1
|
Brownstein CD, Near TJ. Colonization of the ocean floor by jawless vertebrates across three mass extinctions. BMC Ecol Evol 2024; 24:79. [PMID: 38867201 PMCID: PMC11170801 DOI: 10.1186/s12862-024-02253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The deep (> 200 m) ocean floor is often considered to be a refugium of biodiversity; many benthic marine animals appear to share ancient common ancestry with nearshore and terrestrial relatives. Whether this pattern holds for vertebrates is obscured by a poor understanding of the evolutionary history of the oldest marine vertebrate clades. Hagfishes are jawless vertebrates that are either the living sister to all vertebrates or form a clade with lampreys, the only other surviving jawless fishes. RESULTS We use the hagfish fossil record and molecular data for all recognized genera to construct a novel hypothesis for hagfish relationships and diversification. We find that crown hagfishes persisted through three mass extinctions after appearing in the Permian ~ 275 Ma, making them one of the oldest living vertebrate lineages. In contrast to most other deep marine vertebrates, we consistently infer a deep origin of continental slope occupation by hagfishes that dates to the Paleozoic. Yet, we show that hagfishes have experienced marked body size diversification over the last hundred million years, contrasting with a view of this clade as morphologically stagnant. CONCLUSION Our results establish hagfishes as ancient members of demersal continental slope faunas and suggest a prolonged accumulation of deep sea jawless vertebrate biodiversity.
Collapse
Affiliation(s)
- Chase Doran Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA.
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
- Yale Peabody Museum, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
2
|
Ferreira-Martins D, Walton E, Karlstrom RO, Sheridan MA, McCormick SD. The GH/IGF axis in the sea lamprey during metamorphosis and seawater acclimation. Mol Cell Endocrinol 2023; 571:111937. [PMID: 37086859 DOI: 10.1016/j.mce.2023.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/24/2023]
Abstract
How the growth hormone (GH)/insulin-like growth factor (IGF) system affects osmoregulation in basal vertebrates remains unknown. We examined changes in the expression of components of the GH/IGF axis and gill ion transporters during metamorphosis and following seawater (SW) exposure of sea lamprey. During metamorphosis, increases in gill nka and nkcc1 and salinity tolerance were accompanied by increases in pituitary gh, liver igf1, gill ghr and igf1, but not liver ghr. SW exposure of fully metamorphosed sea lamprey resulted in slight increases in plasma chloride concentrations after SW exposure, indicating a high level of SW tolerance, but no major changes in mRNA levels of gill ion transporters or components of the GH/IGF axis. Our results indicate that metamorphosis is a critical point in the lifecycle of sea lamprey for stimulation of the GH/IGF axis and is temporally associated with and likely promotes metamorphosis and SW tolerance.
Collapse
Affiliation(s)
- Diogo Ferreira-Martins
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Emily Walton
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Rolf O Karlstrom
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Mark A Sheridan
- Department of Biological Sciences, 2901 Main St, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Stephen D McCormick
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Sobrido‐Cameán D, González‐Llera L, Anadón R, Barreiro‐Iglesias A. Organization of the corticotropin-releasing hormone and corticotropin-releasing hormone-binding protein systems in the central nervous system of the sea lamprey Petromyzon marinus. J Comp Neurol 2023; 531:58-88. [PMID: 36150899 PMCID: PMC9826344 DOI: 10.1002/cne.25412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
The expression of the corticotropin-releasing hormone (PmCRH) and the CRH-binding protein (PmCRHBP) mRNAs was studied by in situ hybridization in the brain of prolarvae, larvae, and adults of the sea lamprey Petromyzon marinus. We also generated an antibody against the PmCRH mature peptide to study the distribution of PmCRH-immunoreactive cells and fibers. PmCRH immunohistochemistry was combined with antityrosine hydroxylase immunohistochemistry, PmCRHBP in situ hybridization, or neurobiotin transport from the spinal cord. The most numerous PmCRH-expressing cells were observed in the magnocellular preoptic nucleus-paraventricular nucleus and in the superior and medial rhombencephalic reticular formation. PmCRH expression was more extended in adults than in larvae, and some cell populations were mainly (olfactory bulb) or only (striatum, ventral hypothalamus, prethalamus) observed in adults. The preopto-paraventricular fibers form conspicuous tracts coursing toward the neurohypophysis, but many immunoreactive fibers were also observed coursing in many other brain regions. Brain descending fibers in the spinal cord mainly come from cells located in the isthmus and in the medial rhombencephalic reticular nucleus. The distribution of PmCRHBP-expressing neurons was different from that of PmCRH cells, with cells mainly present in the septum, striatum, preoptic region, tuberal hypothalamus, pretectum, pineal complex, isthmus, reticular formation, and spinal cord. Again, expression in adults was more extended than in larvae. PmCRH- and PmCRHBP-expressing cells are different, excluding colocalization of these substances in the same neuron. Present findings reveal a complex CRH/CRHBP system in the brain of the oldest extant vertebrate group, the agnathans, which shows similarities but important divergences with that of mammals.
Collapse
Affiliation(s)
- Daniel Sobrido‐Cameán
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain,Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Laura González‐Llera
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Ramón Anadón
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Antón Barreiro‐Iglesias
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
4
|
Frost CR, Goss GG. Absence of some cytochrome P450 (CYP) and hydroxysteroid dehydrogenase (HSD) enzymes in hagfishes. Gen Comp Endocrinol 2022; 323-324:114045. [PMID: 35472318 DOI: 10.1016/j.ygcen.2022.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
Abstract
Corticosteroids are synthesized from cholesterol by steroidogenic enzyme catalysts belonging to two main families: the cytochrome p450s (CYPs) and hydroxysteroid dehydrogenases (HSDs). The action of these steroidogenic enzymes allows the genesis of the terminal active corticosteroids 11-deoxycortisol (S), 1ɑ-hydroxycorticosterone (1α-OH-B), or cortisol in different fish species. However, for Cyclostomes like hagfishes, the terminal corticosteroid is still undefined. In this study, we examined the presence or absence of CYPs and HSDs as traits in fishes to gain insight about the primary corticosteroid synthesis pathways of the hagfishes. We used published cytochrome c oxidase I (COXI) amino acid sequences to construct a phylogeny of fishes and then mapped the CYPs and HSDs as morphological traits onto the tree to predict the ancestral character states through ancestral character reconstruction (ACR). There is a clear phylogenetic signal for CYP (i.e., CYP11a1, 17, 21, and 11b) and HSD (i.e., 11-βHSD and 3β-HSD) derivatives of interest throughout the more derived fishes. Using trait-based ACR, we also found that hagfishes possess genes for 3β-HSD, CYP11a1, CYP17, and CYP21. Importantly, the presence of CYP21 implies that hagfish can synthesize 11-deoxycorticosterone (11-DOC) and S. Previous research demonstrated that despite hagfish having CYP21, neither 11-DOC nor S could be detected in hagfish. This discrepancy between the presence of steroidogenic enzymes and products brings into question the expression and/or function of CYP21 in hagfishes.
