1
|
Li G, Gao J, Ding P, Gao Y. The role of endothelial cell-pericyte interactions in vascularization and diseases. J Adv Res 2025; 67:269-288. [PMID: 38246244 PMCID: PMC11725166 DOI: 10.1016/j.jare.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Endothelial cells (ECs) and pericytes (PCs) are crucial components of the vascular system, with ECs lining the inner layer of blood vessels and PCs surrounding capillaries to regulate blood flow and angiogenesis. Intercellular communication between ECs and PCs is vital for the formation, stability, and function of blood vessels. Various signaling pathways, such as the vascular endothelial growth factor/vascular endothelial growth factor receptor pathway and the platelet-derived growth factor-B/platelet-derived growth factor receptor-β pathway, play roles in communication between ECs and PCs. Dysfunctional communication between these cells is associated with various diseases, including vascular diseases, central nervous system disorders, and certain types of cancers. AIM OF REVIEW This review aimed to explore the diverse roles of ECs and PCs in the formation and reshaping of blood vessels. This review focused on the essential signaling pathways that facilitate communication between these cells and investigated how disruptions in these pathways may contribute to disease. Additionally, the review explored potential therapeutic targets, future research directions, and innovative approaches, such as investigating the impact of EC-PCs in novel systemic diseases, addressing resistance to antiangiogenic drugs, and developing novel antiangiogenic medications to enhance therapeutic efficacy. KEY SCIENTIFIC CONCEPTS OF REVIEW Disordered EC-PC intercellular signaling plays a role in abnormal blood vessel formation, thus contributing to the progression of various diseases and the development of resistance to antiangiogenic drugs. Therefore, studies on EC-PC intercellular interactions have high clinical relevance.
Collapse
Affiliation(s)
- Gan Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
2
|
Passier M, Bentley K, Loerakker S, Ristori T. YAP/TAZ drives Notch and angiogenesis mechanoregulation in silico. NPJ Syst Biol Appl 2024; 10:116. [PMID: 39368976 PMCID: PMC11455968 DOI: 10.1038/s41540-024-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Endothelial cells are key players in the cardiovascular system. Among other things, they are responsible for sprouting angiogenesis, the process of new blood vessel formation essential for both health and disease. Endothelial cells are strongly regulated by the juxtacrine signaling pathway Notch. Recent studies have shown that both Notch and angiogenesis are influenced by extracellular matrix stiffness; however, the underlying mechanisms are poorly understood. Here, we addressed this challenge by combining computational models of Notch signaling and YAP/TAZ, stiffness- and cytoskeleton-regulated mechanotransducers whose activity inhibits both Dll4 (Notch ligand) and LFng (Notch-Dll4 binding modulator). Our simulations successfully mimicked previous experiments, indicating that this YAP/TAZ-Notch crosstalk elucidates the Notch and angiogenesis mechanoresponse to stiffness. Additional simulations also identified possible strategies to control Notch activity and sprouting angiogenesis via cytoskeletal manipulations or spatial patterns of alternating stiffnesses. Our study thus inspires new experimental avenues and provides a promising modeling framework for further investigations into the role of Notch, YAP/TAZ, and mechanics in determining endothelial cell behavior during angiogenesis and similar processes.
Collapse
Affiliation(s)
- Margot Passier
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Katie Bentley
- The Francis Crick Institute, London, UK
- Department of Informatics, King's College London, London, UK
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
3
|
Zhou W, Zeng T, Chen J, Tang X, Yuan Y, Hu D, Zhang Y, Li Y, Zou J. Aberrant angiogenic signaling pathways: Accomplices in ovarian cancer progression and treatment. Cell Signal 2024; 120:111240. [PMID: 38823664 DOI: 10.1016/j.cellsig.2024.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Ovarian cancer is one of the most common malignant tumors in women, and treatment options are limited. Despite efforts to adjust cancer treatment models and develop new methods, including tumor microenvironment (TME) therapy, more theoretical support is needed. Increasing attention is being given to antiangiogenic measures for TME treatment. Another important concept in ovarian cancer TME is angiogenesis, where tumor cells obtain nutrients and oxygen from surrounding tissues through blood vessels to support further expansion and metastasis. Many neovascularization signaling pathways become imbalanced and hyperactive during this process. Inhibiting these abnormal pathways can yield ideal therapeutic effects in patients, even by reversing drug resistance. However, these deep TME signaling pathways often exhibit crosstalk and correlation. Understanding these interactions may be an important strategy for further treating ovarian cancer. This review summarizes the latest progress and therapeutic strategies for these angiogenic signaling pathways in ovarian cancer.
Collapse
Affiliation(s)
- Wenchao Zhou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junling Chen
- Department of Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daopu Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yue Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
4
|
Raza Q, Nadeem T, Youn SW, Swaminathan B, Gupta A, Sargis T, Du J, Cuervo H, Eichmann A, Ackerman SL, Naiche LA, Kitajewski J. Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching. Sci Rep 2024; 14:13603. [PMID: 38866944 PMCID: PMC11169293 DOI: 10.1038/s41598-024-64375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Bhairavi Swaminathan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Ahana Gupta
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Timothy Sargis
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Jing Du
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III- CNIC- (F.S.P), Madrid, Spain
| | | | | | - L A Naiche
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA.
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, USA
| |
Collapse
|
5
|
McCracken IR, Smart N. Control of coronary vascular cell fate in development and regeneration. Semin Cell Dev Biol 2024; 155:50-61. [PMID: 37714806 DOI: 10.1016/j.semcdb.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
The coronary vasculature consists of a complex hierarchal network of arteries, veins, and capillaries which collectively function to perfuse the myocardium. However, the pathways controlling the temporally and spatially restricted mechanisms underlying the formation of this vascular network remain poorly understood. In recent years, the increasing use and refinement of transgenic mouse models has played an instrumental role in offering new insights into the cellular origins of the coronary vasculature, as well as identifying a continuum of transitioning cell states preceding the full maturation of the coronary vasculature. Coupled with the emergence of single cell RNA sequencing platforms, these technologies have begun to uncover the key regulatory factors mediating the convergence of distinct cellular origins to ensure the formation of a collectively functional, yet phenotypically diverse, vascular network. Furthermore, improved understanding of the key regulatory factors governing coronary vessel formation in the embryo may provide crucial clues into future therapeutic strategies to reactivate these developmentally functional mechanisms to drive the revascularisation of the ischaemic adult heart.
Collapse
Affiliation(s)
- Ian R McCracken
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom.
| |
Collapse
|
6
|
Awad KS, Wang S, Dougherty EJ, Keshavarz A, Demirkale CY, Yu ZX, Miller L, Elinoff JM, Danner RL. Disruption of DLL4/NOTCH1 Causes Dysregulated PPARγ/AKT Signaling in Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578230. [PMID: 38903104 PMCID: PMC11188078 DOI: 10.1101/2024.01.31.578230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, activates NOTCH1 signaling and plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in PAECs activated AKT and decreased DLL4 expression. DLL4 loss was also seen in lungs of patients with IPAH and HPAH. Over-expression of DLL4 in PAECs induced BMPR2 promoter activity and exogenous DLL4 increased BMPR2 mRNA through NOTCH1 activation. Furthermore, DLL4/NOTCH1 signaling blocked AKT activation, decreased proliferation and reversed EndoMT in BMPR2-silenced PAECs and ECs from IPAH patients. PPARγ, suppressed by BMPR2 loss, was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH PAECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Finally, leniolisib, a well-tolerated oral PI3Kδ/AKT inhibitor, decreased cell proliferation, induced apoptosis and reversed markers of EndoMT in BMPR2-silenced PAECs. Restoring DLL4/NOTCH1/PPARγ signaling and/or suppressing AKT activation may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.
Collapse
Affiliation(s)
- Keytam S Awad
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Shuibang Wang
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Edward J Dougherty
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Ali Keshavarz
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Cumhur Y Demirkale
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Zu Xi Yu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Latonia Miller
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Jason M Elinoff
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Robert L Danner
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| |
Collapse
|
7
|
Ren R, Ding S, Ma K, Jiang Y, Wang Y, Chen J, Wang Y, Kou Y, Fan X, Zhu X, Qin L, Qiu C, Simons M, Wei X, Yu L. SUMOylation Fine-Tunes Endothelial HEY1 in the Regulation of Angiogenesis. Circ Res 2024; 134:203-222. [PMID: 38166414 PMCID: PMC10872267 DOI: 10.1161/circresaha.123.323398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Angiogenesis, which plays a critical role in embryonic development and tissue repair, is controlled by a set of angiogenic signaling pathways. As a TF (transcription factor) belonging to the basic helix-loop-helix family, HEY (hairy/enhancer of split related with YRPW motif)-1 (YRPW motif, abbreviation of 4 highly conserved amino acids in the motif) has been identified as a key player in developmental angiogenesis. However, the precise mechanisms underlying HEY1's actions in angiogenesis remain largely unknown. Our previous studies have suggested a potential role for posttranslational SUMOylation in the dynamic regulation of vascular development and organization. METHODS Immunoprecipitation, mass spectrometry, and bioinformatics analysis were used to determine the biochemical characteristics of HEY1 SUMOylation. The promoter-binding capability of HEY1 was determined by chromatin immunoprecipitation, dual luciferase, and electrophoretic mobility shift assays. The dimerization pattern of HEY1 was determined by coimmunoprecipitation. The angiogenic capabilities of endothelial cells were assessed by CCK-8 (cell counting kit-8), 5-ethynyl-2-deoxyuridine staining, wound healing, transwell, and sprouting assays. Embryonic and postnatal vascular growth in mouse tissues, matrigel plug assay, cutaneous wound healing model, oxygen-induced retinopathy model, and tumor angiogenesis model were used to investigate the angiogenesis in vivo. RESULTS We identified intrinsic endothelial HEY1 SUMOylation at conserved lysines by TRIM28 (tripartite motif containing 28) as the unique E3 ligase. Functionally, SUMOylation facilitated HEY1-mediated suppression of angiogenic RTK (receptor tyrosine kinase) signaling and angiogenesis in primary human endothelial cells and mice with endothelial cell-specific expression of wild-type HEY1 or a SUMOylation-deficient HEY1 mutant. Mechanistically, SUMOylation facilitates HEY1 homodimer formation, which in turn preserves HEY1's DNA-binding capability via recognition of E-box promoter elements. Therefore, SUMOylation maintains HEY1's function as a repressive TF controlling numerous angiogenic genes, including RTKs and Notch pathway components. Proangiogenic stimuli induce HEY1 deSUMOylation, leading to heterodimerization of HEY1 with HES (hairy and enhancer of split)-1, which results in ineffective DNA binding and loss of HEY1's angiogenesis-suppressive activity. CONCLUSIONS Our findings demonstrate that reversible HEY1 SUMOylation is a molecular mechanism that coordinates endothelial angiogenic signaling and angiogenesis, both in physiological and pathological milieus, by fine-tuning the transcriptional activity of HEY1. Specifically, SUMOylation facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-binding capability in endothelial cells.
