1
|
Wei W, Lin-Wang K, Chen G, Espley RV, Allan AC, Cao B, Qin M, Sha S, Li J, Wang R, Li J, Wu J. Characterization of a KANADI-like transcription factor that suppresses pear anthocyanin biosynthesis. HORTICULTURE RESEARCH 2025; 12:uhaf071. [PMID: 40303433 PMCID: PMC12038239 DOI: 10.1093/hr/uhaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
Anthocyanins are important specialized fruit metabolites and major pigments, whose abundance depends on co-regulation of activators and repressors, primarily transcription factors (TFs) of the MYB family. Herein, a KANADI-like TF PuKAN4 was characterized in pear. This TF could be transcriptionally up-regulated by the anthocyanin-related R2R3-MYBs PuMYB10/PuMYB114 and exhibited high expression within red-skinned pears. Interestingly, PuKAN4 repressed anthocyanin biosynthesis in transiently overexpressed pear fruit, and stable transformation in pear calli and tobacco plants. The PuKAN4 had a conserved EAR repression domain in C-terminal, while the repression function of PuKAN4 could be offset by a transcription activation domain VP64. The dual luciferase analysis proved that PuMYB114/PuMYB10 up-regulated expression of PuKAN4. Furthermore, the PuKAN4 could physically interact with PuMYB10/PuMYB114 and did not affect the combination of MYB10/MYB114-bHLH3, as demonstrated by Y2H, pull-down and firefly luciferase complementation. Thus, the PuKAN4 should play the role of active repressor, the formation of PuKAN4-PuMYB10/PuMYB114-PubHLH3 complex inhibited pear anthocyanin biosynthesis. Our findings unveiled an activator-and-repressor feedback loop between PuMYB114/PuMYB10 and PuKAN4, which possibly balance biosynthesis activity and prevents over-accumulation of phenylpropanoids.
Collapse
Affiliation(s)
- Weilin Wei
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang Road No.1, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Ltd, Mt Albert Research Centre, Private Bag, Auckland 92169, New Zealand
| | - Guosong Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang Road No.1, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Ltd, Mt Albert Research Centre, Private Bag, Auckland 92169, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Ltd, Mt Albert Research Centre, Private Bag, Auckland 92169, New Zealand
| | - Beibei Cao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang Road No.1, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Mengfan Qin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang Road No.1, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Shoufeng Sha
- Division of Pear Breeding, Institute of Pomology, Liaoning Academy of Agricultural Sciences, Tiedong Road, Xiongyue, Yingkou, Liaoning 115009, China
| | - Juncai Li
- Division of Pear Breeding, Institute of Pomology, Liaoning Academy of Agricultural Sciences, Tiedong Road, Xiongyue, Yingkou, Liaoning 115009, China
| | - Runze Wang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang Road No.1, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang Road No.1, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang Road No.1, Xuanwu District, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Song K, Ji H, Lee J, Yoon Y. Microbial Transcription Factor-Based Biosensors: Innovations from Design to Applications in Synthetic Biology. BIOSENSORS 2025; 15:221. [PMID: 40277535 PMCID: PMC12024804 DOI: 10.3390/bios15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
Transcription factor-based biosensors (TFBs) are powerful tools in microbial biosensor applications, enabling dynamic control of metabolic pathways, real-time monitoring of intracellular metabolites, and high-throughput screening (HTS) for strain engineering. These systems use transcription factors (TFs) to convert metabolite concentrations into quantifiable outputs, enabling precise regulation of metabolic fluxes and biosynthetic efficiency in microbial cell factories. Recent advancements in TFB, including improved sensitivity, specificity, and dynamic range, have broadened their applications in synthetic biology and industrial biotechnology. Computational tools such as Cello have further revolutionized TFB design, enabling in silico optimization and construction of complex genetic circuits for integrating multiple signals and achieving precise gene regulation. This review explores innovations in TFB systems for microbial biosensors, their role in metabolic engineering and adaptive evolution, and their future integration with artificial intelligence and advanced screening technologies to overcome critical challenges in synthetic biology and industrial bioproduction.
