embryonic cardiomyocytes.
Collapse
Affiliation(s)
- Margaret A Brostrom
- Department of Pharmacologya, U.M.D.N.J.-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Peng X, Li Y. Induction of cellular glutathione-linked enzymes and catalase by the unique chemoprotective agent, 3H-1,2-dithiole-3-thione in rat cardiomyocytes affords protection against oxidative cell injury. Pharmacol Res 2002; 45:491-7. [PMID: 12162951 DOI: 10.1006/phrs.2002.0991] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considerable evidence suggests that reactive oxygen species (ROS) are crucially involved in the pathogenesis of cardiovascular diseases, such as myocardial ischemia-reperfusion injury. Consistent with this notion, administration of exogenous antioxidative compounds has been shown to provide protection against oxidative cardiac injury. However, whether induction of endogenous cellular antioxidants by chemicals (drugs) also offers protection against oxidative cardiac injury has not been extensively investigated. In the present study, with rat cardiomyocyte H9C2 cells as an in vitro model, we have investigated the induction of cellular antioxidants by the unique chemoprotective agent, 3 H -1,2-dithiole-3-thione (D3T) and the protective effects of the D3T-induced cellular antioxidants against ROS-mediated injury in cardiac cells. Incubation of H9C2 cells with micromolar concentrations of D3T for 24 h resulted in a significant induction of a battery of cellular antioxidants, including reduced glutathione (GSH), GSH peroxidase, GSSG reductase, GSH S-transferase and catalase. To further examine the protective effects of the induced endogenous antioxidants against oxidative cell injury, H9C2 cells were pre-treated with D3T and then incubated with xanthine oxidase (XO) plus xanthine, a system that generates ROS. We observed that D3T pre-treatment of H9C2 cells led to significant protection against XO/xanthine-induced cytotoxicity as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction and morphological changes. Taken together, this study demonstrates for the first time that a number of endogenous antioxidants in cardiomyocytes can be induced by exposure to D3T, and that this chemical (drug) induction of cellular antioxidants is accompanied by markedly increased resistance to ROS-mediated cardiac cell injury.
Collapse
Affiliation(s)
- Xingxiang Peng
- Department of Pharmaceutical Sciences, St John's University College of Pharmacy and Allied Health Professions, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | | |
Collapse
|