1
|
Mason-Gamer RJ, White DM. The phylogeny of the Triticeae: Resolution and phylogenetic conflict based on genomewide nuclear loci. AMERICAN JOURNAL OF BOTANY 2024; 111:e16404. [PMID: 39279223 DOI: 10.1002/ajb2.16404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 09/18/2024]
Abstract
PREMISE The wheat tribe, Triticeae, has been the subject of molecular phylogenetic analyses for nearly three decades, and extensive phylogenetic conflict has been apparent from the earliest comparisons among DNA-based data sets. While most previous analyses focused primarily on nuclear vs. chloroplast DNA conflict, the present analysis provides a broader picture of conflict among nuclear loci throughout the tribe. METHODS Exon data were generated from over 1000 nuclear loci using targeted sequence capture with custom baits, and nearly complete chloroplast genome sequences were recovered. Phylogenetic conflict was assessed among the trees from the chloroplast genomes, the concatenated nuclear loci, and a series of nuclear-locus subsets guided by Hordeum chromosome gene maps. RESULTS At the intergeneric level, the analyses collectively revealed a few broadly consistent relationships. However, the prevailing pattern was one of extensive phylogenetic conflict throughout the tribe, among both deep and shallow branches, and with the extent of the conflict varying among data subsets. CONCLUSIONS The results suggest continual introgression or lineage sorting within and among the named lineages of the Triticeae, shaping both deep and shallow relationships in the tribe.
Collapse
Affiliation(s)
- Roberta J Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, MC 066, 845 W. Taylor Street, Chicago, 60607 USA, IL
| | - Dawson M White
- Department of Biological Sciences, University of Illinois at Chicago, MC 066, 845 W. Taylor Street, Chicago, 60607 USA, IL
| |
Collapse
|
2
|
Tan L, Wu DD, Zhang CB, Cheng YR, Sha LN, Fan X, Kang HY, Wang Y, Zhang HQ, Escudero M, Zhou YH. Genome constitution and evolution of Elymus atratus (Poaceae: Triticeae) inferred from cytogenetic and phylogenetic analysis. Genes Genomics 2024; 46:589-599. [PMID: 38536618 DOI: 10.1007/s13258-024-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/21/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Elymus atratus (Nevski) Hand.-Mazz. is perennial hexaploid wheatgrass. It was assigned to the genus Elymus L. sensu stricto based on morphological characters. Its genome constitution has not been disentangled yet. OBJECTIVE To identify the genome constitution and origin of E. atratus. METHODS In this study, genomic in situ hybridization and fluorescence in situ hybridization, and phylogenetic analysis based on the Acc1, DMC1 and matK sequences were performed. RESULTS Genomic in situ hybridization and fluorescence in situ hybridization results reveal that E. atratus 2n = 6x = 42 is composed of 14 St genome chromosomes, 14 H genome chromosomes, and 14 Y genome chromosomes including two H-Y type translocation chromosomes, suggesting that the genome formula of E. atratus is StStYYHH. The phylogenetic analysis based on Acc1 and DMC1 sequences not only shows that the Y genome originated in a separate diploid, but also suggests that Pseudoroegneria (St), Hordeum (H), and a diploid species with Y genome were the potential donors of E. atratus. Data from chloroplast DNA showed that the maternal donor of E. atratus contains the St genome. CONCLUSION Elymus atratus is an allohexaploid species with StYH genome, which may have originated through the hybridization between an allotetraploid Roegneria (StY) species as the maternal donor and a diploid Hordeum (H) species as the paternal donor.
Collapse
Affiliation(s)
- Lu Tan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, 615000, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Dan-Dan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Chang-Bing Zhang
- Sichuan Academy of Grassland Science, Chengdu, 610000, Sichuan, China
| | - Yi-Ran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Li-Na Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Hai-Qin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Chen C, Han Y, Xiao H, Zou B, Wu D, Sha L, Yang C, Liu S, Cheng Y, Wang Y, Kang H, Fan X, Zhou Y, Zhang T, Zhang H. Chromosome-specific painting in Thinopyrum species using bulked oligonucleotides. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:177. [PMID: 37540294 DOI: 10.1007/s00122-023-04423-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - He Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bingcan Zou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Cairong Yang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Tan L, Huang QX, Song Y, Wu DD, Cheng YR, Zhang CB, Sha LN, Fan X, Kang HY, Wang Y, Zhang HQ, Zhou YH. Biosystematics studies on Elymus breviaristatus and Elymus sinosubmuticus (Poaceae: Triticeae). BMC PLANT BIOLOGY 2022; 22:57. [PMID: 35105308 PMCID: PMC8805286 DOI: 10.1186/s12870-022-03441-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/18/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Elymus breviaristatus and Elymus sinosubmuticus are perennial herbs, not only morphologically similar but also sympatric distribution. The genome composition of E. sinosubmuticus has not been reported, and the relationship between E. sinosubmuticus and E. breviaristatus is still controversial. We performed artificial hybridization, genomic in situ hybridization, and phylogenetic analyses to clarify whether the two taxa were the same species. RESULTS The high frequency bivalent (with an average of 20.62 bivalents per cell) at metaphase I of pollen mother cells of the artificial hybrids of E. breviaristatus (StYH) × E. sinosubmuticus was observed. It illustrated that E. sinosubmuticus was closely related to E. breviaristatus. Based on genomic in situ hybridization results, we confirmed that E. sinosubmuticus was an allohexaploid, and the genomic constitution was StYH. Phylogenetic analysis results also supported that this species contained St, Y, and H genomes. In their F1 hybrids, pollen activity was 53.90%, and the seed setting rate was 22.46%. Those indicated that the relationship between E. sinosubmuticus and E. breviaristatus is intersubspecific rather than interspecific, and it is reasonable to treated E. sinosubmuticus as the subspecies of E. breviaristatus. CONCLUSIONS In all, the genomic constitutions of E. sinosubmuticus and E. breviaristatus were StYH, and they are species in the genus Campeiostachys. Because E. breviaristatus was treated as Campeistachys breviaristata, Elymus sinosubmuticus should be renamed Campeiostachys breviaristata (Keng) Y. H. Zhou, H. Q. Zhang et C. R. Yang subsp. sinosubmuticus (S. L. Chen) Y. H. Zhou, H. Q. Zhang et L. Tan.