Collapse
Affiliation(s)
- Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Sha Ding
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Kefan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yiran Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Junbo Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yunyun Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Xiao Fan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaolong Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Lingfeng Qin
- Department of Surgery, Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiyang Wei
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| |
Collapse
|
8
|
Ahmed T, Ramonett A, Kwak EA, Kumar S, Flores PC, Ortiz HR, Langlais PR, Hund TJ, Mythreye K, Lee NY. Endothelial tip/stalk cell selection requires BMP9-induced β IV-spectrin expression during sprouting angiogenesis. Mol Biol Cell 2023; 34:ar72. [PMID: 37126382 PMCID: PMC10295478 DOI: 10.1091/mbc.e23-02-0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
βIV-Spectrin is a membrane cytoskeletal protein with specialized roles in the nervous system and heart. Recent evidence also indicates a fundamental role for βIV-spectrin in angiogenesis as its endothelial-specific gene deletion in mice enhances embryonic lethality due to hypervascularization and hemorrhagic defects. During early vascular sprouting, βIV-spectrin is believed to inhibit tip cell sprouting in favor of the stalk cell phenotype by mediating VEGFR2 internalization and degradation. Despite these essential roles, mechanisms governing βIV-spectrin expression remain unknown. Here we identify bone morphogenetic protein 9 (BMP9) as a major inducer of βIV-spectrin gene expression in the vascular system. We show that BMP9 signals through the ALK1/Smad1 pathway to induce βIV-spectrin expression, which then recruits CaMKII to the cell membrane to induce phosphorylation-dependent VEGFR2 turnover. Although BMP9 signaling promotes stalk cell behavior through activation of hallmark stalk cell genes ID-1/3 and Hes-1 and Notch signaling cross-talk, we find that βIV-spectrin acts upstream of these pathways as loss of βIV-spectrin in neonate mice leads to retinal hypervascularization due to excessive VEGFR2 levels, increased tip cell populations, and strong Notch inhibition irrespective of BMP9 treatment. These findings demonstrate βIV-spectrin as a BMP9 gene target critical for tip/stalk cell selection during nascent vessel sprouting.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Aaron Ramonett
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Eun-A Kwak
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research, Tirupati 517507, India
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Hannah R. Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | - Thomas J. Hund
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Nam Y. Lee
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
- Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
9
|
Dai H, Jiang Y, Liu Z, Su X, Yang Y, Chen Z. Pumilio RNA-Binding Family Member 1 Plays a Promoting Role on Pancreatic Cancer Angiogenesis. Can J Gastroenterol Hepatol 2022; 2022:9202531. [PMID: 39296516 PMCID: PMC11410436 DOI: 10.1155/2022/9202531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 09/21/2024] Open
Abstract
Our previous studies showed that Pumilio RNA-binding family member 1 (PUM1) gene is abnormally expressed in pancreatic cancer (PC) tissues, and its knockdown suppresses the growth and metastasis of PC cells. Here, we aimed to further investigate its role in angiogenesis. Immunohistochemical assays were carried out to analyze CD31 and PUM1 expression levels in PC tissues and in subcutaneous xenograft tumors. CD31 levels in PC tissues are expressed as microvessel density (MVD). MVD value was positively correlated with PUM1 protein expression. PUM1 was successfully overexpressed or silenced in the PC cell lines. The proliferation, migration, invasion, and tube formation ability of HUVECs were enhanced when cocultured with PC cells overexpressing PUM1. PUM1 overexpression increased extracellular and intracellular VEGFA protein levels in PC cells. Moreover, angiogenesis-related signaling in HUVECs was activated when HUVECs were cocultured with PC cells overexpressing PUM1. Nevertheless, PC cells silenced with PUM1 had the opposite effect. Moreover, subcutaneous xenograft tumors overexpressing PUM1 have the higher expression level of CD31, while subcutaneous xenograft tumors silencing PUM1 have the lower expression level of CD31. In conclusion, PUM1 in PC cells may play a promoting role in PC angiogenesis. PUM1 may be a new regulator of angiogenesis in PC cells.
Collapse
Affiliation(s)
- Haisu Dai
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Yan Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Zhipeng Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Xingxing Su
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Yishi Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
10
|
Mutations in MINAR2 encoding membrane integral NOTCH2-associated receptor 2 cause deafness in humans and mice. Proc Natl Acad Sci U S A 2022; 119:e2204084119. [PMID: 35727972 PMCID: PMC9245706 DOI: 10.1073/pnas.2204084119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report on DNA variants in MINAR2, encoding membrane integral NOTCH2-associated receptor 2, in four families underlying autosomal recessive nonsyndromic deafness. Neurologic evaluation of affected individuals at ages ranging from 4 to 80 y old does not show additional abnormalities. MINAR2 is a recently annotated gene with limited functional understanding. We detected three MINAR2 variants, c.144G > A (p.Trp48*), c.412_419delCGGTTTTG (p.Arg138Valfs*10), and c.393G > T, in 13 individuals with congenital- or prelingual-onset severe-to-profound sensorineural hearing loss (HL). The c.393G > T variant is shown to disrupt a splice donor site. We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. Mice with loss of function of the Minar2 protein (Minar2tm1b/tm1b) present with rapidly progressive sensorineural HL associated with a reduction in outer hair cell stereocilia in the shortest row and degeneration of hair cells at a later age. We conclude that MINAR2 is essential for hearing in humans and mice and its disruption leads to sensorineural HL. Progressive HL observed in mice and in some affected individuals and as well as relative preservation of hair cells provides an opportunity to interfere with HL using genetic therapies.
Collapse
|
11
|
Swaminathan B, Youn SW, Naiche LA, Du J, Villa SR, Metz JB, Feng H, Zhang C, Kopan R, Sims PA, Kitajewski JK. Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Sci Rep 2022; 12:1655. [PMID: 35102202 PMCID: PMC8804000 DOI: 10.1038/s41598-022-05666-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
To control sprouting angiogenesis, endothelial Notch signaling suppresses tip cell formation, migration, and proliferation while promoting barrier formation. Each of these responses may be regulated by distinct Notch-regulated effectors. Notch activity is highly dynamic in sprouting endothelial cells, while constitutive Notch signaling drives homeostatic endothelial polarization, indicating the need for both rapid and constitutive Notch targets. In contrast to previous screens that focus on genes regulated by constitutively active Notch, we characterized the dynamic response to Notch. We examined transcriptional changes from 1.5 to 6 h after Notch signal activation via ligand-specific or EGTA induction in cultured primary human endothelial cells and neonatal mouse brain. In each combination of endothelial type and Notch manipulation, transcriptomic analysis identified distinct but overlapping sets of rapidly regulated genes and revealed many novel Notch target genes. Among the novel Notch-regulated signaling pathways identified were effectors in GPCR signaling, notably, the constitutively active GTPase RND1. In endothelial cells, RND1 was shown to be a novel direct Notch transcriptional target and required for Notch control of sprouting angiogenesis, endothelial migration, and Ras activity. We conclude that RND1 is directly regulated by endothelial Notch signaling in a rapid fashion in order to suppress endothelial migration.
Collapse
Affiliation(s)
- Bhairavi Swaminathan
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jing Du
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Stephanie R Villa
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jordan B Metz
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Huijuan Feng
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Peter A Sims
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Aggarwal V, Tuli HS, Varol M, Tuorkey M, Sak K, Parashar NC, Barwal TS, Sharma U, Iqubal A, Parashar G, Jain A. NOTCH signaling: Journey of an evolutionarily conserved pathway in driving tumor progression and its modulation as a therapeutic target. Crit Rev Oncol Hematol 2021; 164:103403. [PMID: 34214610 DOI: 10.1016/j.critrevonc.2021.103403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Notch signaling, an evolutionarily conserved signaling cascade, is critical for normal biological processes of cell differentiation, development, and homeostasis. Deregulation of the Notch signaling pathway has been associated with tumor progression. Thus, Notch presents as an interesting target for a variety of cancer subtypes and its signaling mechanisms have been actively explored from the therapeutic viewpoint. However, besides acting as an oncogene, Notch pathway can possess also tumor suppressive functions, being implicated in inhibition of cancer development. Given such interesting dual and dynamic role of Notch, in this review, we discuss how the evolutionarily conserved Notch signaling pathway drives hallmarks of tumor progression and how it could be targeted for a promising treatment and management of cancer. In addition, the up-to-date information on the inhibitors currently under clinical trials for Notch targets is presented along with how NOTCH inhibitors can be used in conjunction with established chemotherapy/radiotherapy regimes.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, USA.
