1
|
Riveros ME, Leibold NK, Retamal MA, Ezquer F. Role of histaminergic regulation of astrocytes in alcohol use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111009. [PMID: 38653364 DOI: 10.1016/j.pnpbp.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Alcohol use disorder (AUD) is a severe, yet not fully understood, mental health problem. It is associated with liver, pancreatic, and gastrointestinal diseases, thereby highly increasing the morbidity and mortality of these individuals. Currently, there is no effective and safe pharmacological therapy for AUD. Therefore, there is an urgent need to increase our knowledge about its neurophysiological etiology to develop new treatments specifically targeted at this health condition. Recent findings have shown an upregulation in the histaminergic system both in alcohol dependent individuals and in animals with high alcohol preference. The use of H3 histaminergic receptor antagonists has given promising therapeutic results in animal models of AUD. Interestingly, astrocytes, which are ubiquitously present in the brain, express the three main histamine receptors (H1, H2 and H3), and in the last few years, several studies have shown that astrocytes could play an important role in the development and maintenance of AUD. Accordingly, alterations in the density of astrocytes in brain areas such as the prefrontal cortex, ventral striatum, and hippocampus that are critical for AUD-related characteristics have been observed. These characteristics include addiction, impulsivity, motor function, and aggression. In this work, we review the current state of knowledge on the relationship between the histaminergic system and astrocytes in AUD and propose that histamine could increase alcohol tolerance by protecting astrocytes from ethanol-induced oxidative stress. This increased tolerance could lead to high levels of alcohol intake and therefore could be a key factor in the development of alcohol dependence.
Collapse
Affiliation(s)
- María Eugenia Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| | - Nicole K Leibold
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Programa de Comunicación Celular en Cáncer, Instituto de Ciencia e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencia e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago. Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
2
|
Ethanol Induces Sedation and Hypnosis via Inhibiting Histamine Release in Mice. Neurochem Res 2019; 44:1764-1772. [PMID: 31093904 DOI: 10.1007/s11064-019-02813-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Ethanol is one of the most highly abused psychoactive compounds worldwide and induces sedation and hypnosis. The histaminergic system is involved in the regulation of sleep/wake function and is a crucial player in promoting wakefulness. To explore the role and mechanism of the histaminergic system in ethanol-induced sedation and hypnosis, we recorded locomotor activity (LMA) and electroencephalography (EEG)/electromyography (EMG) in mice using an infrared ray passive sensor recording system and an EEG/EMG recording system, respectively, after administration of ethanol. In vivo microdialysis coupled with high performance liquid chromatography and fluorometry technology were used to detect histamine release in the mouse frontal cortex (FrCx). The results revealed that ethanol significantly suppressed LMA of histamine receptor 1 (H1R)-knockout (KO) and wild-type (WT) mice in the range of 1.5-2.5 g/kg, but suppression was remarkably stronger in WT mice than in H1R-KO mice. At 2.0 and 2.5 g/kg, ethanol remarkably increased non-rapid eye movement sleep and decreased wakefulness, respectively. Neurochemistry experimental data indicated that ethanol inhibited histamine release in the FrCx in a dose-dependent manner. These findings suggest that ethanol induces sedation and hypnosis via inhibiting histamine release in mice.