Collapse
Affiliation(s)
- Christiana R Frost
- Department of Biological Sciences, University of Alberta, CW405, Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, CW405, Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
5
|
Martik ML, Bronner ME. Riding the crest to get a head: neural crest evolution in vertebrates. Nat Rev Neurosci 2021; 22:616-626. [PMID: 34471282 PMCID: PMC10168595 DOI: 10.1038/s41583-021-00503-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
In their seminal 1983 paper, Gans and Northcutt proposed that evolution of the vertebrate 'new head' was made possible by the advent of the neural crest and cranial placodes. The neural crest is a stem cell population that arises adjacent to the forming CNS and contributes to important cell types, including components of the peripheral nervous system and craniofacial skeleton and elements of the cardiovascular system. In the past few years, the new head hypothesis has been challenged by the discovery in invertebrate chordates of cells with some, but not all, characteristics of vertebrate neural crest cells. Here, we discuss recent findings regarding how neural crest cells may have evolved during the course of deuterostome evolution. The results suggest that there was progressive addition of cell types to the repertoire of neural crest derivatives throughout vertebrate evolution. Novel genomic tools have enabled higher resolution insight into neural crest evolution, from both a cellular and a gene regulatory perspective. Together, these data provide clues regarding the ancestral neural crest state and how the neural crest continues to evolve to contribute to the success of vertebrates as efficient predators.
Collapse
Affiliation(s)
- Megan L Martik
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Marianne E Bronner
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Lamprey lecticans link new vertebrate genes to the origin and elaboration of vertebrate tissues. Dev Biol 2021; 476:282-293. [PMID: 33887266 DOI: 10.1016/j.ydbio.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022]
Abstract
The evolution of vertebrates from an invertebrate chordate ancestor involved the evolution of new organs, tissues, and cell types. It was also marked by the origin and duplication of new gene families. If, and how, these morphological and genetic innovations are related is an unresolved question in vertebrate evolution. Hyaluronan is an extracellular matrix (ECM) polysaccharide important for water homeostasis and tissue structure. Vertebrates possess a novel family of hyaluronan binding proteins called Lecticans, and studies in jawed vertebrates (gnathostomes) have shown they function in many of the cells and tissues that are unique to vertebrates. This raises the possibility that the origin and/or expansion of this gene family helped drive the evolution of these vertebrate novelties. In order to better understand the evolution of the lectican gene family, and its role in the evolution of vertebrate morphological novelties, we investigated the phylogeny, genomic arrangement, and expression patterns of all lecticans in the sea lamprey (Petromyzon marinus), a jawless vertebrate. Though both P. marinus and gnathostomes each have four lecticans, our phylogenetic and syntenic analyses are most consistent with the independent duplication of one of more lecticans in the lamprey lineage. Despite the likely independent expansion of the lamprey and gnathostome lectican families, we find highly conserved expression of lecticans in vertebrate-specific and mesenchyme-derived tissues. We also find that, unlike gnathostomes, lamprey expresses its lectican paralogs in distinct subpopulations of head skeleton precursors, potentially reflecting an ancestral diversity of skeletal tissue types. Together, these observations suggest that the ancestral pre-duplication lectican had a complex expression pattern, functioned to support mesenchymal histology, and likely played a role in the evolution of vertebrate-specific cell and tissue types.
Collapse
|
7
|
Dong EM, Allison WT. Vertebrate features revealed in the rudimentary eye of the Pacific hagfish ( Eptatretus stoutii). Proc Biol Sci 2021; 288:20202187. [PMID: 33434464 DOI: 10.1098/rspb.2020.2187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hagfish eyes are markedly basic compared to the eyes of other vertebrates, lacking a pigmented epithelium, a lens and a retinal architecture built of three cell layers: the photoreceptors, interneurons and ganglion cells. Concomitant with hagfish belonging to the earliest-branching vertebrate group (the jawless Agnathans), this lack of derived characters has prompted competing interpretations that hagfish eyes represent either a transitional form in the early evolution of vertebrate vision, or a regression from a previously elaborate organ. Here, we show the hagfish retina is not extensively degenerating during its ontogeny, but instead grows throughout life via a recognizable PAX6+ ciliary marginal zone. The retina has a distinct layer of photoreceptor cells that appear to homogeneously express a single opsin of the RH1 rod opsin class. The epithelium that encompasses these photoreceptors is striking because it lacks the melanin pigment that is universally associated with animal vision; notwithstanding, we suggest this epithelium is a homologue of gnathosome retinal pigment epithelium (RPE) based on its robust expression of RPE65 and its engulfment of photoreceptor outer segments. We infer that the hagfish retina is not entirely rudimentary in its wiring, despite lacking a morphologically distinct layer of interneurons: multiple populations of cells exist in the hagfish inner retina and subsets of these express markers of vertebrate retinal interneurons. Overall, these data clarify Agnathan retinal homologies, reveal characters that now appear to be ubiquitous across the eyes of vertebrates, and refine interpretations of early vertebrate visual system evolution.