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey.
| | - Muobarak Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt.
| | | | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India.
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| |
Collapse
|
13
|
Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2020; 8:86-132. [PMID: 33490374 PMCID: PMC7815481 DOI: 10.3934/neuroscience.2021005] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease is a progressive neurodegenerative disorder, mainly affecting older people, which severely impairs patients' quality of life. In the recent years, the number of affected individuals has seen a rapid increase. It is estimated that up to 107 million subjects will be affected by 2050 worldwide. Research in this area has revealed a lot about the biological and environmental underpinnings of Alzheimer, especially its correlation with β-Amyloid and Tau related mechanics; however, the precise molecular events and biological pathways behind the disease are yet to be discovered. In this review, we focus our attention on the biological mechanics that may lie behind Alzheimer development. In particular, we briefly describe the genetic elements and discuss about specific biological processes potentially associated with the disease.
Collapse
Affiliation(s)
| | | | | | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
14
|
Slug regulates the Dll4-Notch-VEGFR2 axis to control endothelial cell activation and angiogenesis. Nat Commun 2020; 11:5400. [PMID: 33106502 PMCID: PMC7588439 DOI: 10.1038/s41467-020-18633-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/01/2020] [Indexed: 01/10/2023] Open
Abstract
Slug (SNAI2), a member of the well-conserved Snail family of transcription factors, has multiple developmental roles, including in epithelial-to-mesenchymal transition (EMT). Here, we show that Slug is critical for the pathological angiogenesis needed to sustain tumor growth, and transiently necessary for normal developmental angiogenesis. We find that Slug upregulation in angiogenic endothelial cells (EC) regulates an EMT-like suite of target genes, and suppresses Dll4-Notch signaling thereby promoting VEGFR2 expression. Both EC-specific Slug re-expression and reduced Notch signaling, either by γ-secretase inhibition or loss of Dll4, rescue retinal angiogenesis in SlugKO mice. Conversely, inhibition of VEGF signaling prevents excessive angiogenic sprouting of Slug overexpressing EC. Finally, endothelial Slug (but not Snail) is activated by the pro-angiogenic factor SDF1α via its canonical receptor CXCR4 and the MAP kinase ERK5. Altogether, our data support a critical role for Slug in determining the angiogenic response during development and disease. Slug supports heart development and tumor metastasis, but its role in blood vessel formation is less clear. Here the authors show that endothelial cell-expressed Slug regulates both physiologic and pathological angiogenesis, at least in part through the modulation of Notch signalling.
Collapse
|
15
|
Shen Q, Reedijk M. Notch Signaling and the Breast Cancer Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:183-200. [PMID: 33034033 DOI: 10.1007/978-3-030-55031-8_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Notch promotes breast cancer progression through tumor initiating cell maintenance, tumor cell fate specification, proliferation, survival, and motility. In addition, Notch is recognized as a decisive mechanism in regulating various juxtacrine and paracrine communications in the tumor microenvironment (TME). In this chapter, we review recent studies on stress-mediated Notch activation within the TME and sequelae such as angiogenesis, extracellular matrix remodeling, changes in the innate and adaptive immunophenotype, and therapeutic perspectives.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Reedijk
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
16
|
Chen K, Fan Y, Gu J, Han Z, Zeng H, Mao C, Wang C. <p>In vivo Screening of Natural Products Against Angiogenesis and Mechanisms of Anti-Angiogenic Activity of Deoxysappanone B 7,4ʹ-Dimethyl Ether</p>. Drug Des Devel Ther 2020; 14:3069-3078. [PMID: 32801645 PMCID: PMC7398751 DOI: 10.2147/dddt.s252681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction The aim of this study was to screen the leading compounds of natural origin with anti-angiogenic potential and to investigate their anti-angiogenic mechanism preliminarily. Materials and Methods An initial screening of 240 compounds from the Natural Products Collection of MicroSource was performed using the transgenic zebrafish strain Tg [fli1a: enhanced green fluorescent protein (EGFP)]y1. The zebrafish embryos at 24 h post-fertilization were exposed to the natural compounds for an additional 24 h; then, morphological changes in the intersegmental vessels (ISVs) were observed and quantified under a fluorescence microscope. The expression profiles of angiogenesis-related genes in the zebrafish embryos were detected using quantitative real-time PCR. Results Five compounds were identified with potential anti-angiogenic activity on the zebrafish embryogenesis. Among them, deoxysappanone B 7.4ʹ-dimethyl ether (Deox B 7,4) showed anti-angiogenic activity on the formation of ISVs in a dose-dependent manner. The inhibition of ISV formation reached up to 99.64% at 5 μM Deox B 7,4. The expression of delta-like ligand 4 (dll4), hes-related family basic helix-loop-helix transcription factor with YRPW motif 2, ephrin B2, fibroblast growth factor receptor (fgfr) 3, cyclooxygenase-2, protein tyrosine phosphatase, receptor type B (ptp-rb), phosphoinositide-3-kinase regulatory subunit 2, slit guidance ligand (slit) 2, slit3, roundabout guidance receptor (robo) 1, robo2, and robo4 were down-regulated, while vascular endothelial growth factor receptor-2, fgfr 1, and matrix metallopeptidase 9 were up-regulated in the zebrafish embryos treated with Deox B 7,4. Conclusion Deox B 7,4 has a therapeutic potential for the treatment of angiogenesis-dependent diseases and may exert anti-angiogenic activities by suppressing the slit2/robo1/2, slit3/robo4, cox2/ptp-rb/pik3r2, and dll4/hey2/efnb2a signaling pathways as well as activation of vegfr-2/fgfr1/mmp9.
Collapse
Affiliation(s)
- Kan Chen
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Huasu Zeng
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Chengyu Mao
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
- Correspondence: Changqian Wang Tel +86-21-23271699-5836 Email
| |
Collapse
|
17
|
Zhou Y, Yang Y, Liang T, Hu Y, Tang H, Song D, Fang H. The regulatory effect of microRNA-21a-3p on the promotion of telocyte angiogenesis mediated by PI3K (p110α)/AKT/mTOR in LPS induced mice ARDS. J Transl Med 2019; 17:427. [PMID: 31878977 PMCID: PMC6933909 DOI: 10.1186/s12967-019-02168-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Telocytes (TCs) are newly identified interstitial cells that participate in tissue protection and repair. The present study investigated the mechanisms underlying the protective effect of TCs in a mouse model of respiratory distress. Methods The mouse model of acute respiratory distress syndrome (ARDS) was established by intratracheal instillation of lipopolysaccharide (LPS). After instillation of TCs culture medium, lung injury was assessed, and angiogenesis markers, including CD31 and endothelial nitric oxide synthase (eNOS), were detected by immunofluorescence. Bioinformatics analysis was used to screen significantly differentially expressed microRNAs (miRNAs) in cultured TCs stimulated with LPS, and the regulation of downstream angiogenesis genes by these miRNAs was analysed and verified. PI3K subunits and pathways were evaluated by using a PI3K p110α inhibitor to study the involved mechanisms. Results In ARDS mice, instillation of TCs culture medium ameliorated LPS-induced inflammation and lung injury and increased the protein levels of CD31 and eNOS in the injured lungs. A total of 7 miRNAs and 1899 mRNAs were differentially regulated in TCs stimulated with LPS. Functional prediction analysis showed that the differentially expressed mRNAs were enriched in angiogenesis-related processes, which were highly correlated with miR-21a-3p. Culture medium from TCs with miR-21a-3p inhibition failed to promote angiogenesis in mouse models of LPS-induced ARDS. In cultured TCs, LPS stimulation upregulated the expression of miR-21a-3p, which further targeted the transcription factor E2F8 and decreased Notch2 protein expression. TCs culture medium enhanced hemangioendothelioma endothelial cells (EOMA cells) proliferation, which was blocked by the miR-21a-3p inhibitor. The PI3K p110α inhibitor decreased vascular endothelial growth factor levels in LPS-stimulated TCs and reversed the enhancing effect of TCs culture medium on EOMA cells proliferation. Conclusions TCs exerted protective effects under inflammatory conditions by promoting angiogenesis via miR-21a-3p. The PI3K p110α subunit and transcriptional factor E2F8 could be involved in this process.
Collapse
Affiliation(s)
- Yile Zhou
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yajie Yang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Tao Liang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yan Hu
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Anaesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Haihong Tang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Dongli Song
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Fang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China. .,Department of Anaesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, People's Republic of China.
| |
Collapse
|
18
|
Laredo F, Plebanski J, Tedeschi A. Pericytes: Problems and Promises for CNS Repair. Front Cell Neurosci 2019; 13:546. [PMID: 31866833 PMCID: PMC6908836 DOI: 10.3389/fncel.2019.00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Microvascular complications are often associated with slow and progressive damage of various organs. Pericytes are multi-functional mural cells of the microcirculation that control blood flow, vascular permeability and homeostasis. Whereas accumulating evidence suggests that these cells are also implicated in a variety of diseases, pericytes represent promising targets that can be manipulated for therapeutic gain. Here, we review the role of pericytes in angiogenesis, blood-brain barrier (BBB) function, neuroinflammation, tissue fibrosis, axon regeneration failure, and neurodegeneration. In addition, we outline strategies altering pericyte behavior to point out problems and promises for axon regeneration and central nervous system (CNS) repair following injury or disease.