Collapse
Affiliation(s)
| | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (K.S.); (H.J.)
| |
Collapse
|
3
|
Chang Y, Hummel SN, Watson MN, Jin G, Lian XL, Bao X. Engineered Artificial Human Neutrophils Exhibit Mature Functional Performance. ACS Synth Biol 2023; 12:2262-2270. [PMID: 37523468 PMCID: PMC11070884 DOI: 10.1021/acssynbio.3c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Neutrophils, a key innate immune component, are powerful effector leukocytes for mediating opposing effects on tumor progression and ameliorating pathogen infections. However, their short lifespan and complex purification process have limited neutrophil clinical applications. Here we combined genetic engineering technology with a nanodrug system to construct artificial neutrophils that display functions similar to those of native neutrophils. K562 and HL60 human leukemia cells were engineered to express the human G protein-coupled receptor hM4Di. Compared to the parental cells, engineered hM4Di-K562 and hM4Di-HL60 cells exhibited excellent chemotaxis ability towards clozapine-N-oxide (CNO) and superior bacteria phagocytic behavior, resembling native neutrophils. The antibacterial ability of the hM4Di-K562 cells was further enhanced by loading them with the glycopeptide vancomycin via mesoporous silica nanoparticles (Nano@Van). Our proposed artificial cell engineering platform provides a new avenue to investigate the physiological properties of neutrophils.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| | - Sydney N. Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Monique N. Watson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Huck Institutes of the Life Sciences, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| |
Collapse
|
4
|
Overexpression of CmWRKY8-1- VP64 Fusion Protein Reduces Resistance in Response to Fusarium oxysporum by Modulating the Salicylic Acid Signaling Pathway in Chrysanthemum morifolium. Int J Mol Sci 2023; 24:ijms24043499. [PMID: 36834908 PMCID: PMC9964100 DOI: 10.3390/ijms24043499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Chrysanthemum Fusarium wilt, caused by the pathogenic fungus Fusarium oxysporum, severely reduces ornamental quality and yields. WRKY transcription factors are extensively involved in regulating disease resistance pathways in a variety of plants; however, it is unclear how members of this family regulate the defense against Fusarium wilt in chrysanthemums. In this study, we characterized the WRKY family gene CmWRKY8-1 from the chrysanthemum cultivar 'Jinba', which is localized to the nucleus and has no transcriptional activity. We obtained CmWRKY8-1 transgenic chrysanthemum lines overexpressing the CmWRKY8-1-VP64 fusion protein that showed less resistance to F. oxysporum. Compared to Wild Type (WT) lines, CmWRKY8-1 transgenic lines had lower endogenous salicylic acid (SA) content and expressed levels of SA-related genes. RNA-Seq analysis of the WT and CmWRKY8-1-VP64 transgenic lines revealed some differentially expressed genes (DEGs) involved in the SA signaling pathway, such as PAL, AIM1, NPR1, and EDS1. Based on Gene Ontology (GO) enrichment analysis, the SA-associated pathways were enriched. Our results showed that CmWRKY8-1-VP64 transgenic lines reduced the resistance to F. oxysporum by regulating the expression of genes related to the SA signaling pathway. This study demonstrated the role of CmWRKY8-1 in response to F. oxysporum, which provides a basis for revealing the molecular regulatory mechanism of the WRKY response to F. oxysporum infestation in chrysanthemum.
Collapse
|
5
|
Boral A, Khamaru M, Mitra D. Designing synthetic transcription factors: A structural perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:245-287. [PMID: 35534109 DOI: 10.1016/bs.apcsb.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this chapter, we discuss different design strategies of synthetic proteins, especially synthetic transcription factors. Design and engineering of synthetic transcription factors is particularly relevant for the need-based manipulation of gene expression. With recent advances in structural biology techniques and with the emergence of other precision biochemical/physical tools, accurate knowledge on structure-function relations is increasingly becoming available. Besides discussing the underlying principles of design, we go through individual cases, especially those involving four major groups of transcription factors-basic leucine zippers, zinc fingers, helix-turn-helix and homeodomains. We further discuss how synthetic biology can come together with structural biology to alter the genetic blueprint of life.