Collapse
Affiliation(s)
- Lu Tan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Qing-Xiang Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Yang Song
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Dan-Dan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Yi-Ran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Chang-Bin Zhang
- Sichuan Academy of Grassland Science, Chengdu, 610000, Sichuan, China
| | - Li-Na Sha
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Hai-Qin Zhang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Chen C, Zheng Z, Wu D, Tan L, Yang C, Liu S, Lu J, Cheng Y, Sha L, Wang Y, Kang H, Fan X, Zhou Y, Zhang C, Zhang H. Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecol Evol 2022; 12:e8517. [PMID: 35136562 PMCID: PMC8809439 DOI: 10.1002/ece3.8517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/05/2022] Open
Abstract
Some plants with low fertility are morphologically intermediate between Roegneria stricta and Roegneria turczaninovii, and were suspected to be natural hybrids between these species. In this study, karyotype analysis showed that natural hybrids and their putative parents were tetraploids (2n = 4x = 28). Meiotic pairing in natural hybrids is more irregular than its putative parents. Results of genomic in situ hybridization and fluorescence in situ hybridization indicate that natural hybrids contain the same genome as their putative parents. The nuclear gene DNA meiotic recombinase 1 (DMC1) and the chloroplast gene rps16 of natural hybrids and their putative parents were analyzed for evidence of hybridization. The results from molecular data supported by morphology and cytology demonstrated that the plants represent natural hybrids between R. stricta and R. turczaninovii. The study is important for understanding species evolution in the genus since it demonstrates for the first time the existence of populations of natural homoploid hybrids in Roegneria. The study also reports for the first time that the composition of the genomic formula of R. turczaninovii is StY, confirming that the current taxonomic status is correct.
Collapse
Affiliation(s)
- Chen Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Zilue Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Dandan Wu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Lu Tan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Cairong Yang
- College of Chemistry and Life SciencesChengdu Normal UniversityChengduChina
| | - Songqing Liu
- College of Chemistry and Life SciencesChengdu Normal UniversityChengduChina
| | - Jiale Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Yi Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Houyang Kang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Xing Fan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yonghong Zhou
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | | | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| |
Collapse
|
6
|
Dai Y, Huang S, Sun G, Li H, Chen S, Gao Y, Chen J. Origins and chromosome differentiation of Thinopyrum elongatum revealed by PepC and Pgk1 genes and ND-FISH. Genome 2021; 64:901-913. [PMID: 33596125 DOI: 10.1139/gen-2019-0176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thinopyrum elongatum is an important gene pool for wheat genetic improvement. However, the origins of the Thinopyrum genomes and the nature of the genus' intraspecific relationships are still controversial. In this study, we used single-copy nuclear genes and non-denaturing fluorescence in situ hybridization (ND-FISH) to characterize genome constitution and chromosome differentiation in Th. elongatum. According to phylogenetic analyses based on PepC and Pgk1 genes, there was an E genome with three versions (Ee, Eb, Ex) and St genomes in the polyploid Th. elongatum. The ND-FISH results of pSc119.2 and pAs1 revealed that the karyotypes of diploid Th. elongatum and Th. bessarabicum were different, and the chromosome differentiation occurred among accessions of the diploid Th. elongatum. In addition, the tetraploid Th. elongatum has two groups of ND-FISH karyotype, indicating that the tetraploid Th. elongatum might be a segmental allotetraploid. In summary, our results suggested that the diploid Th. elongatum, Th. Bessarabicum, and Pseudoroegneria were the donors of the Ee, Eb, and St genomes to the polyploid Th. elongatum, respectively.