Collapse
|
3
|
Verma L, Jain NS. Central histaminergic transmission modulates the ethanol induced anxiolysis in mice. Behav Brain Res 2016; 313:38-52. [DOI: 10.1016/j.bbr.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023]
|
4
|
Sun Y, Jiang SY, Ni J, Luo YJ, Chen CR, Hong ZY, Yanagawa Y, Qu WM, Wang L, Huang ZL. Ethanol inhibits histaminergic neurons in mouse tuberomammillary nucleus slices via potentiating GABAergic transmission onto the neurons at both pre- and postsynaptic sites. Acta Pharmacol Sin 2016; 37:1325-1336. [PMID: 27498778 DOI: 10.1038/aps.2016.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
AIM Ethanol, one of the most frequently used and abused substances in our society, has a profound impact on sedation. However, the neuronal mechanisms underlying its sedative effect remain unclear. In this study, we investigated the effects of ethanol on histaminergic neurons in the tuberomammillary nucleus (TMN), a brain region thought to be critical for wakefulness. METHODS Coronal brain slices (250 μm thick) containing the TMN were prepared from GAD67-GFP knock-in mice. GAD67-GFP was used to identify histaminergic neurons in the TMN. The spontaneous firing and membrane potential of histaminergic neurons, and GABAergic transmission onto these neurons were recorded using whole-cell patch-clamp recordings. Drugs were applied through superfusion. RESULTS Histaminergic and GAD67-expressing neurons in the TMN of GAD67-GFP mice were highly co-localized. TMN GFP-positive neurons exhibited a regular spontaneous discharge at a rate of 2-4 Hz without burst firing. Brief superfusion of ethanol (64, 190, and 560 mmol/L) dose-dependently and reversibly suppressed the spontaneous firing of the neurons in the TMN; when synaptic transmission was blocked by tetrodotoxin (1 μmol/L), ethanol caused hyperpolarization of the membrane potential. Furthermore, superfusion of ethanol markedly increased the frequency and amplitude of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs), which were abolished in the presence of the GABAA receptor antagonist bicuculline (20 μmol/L). Finally, ethanol-mediated enhancement of sIPSCs and mIPSCs was significantly attenuated when the slices were pretreated with the GABAB agonist baclofen (30 μmol/L). CONCLUSION Ethanol inhibits the excitability of histaminergic neurons in mouse TMN slices, possibly via potentiating GABAergic transmission onto the neurons at both pre- and postsynaptic sites.
Collapse
|
5
|
Bahi A, Sadek B, Nurulain SM, Łażewska D, Kieć-Kononowicz K. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice. Physiol Behav 2015; 151:189-97. [PMID: 26169446 DOI: 10.1016/j.physbeh.2015.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/28/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022]
Abstract
It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 ± 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Syed M Nurulain
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
6
|
Zimatkin SM, Phedina EM. Influence of chronic alcohol consumption on histaminergic neurons of the rat brain. Alcohol Alcohol 2014; 50:51-5. [PMID: 25371045 DOI: 10.1093/alcalc/agu075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To clarify the effect of chronic alcohol consumption on the brain histaminergic neurons in rats. METHODS Male Wistar rats were given 20% ethanol as the only source of drinking during 6 months, control rats had a free access to water. The samples of hypothalamus were prepared for light and electron microscopy accompanied by morphometry to examine the brain histaminergic neurons of E2 group. RESULTS Chronic ethanol consumption increased the amount of histologically abnormal forms of histaminergic neurons and decreased the whole amount of E2 histaminergic neurons (for 5%). The neuron bodies and nuclei increased in size and sphericity, the nuclear/cytoplasmic ratio decreased by 15%. The ultrastructural changes in histaminergic neurons demonstrate the activation of their nuclear apparatus, both destruction and hypertrophy and hyperplasia of organelles, especially lysosomes. Chronic ethanol consumption induces the disturbances in cytoplasmic enzymes of neurons: increases the activity of type B monoamine oxidase, dehydrogenases of lactate and NADH and, especially, marker enzyme of lysosomes acid phosphatase as well as inhibits the activity of dehydrogenases of succinate and glucose-6-phosphate. CONCLUSION Chronic alcohol consumption affects significantly the structure and metabolism of the brain histaminergic neurons, demonstrating both the neurotoxic effect of ethanol and processes of adaptation in those neurons, necessary for their survival.
Collapse
|
7
|
Mori H, Matsuda KI, Yamawaki M, Kawata M. Estrogenic regulation of histamine receptor subtype H1 expression in the ventromedial nucleus of the hypothalamus in female rats. PLoS One 2014; 9:e96232. [PMID: 24805361 PMCID: PMC4013143 DOI: 10.1371/journal.pone.0096232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/04/2014] [Indexed: 02/03/2023] Open
Abstract
Female sexual behavior is controlled by central estrogenic action in the ventromedial nucleus of the hypothalamus (VMN). This region plays a pivotal role in facilitating sex-related behavior in response to estrogen stimulation via neural activation by several neurotransmitters, including histamine, which participates in this mechanism through its strong neural potentiating action. However, the mechanism through which estrogen signaling is linked to the histamine system in the VMN is unclear. This study was undertaken to investigate the relationship between estrogen and histamine receptor subtype H1 (H1R), which is a potent subtype among histamine receptors in the brain. We show localization of H1R exclusively in the ventrolateral subregion of the female VMN (vl VMN), and not in the dorsomedial subregion. In the vl VMN, abundantly expressed H1R were mostly colocalized with estrogen receptor α. Intriguingly, H1R mRNA levels in the vl VMN were significantly elevated in ovariectomized female rats treated with estrogen benzoate. These data suggest that estrogen can amplify histamine signaling by enhancing H1R expression in the vl VMN. This enhancement of histamine signaling might be functionally important for allowing neural excitation in response to estrogen stimulation of the neural circuit and may serve as an accelerator of female sexual arousal.