Collapse
Affiliation(s)
- Aparna Boral
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Madhurima Khamaru
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
6
|
Bhardwaj A, Nain V. TALENs-an indispensable tool in the era of CRISPR: a mini review. J Genet Eng Biotechnol 2021; 19:125. [PMID: 34420096 PMCID: PMC8380213 DOI: 10.1186/s43141-021-00225-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Genome of an organism has always fascinated life scientists. With the discovery of restriction endonucleases, scientists were able to make targeted manipulations (knockouts) in any gene sequence of any organism, by the technique popularly known as genome engineering. Though there is a range of genome editing tools, but this era of genome editing is dominated by the CRISPR/Cas9 tool due to its ease of design and handling. But, when it comes to clinical applications, CRISPR is not usually preferred. In this review, we will elaborate on the structural and functional role of designer nucleases with emphasis on TALENs and CRISPR/Cas9 genome editing system. We will also present the unique features of TALENs and limitations of CRISPRs which makes TALENs a better genome editing tool than CRISPRs. MAIN BODY Genome editing is a robust technology used to make target specific DNA modifications in the genome of any organism. With the discovery of robust programmable endonucleases-based designer gene manipulating tools such as meganucleases (MN), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein (CRISPR/Cas9), the research in this field has experienced a tremendous acceleration giving rise to a modern era of genome editing with better precision and specificity. Though, CRISPR-Cas9 platform has successfully gained more attention in the scientific world, TALENs and ZFNs are unique in their own ways. Apart from high-specificity, TALENs are proven to target the mitochondrial DNA (mito-TALEN), where gRNA of CRISPR is difficult to import. This review talks about genome editing goals fulfilled by TALENs and drawbacks of CRISPRs. CONCLUSIONS This review provides significant insights into the pros and cons of the two most popular genome editing tools TALENs and CRISPRs. This mini review suggests that, TALENs provides novel opportunities in the field of therapeutics being highly specific and sensitive toward DNA modifications. In this article, we will briefly explore the special features of TALENs that makes this tool indispensable in the field of synthetic biology. This mini review provides great perspective in providing true guidance to the researchers working in the field of trait improvement via genome editing.
Collapse
Affiliation(s)
- Anuradha Bhardwaj
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Vikrant Nain
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
7
|
Li Y, Liao S, Mei P, Pan Y, Zhang Y, Zheng X, Xie Y, Miao Y. OsWRKY93 Dually Functions Between Leaf Senescence and in Response to Biotic Stress in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:643011. [PMID: 33828575 PMCID: PMC8019945 DOI: 10.3389/fpls.2021.643011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 05/25/2023]
Abstract
Cross talking between natural senescence and cell death in response to pathogen attack is an interesting topic; however, its action mechanism is kept open. In this study, 33 OsWRKY genes were obtained by screening with leaf aging procedure through RNA-seq dataset, and 11 of them were confirmed a significant altered expression level in the flag leaves during aging by using the reverse transcript quantitative PCR (RT-qPCR). Among them, the OsWRKY2, OsWRKY14, OsWRKY26, OsWRKY69, and OsWRKY93 members exhibited short-term alteration in transcriptional levels in response to Magnaporthe grisea infection. The CRISPR/Cas9-edited mutants of five genes were developed and confirmed, and a significant sensitivity to M. oryzae infection was observed in CRISPR OsWRKY93-edited lines; on the other hand, a significant resistance to M. oryzae infection was shown in the enhanced expression OsWRKY93 plants compared to mock plants; however, enhanced expression of other four genes have no significant affection. Interestingly, ROS accumulation was also increased in OsWRKY93 enhanced plants after flg22 treatment, compared with the controls, suggesting that OsWRKY93 is involved in PAMP-triggered immune response in rice. It indicated that OsWRKY93 was involved in both flag leaf senescence and in response to fungi attack.