Collapse
Affiliation(s)
- Fabio Laredo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Julia Plebanski
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Cho SJ, Yun SM, Jo C, Jeong J, Park MH, Han C, Koh YH. Altered expression of Notch1 in Alzheimer's disease. PLoS One 2019; 14:e0224941. [PMID: 31770379 PMCID: PMC6879159 DOI: 10.1371/journal.pone.0224941] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that regulates cell-cell interactions through binding of Notch family receptors to their cognate ligands. Notch signaling has an essential role in vascular development and angiogenesis. Recent studies have reported that Notch may be implicated in Alzheimer's disease (AD) pathophysiology. We measured the levels of soluble Notch1 (sNotch1) in the plasma samples from 72 dementia patients (average age 75.1 y), 89 subjects with amnestic mild cognitive impairment (MCI) (average age 73.72 y), and 150 cognitively normal controls (average age 72.34 y). Plasma levels of sNotch1 were 25.27% lower in dementia patients as compared to healthy control subjects. However, the level of Notch1 protein was significantly increased in human brain microvascular endothelial cells (HBMECs) after amyloid-beta treatment. Also, Notch1 mRNA level was significantly increased in HBMECs and iPSC-derived neuronal cells from AD patient compared to normal control. These results indicate that altered expression of Notch1 might be associated with the risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Sun-Jung Cho
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sang-Moon Yun
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chulman Jo
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jihyun Jeong
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Moon Ho Park
- Departments of Neurology, Korea University Medical College, Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Changsu Han
- Departments of Psychiatry, Korea University Medical College, Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Young Ho Koh
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
20
|
Ho RXY, Meyer RD, Chandler KB, Ersoy E, Park M, Bondzie PA, Rahimi N, Xu H, Costello CE, Rahimi N. MINAR1 is a Notch2-binding protein that inhibits angiogenesis and breast cancer growth. J Mol Cell Biol 2019; 10:195-204. [PMID: 29329397 DOI: 10.1093/jmcb/mjy002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/05/2018] [Indexed: 01/28/2023] Open
Abstract
Intrinsically disordered proteins (IDPs)/intrinsically unstructured proteins are characterized by the lack of fixed or stable tertiary structure, and are increasingly recognized as an important class of proteins with major roles in signal transduction and transcriptional regulation. In this study, we report the identification and functional characterization of a previously uncharacterized protein (UPF0258/KIAA1024), major intrinsically disordered Notch2-associated receptor 1 (MINAR1). While MINAR1 carries a single transmembrane domain and a short cytoplasmic domain, it has a large extracellular domain that shares no similarity with known protein sequences. Uncharacteristically, MINAR1 is a highly IDP with nearly 70% of its amino acids sequences unstructured. We demonstrate that MINAR1 physically interacts with Notch2 and its binding to Notch2 increases its stability and function. MINAR1 is widely expressed in various tissues including the epithelial cells of the breast and endothelial cells of blood vessels. MINAR1 plays a negative role in angiogenesis as it inhibits angiogenesis in cell culture and in mouse matrigel plug and zebrafish angiogenesis models. Furthermore, while MINAR1 is highly expressed in the normal human breast, its expression is significantly downregulated in advanced human breast cancer and its re-expression in breast cancer cells inhibited tumor growth. Our study demonstrates that MINAR1 is an IDP that negatively regulates angiogenesis and growth of breast cancer cells.
Collapse
Affiliation(s)
- Rachel Xi-Yeen Ho
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Rosana D Meyer
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Kevin B Chandler
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Esma Ersoy
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Michael Park
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Philip A Bondzie
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Nima Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Huihong Xu
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Catherine E Costello
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| |
Collapse
|
21
|
Red-Horse K, Siekmann AF. Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down. Bioessays 2019; 41:e1800198. [PMID: 30805984 PMCID: PMC6478158 DOI: 10.1002/bies.201800198] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Indexed: 12/13/2022]
Abstract
A tree-like hierarchical branching structure is present in many biological systems, such as the kidney, lung, mammary gland, and blood vessels. Most of these organs form through branching morphogenesis, where outward growth results in smaller and smaller branches. However, the blood vasculature is unique in that it exists as two trees (arterial and venous) connected at their tips. Obtaining this organization might therefore require unique developmental mechanisms. As reviewed here, recent data indicate that arterial trees often form in reverse order. Accordingly, initial arterial endothelial cell differentiation occurs outside of arterial vessels. These pre-artery cells then build trees by following a migratory path from smaller into larger arteries, a process guided by the forces imparted by blood flow. Thus, in comparison to other branched organs, arteries can obtain their structure through inward growth and coalescence. Here, new information on the underlying mechanisms is discussed, and how defects can lead to pathologies, such as hypoplastic arteries and arteriovenous malformations.
Collapse
Affiliation(s)
- Kristy Red-Horse
- Department of Biology, Stanford University, Stanford 94305 California,
| | - Arndt F. Siekmann
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia 19104 Pennsylvania,
| |
Collapse
|
22
|
Devesa J, Caicedo D. The Role of Growth Hormone on Ovarian Functioning and Ovarian Angiogenesis. Front Endocrinol (Lausanne) 2019; 10:450. [PMID: 31379735 PMCID: PMC6646585 DOI: 10.3389/fendo.2019.00450] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Although not yet well-understood, today it is clear that Growth Hormone (GH) exerts a relevant role in the regulation of ovulation and fertility; in fact, fertility is lower in women with GH deficiency (GHD), and GH receptors (GHR) and GH mRNA have been found in the ovary since the onset of follicular development in humans. However, despite the strong evidence of GH in the regulation of fertility, many aspects of GH actions at this level are still not well-established, and it is likely that some controversial data depend on the species analyzed, the dose of the hormone and the duration of use of GH. Folliculogenesis, ovulation, and corpus luteum formation and maintenance are processes that are critically dependent on angiogenesis. In the ovary, new blood vessel formation facilitates oxygen, nutrients, and hormone substrate delivery, and also secures transfer of different hormones to targeted cells. Some growth factors and hormones overlap their actions in order to control the angiogenic process for fertility. However, we still know very little about the factors that play a critical role in the vascular changes that occur during folliculogenesis or luteal regression. To promote and maintain the production of VEGF-A in granulosa cells, the effects of local factors such as IGF-I and steroids are needed; that VEGF-A-inducing effect cannot be induced by luteinizing hormone (LH) or chorionic gonadotropin (CG) alone. As a result of the influences that GH exerts on the hypothalamic-pituitary-gonadal axis, facilitating the release of gonadotropins, and given the relationship between GH and local ovarian factors such as VEGF-A, FGF-2, IGF-1, or production of sex steroids, we assume that GH has to be a necessary factor in ovarian angiogenesis, as it happens in other vascular beds. In this review we will discuss the actions of GH in the ovary, most of them likely due to the local production of the hormone and its mediators.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction, Medical Center Foltra, Foundation Foltra, Teo, Spain
- *Correspondence: Jesús Devesa ;
| | - Diego Caicedo
- Department of Vascular Surgery, Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
23
|
The role of placental growth factor (PlGF) and its receptor system in retinal vascular diseases. Prog Retin Eye Res 2018; 69:116-136. [PMID: 30385175 DOI: 10.1016/j.preteyeres.2018.10.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family. Upon binding to VEGF- and neuropilin-receptor sub-types, PlGF modulates a range of neural, glial and vascular cell responses that are distinct from VEGF-A. As PlGF expression is selectively associated with pathological angiogenesis and inflammation, its blockade does not affect the healthy vasculature. PlGF actions have been extensively described in tumor biology but more recently there has been accumulating preclinical evidence that indicates that this growth factor could have an important role in retinal diseases. High levels of PlGF have been found in aqueous humor, vitreous and/or retina of patients exhibiting retinopathies, especially those with diabetic retinopathy (DR) and neovascular age-related macular degeneration (nvAMD). Expression of this growth factor seems to correlate closely with many of the key pathogenic features of early and late retinopathy in preclinical models. For example, studies using genetic modification and/or pharmacological treatment to block PlGF in the laser-induced choroidal neovascularization (CNV) model, oxygen-induced retinopathy model, as well as various murine diabetic models, have shown that PlGF deletion or inhibition can reduce neovascularization, retinal leakage, inflammation and gliosis, without affecting vascular development or inducing neuronal degeneration. Moreover, an inhibitory effect of PlGF blockade on retinal scarring in the mouse CNV model has also been recently demonstrated and was found to be unique for PlGF inhibition, as compared to various VEGF inhibition strategies. Together, these preclinical results suggest that anti-PlGF therapy might have advantages over anti-VEGF treatment, and that it may have clinical applications as a standalone treatment or in combination with anti-VEGF. Additional clinical studies are clearly needed to further elucidate the role of PlGF and its potential as a therapeutic target in ocular diseases.
Collapse
|
24
|
Sweeney M, Foldes G. It Takes Two: Endothelial-Perivascular Cell Cross-Talk in Vascular Development and Disease. Front Cardiovasc Med 2018; 5:154. [PMID: 30425990 PMCID: PMC6218412 DOI: 10.3389/fcvm.2018.00154] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
The formation of new blood vessels is a crucial step in the development of any new tissue both during embryogenesis and in vitro models as without sufficient perfusion the tissue will be unable to grow beyond the size where nutrition and oxygenation can be managed by diffusion alone. Endothelial cells are the primary building block of blood vessels and are capable of forming tube like structures independently however they are unable to independently form functional vasculature which is capable of conducting blood flow. This requires support from other structures including supporting perivascular cells and the extracellular matrix. The crosstalk between endothelial cells and perivascular cells is vital in regulating vasculogenesis and angiogenesis and the consequences when this is disrupted can be seen in a variety of congenital and acquired disease states. This review details the mechanisms of vasculogenesis in vivo during embryogenesis and compares this to currently employed in vitro techniques. It also highlights clinical consequences of defects in the endothelial cell-pericyte cross-talk and highlights therapies which are being developed to target this pathway. Improving the understanding of the intricacies of endothelial-pericyte signaling will inform pathophysiology of multiple vascular diseases and allow the development of effective in vitro models to guide drug development and assist with approaches in tissue engineering to develop functional vasculature for regenerative medicine applications.