Collapse
Affiliation(s)
- Hiroko Mori
- Department of Medical Education, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
- * E-mail:
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Masanaga Yamawaki
- Department of Medical Education, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
8
|
Influence of the novel histamine H₃ receptor antagonist ST1283 on voluntary alcohol consumption and ethanol-induced place preference in mice. Psychopharmacology (Berl) 2013; 228:85-95. [PMID: 23474889 DOI: 10.1007/s00213-013-3019-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/31/2013] [Indexed: 12/23/2022]
Abstract
RATIONALE Growing evidence supports a role for the central histaminergic system to have a modulatory influence on drug addiction in general and alcohol-use disorders in particular through histamine H3 receptors (H3R). OBJECTIVE In the present study, the effects of systemic injection of the newly synthesized H3R antagonist ST1283 on ethanol (EtOH) voluntary intake and EtOH-conditioned reward in mice have been investigated. METHODS Oral EtOH, saccharin, and quinine intake was assessed in a two-bottle choice paradigm using escalating concentrations of alcohol or tastant solutions. EtOH-induced place preference (CPP), EtOH-induced locomotor activity, and blood ethanol concentration (BEC) were also measured. RESULTS Following administration of the H3R antagonist (2.5, 5, and 10 mg/kg, i.p.), there was a significant dose-dependent decrease in alcohol consumption and preference. Importantly, vehicle- and ST1283 (5 mg/kg)-treated mice showed similar consumption and preference to increasing concentration of both sweet and bitter tastes. More interestingly, systemic administration of ST1283 inhibited EtOH-CPP and EtOH-enhanced locomotion. This inhibition was blocked when mice were pretreated with the selective H3R agonist R-(alpha)-methyl-histamine (10 mg/kg). Finally, vehicle- and ST1283-treated mice had similar BECs. CONCLUSION Our results show that ST1283 may decrease voluntary EtOH consumption and EtOH-CPP by altering its reinforcing effects, suggesting a novel role for histamine signaling in regulation of alcoholism. Lastly, the results add to the growing literature on H3R modulation in the pharmacotherapy of EtOH addiction.
Collapse
|
9
|
Puttonen HAJ, Sundvik M, Rozov S, Chen YC, Panula P. Acute ethanol treatment upregulates Th1, Th2, and Hdc in larval zebrafish in stable networks. Front Neural Circuits 2013; 7:102. [PMID: 23754986 PMCID: PMC3668275 DOI: 10.3389/fncir.2013.00102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/10/2013] [Indexed: 01/13/2023] Open
Abstract
Earlier studies in zebrafish have revealed that acutely given ethanol has a stimulatory effect on locomotion in fish larvae but the mechanism of this effect has not been revealed. We studied the effects of ethanol concentrations between 0.75 and 3.00% on 7-day-old larval zebrafish (Danio rerio) of the Turku strain. At 0.75-3% concentrations ethanol increased swimming speed during the first minute. At 3% the swimming speed decreased rapidly after the first minute, whereas at 0.75 and 1.5% a prolonged increase in swimming speed was seen. At the highest ethanol concentration dopamine levels decreased significantly after a 10-min treatment. We found that ethanol upregulates key genes involved in the biosynthesis of histamine (hdc) and dopamine (th1 and th2) following a short 10-min ethanol treatment, measured by qPCR. Using in situ hybridization and immunohistochemistry, we further discovered that the morphology of the histaminergic and dopaminergic neurons and networks in the larval zebrafish brain was unaffected by both the 10-min and a longer 30-min treatment. The results suggest that acute ethanol rapidly decreases dopamine levels, and activates both forms or th to replenish the dopamine stores within 30 min. The dynamic changes in histaminergic and dopaminergic system enzymes occurred in the same cells which normally express the transcripts. As both dopamine and histamine are known to be involved in the behavioral effects of ethanol and locomotor stimulation, these results suggest that rapid adaptations of these networks are associated with altered locomotor activity.