Collapse
Affiliation(s)
- Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuting Liao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengying Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yueyun Pan
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangzi Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakun Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Fang C, Yang L, Chen W, Li L, Zhang P, Li Y, He H, Lin W. MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2127-2141. [PMID: 31811717 PMCID: PMC7242072 DOI: 10.1093/jxb/erz540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/06/2019] [Indexed: 05/14/2023]
Abstract
Rice allelopathy is a natural method of weed control that is regarded as an eco-friendly practice in agroecology. The allelopathic potential of rice is regulated by various genes, including those that encode transcription factors. Our study characterized a MYB transcription factor, OsMYB57, to explore its role in the regulation of rice allelopathy. Increasing the expression of OsMYB57 in rice using the transcription activator VP64 resulted in increased inhibitory ratios against barnyardgrass. The gene expression levels of OsPAL, OsC4H, OsOMT, and OsCAD from the phenylpropanoid pathway were also up-regulated, and the content of l-phenylalanine increased. Chromatin immunoprecipitation incorporated with HiSeq demonstrated that OsMYB57 transcriptionally regulated a mitogen-activated protein kinase (OsMAPK11); in addition, OsMAPK11 interacted with OsPAL2;3. The expression of OsPAL2;3was higher in the allelopathic rice PI312777 than in the non-allelopathic rice Lemont, and OsPAL2;3 was negatively regulated by Whirly transcription factors. Moreover, microbes with weed-suppression potential, including Penicillium spp. and Bacillus spp., were assembled in the rhizosphere of the rice accession Kitaake with increased expression of OsMYB57, and were responsible for phenolic acid induction. Our findings suggest that OsMYB57 positively regulates rice allelopathy, providing an option for the improvement of rice allelopathic traits through genetic modification.
Collapse
Affiliation(s)
- Changxun Fang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Luke Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Weisi Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Lanlan Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Pengli Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yingzhe Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Haibin He
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Correspondence: ,
| |
Collapse
|
9
|
Wang J, Wu F, Zhu S, Xu Y, Cheng Z, Wang J, Li C, Sheng P, Zhang H, Cai M, Guo X, Zhang X, Wang C, Wan J. Overexpression of OsMYB1R1-VP64 fusion protein increases grain yield in rice by delaying flowering time. FEBS Lett 2016; 590:3385-3396. [DOI: 10.1002/1873-3468.12374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| |
Collapse
|
10
|
Piatek A, Mahfouz MM. Targeted genome regulation via synthetic programmable transcriptional regulators. Crit Rev Biotechnol 2016; 37:429-440. [DOI: 10.3109/07388551.2016.1165180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Mosquera J, Rodríguez J, Vázquez ME, Mascareñas JL. Selective DNA-binding by designed bisbenzamidine-homeodomain chimeras. Chembiochem 2014; 15:1092-5. [PMID: 24764315 DOI: 10.1002/cbic.201400079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 02/06/2023]
Abstract
We report the construction of conjugates between three variants of the helix 3 region of a Q50K engrailed homeodomain and bisbenzamidine minor-groove DNA binders. The hybrid featuring the sequence of the native protein failed to bind to DNA; however, modifications that increased the α-helical folding propensity of the peptide allowed specific DNA binding by a bipartite (major/minor groove) interaction.
Collapse
Affiliation(s)
- Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente sn, 15782 Santiago de Compostela (Spain)
| | | | | | | |
Collapse
|
12
|
Sakuma T, Woltjen K. Nuclease-mediated genome editing: At the front-line of functional genomics technology. Dev Growth Differ 2014; 56:2-13. [PMID: 24387662 DOI: 10.1111/dgd.12111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/26/2022]
Abstract
Genome editing with engineered endonucleases is rapidly becoming a staple method in developmental biology studies. Engineered nucleases permit random or designed genomic modification at precise loci through the stimulation of endogenous double-strand break repair. Homology-directed repair following targeted DNA damage is mediated by co-introduction of a custom repair template, allowing the derivation of knock-out and knock-in alleles in animal models previously refractory to classic gene targeting procedures. Currently there are three main types of customizable site-specific nucleases delineated by the source mechanism of DNA binding that guides nuclease activity to a genomic target: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Among these genome engineering tools, characteristics such as the ease of design and construction, mechanism of inducing DNA damage, and DNA sequence specificity all differ, making their application complementary. By understanding the advantages and disadvantages of each method, one may make the best choice for their particular purpose.