Collapse
Affiliation(s)
- Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.,Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shuai Huang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | - Haifeng Li
- Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Shiqiang Chen
- Institute of Agricultural Sciences, Lixia River Region, Yangzhou 225009, China
| | - Yong Gao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jianmin Chen
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Colas I, Barakate A, Macaulay M, Schreiber M, Stephens J, Vivera S, Halpin C, Waugh R, Ramsay L. desynaptic5 carries a spontaneous semi-dominant mutation affecting Disrupted Meiotic cDNA 1 in barley. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2683-2698. [PMID: 31028386 PMCID: PMC6509107 DOI: 10.1093/jxb/erz080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/28/2019] [Indexed: 05/03/2023]
Abstract
Despite conservation of the process of meiosis, recombination landscapes vary between species, with large genome grasses such as barley (Hordeum vulgare L.) exhibiting a pattern of recombination that is very heavily skewed to the ends of chromosomes. We have been using a collection of semi-sterile desynaptic meiotic mutant lines to help elucidate how recombination is controlled in barley and the role of the corresponding wild-type (WT) meiotic genes within this process. Here we applied a combination of genetic segregation analysis, cytogenetics, and immunocytology to genetically map and characterize the meiotic mutant desynaptic5 (des5). We identified an exonic insertion in the positional candidate ortholog of Disrupted Meiotic cDNA 1 (HvDMC1) on chromosome 5H of des5. des5 exhibits a severe meiotic phenotype with disturbed synapsis, reduced crossovers, and chromosome mis-segregation. The meiotic phenotype and reduced fertility of des5 is similarly observed in Hvdmc1RNAi transgenic plants and HvDMC1p:GusPlus reporter lines show DMC1 expression specifically in the developing inflorescence. The des5 mutation maintains the reading frame of the gene and exhibits semi-dominance with respect to recombination in the heterozygote indicating the value of non-knockout mutations for dissection of the control of recombination in the early stages of meiosis.
Collapse
Affiliation(s)
- Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Abdellah Barakate
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Jennifer Stephens
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Sebastian Vivera
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Claire Halpin
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| |
Collapse
|
8
|
Molecular Diversity of Tidal Swamp Rice (Oryza sativa L.) in South Kalimantan, Indonesia. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Saarela JM, Burke SV, Wysocki WP, Barrett MD, Clark LG, Craine JM, Peterson PM, Soreng RJ, Vorontsova MS, Duvall MR. A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 2018; 6:e4299. [PMID: 29416954 PMCID: PMC5798404 DOI: 10.7717/peerj.4299] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, ON, Canada
| | - Sean V. Burke
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William P. Wysocki
- Center for Data Intensive Sciences, University of Chicago, Chicago, IL, USA
| | - Matthew D. Barrett
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynn G. Clark
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Maria S. Vorontsova
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Melvin R. Duvall
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
10
|
Bernhardt N, Brassac J, Kilian B, Blattner FR. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae. BMC Evol Biol 2017; 17:141. [PMID: 28622761 PMCID: PMC5474006 DOI: 10.1186/s12862-017-0989-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe's evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing. RESULTS The read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago. CONCLUSIONS The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.
Collapse
Affiliation(s)
- Nadine Bernhardt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| | - Jonathan Brassac
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Present address: Crop Trust, Bonn, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Gao G, Tang ZL, Deng JB, Gou XM, Wang Q, Zhang Y, Ding CB, Zhang L, Zhou YH, Yang RW. Phylogenetic relationships and Y genome origin in Kengyilia (Triticeae: Poaceae) based on single copy gene DMC1. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Abstract
The genome of spinach single chromosome complement is about 1000 Mbp, which is the model material to study the molecular mechanisms of plant sex differentiation. The cytological study showed that the biggest spinach chromosome (chromosome 1) was taken as spinach sex chromosome. It had three alleles of sex-related X,X(m) and Y. Many researchers have been trying to clone the sex-determining genes and investigated the molecular mechanism of spinach sex differentiation. However,there are no successful cloned reports about these genes. A new technology combining chromosome microdissection with hybridization-specific amplification (HSA) was adopted. The spinach Y chromosome degenerate oligonucleotide primed-PCR (DOP-PCR) products were hybridized with cDNA of the male spinach flowers in florescence. The female spinach genome was taken as blocker and cDNA library specifically expressed in Y chromosome was constructed. Moreover, expressed sequence tag (EST) sequences in cDNA library were cloned, sequenced and bioinformatics was analysed. There were 63 valid EST sequences obtained in this study. The fragment size was between 53 and 486 bp. BLASTn homologous alignment indicated that 12 EST sequences had homologous sequences of nucleic acids, the rest were new sequences. BLASTx homologous alignment indicated that 16 EST sequences had homologous protein-encoding nucleic acid sequence. The spinach Y chromosome-specific EST sequences laid the foundation for cloning the functional genes, specifically expressed in spinach Y chromosome. Meanwhile, the establishment of the technology system in the research provided a reference for rapid cloning of other biological sex chromosome-specific EST sequences.