Collapse
Affiliation(s)
- Emily M Dong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T7Y 1C4
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T7Y 1C4
| |
Collapse
|
8
|
Sznarkowska A, Mikac S, Pilch M. MHC Class I Regulation: The Origin Perspective. Cancers (Basel) 2020; 12:cancers12051155. [PMID: 32375397 PMCID: PMC7281430 DOI: 10.3390/cancers12051155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Viral-derived elements and non-coding RNAs that build up “junk DNA” allow for flexible and context-dependent gene expression. They are extremely dense in the MHC region, accounting for flexible expression of the MHC I, II, and III genes and adjusting the level of immune response to the environmental stimuli. This review brings forward the viral-mediated aspects of the origin and evolution of adaptive immunity and aims to link this perspective with the MHC class I regulation. The complex regulatory network behind MHC expression is largely controlled by virus-derived elements, both as binding sites for immune transcription factors and as sources of regulatory non-coding RNAs. These regulatory RNAs are imbalanced in cancer and associate with different tumor types, making them promising targets for diagnostic and therapeutic interventions.
Collapse
|
9
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
10
|
Recent Advances in Hagfish Developmental Biology in a Historical Context: Implications for Understanding the Evolution of the Vertebral Elements. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-4-431-56609-0_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Gabbott SE, Donoghue PCJ, Sansom RS, Vinther J, Dolocan A, Purnell MA. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye. Proc Biol Sci 2017; 283:rspb.2016.1151. [PMID: 27488650 PMCID: PMC5013770 DOI: 10.1098/rspb.2016.1151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/11/2016] [Indexed: 12/03/2022] Open
Abstract
The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive ‘eye spot’ in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report—based on evidence of size, shape, preservation mode and localized occurrence—the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin.
Collapse
Affiliation(s)
- Sarah E Gabbott
- Department of Geology, University of Leicester, Leicester LE1 7RH, UK
| | | | - Robert S Sansom
- Faculty of Life Sciences, University of Manchester, Manchester M20 6RT, UK
| | - Jakob Vinther
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Andrei Dolocan
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mark A Purnell
- Department of Geology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
12
|
Square T, Jandzik D, Romášek M, Cerny R, Medeiros DM. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Dev Biol 2017; 427:219-229. [DOI: 10.1016/j.ydbio.2016.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/06/2016] [Accepted: 11/20/2016] [Indexed: 01/30/2023]
|
13
|
Larouche O, Zelditch ML, Cloutier R. Fin modules: an evolutionary perspective on appendage disparity in basal vertebrates. BMC Biol 2017; 15:32. [PMID: 28449681 PMCID: PMC5406925 DOI: 10.1186/s12915-017-0370-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fishes are extremely speciose and also highly disparate in their fin configurations, more specifically in the number of fins present as well as their structure, shape, and size. How they achieved this remarkable disparity is difficult to explain in the absence of any comprehensive overview of the evolutionary history of fish appendages. Fin modularity could provide an explanation for both the observed disparity in fin configurations and the sequential appearance of new fins. Modularity is considered as an important prerequisite for the evolvability of living systems, enabling individual modules to be optimized without interfering with others. Similarities in developmental patterns between some of the fins already suggest that they form developmental modules during ontogeny. At a macroevolutionary scale, these developmental modules could act as evolutionary units of change and contribute to the disparity in fin configurations. This study addresses fin disparity in a phylogenetic perspective, while focusing on the presence/absence and number of each of the median and paired fins. RESULTS Patterns of fin morphological disparity were assessed by mapping fin characters on a new phylogenetic supertree of fish orders. Among agnathans, disparity in fin configurations results from the sequential appearance of novel fins forming various combinations. Both median and paired fins would have appeared first as elongated ribbon-like structures, which were the precursors for more constricted appendages. Among chondrichthyans, disparity in fin configurations relates mostly to median fin losses. Among actinopterygians, fin disparity involves fin losses, the addition of novel fins (e.g., the adipose fin), and coordinated duplications of the dorsal and anal fins. Furthermore, some pairs of fins, notably the dorsal/anal and pectoral/pelvic fins, show non-independence in their character distribution, supporting expectations based on developmental and morphological evidence that these fin pairs form evolutionary modules. CONCLUSIONS Our results suggest that the pectoral/pelvic fins and the dorsal/anal fins form two distinct evolutionary modules, and that the latter is nested within a more inclusive median fins module. Because the modularity hypotheses that we are testing are also supported by developmental and variational data, this constitutes a striking example linking developmental, variational, and evolutionary modules.
Collapse
Affiliation(s)
- Olivier Larouche
- Laboratoire de Paléontologie et de Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1 Canada
| | | | - Richard Cloutier
- Laboratoire de Paléontologie et de Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1 Canada
| |
Collapse
|
14
|
Sequencing and characterization of mitochondrial DNA genome for Brama japonica (Perciformes: Bramidae) with phylogenetic consideration. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Kuratani S, Oisi Y, Ota KG. Evolution of the Vertebrate Cranium: Viewed from Hagfish Developmental Studies. Zoolog Sci 2016; 33:229-38. [DOI: 10.2108/zs150187] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Yasuhiro Oisi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458-2906, USA
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| |
Collapse
|
16
|
A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 2015; 520:466-73. [PMID: 25903628 DOI: 10.1038/nature14435] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.
Collapse
|
17
|
Oisi Y, Fujimoto S, Ota KG, Kuratani S. On the peculiar morphology and development of the hypoglossal, glossopharyngeal and vagus nerves and hypobranchial muscles in the hagfish. ZOOLOGICAL LETTERS 2015; 1:6. [PMID: 26605051 PMCID: PMC4604111 DOI: 10.1186/s40851-014-0005-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 12/20/2014] [Indexed: 05/28/2023]
Abstract
INTRODUCTION The vertebrate body is characterized by its dual segmental organization: pharyngeal arches in the head and somites in the trunk. Muscular and nervous system morphologies are also organized following these metameric patterns, with distinct differences between head and trunk; branchiomeric nerves innervating pharyngeal arches are superficial to spinal nerves innervating somite derivatives. Hypobranchial muscles originate from rostral somites and occupy the "neck" at the head-trunk interface. Hypobranchial muscles, unlike ventral trunk muscles in the lateral body wall, develop from myocytes that migrate ventrally to occupy a space that is ventrolateral to the pharynx and unassociated with coelomic cavities. Occipitospinal nerves innervating these muscles also extend ventrally, thereby crossing the vagus nerve laterally. RESULTS In hagfishes, the basic morphological pattern of vertebrates is obliterated by the extreme caudal shift of the posterior part of the pharynx. The vagus nerve is found unusually medially, and occipitospinal nerves remain unfasciculated, appearing as metameric spinal nerves as in the posterior trunk region. Moreover, the hagfish exhibits an undifferentiated body plan, with the hypobranchial muscles not well dissociated from the abaxial muscles in the trunk. Comparative embryological observation showed that this hagfish-specific morphology is established by secondary modification of the common vertebrate embryonic pattern, and the hypobranchial muscle homologue can be found in the rostral part of the oblique muscle with pars decussata. CONCLUSION The morphological pattern of the hagfish represents an extreme case of heterotopy that led to the formation of the typical hypoglossal nerve, and can be regarded as an autapomorphic trait of the hagfish lineage.