Collapse
Affiliation(s)
- Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | | |
Collapse
|
13
|
Sánchez MI, Vázquez O, Vázquez ME, Mascareñas JL. Sequence-selective DNA recognition with peptide-bisbenzamidine conjugates. Chemistry 2013; 19:9923-9. [PMID: 23780839 DOI: 10.1002/chem.201300519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 12/15/2022]
Abstract
Transcription factors (TFs) are specialized proteins that play a key role in the regulation of genetic expression. Their mechanism of action involves the interaction with specific DNA sequences, which usually takes place through specialized domains of the protein. However, achieving an efficient binding usually requires the presence of the full protein. This is the case for bZIP and zinc finger TF families, which cannot interact with their target sites when the DNA binding fragments are presented as isolated monomers. Herein it is demonstrated that the DNA binding of these monomeric peptides can be restored when conjugated to aza-bisbenzamidines, which are readily accessible molecules that interact with A/T-rich sites by insertion into their minor groove. Importantly, the fluorogenic properties of the aza-benzamidine unit provide details of the DNA interaction that are eluded in electrophoresis mobility shift assays (EMSA). The hybrids based on the GCN4 bZIP protein preferentially bind to composite sequences containing tandem bisbenzamidine-GCN4 binding sites (TCAT⋅AAATT). Fluorescence reverse titrations show an interesting multiphasic profile consistent with the formation of competitive nonspecific complexes at low DNA/peptide ratios. On the other hand, the conjugate with the DNA binding domain of the zinc finger protein GAGA binds with high affinity (KD≈12 nM) and specificity to a composite AATTT⋅GAGA sequence containing both the bisbenzamidine and the TF consensus binding sites.
Collapse
Affiliation(s)
- Mateo I Sánchez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
14
|
Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, Zhu JK. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. PLANT MOLECULAR BIOLOGY 2012; 78:311-21. [PMID: 22167390 PMCID: PMC3259320 DOI: 10.1007/s11103-011-9866-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/27/2011] [Indexed: 05/18/2023]
Abstract
Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3.SRDX protein efficiently repressed the transcription of the RD29A::LUC transgene and endogenous RD29A gene in Arabidopsis. Genome wide expression profiling showed that the chimeric repressor also inhibited the expression of several other genes that contain the designer TALE-target sequence in their promoters. Our data suggest that TALEs can be used to generate chimeric repressors to specifically repress the transcription of genes of interest in plants. This sequence-specific transcriptional repression by direct on promoter effector technology is a powerful tool for functional genomics studies and biotechnological applications.
Collapse
Affiliation(s)
- Magdy M. Mahfouz
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Lixin Li
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Marek Piatek
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Xiaoyun Fang
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Hicham Mansour
- BioScience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Dhinoth K. Bangarusamy
- BioScience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
15
|
Novel cancer antiangiotherapy using the VEGF promoter-targeted artificial zinc-finger protein and oncolytic adenovirus. Mol Ther 2008; 16:1033-40. [PMID: 18398429 DOI: 10.1038/mt.2008.63] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Inhibition of tumor angiogenesis through modulation of vascular endothelial growth factor (VEGF) and its signaling pathway has been clinically validated as a viable therapeutic modality in the treatment of cancer. The use of artificial transcription factors based on Cys2-His2 zinc-finger proteins (ZFPs) targeting the VEGF promoter offers a novel strategy for modulating VEGF levels in tumors. In order to demonstrate the utility of VEGF-targeted ZFPs as therapeutic agents, we generated adenoviruses (Ads) expressing VEGF promoter-targeted transcriptional repressor ZFP, F435-KOX. A replication-incompetent Ad expressing F435-KO X, namely, Ad-DeltaE1-KOX, significantly reduced VEGF expression and functionally led to inhibition of angiogenesis. In vivo, an oncolytic Ad expressing F435-KOX, namely, Ad-DeltaB7-KOX, elicited a pronounced antitumor effect against a human glioblastoma xenograft model, U87MG. Further, consistent with its expected mechanism of action, Ad-DeltaB7-KOX was shown to greatly reduce the level of VEGF and vessel density in tumor tissue and increase terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive apoptotic cells in tumors. Survival rates were also significantly increased in Ad-DeltaB7-KOX-treated mice. Taken together, the findings from this study identify F435-KOX as a novel and potent ZFP transcription factor that can inhibit VEGF-A-mediated angiogenesis and offer a novel therapeutic modality in the treatment of cancer.