Collapse
|
13
|
Evolution of the beta-amylase gene in the temperate grasses: Non-purifying selection, recombination, semiparalogy, homeology and phylogenetic signal. Mol Phylogenet Evol 2015; 91:68-85. [DOI: 10.1016/j.ympev.2015.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/18/2023]
|
14
|
Perrino EV, Wagensommer RP, Medagli P. Aegilops(Poaceae) in Italy: taxonomy, geographical distribution, ecology, vulnerability and conservation. SYST BIODIVERS 2014. [DOI: 10.1080/14772000.2014.909543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Griffin PC, Hoffmann AA. Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges. ANNALS OF BOTANY 2014; 113:953-65. [PMID: 24607721 PMCID: PMC3997636 DOI: 10.1093/aob/mcu017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/27/2014] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS While molecular approaches can often accurately reconstruct species relationships, taxa that are incompletely differentiated pose a challenge even with extensive data. Such taxa are functionally differentiated, but may be genetically differentiated only at small and/or patchy regions of the genome. This issue is considered here in Poa tussock grass species that dominate grassland and herbfields in the Australian alpine zone. METHODS Previously reported tetraploidy was confirmed in all species by sequencing seven nuclear regions and five microsatellite markers. A Bayesian approach was used to co-estimate nuclear and chloroplast gene trees with an overall dated species tree. The resulting species tree was used to examine species structure and recent hybridization, and intertaxon fertility was tested by experimental crosses. KEY RESULTS Species tree estimation revealed Poa gunnii, a Tasmanian endemic species, as sister to the rest of the Australian alpine Poa. The taxa have radiated in the last 0·5-1·2 million years and the non-gunnii taxa are not supported as genetically distinct. Recent hybridization following past species divergence was also not supported. Ongoing gene flow is suggested, with some broad-scale geographic structure within the group. CONCLUSIONS The Australian alpine Poa species are not genetically distinct despite being distinguishable phenotypically, suggesting recent adaptive divergence with ongoing intertaxon gene flow. This highlights challenges in using conventional molecular taxonomy to infer species relationships in recent, rapid radiations.
Collapse
Affiliation(s)
- Philippa C. Griffin
- Department of Genetics, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ary A. Hoffmann
- Department of Genetics, University of Melbourne, Parkville 3010, Victoria, Australia
- Pest and Environmental Adaptation Research Group, Department of Zoology, University of Melbourne, Parkville 3010, Victoria, Australia
- Long Term Ecological Research Network, http://www.ltern.org.au/
| |
Collapse
|
16
|
Phylogenetic reconstruction and diversification of the Triticeae (Poaceae) based on single-copy nuclear Acc1 and Pgk1 gene data. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Wang XL, Fan X, Zeng J, Sha LN, Zhang HQ, Kang HY, Yang RW, Zhang L, Ding CB, Zhou YH. Phylogeny and molecular evolution of the DMC1 gene within the StH genome species in Triticeae (Poaceae). Genes Genomics 2012. [DOI: 10.1007/s13258-011-0169-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Senapati SK, Das G, Aparajita S, Rout G. Assessment of genetic variability in the Asoka Tree of India. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/14888386.2012.665205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Etedali F, Baghban Kohnehrouz B, Valizadeh M, Gholizadeh A, Malboobi MA. Genome wide cloning of maize meiotic recombinase Dmc1 and its functional structure through molecular phylogeny. GENETICS AND MOLECULAR RESEARCH 2012; 10:1636-49. [PMID: 21863556 DOI: 10.4238/vol10-3gmr1338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of meiotic division and associated genetic recombination paved the way for evolutionary changes. However, the secondary and tertiary structure and functional domains of many of the proteins involved in genetic recombination have not been studied in detail. We used the human Dmc1 gene product along with secondary and tertiary domain structures of Escherichia coli RecA protein to help determine the molecular structure and function of maize Dmc1, which is required for synaptonemal complex formation and cell cycle progression. The maize recombinase Dmc1 gene was cloned and characterized, using rice Dmc1 cDNA as an orthologue. The deduced amino acid sequence was used for elaborating its 3-D structure, and functional analysis was made with the CDD software, showing significant identity of the Dmc1 gene product in Zea mays with that of Homo sapiens. Based on these results, the domains and motives of WalkerA and WalkerB as ATP binding sites, a multimer site (BRC) interface, the putative ssDNA binding L1 and L2 loops, the putative dsDNA binding helix-hairpin-helix, a polymerization motif, the subunit rotation motif, and a small N-terminal domain were proposed for maize recombinase Dmc1.