Collapse
Affiliation(s)
- Yasuhiro Oisi
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Satoko Fujimoto
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Kinya G Ota
- />Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, No. 23-10, Dawen Road, Jiaoxi, Yilan 26242 Taiwan
| | - Shigeru Kuratani
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
18
|
Haverinen J, Egginton S, Vornanen M. Electrical Excitation of the Heart in a Basal Vertebrate, the European River Lamprey (Lampetra fluviatilis). Physiol Biochem Zool 2014; 87:817-28. [DOI: 10.1086/678954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Ziermann JM, Miyashita T, Diogo R. Cephalic muscles of Cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head muscles. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| | - Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton AB T6E 2N4 Canada
| | - Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| |
Collapse
|
20
|
GC skew and mitochondrial origins of replication. Mitochondrion 2014; 17:56-66. [DOI: 10.1016/j.mito.2014.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
|
21
|
Schilf P, Peter A, Hurek T, Stick R. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family. Eur J Cell Biol 2014; 93:308-21. [DOI: 10.1016/j.ejcb.2014.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022] Open
|
22
|
Suzuki A, Endo K, Kitano T. Phylogenetic positions of RH blood group-related genes in cyclostomes. Gene 2014; 543:22-7. [DOI: 10.1016/j.gene.2014.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/24/2014] [Accepted: 04/06/2014] [Indexed: 11/26/2022]
|
23
|
Maklad A, Reed C, Johnson NS, Fritzsch B. Anatomy of the lamprey ear: morphological evidence for occurrence of horizontal semicircular ducts in the labyrinth of Petromyzon marinus. J Anat 2014; 224:432-46. [PMID: 24438368 DOI: 10.1111/joa.12159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 02/03/2023] Open
Abstract
In jawed (gnathostome) vertebrates, the inner ears have three semicircular canals arranged orthogonally in the three Cartesian planes: one horizontal (lateral) and two vertical canals. They function as detectors for angular acceleration in their respective planes. Living jawless craniates, cyclostomes (hagfish and lamprey) and their fossil records seemingly lack a lateral horizontal canal. The jawless vertebrate hagfish inner ear is described as a torus or doughnut, having one vertical canal, and the jawless vertebrate lamprey having two. These observations on the anatomy of the cyclostome (jawless vertebrate) inner ear have been unchallenged for over a century, and the question of how these jawless vertebrates perceive angular acceleration in the yaw (horizontal) planes has remained open. To provide an answer to this open question we reevaluated the anatomy of the inner ear in the lamprey, using stereoscopic dissection and scanning electron microscopy. The present study reveals a novel observation: the lamprey has two horizontal semicircular ducts in each labyrinth. Furthermore, the horizontal ducts in the lamprey, in contrast to those of jawed vertebrates, are located on the medial surface in the labyrinth rather than on the lateral surface. Our data on the lamprey horizontal duct suggest that the appearance of the horizontal canal characteristic of gnathostomes (lateral) and lampreys (medial) are mutually exclusive and indicate a parallel evolution of both systems, one in cyclostomes and one in gnathostome ancestors.
Collapse
Affiliation(s)
- Adel Maklad
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | |
Collapse
|
24
|
Nozaki M. Hypothalamic-pituitary-gonadal endocrine system in the hagfish. Front Endocrinol (Lausanne) 2013; 4:200. [PMID: 24416029 PMCID: PMC3874551 DOI: 10.3389/fendo.2013.00200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 11/26/2022] Open
Abstract
The hypothalamic-pituitary system is considered to be a seminal event that emerged prior to or during the differentiation of the ancestral agnathans (jawless vertebrates). Hagfishes as one of the only two extant members of the class of agnathans are considered the most primitive vertebrates known, living or extinct. Accordingly, studies on their reproduction are important for understanding the evolution and phylogenetic aspects of the vertebrate reproductive endocrine system. In gnathostomes (jawed vertebrates), the hormones of the hypothalamus and pituitary have been extensively studied and shown to have well-defined roles in the control of reproduction. In hagfish, it was thought that they did not have the same neuroendocrine control of reproduction as gnathostomes, since it was not clear whether the hagfish pituitary gland contained tropic hormones of any kind. This review highlights the recent findings of the hypothalamic-pituitary-gonadal endocrine system in the hagfish. In contrast to gnathostomes that have two gonadotropins (GTH: luteinizing hormone and follicle-stimulating hormone), only one pituitary GTH has been identified in the hagfish. Immunohistochemical and functional studies confirmed that this hagfish GTH was significantly correlated with the developmental stages of the gonads and showed the presence of a steroid (estradiol) feedback system at the hypothalamic-pituitary levels. Moreover, while the identity of hypothalamic gonadotropin-releasing hormone (GnRH) has not been determined, immunoreactive (ir) GnRH has been shown in the hagfish brain including seasonal changes of ir-GnRH corresponding to gonadal reproductive stages. In addition, a hagfish PQRFamide peptide was identified and shown to stimulate the expression of hagfish GTHβ mRNA in the hagfish pituitary. These findings provide evidence that there are neuroendocrine-pituitary hormones that share common structure and functional features compared to later evolved vertebrates.