Collapse
|
16
|
Kang JS. Correlation between functional and binding activities of designer zinc-finger proteins. Biochem J 2007; 403:177-82. [PMID: 17176251 PMCID: PMC1828893 DOI: 10.1042/bj20061644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rapid progress in the ability to develop and utilize zinc-finger proteins with customized sequence specificity have led to their increasing use as tools for modulation of target gene transcription in the post-genomic era. In the present paper, a series of in vitro binding assays and in vivo reporter analyses were used to demonstrate that a zinc-finger protein can effectively specify a base at each position of the target site in vivo and that functional activity of the zinc-finger protein as either a transcriptional repressor or activator is positively correlated with its binding affinity. In addition, this correlation can be extended to artificial engineered zinc-finger proteins. These data suggest that the binding affinity of designer zinc-finger proteins with novel specificity might be a determinant for their ability to regulate transcription of a gene of interest.
Collapse
Affiliation(s)
- Jong Seok Kang
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
17
|
Ho SY, Yu FC, Chang CY, Huang HL. Design of accurate predictors for DNA-binding sites in proteins using hybrid SVM-PSSM method. Biosystems 2006; 90:234-41. [PMID: 17275170 DOI: 10.1016/j.biosystems.2006.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 07/29/2006] [Accepted: 08/18/2006] [Indexed: 11/25/2022]
Abstract
In this paper, we investigate the design of accurate predictors for DNA-binding sites in proteins from amino acid sequences. As a result, we propose a hybrid method using support vector machine (SVM) in conjunction with evolutionary information of amino acid sequences in terms of their position-specific scoring matrices (PSSMs) for prediction of DNA-binding sites. Considering the numbers of binding and non-binding residues in proteins are significantly unequal, two additional weights as well as SVM parameters are analyzed and adopted to maximize net prediction (NP, an average of sensitivity and specificity) accuracy. To evaluate the generalization ability of the proposed method SVM-PSSM, a DNA-binding dataset PDC-59 consisting of 59 protein chains with low sequence identity on each other is additionally established. The SVM-based method using the same six-fold cross-validation procedure and PSSM features has NP=80.15% for the training dataset PDNA-62 and NP=69.54% for the test dataset PDC-59, which are much better than the existing neural network-based method by increasing the NP values for training and test accuracies up to 13.45% and 16.53%, respectively. Simulation results reveal that SVM-PSSM performs well in predicting DNA-binding sites of novel proteins from amino acid sequences.
Collapse
Affiliation(s)
- Shinn-Ying Ho
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
| | | | | | | |
Collapse
|
18
|
Papworth M, Kolasinska P, Minczuk M. Designer zinc-finger proteins and their applications. Gene 2006; 366:27-38. [PMID: 16298089 DOI: 10.1016/j.gene.2005.09.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/18/2005] [Indexed: 10/25/2022]
Abstract
The Cys(2)His(2) zinc finger is one of the most common DNA-binding motifs in Eukaryota. A simple mode of DNA recognition by the Cys(2)His(2) zinc finger domain provides an ideal scaffold for designing proteins with novel sequence specificities. The ability to bind specifically to virtually any DNA sequence combined with the potential of fusing them with effector domains has led to the technology of engineering of chimeric DNA-modifying enzymes and transcription factors. This in turn has opened the possibility of using the engineered zinc finger-based factors as novel human therapeutics. One such synthetic factor-designer zinc finger transcription activator of the vascular endothelial growth factor A gene-has recently entered clinical trials to evaluate the ability of stimulating the growth of blood vessels in treating the peripheral arterial obstructive disease. This review concentrates on the aspects of natural Cys(2)His(2) zinc fingers evolution and fundamental steps in design of engineered zinc finger proteins. The applications of engineered zinc finger proteins are discussed in a context of the mechanism mediating their effect on the targeted DNA. Furthermore, the regulation of the expression of zinc finger proteins and their targeting to various cellular compartments and to chromatin and non-chromatin target templates are described. Also possible future applications of designer zinc finger proteins are discussed.