Collapse
Affiliation(s)
- Mark Sweeney
- Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gabor Foldes
- Cardiovascular Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Pseudopodium-enriched atypical kinase 1 mediates angiogenesis by modulating GATA2-dependent VEGFR2 transcription. Cell Discov 2018; 4:26. [PMID: 29872538 PMCID: PMC5972149 DOI: 10.1038/s41421-018-0024-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023] Open
Abstract
PEAK1 is a newly described tyrosine kinase and scaffold protein that transmits integrin-mediated extracellular matrix (ECM) signals to facilitate cell movement and growth. While aberrant expression of PEAK1 has been linked to cancer progression, its normal physiological role in vertebrate biology is not known. Here we provide evidence that PEAK1 plays a central role in orchestrating new vessel formation in vertebrates. Deletion of the PEAK1 gene in zebrafish, mice, and human endothelial cells (ECs) induced severe defects in new blood vessel formation due to deficiencies in EC proliferation, survival, and migration. Gene transcriptional and proteomic analyses of PEAK1-deficient ECs revealed a significant loss of vascular endothelial growth factor receptor 2 (VEGFR2) mRNA and protein expression, as well as downstream signaling to its effectors, ERK, Akt, and Src kinase. PEAK1 regulates VEGFR2 expression by binding to and increasing the protein stability of the transcription factor GATA-binding protein 2 (GATA2), which controls VEGFR2 transcription. Importantly, PEAK1-GATA2-dependent VEGFR2 expression is mediated by EC adhesion to the ECM and is required for breast cancer-induced new vessel formation in mice. Also, elevated expression of PEAK1 and VEGFR2 mRNA are highly correlated in many human cancers including breast cancer. Together, our findings reveal a novel PEAK1-GATA2-VEGFR2 signaling axis that integrates cell adhesion and growth factor cues from the extracellular environment necessary for new vessel formation during vertebrate development and cancer.
Collapse
|
26
|
Kim JH, Kim KA, Shin YJ, Kim H, Majid A, Bae ON. Methylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:266-277. [PMID: 29473788 DOI: 10.1080/15287394.2018.1440185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Endothelial cells (ECs) maintain the structure and function of blood vessels and are readily exposed to exogenous and endogenous toxic substances in the circulatory system. Bone marrow-derived endothelial progenitor cells (EPCs) circulate in the blood and differentiate to EC, which are known to participate in angiogenesis and regeneration of injured vessels. Dysfunction in EPC contributes to cardiovascular complications in patients with diabetes, but the precise molecular mechanisms underlying diabetic EPC abnormalities are not completely understood. The aim of this study was to investigate the mechanisms underlying diabetic EPC dysfunction using methylglyoxal (MG), an endogenous toxic diabetic metabolite. Data demonstrated that MG decreased cell viability and protein expression of vascular endothelial growth factor receptor (VEGFR)-2 associated with functional impairment of tube formation in EPC. The generation of advanced glycation end (AGE) products was increased in EPC following exposure to MG. Blockage of receptor for AGE (RAGE) by FPS-ZM1, a specific antagonist for RAGE, significantly reversed the decrease of VEGFR-2 protein expression and angiogenic dysfunction in MG-incubated EPC. Taken together, data demonstrated that MG induced angiogenic impairment in EPC via alterations in the AGE/RAGE-VEGFR-2 pathway which may be utilized in the development of potential therapeutic and preventive targets for diabetic vascular complications.
Collapse
Affiliation(s)
- Jeong-Hyeon Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Kyeong-A Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Young-Jun Shin
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Haram Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Arshad Majid
- b Sheffield Institute for Translational Neuroscience , University of Sheffield , Sheffield , England
| | - Ok-Nam Bae
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| |
Collapse
|
27
|
Khan JA, Maki RG, Ravi V. Pathologic Angiogenesis of Malignant Vascular Sarcomas: Implications for Treatment. J Clin Oncol 2018; 36:194-201. [DOI: 10.1200/jco.2017.74.9812] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Angiosarcoma, epithelioid hemangioendothelioma, and Kaposi sarcoma are classified according to the line of differentiation that these neoplastic cells most closely resemble: the endothelial cell. Although these malignant vascular sarcomas demonstrate immunohistochemical and ultrastructural features typical of this lineage, they vary dramatically in presentation and behavior, reflecting oncologic mechanisms unique to each. Antineoplastic therapies offer significant benefit, but because of the rarity of these cancers, novel therapies are slow to develop, and treatment options for these cancers remain limited. Antiangiogenic approaches that have shown benefit in other malignancies have not fully realized their promise in vascular tumors, suggesting that these tumors do not depend entirely on either angiogenic growth factors or on neighboring endothelia that are affected by these agents. Nonetheless, translational studies have begun to unravel these distinct pathologies, identifying novel translocation products, targets of oncogenic virulence factors, and genomic mutations that hijack angiogenic signaling and drive malignant growth. Concurrently, an elaborate and highly regulated model of angiogenesis and lymphangiogenesis involving vascular endothelial growth factor–receptor tyrosine kinase and TGF-β and Notch pathways has emerged that informs treatment of these tumors as well as cancer in general. This review summarizes the literature on malignant vascular sarcomas in the context of current models of angiogenesis and, in light of recent clinical trial data, could help clinician-scientists generate novel therapeutic approaches.
Collapse
Affiliation(s)
- Jalal A. Khan
- Jalal A. Khan, Mount Sinai Hospital, New York City; Robert G. Maki, Monter Cancer Center, Northwell Health, and Cold Spring Harbor Laboratory, Lake Success, NY; and Vinod Ravi, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert G. Maki
- Jalal A. Khan, Mount Sinai Hospital, New York City; Robert G. Maki, Monter Cancer Center, Northwell Health, and Cold Spring Harbor Laboratory, Lake Success, NY; and Vinod Ravi, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vinod Ravi
- Jalal A. Khan, Mount Sinai Hospital, New York City; Robert G. Maki, Monter Cancer Center, Northwell Health, and Cold Spring Harbor Laboratory, Lake Success, NY; and Vinod Ravi, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
28
|
Control of Blood Vessel Formation by Notch Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:319-338. [PMID: 30030834 DOI: 10.1007/978-3-319-89512-3_16] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood vessels span throughout the body to nourish tissue cells and to provide gateways for immune surveillance. Endothelial cells that line capillaries have the remarkable capacity to be quiescent for years but to switch rapidly into the activated state once new blood vessels need to be formed. In addition, endothelial cells generate niches for progenitor and tumor cells and provide organ-specific paracrine (angiocrine) factors that control organ development and regeneration, maintenance of homeostasis and tumor progression. Recent data indicate a pivotal role for blood vessels in responding to metabolic changes and that endothelial cell metabolism is a novel regulator of angiogenesis. The Notch pathway is the central signaling mode that cooperates with VEGF, WNT, BMP, TGF-β, angiopoietin signaling and cell metabolism to orchestrate angiogenesis, tip/stalk cell selection and arteriovenous specification. Here, we summarize the current knowledge and implications regarding the complex roles of Notch signaling during physiological and tumor angiogenesis, the dynamic nature of tip/stalk cell selection in the nascent vessel sprout and arteriovenous differentiation. Furthermore, we shed light on recent work on endothelial cell metabolism, perfusion-independent angiocrine functions of endothelial cells in organ-specific vascular beds and how manipulation of Notch signaling may be used to target the tumor vasculature.
Collapse
|
29
|
Abstract
Alzheimer’s disease (AD) is a common disorder of progressive cognitive decline among elderly subjects. Angiogenesis-related factors including vascular endothelial growth factor (VEGF) might be involved in the pathogenesis of AD. Soluble form of the VEGF receptor is likely to be an intrinsic negative counterpart of VEGF. We measured the plasma levels of VEGF and its two soluble receptors (sVEGFR1 and sVEGFR2) in 120 control subjects, 75 patients with mild cognitive impairment, and 76 patients with AD using ELISA. Plasma levels of VEGF in patients with AD were higher than those in healthy control subjects. However, plasma levels of sVEGFR1 and sVEGFR2 were lower in patients with AD than in healthy control subjects. Levels of VEGFR2 mRNA were significantly decreased in human umbilical vein endothelial cells after amyloid-beta treatment. Further, protein levels of VEGFR2 were also decreased in the brains of AD model mice. In addition, we show that the expression of sVEGFR2 and VEGFR2 was also decreased by the transfection with the Notch intracellular domain. These results indicate that the alterations of VEGF and its two receptors levels might be associated with those at risk for Alzheimer’s disease.
Collapse
|
30
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
31
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
Tian DY, Jin XR, Zeng X, Wang Y. Notch Signaling in Endothelial Cells: Is It the Therapeutic Target for Vascular Neointimal Hyperplasia? Int J Mol Sci 2017; 18:ijms18081615. [PMID: 28757591 PMCID: PMC5578007 DOI: 10.3390/ijms18081615] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023] Open
Abstract
Blood vessels respond to injury through a healing process that includes neointimal hyperplasia. The vascular endothelium is a monolayer of cells that separates the outer vascular wall from the inner circulating blood. The disruption and exposure of endothelial cells (ECs) to subintimal components initiate the neointimal formation. ECs not only act as a highly selective barrier to prevent early pathological changes of neointimal hyperplasia, but also synthesize and release molecules to maintain vascular homeostasis. After vascular injury, ECs exhibit varied responses, including proliferation, regeneration, apoptosis, phenotypic switching, interacting with other cells by direct contact or secreted molecules and the change of barrier function. This brief review presents the functional role of the evolutionarily-conserved Notch pathway in neointimal hyperplasia, notably by regulating endothelial cell functions (proliferation, regeneration, apoptosis, differentiation, cell-cell interaction). Understanding endothelial cell biology should help us define methods to prompt cell proliferation, prevent cell apoptosis and dysfunction, block neointimal hyperplasia and vessel narrowing.