Collapse
Affiliation(s)
- Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Japan
| |
Collapse
|
25
|
Caputo Barucchi V, Giovannotti M, Nisi Cerioni P, Splendiani A. Genome duplication in early vertebrates: insights from agnathan cytogenetics. Cytogenet Genome Res 2013; 141:80-9. [PMID: 23949002 DOI: 10.1159/000354098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Agnathans represent a remnant of a primitive offshoot of the vertebrates, and the long evolutionary separation between their 2 living groups, namely hagfishes and lampreys, could explain profound biological differences, also in karyotypes and genome sizes. Here, cytogenetic studies available on these vertebrates were summarized and data discussed with reference to the recently demonstrated monophyly of this group and to the 2 events of whole genome duplication (1R and 2R) characterizing the evolution of vertebrates. The comparison of cytogenetic data and phylogenetic relationships among agnathans and gnathostomes seems to support the hypothesis that 1R and 2R occurred before the evolutionary divergence between jawless and jawed vertebrates.
Collapse
|
26
|
Nozaki M, Uchida K, Honda K, Shimotani T, Nishiyama M. Effects of estradiol or testosterone treatment on expression of gonadotropin subunit mRNAs and proteins in the pituitary of juvenile brown hagfish, Paramyxine atami. Gen Comp Endocrinol 2013; 189:111-8. [PMID: 23684771 DOI: 10.1016/j.ygcen.2013.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/26/2022]
Abstract
A single functional gonadotropin (GTH) comprising two subunits, α and β, was recently identified in the pituitary of brown hagfish (Paramyxine atami). Little is known about the feedback mechanisms that regulate these GTH subunits by sex steroids in the hagfish. The present study was designed to examine feedback effects of estradiol and testosterone on mRNA expression and protein expression of both GTHα and GTHβ subunits in the pituitary of the juvenile P. atami. Intraperitoneal administration of estradiol over the course of 27days resulted in substantial accumulation of immunoreactive (ir)-GTHα and ir-GTHβ in the adenohypophysis, but testosterone treatments over 27days had no effects on ir-GTHα or ir-GTHβ. Estradiol treatment for 1, 2, 4 or 14days had no effect on GTHα mRNA levels. In contrast, after 2days of estradiol treatment, GTHβ mRNA levels had increased significantly from baseline, while these levels were not affected after treatment over 1, 4, or 14days. After 14days of testosterone treatment, both GTHα and GTHβ mRNA levels had decreased significantly from baseline levels. These results indicate that estradiol acted primarily to suppress the secretion of GTH, and hence resulted in the accumulations of ir-GTHα and ir-GTHβ in the pituitary. On the other hand, testosterone appeared to suppress both the synthesis and the secretion of GTH. Thus, estradiol and testosterone probably differ in their effects on the regulation of pituitary GTH synthesis and secretion in juvenile hagfish.
Collapse
Affiliation(s)
- Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata 952-2135, Japan.
| | | | | | | | | |
Collapse
|
27
|
Kirino M, Parnes J, Hansen A, Kiyohara S, Finger TE. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors. Open Biol 2013; 3:130015. [PMID: 23466675 PMCID: PMC3718344 DOI: 10.1098/rsob.130015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.
Collapse
Affiliation(s)
- Masato Kirino
- Department of Chemistry and BioScience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
28
|
Kuraku S. Impact of asymmetric gene repertoire between cyclostomes and gnathostomes. Semin Cell Dev Biol 2013; 24:119-27. [DOI: 10.1016/j.semcdb.2012.12.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/25/2012] [Indexed: 12/12/2022]
|
29
|
Abstract
Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1-3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates.
Collapse
Affiliation(s)
- Rolf Ericsson
- Department of Palaeontology, Natural History Museum, London, UK.
| | | | | |
Collapse
|
30
|
Abstract
The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary-developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during gastrulation, which initiates the process and constrains possible evolutionary changes within this area; third, incipient structure of the stomodeal primordium at the anterior neural plate border, where the ectoderm component of the prospective primary mouth is formed; and fourth, the prime role of Pitx genes for establishment and later morphogenesis of oral region both in vertebrates and non-vertebrate chordates.
Collapse
Affiliation(s)
- Vladimír Soukup
- Department of Zoology, Charles University in Prague, Prague, Czech Republic
| | | | | |
Collapse
|
31
|
Shimeld SM, Donoghue PCJ. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 2012; 139:2091-9. [DOI: 10.1242/dev.074716] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lampreys and hagfish, which together are known as the cyclostomes or ‘agnathans’, are the only surviving lineages of jawless fish. They diverged early in vertebrate evolution, before the origin of the hinged jaws that are characteristic of gnathostome (jawed) vertebrates and before the evolution of paired appendages. However, they do share numerous characteristics with jawed vertebrates. Studies of cyclostome development can thus help us to understand when, and how, key aspects of the vertebrate body evolved. Here, we summarise the development of cyclostomes, highlighting the key species studied and experimental methods available. We then discuss how studies of cyclostomes have provided important insight into the evolution of fins, jaws, skeleton and neural crest.
Collapse
Affiliation(s)
- Sebastian M. Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Phillip C. J. Donoghue
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| |
Collapse
|
32
|
DAVIES WAYNEIL, COLLIN SHAUNP, HUNT DAVIDM. Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol 2012; 21:3121-58. [DOI: 10.1111/j.1365-294x.2012.05617.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Heimberg AM, Cowper-Sal·lari R, Sémon M, Donoghue PCJ, Peterson KJ. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci U S A 2010; 107:19379-83. [PMID: 20959416 PMCID: PMC2984222 DOI: 10.1073/pnas.1010350107] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclostomata (hagfish and lampreys as closest relatives). Here, we show through deep sequencing of small RNA libraries, coupled with genomic surveys, that Cyclostomata is monophyletic: hagfish and lampreys share 4 unique microRNA families, 15 unique paralogues of more primitive microRNA families, and 22 unique substitutions to the mature gene products. Reanalysis of morphological data reveals that support for cyclostome paraphyly was based largely on incorrect character coding, and a revised dataset is not decisive on the mono- vs. paraphyly of cyclostomes. Furthermore, we show fundamental conservation of microRNA expression patterns among lamprey, hagfish, and gnathostome organs, implying that the role of microRNAs within specific organs is coincident with their appearance within the genome and is conserved through time. Together, these data support the monophyly of cyclostomes and suggest that the last common ancestor of all living vertebrates was a more complex organism than conventionally accepted by comparative morphologists and developmental biologists.