Collapse
Affiliation(s)
- Monika Papworth
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, UK.
| | | | | |
Collapse
|
19
|
Chockalingam K, Zhao H. Creating new specific ligand-receptor pairs for transgene regulation. Trends Biotechnol 2005; 23:333-5. [PMID: 15978316 DOI: 10.1016/j.tibtech.2005.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 03/21/2005] [Accepted: 05/05/2005] [Indexed: 11/18/2022]
Abstract
The creation of specifically matched ligand-receptor pairs that are orthogonal to naturally present interacting pairs is essential for the development of small molecule-regulated gene expression systems for biotechnological applications. However, for many years this task has represented a significant challenge for synthetic chemists and protein engineers. Recently, Doyle and colleagues demonstrated that highly specific ligand-receptor pairs can be engineered in a rapid fashion by creating large libraries of protein variants and applying a selection scheme to identify variants with improved activation by the target synthetic ligand.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Chemical Engineering and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
20
|
Chockalingam K, Chen Z, Katzenellenbogen JA, Zhao H. Directed evolution of specific receptor-ligand pairs for use in the creation of gene switches. Proc Natl Acad Sci U S A 2005; 102:5691-6. [PMID: 15811944 PMCID: PMC556283 DOI: 10.1073/pnas.0409206102] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their versatility and power in controlling gene regulation in nature, nuclear hormone receptors (NHRs) have largely eluded utility in heterologous gene regulation applications such as gene therapy and metabolic engineering. The main reason for this void is the pleiotropic interference of the receptor-ligand combination with regulatory networks in the host organism. In recent years, numerous strategies have been developed to engineer ligand-receptor pairs that do not cross-interact with host regulatory pathways. However, these strategies have either met with limited success or cannot be readily extended to other ligand-receptor pairs. Here, we present a simple, effective, and readily generalizable strategy for reengineering NHRs to respond specifically to a selected synthetic ligand. The method involves generation of genetic diversity by stepwise individual site saturation mutagenesis of a fixed set of ligand-contacting residues and random point mutagenesis, followed by phenotypic screening based on a yeast two-hybrid system. As a test case, this method was used to alter the specificity of the NHR human estrogen receptor alpha in favor of the synthetic ligand 4,4'-dihydroxybenzil, relative to the natural ligand 17beta-estradiol, by >10(7)-fold. The resulting ligand-receptor pair is highly sensitive to the synthetic ligand in human endometrial cancer cells and is essentially fully orthogonal to the wild-type receptor-natural ligand pair. This method should provide a powerful, broadly applicable tool for engineering receptors/enzymes with improved or novel ligand/substrate specificity.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Chemical Engineering and Biomolecular Engineering, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
21
|
Corbi N, Libri V, Onori A, Passananti C. Synthetic zinc finger peptides: old and novel applications. Biochem Cell Biol 2004; 82:428-36. [PMID: 15284895 DOI: 10.1139/o04-047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the last decade, the efforts in clarifying the interaction between zinc finger proteins and DNA targets strongly stimulated the creativity of scientists in the field of protein engineering. In particular, the versatility and the modularity of zinc finger (ZF) motives make these domains optimal building blocks for generating artificial zinc finger peptides (ZFPs). ZFPs can act as transcription modulators potentially able to control the expression of any desired gene, when fused to an appropriate effector domain. Artificial ZFPs open the possibility to re-program the expression of specific genes at will and can represent a powerful tool in basic science, biotechnology and gene therapy. In this review we will focus on old, novel and possible future applications of artificial ZFPs.Key words: synthetic zinc finger, recognition code, artificial transcription factor, chromatin modification, gene therapy.