Collapse
Affiliation(s)
- Henri A J Puttonen
- Neuroscience Center and Institute of Biomedicine/Anatomy, University of Helsinki Helsinki, Finland
| | | | | | | | | |
Collapse
|
10
|
Effects of L-histidine and histamine H3 receptor modulators on ethanol-induced sedation in mice. Behav Brain Res 2012; 238:113-8. [PMID: 23089647 DOI: 10.1016/j.bbr.2012.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 12/31/2022]
Abstract
Recent studies suggest that the brain histaminergic system and especially the H3 receptors are involved in the regulation of alcohol consumption and alcohol-induced behaviors. Part of this effect might be due to a modulation of ethanol-induced sedation by central histamine. The aim of the present study was to investigate the effects of several histaminergic drugs on ethanol-induced sedation using the loss of righting reflex experimental protocol in female Swiss mice. A pretreatment with L-histidine, the histamine precursor, significantly reduced ethanol-induced sedation, suggesting that brain histamine protects against the sedative effects of ethanol. In a second set of experiments, several H3 receptor agonists (immepip or imetit) and inverse agonists/antagonists (thioperamide, A331440, or BF2.649) were tested. Surprisingly, both H3 receptor agonists and antagonists potentiated the sedative effects of ethanol. This paradoxical effect might be due to the subtle regulatory actions related to the H3 heteroreceptor function.
Collapse
|
11
|
Nuutinen S, Vanhanen J, Mäki T, Panula P. Histamine h3 receptor: a novel therapeutic target in alcohol dependence? Front Syst Neurosci 2012; 6:36. [PMID: 22629238 PMCID: PMC3355329 DOI: 10.3389/fnsys.2012.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/26/2012] [Indexed: 11/22/2022] Open
Abstract
The brain histaminergic system is one of the diffuse modulatory neurotransmitter systems which regulate neuronal activity in many brain areas. Studies on both rats and mice indicate that histamine H3 receptor antagonists decrease alcohol drinking in several models, like operant alcohol administration and drinking in the dark paradigm. Alcohol-induced place preference is also affected by these drugs. Moreover, mice lacking H3R do not drink alcohol like their wild type littermates, and they do not show alcohol-induced place preference. Although the mechanisms of these behaviors are still being investigated, we propose that H3R antagonists are promising candidates for use in human alcoholics, as these drugs are already tested for treatment of other disorders like narcolepsy and sleep disorders.
Collapse
Affiliation(s)
- Saara Nuutinen
- Neuroscience Center, Institute of Biomedicine, Anatomy, Faculty of Medicine, University of Helsinki Helsinki, Finland
| | | | | | | |
Collapse
|
12
|
Evidence for the role of histamine H3 receptor in alcohol consumption and alcohol reward in mice. Neuropsychopharmacology 2011; 36:2030-40. [PMID: 21654737 PMCID: PMC3158320 DOI: 10.1038/npp.2011.90] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent research suggests that histamine H3 receptor (H3R) antagonism may diminish motivational aspects of alcohol dependence. We studied the role of H3Rs in alcohol-related behaviors using H3R knockout (KO) mice and ligands. H3R KO mice consumed less alcohol than wild-type (WT) mice in a two-bottle free-choice test and in a 'drinking in the dark' model. H3R antagonist ciproxifan suppressed and H3R agonist immepip increased alcohol drinking in C57BL/6J mice. Impairment in reward mechanisms in H3R KO mice was confirmed by the lack of alcohol-evoked conditioned place preference. Plasma alcohol concentrations of H3R KO and WT mice were similar. There were no marked differences in brain biogenic amine levels in H3R KO mice compared with the control animals after alcohol drinking. In conclusion, the findings of this study provide evidence for the role of H3R receptor in alcohol-related behaviors, especially in alcohol drinking and alcohol reward. Thus, targeting H3Rs with a specific antagonist might be a potential means to treat alcoholism in the future.