Collapse
Affiliation(s)
| | | | - Marie Sémon
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; and
| | - Philip C. J. Donoghue
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
34
|
microRNAs revive old views about jawless vertebrate divergence and evolution. Proc Natl Acad Sci U S A 2010; 107:19137-8. [PMID: 21041649 DOI: 10.1073/pnas.1014583107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Sansom RS, Gabbott SE, Purnell MA. Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record. Proc Biol Sci 2010; 278:1150-7. [PMID: 20947532 DOI: 10.1098/rspb.2010.1641] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The timing and sequence of events underlying the origin and early evolution of vertebrates remains poorly understood. The palaeontological evidence should shed light on these issues, but difficulties in interpretation of the non-biomineralized fossil record make this problematic. Here we present an experimental analysis of decay of vertebrate characters based on the extant jawless vertebrates (Lampetra and Myxine). This provides a framework for the interpretation of the anatomy of soft-bodied fossil vertebrates and putative cyclostomes, and a context for reading the fossil record of non-biomineralized vertebrate characters. Decay results in transformation and non-random loss of characters. In both lamprey and hagfish, different types of cartilage decay at different rates, resulting in taphonomic bias towards loss of 'soft' cartilages containing vertebrate-specific Col2α1 extracellular matrix proteins; phylogenetically informative soft-tissue characters decay before more plesiomorphic characters. As such, synapomorphic decay bias, previously recognized in early chordates, is more pervasive, and needs to be taken into account when interpreting the anatomy of any non-biomineralized fossil vertebrate, such as Haikouichthys, Mayomyzon and Hardistiella.
Collapse
Affiliation(s)
- Robert S Sansom
- Department of Geology, University of Leicester, Leicester LE1 7RH, UK
| | | | | |
Collapse
|
36
|
Le Péchon T, Dubuisson JY, Haevermans T, Cruaud C, Couloux A, Gigord LDB. Multiple colonizations from Madagascar and converged acquisition of dioecy in the Mascarene Dombeyoideae (Malvaceae) as inferred from chloroplast and nuclear DNA sequence analyses. ANNALS OF BOTANY 2010; 106:343-57. [PMID: 20562131 PMCID: PMC2908169 DOI: 10.1093/aob/mcq116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS In the Mascarenes, a young oceanic archipelago composed of three main islands, the Dombeyoideae (Malvaceae) have diversified extensively with a high endemism rate. With the exception of the genus Trochetia, Mascarene Dombeyoideae are described as dioecious whereas Malagasy and African species are considered to be monocline, species with individuals bearing hermaphrodite/perfect flowers. In this study, the phylogenetic relationships were reconstructed to clarify the taxonomy, understand the phylogeographic pattern of relationships and infer the evolution of the breeding systems for the Mascarenes Dombeyoideae. METHODS Parsimony and Bayesian analysis of four DNA markers (ITS, rpl16 intron and two intergenic spacers trnQ-rsp16 and psbM-trnD) was used. The molecular matrix comprised 2985 characters and 48 taxa. The Bayesian phylogeny was used to infer phylogeographical hypotheses and the evolution of breeding systems. KEY RESULTS Parsimony and Bayesian trees produced similar results. The Dombeyoideae from the Mascarenes are polyphyletic and distributed among four clades. Species of Dombeya, Trochetia and Ruizia are nested in the same clade, which implies the paraphyly of Dombeya. Additionally, it is shown that each of the four clades has an independent Malagasy origin. Two adaptive radiation events have occurred within two endemic lineages of the Mascarenes. The polyphyly of the Mascarene Dombeyoideae suggests at least three independent acquisitions of dioecy. CONCLUSIONS This molecular phylogeny highlights the taxonomic issues within the Dombeyoideae. Indeed, the limits and distinctions of the genera Dombeya, Trochetia and Ruizia should be reconsidered. The close phylogeographic relationships between the flora of the Mascarenes and Madagascar are confirmed. Despite their independent origins and a distinct evolutionary history, each endemic clade has developed a different breeding systems (dioecy) compared with the Malagasy Dombeyoideae. Sex separation appears as an evolutionary convergence and may be the consequence of selective pressures particular to insular environments.
Collapse
Affiliation(s)
- Timothée Le Péchon
- Université Pierre et Marie Curie, UMR CNRS-MNHN-UPMC "Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements", Paris, France.
| | | | | | | | | | | |
Collapse
|
37
|
Ota KG, Kuratani S. Expression pattern of two collagen type 2 alpha1 genes in the Japanese inshore hagfish (Eptatretus burgeri) with special reference to the evolution of cartilaginous tissue. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:157-65. [PMID: 19750486 DOI: 10.1002/jez.b.21322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Collagen type 2 alpha1 (Col2A1) protein is a major component of the cartilaginous extracellular matrix (ECM) in vertebrates. Over the past two decades, the evolutionary origin of Col2A1 has been studied at the biochemical and molecular levels in extant jawless vertebrates (hagfishes and lampreys). Although these studies have contributed to our understanding of ECM protein evolution, the expression profile of the Col2A1 gene in hagfishes has not been fully described. We have performed molecular cloning and analyzed the gene expression pattern of the Col2A1 gene in the Japanese inshore hagfish (Eptatretus burgeri). We succeeded in isolating two Col2A1 genes, EbCol2A1A and EbCol2A1B, in which EbCol2A1A was expressed in the noncartilaginous connective tissues whereas EbCol2A1B was detected in some cartilaginous elements. Based on these results, we discuss the evolutionary history of Col2A1 genes in early vertebrates.
Collapse
Affiliation(s)
- Kinya G Ota
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, Minatojima-minami, Chuo, Kobe, Hyogo, Japan.
| | | |
Collapse
|
38
|
Hagey LR, Møller PR, Hofmann AF, Krasowski MD. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway. Physiol Biochem Zool 2010; 83:308-21. [PMID: 20113173 PMCID: PMC2845723 DOI: 10.1086/649966] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.