Collapse
Affiliation(s)
- Ding-Yuan Tian
- Trainee Brigade, Third Military Medical University, Chongqing 400038, China.
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | - Xu-Rui Jin
- Trainee Brigade, Third Military Medical University, Chongqing 400038, China.
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | - Xi Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | - Yun Wang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
33
|
Benn A, Hiepen C, Osterland M, Schütte C, Zwijsen A, Knaus P. Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence. FASEB J 2017; 31:4720-4733. [PMID: 28733457 PMCID: PMC5636702 DOI: 10.1096/fj.201700193rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023]
Abstract
Before the onset of sprouting angiogenesis, the endothelium is prepatterned for the positioning of tip and stalk cells. Both cell identities are not static, as endothelial cells (ECs) constantly compete for the tip cell position in a dynamic fashion. Here, we show that both bone morphogenetic protein 2 (BMP2) and BMP6 are proangiogenic in vitro and ex vivo and that the BMP type I receptors, activin receptor-like kinase 3 (ALK3) and ALK2, play crucial and distinct roles in this process. BMP2 activates the expression of tip cell-associated genes, such as delta-like ligand 4 (DLL4) and kinase insert domain receptor (KDR), and p38-heat shock protein 27 (HSP27)-dependent cell migration, thereby generating tip cell competence. Whereas BMP6 also triggers collective cell migration via the p38-HSP27 signaling axis, BMP6 induces in addition SMAD1/5 signaling, thereby promoting the expression of stalk cell-associated genes, such as hairy and enhancer of split 1 (HES1) and fms-like tyrosine kinase 1 (FLT1). Specifically, ALK3 is required for sprouting from HUVEC spheroids, whereas ALK2 represses sprout formation. We demonstrate that expression levels and respective complex formation of BMP type I receptors in ECs determine stalk vs. tip cell identity, thus contributing to endothelial plasticity during sprouting angiogenesis. As antiangiogenic monotherapies that target the VEGF or ALK1 pathways have not fulfilled efficacy objectives in clinical trials, the selective targeting of the ALK2/3 pathways may be an attractive new approach.-Benn, A., Hiepen, C., Osterland, M., Schütte, C., Zwijsen, A., Knaus, P. Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence.
Collapse
Affiliation(s)
- Andreas Benn
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Deutsche Forschungsgemeinschaft (DFG) Graduate School 1093, Berlin School of Integrative Oncology, Berlin, Germany.,DFG Graduate School 203, Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.,Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,DFG Graduate School 203, Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Marc Osterland
- Zuse Institute Berlin, Berlin, Germany.,Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Christof Schütte
- Zuse Institute Berlin, Berlin, Germany.,Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - An Zwijsen
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; .,Deutsche Forschungsgemeinschaft (DFG) Graduate School 1093, Berlin School of Integrative Oncology, Berlin, Germany.,DFG Graduate School 203, Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
34
|
Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, Langen UH, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams RH. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 2017; 19:915-927. [DOI: 10.1038/ncb3555] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
35
|
Liu Z, Sanders AJ, Liang G, Song E, Jiang WG, Gong C. Hey Factors at the Crossroad of Tumorigenesis and Clinical Therapeutic Modulation of Hey for Anticancer Treatment. Mol Cancer Ther 2017; 16:775-786. [PMID: 28468863 DOI: 10.1158/1535-7163.mct-16-0576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Zihao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Gehao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
36
|
Xie Q, Cheng Z, Chen X, Lobe CG, Liu J. The role of Notch signalling in ovarian angiogenesis. J Ovarian Res 2017; 10:13. [PMID: 28284219 PMCID: PMC5346233 DOI: 10.1186/s13048-017-0308-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/01/2017] [Indexed: 12/19/2022] Open
Abstract
In adults, the ovary is characterized with extensive angiogenesis and regular intervals of rapid growth. Ovarian function is dependent on the network of angiogenic vessels which enable the follicle and/or corpus luteum to receive oxygen, nutrients and hormonal support. Abnormal angiogenesis is involved in the induction and development of pathological ovary, such as polycystic ovary syndrome and ovarian cancer. Notch signalling pathway is one of the primary regulators of angiogenesis and a therapeutic target for ovarian diseases. Here, we will review literatures on the expression pattern of Notch pathway components in the ovary and on the role of Notch signalling pathway on ovarian angiogenesis.
Collapse
Affiliation(s)
- Qi Xie
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, People's Republic of China
| | - Zuowang Cheng
- Taishan Medical College, Taian, People's Republic of China
| | - Xiaocui Chen
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, People's Republic of China
| | - Corrinne G Lobe
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, People's Republic of China.
| |
Collapse
|
37
|
Wang H, Xia Y, Fu S, Wang W, Xie C, Zhang Y, Gong F. Notch4 Signaling Pathway of Endothelial Progenitor Cells in a Kawasaki Disease Model Induced by Lactobacillus casei Cell Wall Extract. J Vasc Res 2016; 53:340-348. [PMID: 28013300 DOI: 10.1159/000449061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022] Open
Abstract
The Notch4 signaling pathway of endothelial progenitor cells (EPCs) may play a crucial role in Kawasaki disease (KD). We investigated the proliferation, adhesion, migration, angiogenesis, and expression levels of Notch4, recombination signal-binding protein-Jκ (RBP-Jκ), P-selectin, and vascular cell adhesion molecule-1 (VCAM-1) of bone marrow (BM) EPCs in a KD model induced by Lactobacillus casei cell wall extract. The numbers of BM EPCs decreased significantly in the KD models. The Notch4 expression level on the EPC surface was higher in the KD models than in the controls. The proliferative, adhesive, migratory, and angiogenic properties, and double immunofluorescence-binding rate of BM EPCs were significantly impaired in the KD models. The levels of Notch4 and P-selectin mRNA were lower in the KD models than in the controls on day 3. The RBP-Jκ mRNA levels were lower in the KD models than in the controls on days 3 and 7. The levels of RBP-Jκ and vascular endothelial growth factor receptor-2 proteins decreased in the early stage. In conclusion, the BM EPC functions and bioactivities in the KD models were impaired, and the Notch4 signaling pathway is associated with KD.
Collapse
Affiliation(s)
- Huafeng Wang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivée B, Lee M, Urarte AA, Kraehling JR, Genet G, Hirschi KK, Sessa WC, Canals FV, Graupera M, Yan M, Young LH, Oh PS, Eichmann A. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun 2016; 7:13650. [PMID: 27897192 PMCID: PMC5141347 DOI: 10.1038/ncomms13650] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.
Collapse
Affiliation(s)
- Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jinah Han
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jennifer S. Fang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Bruno Larrivée
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Monica Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Ana A. Urarte
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jan R. Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Karen K. Hirschi
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - William C. Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Francesc V. Canals
- Translation Research Laboratory, Catalan Institute of Oncology, Idibell, Barcelona 08908, Spain
| | - Mariona Graupera
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Minhong Yan
- Molecular Oncology, Genentech, Inc., South San Francisco, California 94080-4990, USA
| | - Lawrence H. Young
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Paul S. Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, PO Box 100274, Gainesville, Florida 32610, USA
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Inserm U970, Paris Cardiovascular Research Center, Paris 75015, France
| |
Collapse
|
39
|
Palm MM, Dallinga MG, van Dijk E, Klaassen I, Schlingemann RO, Merks RMH. Computational Screening of Tip and Stalk Cell Behavior Proposes a Role for Apelin Signaling in Sprout Progression. PLoS One 2016; 11:e0159478. [PMID: 27828952 PMCID: PMC5102492 DOI: 10.1371/journal.pone.0159478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis involves the formation of new blood vessels by sprouting or splitting of existing blood vessels. During sprouting, a highly motile type of endothelial cell, called the tip cell, migrates from the blood vessels followed by stalk cells, an endothelial cell type that forms the body of the sprout. To get more insight into how tip cells contribute to angiogenesis, we extended an existing computational model of vascular network formation based on the cellular Potts model with tip and stalk differentiation, without making a priori assumptions about the differences between tip cells and stalk cells. To predict potential differences, we looked for parameter values that make tip cells (a) move to the sprout tip, and (b) change the morphology of the angiogenic networks. The screening predicted that if tip cells respond less effectively to an endothelial chemoattractant than stalk cells, they move to the tips of the sprouts, which impacts the morphology of the networks. A comparison of this model prediction with genes expressed differentially in tip and stalk cells revealed that the endothelial chemoattractant Apelin and its receptor APJ may match the model prediction. To test the model prediction we inhibited Apelin signaling in our model and in an in vitro model of angiogenic sprouting, and found that in both cases inhibition of Apelin or of its receptor APJ reduces sprouting. Based on the prediction of the computational model, we propose that the differential expression of Apelin and APJ yields a "self-generated" gradient mechanisms that accelerates the extension of the sprout.
Collapse
Affiliation(s)
- Margriet M. Palm
- Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | | | - Erik van Dijk
- Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Roeland M. H. Merks
- Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| |
Collapse
|
40
|
LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol 2016; 418:227-41. [PMID: 27565024 PMCID: PMC5144577 DOI: 10.1016/j.ydbio.2016.08.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
The Notch signaling cascade is an evolutionarily ancient system that allows cells to interact with their microenvironmental neighbors through direct cell-cell interactions, thereby directing a variety of developmental processes. Recent research is discovering that Notch signaling is also responsive to a broad variety of stimuli beyond cell-cell interactions, including: ECM composition, crosstalk with other signaling systems, shear stress, hypoxia, and hyperglycemia. Given this emerging understanding of Notch responsiveness to microenvironmental conditions, it appears that the classical view of Notch as a mechanism enabling cell-cell interactions, is only a part of a broader function to integrate microenvironmental cues. In this review, we summarize and discuss published data supporting the idea that the full function of Notch signaling is to serve as an integrator of microenvironmental signals thus allowing cells to sense and respond to a multitude of conditions around them.