Collapse
|
13
|
Galici R, Rezvani AH, Aluisio L, Lord B, Levin ED, Fraser I, Boggs J, Welty N, Shoblock JR, Motley ST, Letavic MA, Carruthers NI, Dugovic C, Lovenberg TW, Bonaventure P. JNJ-39220675, a novel selective histamine H3 receptor antagonist, reduces the abuse-related effects of alcohol in rats. Psychopharmacology (Berl) 2011; 214:829-41. [PMID: 21086115 DOI: 10.1007/s00213-010-2092-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/01/2010] [Indexed: 01/03/2023]
Abstract
RATIONALE A few recent studies suggest that brain histamine levels and signaling via H(3) receptors play an important role in modulation of alcohol stimulation and reward in rodents. OBJECTIVE The present study characterized the effects of a novel, selective, and brain penetrant H(3) receptor antagonist (JNJ-39220675) on the reinforcing effects of alcohol in rats. METHODS The effect of JNJ-39220675 on alcohol intake and alcohol relapse-like behavior was evaluated in selectively bred alcohol-preferring (P) rats using the standard two-bottle choice method. The compound was also tested on operant alcohol self administration in non-dependent rats and on alcohol-induced ataxia using the rotarod apparatus. In addition, alcohol-induced dopamine release in the nucleus accumbens was tested in freely moving rats. RESULTS Subcutaneous administration of the selective H(3) receptor antagonist dose-dependently reduced both alcohol intake and preference in alcohol-preferring rats. JNJ-39220675 also reduced alcohol preference in the same strain of rats following a 3-day alcohol deprivation. The compound significantly and dose-dependently reduced alcohol self-administration without changing saccharin self-administration in alcohol non-dependent rats. Furthermore, the compound did not change the ataxic effects of alcohol, alcohol elimination rate, nor alcohol-induced dopamine release in nucleus accumbens. CONCLUSIONS These results indicate that blockade of H(3) receptor should be considered as a new attractive mechanism for the treatment of alcoholism.
Collapse
Affiliation(s)
- Ruggero Galici
- Bristol Myers-Squibb, 5 Research Parkway, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Data from rat models for alcohol preference and histidine decarboxylase knockout (HDC KO) mice suggest that brain histamine regulates alcohol-related behaviors. Histamine levels are higher in alcohol-preferring than in alcohol-nonpreferring rat brains, and expression of histamine H(3) receptor (H(3)R) is different in key areas for addictive behavior. H(3)R inverse agonists decrease alcohol responding in one alcohol-preferring rat line. Conditioned place preference induced by alcohol is stronger in HDC KO mice than in control mice. The HDC KO mice display a weaker stimulatory response to acute alcohol than the wild-type (WT) mice. In male inbred C57BL/6 mice the H(3)R antagonist ciproxifan inhibits ethanol-evoked stimulation of locomotor activity. Ciproxifan also potentiates the ethanol reward, but does not alone result in the development of place preference. At least in one rat model developed to study alcohol sensitivity high histamine levels are characteristic of the alcohol-insensitive rat line, and lowering brain histamine with a HDC inhibitor increases alcohol sensitivity in the tilting plane test. However, the motor skills of HDC KO mice do not seem to differ from those of the WT mice. Current evidence suggests that the histaminergic system is involved in the regulation of place preference behavior triggered by alcohol, possibly through an interaction with the mesolimbic dopamine system. Histamine may also interact with dopamine in the regulation of the cortico-striato-pallido-thalamo-cortical motor pathway and cerebellar mechanisms, which may be important in different motor behaviors beyond alcohol-induced motor disturbances. H(3)R ligands may have significant effects on alcohol addiction.
Collapse
Affiliation(s)
- Pertti Panula
- Neuroscience Center and Institute of Biomedicine/Anatomy, POB 63, FI-00014, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
15
|
Nuutinen S, Karlstedt K, Aitta-Aho T, Korpi ER, Panula P. Histamine and H3 receptor-dependent mechanisms regulate ethanol stimulation and conditioned place preference in mice. Psychopharmacology (Berl) 2010; 208:75-86. [PMID: 19911169 DOI: 10.1007/s00213-009-1710-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 10/21/2009] [Indexed: 12/31/2022]
Abstract
RATIONALE Neuronal histamine has a prominent role in sleep-wake control and body homeostasis, but a number of studies suggest that histamine has also a role in higher brain functions including drug reward. OBJECTIVE The present experiments characterized the involvement of histamine and its H3 receptor in ethanol-related behaviors in mice. MATERIALS AND METHODS Male histidine decarboxylase knockout (HDC KO) and control mice were used to study the role of histamine in ethanol-induced stimulation of locomotor activity, impairment of motor coordination, and conditioned place preference (CPP). Male C57BL/6Sca mice were used to study the effects of H3 receptor antagonist in the effects of ethanol on locomotor activity. RESULTS The HDC KO mice displayed a weaker stimulatory response to acute ethanol than the wild-type (WT) mice. No differences between genotypes were found after ethanol administration on accelerating rotarod. The HDC KO mice showed stronger ethanol-induced CPP than the WT mice. Binding of the GABA(A) receptor ligand [(3)H]Ro15-4513 was not markedly changed in HDC KO mouse brain and thus could not explain altered responses in KO mice. Ethanol increased the activity of C57BL/6Sca mice, and H3 receptor antagonist ciproxifan inhibited this stimulation. In CPP paradigm ciproxifan, an H3 receptor inverse agonist potentiated ethanol reward. CONCLUSIONS Histaminergic neurotransmission seems to be necessary for the stimulatory effect of ethanol to occur, whereas lack of histamine leads to changes that enhance the conditioned reward by ethanol. Our findings also suggest a role for histamine H3 receptor in modulation of the ethanol stimulation and reward.