Collapse
Affiliation(s)
- Lee R. Hagey
- Department of Medicine, University of California at San Diego, MC 0063, La Jolla, California 92093-0063
| | - Peter R. Møller
- National History Museum of Denmark, Zoological Museum, University of Copenhagen, Denmark
| | - Alan F. Hofmann
- Department of Medicine, University of California at San Diego, MC 0063, La Jolla, California 92093-0063
| | - Matthew D. Krasowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
39
|
Sansom RS, Gabbott SE, Purnell MA. Non-random decay of chordate characters causes bias in fossil interpretation. Nature 2010; 463:797-800. [DOI: 10.1038/nature08745] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 12/04/2009] [Indexed: 01/19/2023]
|
40
|
Near TJ. Conflict and resolution between phylogenies inferred from molecular and phenotypic data sets for hagfish, lampreys, and gnathostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:749-61. [PMID: 19402130 DOI: 10.1002/jez.b.21293] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the most problematic issues in vertebrate phylogenetics is the disagreement between phenotypic and molecular inferences regarding the relationships among hagfishes, lampreys, and gnathostomes. Phenotypic characters support monophyly of lampreys and gnathostomes, whereas nearly all published analyses of molecular data sets support monophyly of hagfishes and lampreys. In this study I present results of phylogenetic analyses of combined phenotypic and molecular data sets that focus on relationships among hagfishes, lampreys, and gnathostomes. Maximum parsimony analyses of 115 phenotypic characters combined with 4,638 rRNA sites and more than 10,000 amino acids each result in monophyly of lampreys and gnathostomes, demonstrating that the addition of relatively few phenotypic characters can alter phylogenetic inferences from large molecular data sets. On the other hand, Bayesian analyses of the combined data sets support monophyly of hagfish and lampreys, indicating that model-based analyses may be prone to data "swamping," where the phylogenetic signal of the larger molecular data sets overwhelm the signal present in the much smaller phenotypic data set. Nodes that relate hagfish and lampreys were recovered at a low frequency in parametric bootstrapping analyses, indicating that the timing of diversification among hagfishes, lampreys, and gnathostomes has created a difficult phylogenetic problem for molecular data. The fact that addition of relatively few phenotypic characters can alter phylogenetic inferences of cyclostome monophyly obtained from molecular data sets, and the inability of simulated data sets to recover key nodes in the craniate phylogeny provide reasons to view the strong support for cyclostome monophyly inferred from molecular data sets with a measured degree of skepticism.
Collapse
Affiliation(s)
- Thomas J Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
41
|
Hofmann AF, Hagey LR, Krasowski MD. Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 2009; 51:226-46. [PMID: 19638645 DOI: 10.1194/jlr.r000042] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biliary bile salt composition of 677 vertebrate species (103 fish, 130 reptiles, 271 birds, 173 mammals) was determined. Bile salts were of three types: C(27) bile alcohols, C(27) bile acids, or C(24) bile acids, with default hydroxylation at C-3 and C-7. C(27) bile alcohols dominated in early evolving fish and amphibians; C(27) bile acids, in reptiles and early evolving birds. C(24) bile acids were present in all vertebrate classes, often with C(27) alcohols or with C(27) acids, indicating two evolutionary pathways from C(27) bile alcohols to C(24) bile acids: a) a 'direct' pathway and b) an 'indirect' pathway with C(27) bile acids as intermediates. Hydroxylation at C-12 occurred in all orders and at C-16 in snakes and birds. Minor hydroxylation sites were C-1, C-2, C-5, C-6, and C-15. Side chain hydroxylation in C(27) bile salts occurred at C-22, C-24, C-25, and C-26, and in C(24) bile acids, at C-23 (snakes, birds, and pinnipeds). Unexpected was the presence of C(27) bile alcohols in four early evolving mammals. Bile salt composition showed significant variation between orders but not between families, genera, or species. Bile salt composition is a biochemical trait providing clues to evolutionary relationships, complementing anatomical and genetic analyses.
Collapse
Affiliation(s)
- Alan F Hofmann
- Department of Medicine, University of California, San Diego, San Diego, CA 92093-0063, USA.
| | | | | |
Collapse
|
42
|
Khonsari RH, Li B, Vernier P, Northcutt RG, Janvier P. Agnathan brain anatomy and craniate phylogeny. ACTA ZOOL-STOCKHOLM 2009. [DOI: 10.1111/j.1463-6395.2008.00388.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Abstract
Interest in understanding the transition from prevertebrates to vertebrates at the molecular level has resulted in accumulating genomic and transcriptomic sequence data for the earliest groups of extant vertebrates, namely, hagfishes (Myxiniformes) and lampreys (Petromyzontiformes). Molecular phylogenetic studies on species phylogeny have revealed the monophyly of cyclostomes and the deep divergence between hagfishes and lampreys (more than 400 million years). In parallel, recent molecular phylogenetic studies have shed light on the complex evolution of the cyclostome genome. This consists of whole genome duplications, shared at least partly with gnathostomes (jawed vertebrates), and cyclostome lineage-specific secondary modifications of the genome, such as gene gains and losses. Therefore, the analysis of cyclostome genomes requires caution in distinguishing between orthology and paralogy in gene molecular phylogeny at the gene family scale, as well as between apomorphic and plesiomorphic genomic traits in larger-scale analyses. In this review, we propose possible ways of improving the resolvability of these evolutionary events, and discuss probable scenarios for cyclostome genome evolution, with special emphasis on the hypothesis that two-round (2R) genome duplication events occurred before the divergence between cyclostomes and gnathostomes, and therefore that a post-2R state is a genomic synapomorphy for all extant vertebrates.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| |
Collapse
|
44
|
Abstract
Undoubted fossil lampreys are recorded since the Late Devonian (358 Ma), and probable fossil hagfishes since the Late Carboniferous (300 Ma), but molecular clock data suggest a much earlier divergence times for the two groups. In the early 20(th) century, hagfishes and lampreys were generally thought to have diverged much later from unknown ancestral cyclostomes, in turn derived through 'degeneracy' from some Paleozoic armored jawless vertebrates, or 'ostracoderms.' However, current vertebrate phylogenies suggest that most, if not all, 'ostracoderms' are in fact jawless stem gnathostomes, which retain certain features that were once regarded as unique to the cyclostomes, such as gill pouches or lack of horizontal semicircular canal. The dorsal, median, nasohypophysial complex of osteostracans has been regarded as identical and homologous to that of lampreys, but recent investigation (notably on the galeaspid braincase) now suggests that this resemblance is in fact a convergence. The anatomy and physiology of lampreys and hagfishes are so different that it is difficult to reconstruct an ancestral morphotype of the cyclostomes, assuming that they are a clade, and there is no clear evidence of any fossil taxon that is neither a fossil hagfish nor a fossil lamprey, but would be more closely related to the cyclostomes than to the gnathostomes. A possible exception is the Silurian-Devonian euphaneropids (or 'naked anaspids').