Collapse
Affiliation(s)
- Bryce LaFoya
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Jordan A Munroe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Masum M Mia
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Michael A Detweiler
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Jacob J Crow
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Travis Wood
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Steven Roth
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Bikram Sharma
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan R Albig
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
41
|
Reichman D, Man L, Park L, Lis R, Gerhardt J, Rosenwaks Z, James D. Notch hyper-activation drives trans-differentiation of hESC-derived endothelium. Stem Cell Res 2016; 17:391-400. [PMID: 27643563 DOI: 10.1016/j.scr.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022] Open
Abstract
During development, endothelial cells (EC) display tissue-specific attributes that are unique to each vascular bed, as well as generic signaling mechanisms that are broadly applied to create a patent circulatory system. We have previously utilized human embryonic stem cells (hESC) to generate tissue-specific EC sub-types (Rafii et al., 2013) and identify pathways that govern growth and trans-differentiation potential of hESC-derived ECs (James et al., 2010). Here, we elucidate a novel Notch-dependent mechanism that induces endothelial to mesenchymal transition (EndMT) in confluent monolayer cultures of hESC-derived ECs. We demonstrate density-dependent induction of EndMT that can be rescued by the Notch signaling inhibitor DAPT and identify a positive feedback signaling mechanism in hESC-ECs whereby trans-activation of Notch by DLL4 ligand induces elevated expression and surface presentation of DLL4. Increased Notch activation in confluent hESC-EC monolayer cultures induces areas of EndMT containing transitional cells that are marked by increased Jagged1 expression and reduced Notch signal integration. Jagged1 loss of function in monolayer hESC-ECs induces accelerated feedback stimulation of Notch signaling, increased expression of cell-autonomous, cis-inhibitory DLL4, and EndMT. These data elucidate a novel interplay of Notch ligands in modulating pathway activation during both expansion and EndMT of hESC-derived ECs.
Collapse
Affiliation(s)
- David Reichman
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Limor Man
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Laura Park
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Raphael Lis
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medical College, New York, NY 10065, United States
| | - Jeannine Gerhardt
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Zev Rosenwaks
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States
| | - Daylon James
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, United States; Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
42
|
Zhang H, Sun W, Li X, Wang M, Boyce BF, Hilton MJ, Xing L. Use of Hes1-GFP reporter mice to assess activity of the Hes1 promoter in bone cells under chronic inflammation. Bone 2016; 90:80-9. [PMID: 27269414 PMCID: PMC4970899 DOI: 10.1016/j.bone.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Notch signaling plays a critical role in maintaining bone homeostasis partially by controlling the formation of osteoblasts from mesenchymal stem cells (MSCs). We reported that TNF activates Notch signaling in MSCs which inhibits osteoblast differentiation in TNF transgenic (TNF-Tg) mice, a mouse model of chronic inflammatory arthritis. In the current study, we used Hes1-GFP and Hes1-GFP/TNF-Tg mice to study the distribution and dynamic change of Notch active cells in normal and inflammatory bone loss and mechanisms mediating their enhanced proliferation. We found that Hes1-GFP+ cells are composed of cells expressing mesenchymal, hematopoietic and endothelial surface markers. CD45-/Hes1-GFP+ cells express high levels of mesenchymal markers and form CFU-F and CFU-ALP colonies. Expansion of CFU-F colonies is associated with a rapid increase in Hes1-GFP+ cell numbers and their GFP intensity. The GFP signal is lost when a CFU-F colony differentiates into an ALP+ osteoblast colony. TNF increases the numbers of CD45-/Hes1-GFP+ cells, which are stained negatively for osteoblast marker osteocalcin and localized adjacent to endosteal and trabecular bone surfaces. CD45-/Hes1-GFP+ cells in Hes1-GFP/TNF-Tg mice have increased BrdU incorporation and PDGFRβ levels. TNF increases the number of proliferating Hes1-GFP+ cells, which is prevented by a specific PDGFRβ inhibitor. Notch inhibition blocks TNF-mediated PDGFRβ expression and cell proliferation. Thus, TNF-induced MSC proliferation is mediated by PDGFRβ signal, which works at downstream of Notch. Hes1-GFP mice can be used to assess the activation status of Notch in bone cells.
Collapse
Affiliation(s)
- Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wen Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xing Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mengmeng Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Medicine, Minzu University of China, Beijing 100081, People's Republic of China
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew J Hilton
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
43
|
Abstract
Stroke is one of the leading causes of death and disability worldwide. Stroke recovery is orchestrated by a set of highly interactive processes that involve the neurovascular unit and neural stem cells. Emerging data suggest that exosomes play an important role in intercellular communication by transferring exosomal protein and RNA cargo between source and target cells in the brain. Here, we review these advances and their impact on promoting coupled brain remodeling processes after stroke. The use of exosomes for therapeutic applications in stroke is also highlighted.
Collapse
Affiliation(s)
- Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
44
|
Ma K, Zhao Q, Chen W, Zhang H, Li S, Pan X, Chen Q. Human lung microRNA profiling in pulmonary arterial hypertension secondary to congenital heart defect. Pediatr Pulmonol 2015; 50:1214-23. [PMID: 25847058 DOI: 10.1002/ppul.23181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/28/2014] [Accepted: 02/10/2015] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Although several microRNAs were reported to play essential roles in pulmonary artery hypertension due to hypoxia or monocrotaline, their potential role in pulmonary arterial hypertension secondary to congenital heart disease is largely unknown. This study aimed to indentify microRNAs implicated in pulmonary arterial hypertension secondary to congenital heart disease in children. METHODS Using microRNAs microarray, we profiled the microRNAs in the lung specimen from 12 congenital heart disease patients, (6 with pulmonary arterial hypertension and the others without). We validated the microRNAs expression using RT-PCR experiments. Then, we predicted the target genes of the promising microRNAs by bioinformatical analysis and verified its regulating role by luciferase assay and western blot experiments. RESULTS All the 12 patients were uneventfully recovered from cardiac surgery. Comparing to the non-pulmonary arterial hypertension lung tissue, 62 microRNAs were significantly up-regulated and 12 were significantly de-regulated in the pulmonary arterial hypertension lung tissue. Among them 27 microRNAs reached P values ≤ 0.05, we validated the up-regulation of microRNA-27b by RT-PCR experiments and found the expression level of microRNA-27b was correlated with preoperative mean pulmonary arterial pressure. In vitro, overexpression of microRNA-27b decreased the protein expression of NOTCH1 and significantly reduced luciferase activity. CONCLUSIONS The current study revealed for the first time that microRNAs may be important regulators in pulmonary arterial hypertension secondary to congenital heart disease, and demonstrated the correlation between microRNA-27b and pulmonary arterial hypertension with the implication of NOTCH1.
Collapse
Affiliation(s)
- Kai Ma
- Department of Pediatric Cardiac Surgery, National Center for Cardiovascular Disease and Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Qian Zhao
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease and Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Weidan Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, PR China
| | - Hao Zhang
- Department of Pediatric Cardiac Surgery, National Center for Cardiovascular Disease and Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Shoujun Li
- Department of Pediatric Cardiac Surgery, National Center for Cardiovascular Disease and Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Xiangbin Pan
- Department of Pediatric Cardiac Surgery, National Center for Cardiovascular Disease and Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Qiuming Chen
- Department of Pediatric Cardiac Surgery, National Center for Cardiovascular Disease and Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| |
Collapse
|
45
|
Shawber CJ, Lin L, Gnarra M, Sauer MV, Papaioannou VE, Kitajewski JK, Douglas NC. Vascular Notch proteins and Notch signaling in the peri-implantation mouse uterus. Vasc Cell 2015; 7:9. [PMID: 26629328 PMCID: PMC4666149 DOI: 10.1186/s13221-015-0034-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/17/2015] [Indexed: 12/01/2022] Open
Abstract
Background Angiogenesis is essential for uterine decidualization, the progesterone-mediated transformation of the uterus allowing embryo implantation and initiation of pregnancy. In the current study, we define the vasculature, expression of Notch proteins and Notch ligands, and Notch activity in both endothelial cells and vascular-associated mural cells of blood vessels in the pre-implantation endometrium and post-implantation decidua of the mouse uterus. Methods We used immunofluorescence to determine the expression of Notch in endothelial cells and mural cells by co-staining for the endothelial cell marker, CD31, the pan-mural cell marker, platelet-derived growth factor receptor beta (PDGFR-β), the pericyte markers, neural/glial antigen 2 (NG2) and desmin, or the smooth muscle cell marker, alpha smooth muscle actin (SMA). A fluorescein isothiocyanate-labeled dextran tracer, was used to identify functional peri-implantation vasculature. CBF:H2B-Venus Notch reporter transgenic mice were used to determine Notch activity. Results Notch signaling is observed in endothelial cells and pericytes in the peri-implantation uterus. Prior to implantation, Notch1, Notch2 and Notch4 and Notch ligand, Delta-like 4 (Dll4) are expressed in capillary endothelial cells, while Notch3 is expressed in the pericytes. Jagged1 is expressed in both capillary endothelial cells and pericytes. After implantation, Notch1, Notch4 and Dll4 are expressed in endothelial cells of newly formed decidual capillaries. Jagged1 is expressed in endothelial cells of spiral arteries and a subset of decidual pericytes. Notch proteins are not expressed in lymphatic vessels or macrophages in the peri-implantation uterus. Conclusions We show Notch activity and distinct expression patterns for Notch proteins and ligands, suggesting unique roles for Notch1, Notch4, Dll4, and Jag1 during decidual angiogenesis and early placentation. These data set the stage for loss-of-function and gain-of-function studies that will determine the cell-type specific requirements for Notch proteins in decidual angiogenesis and placentation. Electronic supplementary material The online version of this article (doi:10.1186/s13221-015-0034-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carrie J Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA ; Department of Surgery, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Lu Lin
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Maria Gnarra
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Mark V Sauer
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Virginia E Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Jan K Kitajewski
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA ; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Nataki C Douglas
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA ; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| |
Collapse
|
46
|
Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations. Sci Rep 2015; 5:16449. [PMID: 26563570 PMCID: PMC4643246 DOI: 10.1038/srep16449] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022] Open
Abstract
Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1+/−; Notch3−/− mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothelial cell quiescence. Accordingly, loss of pericyte function due to Notch deficiency exacerbates endothelial cell activation caused by Notch1 haploinsufficiency. Mice mutant for Notch1 and Notch3 develop arteriovenous malformations and display hallmarks of the ischemic stroke disease CADASIL. Thus, Notch deficiency compromises pericyte function and contributes to vascular pathologies.