Collapse
|
22
|
Libri V, Onori A, Fanciulli M, Passananti C, Corbi N. The artificial zinc finger protein 'Blues' binds the enhancer of the fibroblast growth factor 4 and represses transcription. FEBS Lett 2004; 560:75-80. [PMID: 14988001 DOI: 10.1016/s0014-5793(04)00075-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 12/30/2003] [Accepted: 01/07/2004] [Indexed: 11/17/2022]
Abstract
The design of novel genes encoding artificial transcription factors represents a powerful tool in biotechnology and medicine. We have engineered a new zinc finger-based transcription factor, named Blues, able to bind and possibly to modify the expression of fibroblast growth factor 4 (FGF-4, K-fgf), originally identified as an oncogene. Blues encodes a three zinc finger peptide and was constructed to target the 9 bp DNA sequence: 5'-GTT-TGG-ATG-3', internal to the murine FGF-4 enhancer, in proximity of Sox-2 and Oct-3 DNA binding sites. Our final aim is to generate a model system based on artificial zinc finger genes to study the biological role of FGF-4 during development and tumorigenesis.
Collapse
Affiliation(s)
- V Libri
- Istituto Biologia e Patologia Molecolari, CNR, Viale Marx 43, 00137 Rome, Italy
| | | | | | | | | |
Collapse
|
23
|
Ma CH, Sun WS, Tian PK, Gao LF, Liu SX, Wang XY, Zhang LN, Cao YL, Han LH, Liang XH. A novel HBV antisense RNA gene delivery system targeting hepatocellular carcinoma. World J Gastroenterol 2003; 9:463-7. [PMID: 12632498 PMCID: PMC4621562 DOI: 10.3748/wjg.v9.i3.463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Revised: 08/23/2002] [Accepted: 09/04/2002] [Indexed: 02/06/2023] Open
Abstract
AIM To construct a novel HBV antisense RNA delivery system targeting hapatocellular carcinoma and study its inhibitory effect in vitro and in vivo. METHODS GE7,a 16-peptide specific to EGFR, and HA20,a homologue of N-terminus of haemagglutinin of influenza viral envelope protein, were synthesized and conjugated with polylysin. The above conjugates were organized into the pEBAF-as-preS2, a hepatocarcinoma specific HBV antisense expression vector, to construct a novel HBV antisense RNA delivery system, named AFP-enhancing 4-element complex. Hepatocelluar carcinoma HepG2.2.15 cells was used to assay the in vitro inhibition of the complex on HBV. Expression of HBV antigen was assayed by ELISA. BALB/c nude mice bearing HepG2.2.15 cells were injected with AFP-enhancing 4-element complex. The expression of HBV antisense RNA was examined by RT-PCR and the size of tumor in nude mice were measured. RESULTS The AFP-enhancing 4-element complex was constructed and DNA was completely trapped at the slot with no DNA migration when the ratio of polypeptide to plasmid was 1:1. The expression of HBsAg and HBeAg of HepG2.2.15 cells was greatly decreased after being transfected by AFP-enhancing 4-element complex. The inhibitory rates were 33.4 % and 58.5 % respectively. RT-PCR showed HBV antisense RNA expressed specifically in liver tumor cells of tumor-bearing nude mice. After 4 injections of AFP-enhancing 4-element complex containing 0.2 micro g DNA, the diameter of the tumor was 0.995 cm+/-0.35, which was significantly smaller than that of the control groups(2.215 cm+/-0.25, P<0.05). CONCLUSION AFP-enhancing 4-element complex could deliver HBV antisense RNA targeting on hepatocarcinoma and inhibit both HBV and liver tumor cells in vitro and in vivo.
Collapse
Affiliation(s)
- Chun-Hong Ma
- Institute of Immunology,Medical College of Shandong University, Jinan 250012, Shandong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Eukaryotic transcription factors are composed of interchangeable modules. This has led to the design of a wide variety of modular artificial transcription factors (ATFs) that can stimulate or inhibit the expression of targeted genes. The ability to regulate the expression of any targeted gene using a 'programmable' ATF offers a powerful tool for functional genomics and bears tremendous promise in developing the field of transcription-based therapeutics.
Collapse
Affiliation(s)
- Aseem Z Ansari
- Department of Biochemistry and The Genome Center, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|