Collapse
Affiliation(s)
- Philippe Janvier
- Muséum National d'Histoire Naturelle, Département Histoire de la Terre, UMR 5143 du CNRS, CP 38, 57 rue Cuvier, 75231 Paris Cedex 05, France.
| |
Collapse
|
45
|
COLLIN SP. Early evolution of vertebrate photoreception: lessons from lampreys and lungfishes. Integr Zool 2009; 4:87-98. [DOI: 10.1111/j.1749-4877.2008.00138.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Sower SA, Freamat M, Kavanaugh SI. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys. Gen Comp Endocrinol 2009; 161:20-9. [PMID: 19084529 DOI: 10.1016/j.ygcen.2008.11.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/04/2008] [Accepted: 11/20/2008] [Indexed: 11/30/2022]
Abstract
The acquisition of a hypothalamic-pituitary axis was a seminal event in vertebrate evolution leading to the neuroendocrine control of many complex functions including growth, reproduction, osmoregulation, stress and metabolism. Lampreys as basal vertebrates are the earliest evolved vertebrates for which there are demonstrated functional roles for two gonadotropin-releasing hormones (GnRHs) that act via the hypothalamic-pituitary-gonadal axis controlling reproductive processes. With the availability of the lamprey genome, we have identified a novel GnRH form (lamprey GnRH-II) and a novel glycoprotein hormone receptor, lGpH-R II (thyroid-stimulating hormone-like receptor). Based on functional studies, in situ hybridization and phylogenetic analysis, we hypothesize that the newly identified lamprey GnRH-II is an ancestral GnRH to the vertebrate GnRHs. This finding opens a new understanding of the GnRH family and can help to delineate the evolution of the complex neuro/endocrine axis of reproduction. A second glycoprotein hormone receptor (lGpH-R II) was also identified in the sea lamprey. The existing data suggest the existence of a primitive, overlapping yet functional HPG and HPT endocrine systems in this organism, involving one possibly two pituitary glycoprotein hormones and two glycoprotein hormone receptors as opposed to three or four glycoprotein hormones interacting specifically with three receptors in gnathostomes. We hypothesize that the glycoprotein hormone/glycoprotein hormone receptor systems emerged as a link between the neuro-hormonal and peripheral control levels during the early stages of gnathostome divergence. The significance of the results obtained by analysis of the HPG/T axes in sea lamprey may transcend the limited scope of the corresponding physiological compartments by providing important clues in respect to the interplay between genome-wide events (duplications), coding sequence (mutation) and expression control level evolutionary mechanisms in definition of the chemical control pathways in vertebrates.
Collapse
Affiliation(s)
- Stacia A Sower
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | | | | |
Collapse
|
47
|
Nozaki M. The Hagfish Pituitary Gland and Its Putative Adenohypophysial Hormones. Zoolog Sci 2008; 25:1028-36. [DOI: 10.2108/zsj.25.1028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Ota KG, Kuratani S. Developmental Biology of Hagfishes, with a Report on Newly Obtained Embryos of the Japanese Inshore Hagfish, Eptatretus burgeri. Zoolog Sci 2008; 25:999-1011. [DOI: 10.2108/zsj.25.999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Abstract
Many of the features that distinguish the vertebrates from other chordates are derived from the neural crest, and it has long been argued that the emergence of this multipotent embryonic population was a key innovation underpinning vertebrate evolution. More recently, however, a number of studies have suggested that the evolution of the neural crest was less sudden than previously believed. This has exposed the fact that neural crest, as evidenced by its repertoire of derivative cell types, has evolved through vertebrate evolution. In this light, attempts to derive a typological definition of neural crest, in terms of molecular signatures or networks, are unfounded. We propose a less restrictive, embryological definition of this cell type that facilitates, rather than precludes, investigating the evolution of neural crest. While the evolutionary origin of neural crest has attracted much attention, its subsequent evolution has received almost no attention and yet it is more readily open to experimental investigation and has greater relevance to understanding vertebrate evolution. Finally, we provide a brief outline of how the evolutionary emergence of neural crest potentiality may have proceeded, and how it may be investigated.
Collapse
|
50
|
Osório J, Rétaux S. The lamprey in evolutionary studies. Dev Genes Evol 2008; 218:221-35. [PMID: 18274775 DOI: 10.1007/s00427-008-0208-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/22/2008] [Indexed: 12/13/2022]
Abstract
Lampreys are a key species to study the evolution of morphological characters at the dawn of Craniates and throughout the evolution of the craniate's phylum. Here, we review a number of research fields where studies on lampreys have recently brought significant and fundamental insights on the timing and mechanisms of evolution, on the amazing diversification of morphology and on the emergence of novelties among Craniates. We report recent example studies on neural crest, muscle and the acquisition of jaws, where important technical advancements in lamprey developmental biology have been made (morpholino injections, protein-soaked bead applications or even the first transgenesis trials). We describe progress in the understanding and knowledge about lamprey anatomy and physiology (skeleton, immune system and buccal secretion), ecology (life cycle, embryology), phylogeny (genome duplications, monophyly of cyclostomes), paleontology, embryonic development and the beginnings of lamprey genomics. Finally, in a special focus on the nervous system, we describe how changes in signaling, neurogenesis or neuronal migration patterns during brain development may be at the origin of some important differences observed between lamprey and gnathostome brains.
Collapse
Affiliation(s)
- Joana Osório
- UPR 2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred Fessard, C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|