Collapse
Affiliation(s)
- F Etedali
- Department of Plant Breeding and Biotechnology, University of Tabriz, Iran
| | | | | | | | | |
Collapse
|
20
|
Escobar JS, Scornavacca C, Cenci A, Guilhaumon C, Santoni S, Douzery EJP, Ranwez V, Glémin S, David J. Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol Biol 2011; 11:181. [PMID: 21702931 PMCID: PMC3142523 DOI: 10.1186/1471-2148-11-181] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/24/2011] [Indexed: 11/30/2022] Open
Abstract
Background Introgressive events (e.g., hybridization, gene flow, horizontal gene transfer) and incomplete lineage sorting of ancestral polymorphisms are a challenge for phylogenetic analyses since different genes may exhibit conflicting genealogical histories. Grasses of the Triticeae tribe provide a particularly striking example of incongruence among gene trees. Previous phylogenies, mostly inferred with one gene, are in conflict for several taxon positions. Therefore, obtaining a resolved picture of relationships among genera and species of this tribe has been a challenging task. Here, we obtain the most comprehensive molecular dataset to date in Triticeae, including one chloroplastic and 26 nuclear genes. We aim to test whether it is possible to infer phylogenetic relationships in the face of (potentially) large-scale introgressive events and/or incomplete lineage sorting; to identify parts of the evolutionary history that have not evolved in a tree-like manner; and to decipher the biological causes of gene-tree conflicts in this tribe. Results We obtain resolved phylogenetic hypotheses using the supermatrix and Bayesian Concordance Factors (BCF) approaches despite numerous incongruences among gene trees. These phylogenies suggest the existence of 4-5 major clades within Triticeae, with Psathyrostachys and Hordeum being the deepest genera. In addition, we construct a multigenic network that highlights parts of the Triticeae history that have not evolved in a tree-like manner. Dasypyrum, Heteranthelium and genera of clade V, grouping Secale, Taeniatherum, Triticum and Aegilops, have evolved in a reticulated manner. Their relationships are thus better represented by the multigenic network than by the supermatrix or BCF trees. Noteworthy, we demonstrate that gene-tree incongruences increase with genetic distance and are greater in telomeric than centromeric genes. Together, our results suggest that recombination is the main factor decoupling gene trees from multigenic trees. Conclusions Our study is the first to propose a comprehensive, multigenic phylogeny of Triticeae. It clarifies several aspects of the relationships among genera and species of this tribe, and pinpoints biological groups with likely reticulate evolution. Importantly, this study extends previous results obtained in Drosophila by demonstrating that recombination can exacerbate gene-tree conflicts in phylogenetic reconstructions.
Collapse
Affiliation(s)
- Juan S Escobar
- Institut National de la Recherche Agronomique, Centre de Montpellier, UMR Diversité et Adaptation des Plantes Cultivées, Domaine de Melgueil, 34130 Mauguio, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Allohexaploidy, introgression, and the complex phylogenetic history of Elymus repens (Poaceae). Mol Phylogenet Evol 2008; 47:598-611. [PMID: 18372193 DOI: 10.1016/j.ympev.2008.02.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 01/11/2008] [Accepted: 02/13/2008] [Indexed: 11/23/2022]
Abstract
The phylogenetic position of hexaploid Elymus repens within the tribe Triticeae (Poaceae) was examined using cloned sequences from the low-copy nuclear genes encoding phosphoenolpyruvate carboxylase (pepC) and beta-amylase. A previous analysis of E. repens using data from the nuclear granule-bound starch synthase I (GBSSI) gene had yielded five phylogenetically distinct gene copies, two more than expected from hexaploidy alone. The three gene trees share three distinct E. repens clades, suggesting that E. repens contains three phylogenetically divergent genomes, contributed by Hordeum, Pseudoroegneria, and an unknown donor. The two additional GBSSI sequences, including one that was apparently derived from outside of the tribe, appear to reflect past introgression of GBSSI sequences into the E. repens genome. On all three trees, the Hordeum-like E. repens sequences are polyphyletic within Hordeum, and the trees are in conflict with regard to the placement of these sequences within Hordeum, highlighting multiple contributions from Hordeum to E. repens.
Collapse
|
22
|
Duan S, Lu B, Li Z, Tong J, Kong J, Yao W, Li S, Zhu Y. Phylogenetic Analysis of AA-genome Oryza Species (Poaceae) Based on Chloroplast, Mitochondrial, and Nuclear DNA Sequences. Biochem Genet 2007; 45:113-29. [PMID: 17221300 DOI: 10.1007/s10528-006-9062-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Species in the genus Oryza (Poaceae) contain 10 genomic types and are distributed in pan-tropics of the world. To explore phylogenetic relationships of Oryza species having the AA-genome, DNA sequences of the chloroplast trnL intron and trnL-trnF spacer, mitochondrial nad1 intron 2, and nuclear internal transcribed spacer were analyzed, based on materials from 6 cultivated (O. sativa and O. glaberrima) and 13 wild accessions, in addition to a CC-genome species (O. officinalis) that was used as an outgroup. Analyses of the combined sequence data set from different sources provide a much better resolution of the AA-genome species than the individual data set, indicating the limitation of a single gene in phylogenetic reconstruction. The phylogeny based on the combined data set demonstrated an apparent grouping of the AA-genome Oryza species that was well associated with their geographic origin, although the Australian O. meridionalis showed its affinity with the African species. The geographic pattern of the phylogenetic relationship was probably attributed to the frequent genetic exchange and introgression among the AA-genome species from the same continents. In addition, Asian cultivated rice O. sativa showed its close relation to O. rufipogon and O. nivara, whereas African cultivated rice O. glaberrima was closely linked to O. barthii and O. longistaminata, indicating the independent domestication of the two cultivated species in different geographic locations.
Collapse
Affiliation(s)
- Shihua Duan
- Ministry of Education Key Laboratory for Plant Developmental Biology, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD51, DMC1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.