Collapse
|
47
|
Paiva TF, de Jesus VHF, Marques RA, da Costa AABA, de Macedo MP, Peresi PM, Damascena A, Rossi BM, Begnami MD, de Lima VCC. Angiogenesis-related protein expression in bevacizumab-treated metastatic colorectal cancer: NOTCH1 detrimental to overall survival. BMC Cancer 2015; 15:643. [PMID: 26394830 PMCID: PMC4579833 DOI: 10.1186/s12885-015-1648-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/11/2015] [Indexed: 12/19/2022] Open
Abstract
Background The development of targeted therapies has undoubtedly broadened therapeutic options for patients with colorectal cancer (CRC). The use of bevacizumab to reduce angiogenesis has been associated with improved clinical outcomes. However, an urgent need for prognostic/predictive biomarkers for anti-angiogenic therapies still exists. Methods Clinical data of 105 CRC patients treated with bevacizumab in conjunction with chemotherapy were analyzed. The expression of vascular endothelial growth factor (VEGF) receptors, NOTCH1 receptor and its ligand DLL4 were determined by immunohistochemistry. Tumor samples were arranged on a tissue microarray. The association between protein expression and clinicopathological characteristics and outcomes was determined. Results Bevacizumab was administered as a first-line of treatment in 70.5 % of our cases. The median progression-free survival (PFS) was 10.2 months. The median overall survival (OS) of the total cohort was 24.4 months. Bevacizumab, as the first-line of treatment, and the presence of liver metastasis were independently associated with objective response rate. Membrane VEGFR1 and VEGFR3 expressions were associated with the presence of lung metastasis; interestingly, VEGFR3 was associated with less liver metastasis. NOTCH1 expression was associated with lymph node metastasis. There was a trend toward association between improved PFS and lower NOTCH1 expression (p = 0.06). Improved OS was significantly associated with lower NOTCH1 expression (p = 0.01). In a multivariate analysis, ECOG (Eastern Cooperative Oncology Group) performance status, liver metastasis, histological grade, and NOTCH1 expression were independently associated with OS. Conclusion Our findings illustrated the expression profile of angiogenesis-related proteins and their association with clinicopathological characteristics and outcomes. NOTCH1 expression is a detrimental prognostic factor in metastatic CRC patients treated with chemotherapy plus bevacizumab. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1648-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Raul Amorim Marques
- Department of Medical Oncology, A. C. Camargo Cancer Center, São Paulo, Brazil.
| | | | | | | | - Aline Damascena
- Department of Statistics, Centro Internacional de Pesquisa e Ensino - Fundação Antônio Prudente, São Paulo, Brazil.
| | | | | | - Vladmir Cláudio Cordeiro de Lima
- Department of Medical Oncology, A. C. Camargo Cancer Center, São Paulo, Brazil. .,Department of Clinical Oncology, 1° Subsolo, Edifício Hilda Jacob R. Prof. Antônio Prudente, 211, São Paulo, ZC 01509-900, Brazil.
| |
Collapse
|
48
|
Notch functions in developmental and tumour angiogenesis by diverse mechanisms. Biochem Soc Trans 2015; 42:1563-8. [PMID: 25399571 DOI: 10.1042/bst20140233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Notch signalling pathway is a key regulator of developmental and tumour angiogenesis. Inhibition of Delta-like 4 (Dll4)-mediated Notch signalling results in hyper-sprouting, demonstrating that Notch regulates tip-stalk cell identity in developing tissues and tumours. Paradoxically, Dll4 blockade leads to reduced tumour growth because the newly growing vessels are poorly perfused. To explore the potential for targeting Notch, we developed Notch inhibitors, termed the Notch1 decoys. A Notch1 decoy variant containing all 36 epidermal growth factor (EGF)-like repeats of the extracellular domain of rat Notch1 has been shown to inhibit both Dll and Jagged class Notch ligands. Thus this Notch1 decoy functions differently than Dll4-specific blockade, although it has the potential to inhibit Dll4 activity. Expression of the Notch1 decoy in mice disrupted tumour angiogenesis and inhibited tumour growth. To understand the mechanism by which Notch blockade acts, it is important to note that Notch can function in multiple cell types that make up the vasculature, including endothelial cells and perivascular cells. We investigated Notch function in retinal microglia and determined how myeloid-expressed Notch can influence macrophages and angiogenesis. We found that myeloid-specific loss of Notch1 reduced microglia recruitment and led to improper microglia localization during retinal angiogenesis. Thus either pharmacological inhibition of Notch signalling or genetic deficiencies of Notch function in microglia leads to abnormal angiogenesis.
Collapse
|
49
|
Rochon ER, Wright DS, Schubert MM, Roman BL. Context-specific interactions between Notch and ALK1 cannot explain ALK1-associated arteriovenous malformations. Cardiovasc Res 2015; 107:143-52. [PMID: 25969392 DOI: 10.1093/cvr/cvv148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/07/2015] [Indexed: 01/17/2023] Open
Abstract
AIMS Notch and activin receptor-like kinase 1 (ALK1) have been implicated in arterial specification, angiogenic tip/stalk cell differentiation, and development of arteriovenous malformations (AVMs), and ALK1 can cooperate with Notch to up-regulate expression of Notch target genes in cultured endothelial cells. These findings suggest that Notch and ALK1 might collaboratively program arterial identity and prevent AVMs. We therefore sought to investigate the interaction between Notch and Alk1 signalling in the developing vertebrate vasculature. METHODS AND RESULTS We modulated Notch and Alk1 activities in zebrafish embryos and examined effects on Notch target gene expression and vascular morphology. Although Alk1 is not necessary for expression of Notch target genes in arterial endothelium, loss of Notch signalling unmasks a role for Alk1 in supporting hey2 and ephrinb2a expression in the dorsal aorta. In contrast, Notch and Alk1 play opposing roles in hey2 expression in cranial arteries and dll4 expression in all arterial endothelium, with Notch inducing and Alk1 repressing these genes. Although alk1 loss increases expression of dll4, AVMs in alk1 mutants could neither be phenocopied by Notch activation nor rescued by Dll4/Notch inhibition. CONCLUSION Control of Notch targets in arterial endothelium is context-dependent, with gene-specific and region-specific requirements for Notch and Alk1. Alk1 is not required for arterial identity, and perturbations in Notch signalling cannot account for alk1 mutant-associated AVMs. These data suggest that AVMs associated with ALK1 mutation are not caused by defective arterial specification or altered Notch signalling.
Collapse
Affiliation(s)
- Elizabeth R Rochon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel S Wright
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Max M Schubert
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Beth L Roman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA 15261, USA
| |
Collapse
|
50
|
Nwabo Kamdje AH, Seke Etet PF, Vecchio L, Muller JM, Krampera M, Lukong KE. Signaling pathways in breast cancer: therapeutic targeting of the microenvironment. Cell Signal 2014; 26:2843-2856. [PMID: 25093804 DOI: 10.1016/j.cellsig.2014.07.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 02/08/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Understanding the biology of this malignant disease is a prerequisite for selecting an appropriate treatment. Cell cycle alterations are seen in many cancers, including breast cancer. Newly popular targeted agents in breast cancer include cyclin dependent kinase inhibitors (CDKIs) which are agents inhibiting the function of cyclin dependent kinases (CDKs) and agents targeting proto-oncogenic signaling pathways like Notch, Wnt, and SHH (Sonic hedgehog). CDKIs are categorized as selective and non-selective inhibitors of CDK. CDKIs have been tried as monotherapy and combination therapy. The CDKI Palbocyclib is now a promising therapeutic in breast cancer. This drug recently entered phase III trial for estrogen receptor (ER) positive breast cancer after showing encouraging results in progression free survival in a phase II trials. The tumor microenvironment is now recognized as a significant factor in cancer treatment response. The tumor microenvironment is increasingly considered as a target for combination therapy of breast cancer. Recent findings in the signaling pathways in breast cancer are herein summarized and discussed. Furthermore, the therapeutic targeting of the microenvironment in breast cancer is also considered.
Collapse
Affiliation(s)
- Armel Herve Nwabo Kamdje
- Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
| | - Paul Faustin Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Lorella Vecchio
- Laboratory of Cytometry, Institute of Molecular Genetics, CNR, University of Pavia, 27100 Pavia, Italy
| | - Jean Marc Muller
- Université de Poitiers, Faculté des Sciences, Pôle Biologie-Santé Bât B36, 1, rue Georges Bonnet-BP633, 86022-Poitiers cedex, France
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Verona, Italy
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, Room 4D30.5 Health Sciences Bldg, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK. S7N 5E5, Canada
| |
Collapse
|