Collapse
Affiliation(s)
- Saara Nuutinen
- Neuroscience Center, Institute of Biomedicine/Anatomy, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, Helsinki, FIN-00014, Finland.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Histamine is a transmitter in the nervous system and a signaling molecule in the gut, the skin, and the immune system. Histaminergic neurons in mammalian brain are located exclusively in the tuberomamillary nucleus of the posterior hypothalamus and send their axons all over the central nervous system. Active solely during waking, they maintain wakefulness and attention. Three of the four known histamine receptors and binding to glutamate NMDA receptors serve multiple functions in the brain, particularly control of excitability and plasticity. H1 and H2 receptor-mediated actions are mostly excitatory; H3 receptors act as inhibitory auto- and heteroreceptors. Mutual interactions with other transmitter systems form a network that links basic homeostatic and higher brain functions, including sleep-wake regulation, circadian and feeding rhythms, immunity, learning, and memory in health and disease.
Collapse
Affiliation(s)
- Helmut L Haas
- Institute of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | |
Collapse
|
17
|
Abstract
AIMS To describe recent research focusing on the analysis of gene and protein expression relevant to understanding ethanol consumption, dependence and effects, in order to identify common themes. METHODS A selective literature search was used to collate the relevant data. RESULTS Over 160 genes have been individually assessed before or after ethanol administration, as well as in genetically selected lines. Techniques for studying gene expression include northern blots, differential display, real time reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization. More recently, high throughput functional genomic technology, such as DNA microarrays, has been used to examine gene expression. Recent gene expression analyses have dramatically increased the number of candidate genes (nine array papers have illuminated 600 novel gene transcripts that may contribute to alcohol abuse and alcoholism). CONCLUSIONS Although functional genomic experiments (transcriptome analysis) have failed to identify a single alcoholism gene, they have illuminated important pathways and gene products that may contribute to the risk of alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Travis J Worst
- Center for the Neurobehavioral Study of Alcohol, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
18
|
Peitsaro N, Kaslin J, Anichtchik OV, Panula P. Modulation of the histaminergic system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem 2003; 86:432-41. [PMID: 12871584 DOI: 10.1046/j.1471-4159.2003.01850.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functional role of histamine (HA) in zebrafish brains was studied. Zebrafish did not display a clear circadian variation in brain HA levels. Loading of zebrafish with l-histidine increased HA concentration in the brain. A single injection of the histidine decarboxylase (HDC) inhibitor, alpha-fluoromethylhistidine (alpha-FMH), gave rise to a rapid reduction in zebrafish brain HA. Low HDC activity in the brain after injections verified the effect of alpha-FMH. A reduction in the number of histaminergic fibres but not neurones and an increased expression of HDC mRNA was evident after alpha-FMH. Automated behavioural analysis after alpha-FMH injection showed no change in swimming activity, but abnormalities were detected in exploratory behaviour examined in a circular tank. No significant behavioural changes were detected after histidine loading. The time spent for performance in the T-maze was significantly increased in the first trial 4 days after alpha-FMH injections, suggesting that lack of HA may impair long-term memory. The rostrodorsal telencephalon, considered to correspond to the mammalian amygdala and hippocampus in zebrafish, is densely innervated by histaminergic fibres. These results suggest that low HA decreases anxiety and/or affects learning and memory in zebrafish, possibly through mechanisms that involve the dorsal forebrain.
Collapse
Affiliation(s)
- Nina Peitsaro
- Department of Biology, Abo Akademi University, Turku, Finland.
| | | | | | | |
Collapse
|
19
|
Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 2003; 4:121-30. [PMID: 12563283 DOI: 10.1038/nrn1034] [Citation(s) in RCA: 625] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Helmut Haas
- Department of Neurophysiology, Heinrich-Heine University, Dusseldorf, Germany.
| | | |
Collapse
|