Collapse
Affiliation(s)
- Wuxing Li
- The Department of Biology, The Intercollege Graduate Degree Program in Plant Physiology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
24
|
Petersen G, Seberg O, Yde M, Berthelsen K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 2006; 39:70-82. [PMID: 16504543 DOI: 10.1016/j.ympev.2006.01.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 12/08/2005] [Accepted: 01/12/2006] [Indexed: 11/28/2022]
Abstract
Common wheat (Triticum aestivum) has for decades been a textbook example of the evolution of a major crop species by allopolyploidization. Using a sophisticated extension of the PCR technique, we have successfully isolated two single-copy nuclear genes, DMC1 and EF-G, from each of the three genomes found in hexaploid wheat (BA(u)D) and from the two genomes of the tetraploid progenitor Triticum turgidum (BA(u)). By subjecting these sequences to phylogenetic analysis together with sequences from representatives of all the diploid Triticeae genera we are able for the first time to provide simultaneous and strongly supported evidence for the D genome being derived from Aegilops tauschii, the A(u) genome being derived from Triticum urartu, and the hitherto enigmatic B genome being derived from Aegilops speltoides. Previous problems of identifying the B genome donor may be associated with a higher diversification rate of the B genome compared to the A(u) genome in the polyploid wheats. The phylogenetic hypothesis further suggests that neither Triticum, Aegilops, nor Triticum plus Aegilops are monophyletic.
Collapse
Affiliation(s)
- Gitte Petersen
- Botanical Garden and Museum, The Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83, DK-1307 Copenhagen K, Denmark.
| | | | | | | |
Collapse
|
25
|
Aagesen L. Direct optimization, affine gap costs, and node stability. Mol Phylogenet Evol 2005; 36:641-53. [PMID: 15935703 DOI: 10.1016/j.ympev.2005.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 11/27/2022]
Abstract
The outcome of a phylogenetic analysis based on DNA sequence data is highly dependent on the homology-assignment step and may vary with alignment parameter costs. Robustness to changes in parameter costs is therefore a desired quality of a data set because the final conclusions will be less dependent on selecting a precise optimal cost set. Here, node stability is explored in relationship to separate versus combined analysis in three different data sets, all including several data partitions. Robustness to changes in cost sets is measured as number of successive changes that can be made in a given cost set before a specific clade is lost. The changes are in all cases base change cost, gap penalties, and adding/removing/changing affine gap costs. When combining data partitions, the number of clades that appear in the entire parameter space is not remarkably increased, in some cases this number even decreased. However, when combining data partitions the trees from cost sets including affine gap costs were always more similar than the trees were from cost sets without affine gap costs. This was not the case when the data partitions were analyzed independently. When data sets were combined approximately 80% of the clades found under cost sets including affine gap costs resisted at least one change to the cost set.
Collapse
Affiliation(s)
- Lone Aagesen
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024-5192, USA.
| |
Collapse
|
26
|
Sauvageau S, Stasiak AZ, Banville I, Ploquin M, Stasiak A, Masson JY. Fission yeast rad51 and dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol Cell Biol 2005; 25:4377-87. [PMID: 15899844 PMCID: PMC1140613 DOI: 10.1128/mcb.25.11.4377-4387.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homologous recombination is important for the repair of double-strand breaks during meiosis. Eukaryotic cells require two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, for meiotic recombination. To date, it is not clear, at the biochemical level, why two homologs of RecA are necessary during meiosis. To gain insight into this, we purified Schizosaccharomyces pombe Rad51 and Dmc1 to homogeneity. Purified Rad51 and Dmc1 form homo-oligomers, bind single-stranded DNA preferentially, and exhibit DNA-stimulated ATPase activity. Both Rad51 and Dmc1 promote the renaturation of complementary single-stranded DNA. Importantly, Rad51 and Dmc1 proteins catalyze ATP-dependent strand exchange reactions with homologous duplex DNA. Electron microscopy reveals that both S. pombe Rad51 and Dmc1 form nucleoprotein filaments. Rad51 formed helical nucleoprotein filaments on single-stranded DNA, whereas Dmc1 was found in two forms, as helical filaments and also as stacked rings. These results demonstrate that Rad51 and Dmc1 are both efficient recombinases in lower eukaryotes and reveal closer functional and structural similarities between the meiotic recombinase Dmc1 and Rad51. The DNA strand exchange activity of both Rad51 and Dmc1 is most likely critical for proper meiotic DNA double-strand break repair in lower eukaryotes.
Collapse
Affiliation(s)
- Synthia Sauvageau
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Quebec City, Quebec G1R 2J6, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Zhu Q, Ge S. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. THE NEW PHYTOLOGIST 2005; 167:249-65. [PMID: 15948847 DOI: 10.1111/j.1469-8137.2005.01406.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The A-genome group in Oryza consists of eight diploid species and is distributed world-wide. Here we reconstructed the phylogeny among the A-genome species based on sequences of nuclear genes and MITE (miniature inverted-repeat transposable elements) insertions. Thirty-seven accessions representing two cultivated and six wild species from the A-genome group were sampled. Introns of four nuclear single-copy genes on different chromosomes were sequenced and analysed by both maximum parsimony (MP) and Bayesian inference methods. All the species except for Oryza rufipogon and Oryza nivara formed a monophyletic group and the Australian endemic Oryza meridionalis was the earliest divergent lineage. Two subspecies of Oryza sativa (ssp. indica and ssp. japonica) formed two separate monophyletic groups, suggestive of their polyphyletic origin. Based on molecular clock approach, we estimated that the divergence of the A-genome group occurred c. 2.0 million years ago (mya) while the two subspecies (indica and japonica) separated c. 0.4 mya. Intron sequences of nuclear genes provide sufficient resolution and are informative for phylogenetic inference at lower taxonomic levels.
Collapse
Affiliation(s)
- Qihui Zhu
- Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | |
Collapse
|
28
|
Mason-Gamer RJ. The {beta}-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae). AMERICAN JOURNAL OF BOTANY 2005; 92:1045-58. [PMID: 21652489 DOI: 10.3732/ajb.92.6.1045] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There are two forms of β-amylase in the Triticeae crop plants wheat, barley, and rye: an endosperm-specific form encoded by two or three closely linked genes, and a tissue-ubiquitous form encoded by a single gene. Both rice and corn have one ubiquitously expressed form encoded by a single gene. This study focuses on two phylogenetic analyses of β-amylase gene sequences. First, a phylogenetic analysis of coding sequences from wheat, barley, rye, rice, and corn was expected to clarify the relationship between the endosperm-specific and tissue-ubiquitous forms of the protein. Instead, it illustrates possible effects of distant outgroups, based on conflicting patterns of character state variation consistent with different root positions. Next, a broad sample of the monogenomic Triticeae was included in a phylogenetic analysis based on sequences from a portion of the tissue-ubiquitous β-amylase gene. The results were compared to existing Triticeae gene trees, among which extensive conflict had been noted in the past. One additional gene tree has not completely clarified the complexity of the group, but has shed additional light on reticulate phylogenetic patterns within the tribe, including relationships involving Eremopyrum, Thinopyrum, and the Triticum/Aegilops group.
Collapse
Affiliation(s)
- Roberta J Mason-Gamer
- University of Illinois at Chicago, Department of Biological Sciences, MC 066, 845 West Taylor Street, Chicago, Illinois 60607 USA
| |
Collapse
|
29
|
Kubo N, Salomon B, Komatsuda T, von Bothmer R, Kadowaki K. Structural and distributional variation of mitochondrial rps2 genes in the tribe Triticeae (Poaceae). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:995-1002. [PMID: 15754209 DOI: 10.1007/s00122-004-1839-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 10/10/2004] [Indexed: 05/24/2023]
Abstract
The mitochondrial rps2 gene from barley, like that of rice, wheat, and maize, has an extended open reading frame (ORF) at the 3'-region when compared to that from lower plants. However, the extended portions are variable among these cereals. Since barley and wheat belong to the same tribe (Triticeae), it would be interesting to know when and where the two types of rps2 were generated during evolution. To determine this, we utilized the mitochondrial (mt) DNA sequence to examine variations of the rps2 genes in the tribe Triticeae. By means of the variable 3'-region, the distribution of barley (B)-type and wheat (W)-type rps2 sequences was studied in 19 genera of the tribe. The B-type sequence was identified in 10 of the 19 genera, whereas the W-type sequence was present in all 19 genera. Thus, ten of the examined genera have both types of rps2 sequences due to the presence of two copies of the gene. The W-type sequence was also present in the tribe Bromeae and the B-type sequence was also found in Aveneae and Poeae. Phylogenetic trees based on the B-type and W-type sequences were different from those based on other molecular data. This suggests that the mitochondrial genome in Triticeae has a unique evolutionary history.
Collapse
Affiliation(s)
- N Kubo
- Genetic Diversity Department, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | |
Collapse
|
30
|
Blattner FR. Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. Mol Phylogenet Evol 2005; 33:289-99. [PMID: 15336664 DOI: 10.1016/j.ympev.2004.05.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 05/12/2004] [Indexed: 11/17/2022]
Abstract
Hordeum (Poaceae, Triticeae) occurs with 31 species worldwide in temperate regions, with the exception of Australasia. About 50% of the species are polyploids (4x, 6x) or occur as di- and polyploid forms. To analyze the phylogenetic relationships among diploid and polyploid taxa of the genus the nuclear rDNA internal transcribed spacer region (ITS) was analyzed for 91 accessions, representing all Hordeum species, together with 10 outgroup species. PCR products were either directly sequenced (outgroups) or cloned and eight clones per individual were analyzed. Phylogenetic analysis revealed four major clades that concur with the four genome groups in Hordeum (H, I, Xa, and Xu). Allopolyploids, putative autopolyploids, and species groups within the closely related H-genome clade could be identified. The ITS data indicate times of independent evolution of paralogous rDNA clusters on different chromosomes intermitted by sweeps of homogenization among these clusters and bi-directional homogenization of the clusters in diploids. Penalized likelihood analysis revealed an age of about 12 million years (my) for the genus and indicated the start of a rapid radiation in the H-genome group about 2.5 my ago in South America and Asia.
Collapse
Affiliation(s)
- Frank R Blattner
- Department of Taxonomy, Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany.
| |
Collapse
|
31
|
Petersen G, Seberg O, Aagesen L, Frederiksen S. An empirical test of the treatment of indels during optimization alignment based on the phylogeny of the genus Secale (Poaceae). Mol Phylogenet Evol 2004; 30:733-42. [PMID: 15012951 DOI: 10.1016/s1055-7903(03)00206-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 05/20/2003] [Indexed: 11/30/2022]
Abstract
The ability of the program POY, implementing optimization alignment, to deal with major indels is explored and discussed in connection with a phylogenetic analysis of the genus Secale based on partial Adh1 sequences. The Adh1 sequences used span exon 2-4. Nearly all variation is found in intron 2 and intron 3, which form the basis for the phylogenetic analyses. Both in some ingroup and outgroup taxa intron 3 has a major duplication. Previous phylogenetic analyses have repeatedly confirmed monophyly of both Secale and Hordeum, the latter being part of the outgroup. However, optimization alignment only recovers both genera as monophyletic when knowledge of the duplication is incorporated in the analysis. The phylogenetic relationships within Secale are not clearly resolved. Subspecific taxa of Secale strictum have identical sequences and they are confined to a monophyletic group. However, the two subspecific taxa of Secale cereale do not form a monophyletic group, and the position of Secale sylvestre is uncertain.
Collapse
Affiliation(s)
- Gitte Petersen
- Botanical Institute, University of Copenhagen, Gothersgade 140, DK-1123 Copenhagen K, Denmark.
| | | | | | | |
Collapse
|
32
|
Fujita MK, Engstrom TN, Starkey DE, Shaffer HB. Turtle phylogeny: insights from a novel nuclear intron. Mol Phylogenet Evol 2004; 31:1031-40. [PMID: 15120399 DOI: 10.1016/j.ympev.2003.09.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 09/09/2003] [Indexed: 11/30/2022]
Abstract
Introns have gained considerable popularity as markers for molecular phylogenetics. However, no primers exist for a nuclear intron that amplifies across all turtles. Available data from morphology and mitochondrial DNA have not unambiguously resolved relationships within the superfamily Trionychoidea and the family Chelidae, which together form a large portion of extant turtle diversity. We tested the phylogenetic utility of a novel intron from the RNA fingerprint protein 35 (R35) as applied to these two areas of turtle systematics. We found the intron to be a single-copy locus that provides excellent resolving power for lineages among turtles, though problems with alignment made it impossible to infer deeper amniote relationships. Maximum parsimony and maximum likelihood both demonstrated the polyphyly of Trionychoidea and the reciprocal monophyly of Australian/New Guinea and South American chelid turtles. This is the first study to resolve such relationships with strong statistical support, and we suggest that R35 holds great promise for resolving additional persistent problems in the phylogeny of living turtles.
Collapse
Affiliation(s)
- Matthew K Fujita
- Section of Evolution and Ecology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
33
|
Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst Biol 2004; 53:25-37. [PMID: 14965898 DOI: 10.1080/10635150490424402] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Recent molecular phylogenetic studies of polyploid plants have successfully clarified complex patterns of reticulate evolution. In this study of Elymus repens, an allohexaploid member of the wheat tribe Triticeae, chloroplast and nuclear DNA data reveal an extreme reticulate pattern, revealing at least five distinct gene lineages coexisting within the species, acquired through a possible combination of allohexaploidy and introgression from both within and beyond the Triticeae. Earlier cytogenetic studies of E. repens suggested that Hordeum (genome H) and Pseudoroegneria (St) were genome donors to E. repens. Chloroplast DNA data presented here (from the rpoA gene and from the region between trnT and trnF) identify three potential maternal genome donors (Pseudoroegneria, Thinopyrum, and Dasypyrum), and information from previous molecular work suggests that, of these, Pseudoroegneria is the most likely maternal donor. Nuclear starch synthase gene data indicate that both Hordeum and Pseudoroegneria have contributed to the nuclear genome of E. repens, in agreement with cytogenetic data. However, these data also show unexpected contributions from Taeniatherum, and from two additional donors of unknown identity. One of the sequences of unknown origin falls within the Triticeae, but is not closely associated with any of the sampled diploid genera. The second falls outside of the clade containing Triticeae and its outgroup Bromus, suggesting the acquisition of genetic material from a surprisingly divergent source. Bias toward the amplification of certain starch synthase variants has complicated attempts to thoroughly sample from within individuals, but the data clearly indicate a complex pattern of reticulate evolution, consistent not only with allohexaploidy, but also with introgression from unexpectedly divergent sources.
Collapse
Affiliation(s)
- Roberta J Mason-Gamer
- University of Illinois at Chicago, Department of Biological Sciences, MC 066, 845 W. Taylor Street, Chicago, Illinois 60607, USA.
| |
Collapse
|
34
|
MOYER GREGORYR, BURR BROOKSM, KRAJEWSKI CAREY. Phylogenetic relationships of thorny catfishes (Siluriformes: Doradidae) inferred from molecular and morphological data. Zool J Linn Soc 2004. [DOI: 10.1111/j.1096-3642.2004.00114.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|