1
|
Werth R. Is Developmental Dyslexia Due to a Visual and Not a Phonological Impairment? Brain Sci 2021; 11:1313. [PMID: 34679378 PMCID: PMC8534212 DOI: 10.3390/brainsci11101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
It is a widely held belief that developmental dyslexia (DD) is a phonological disorder in which readers have difficulty associating graphemes with their corresponding phonemes. In contrast, the magnocellular theory of dyslexia assumes that DD is a visual disorder caused by dysfunctional magnocellular neural pathways. The review explores arguments for and against these theories. Recent results have shown that DD is caused by (1) a reduced ability to simultaneously recognize sequences of letters that make up words, (2) longer fixation times required to simultaneously recognize strings of letters, and (3) amplitudes of saccades that do not match the number of simultaneously recognized letters. It was shown that pseudowords that could not be recognized simultaneously were recognized almost without errors when the fixation time was extended. However, there is an individual maximum number of letters that each reader with DD can recognize simultaneously. Findings on the neurobiological basis of temporal summation have shown that a necessary prolongation of fixation times is due to impaired processing mechanisms of the visual system, presumably involving magnocells and parvocells. An area in the mid-fusiform gyrus also appears to play a significant role in the ability to simultaneously recognize words and pseudowords. The results also contradict the assumption that DD is due to a lack of eye movement control. The present research does not support the assumption that DD is caused by a phonological disorder but shows that DD is due to a visual processing dysfunction.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, University of Munich, Haydnstrasse 5, D-80336 Munich, Germany
| |
Collapse
|
2
|
Kim J, Jung J, Nam K. Neural correlates of confusability in recognition of morphologically complex Korean words. PLoS One 2021; 16:e0249111. [PMID: 33857191 PMCID: PMC8049294 DOI: 10.1371/journal.pone.0249111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/11/2021] [Indexed: 11/30/2022] Open
Abstract
When people confuse and reject a non-word that is created by switching two adjacent letters from an actual word, is called the transposition confusability effect (TCE). The TCE is known to occur at the very early stages of visual word recognition with such unit exchange as letters or syllables, but little is known about the brain mechanisms of TCE. In this study, we examined the neural correlates of TCE and the effect of a morpheme boundary placement on TCE. We manipulated the placement of a morpheme boundary by exchanging places of two syllables embedded in Korean morphologically complex words made up of lexical morpheme and grammatical morpheme. In the two experimental conditions, the transposition syllable within-boundary condition (TSW) involved exchanging two syllables within the same morpheme, whereas the across-boundary condition (TSA) involved the exchange of syllables across the stem and grammatical morpheme boundary. During fMRI, participants performed the lexical decision task. Behavioral results revealed that the TCE was found in TSW condition, and the morpheme boundary, which is manipulated in TSA, modulated the TCE. In the fMRI results, TCE induced activation in the left inferior parietal lobe (IPL) and intraparietal sulcus (IPS). The IPS activation was specific to a TCE and its strength of activation was associated with task performance. Furthermore, two functional networks were involved in the TCE: the central executive network and the dorsal attention network. Morpheme boundary modulation suppressed the TCE by recruiting the prefrontal and temporal regions, which are the key regions involved in semantic processing. Our findings propose the role of the dorsal visual pathway in syllable position processing and that its interaction with other higher cognitive systems is modulated by the morphological boundary in the early phases of visual word recognition.
Collapse
Affiliation(s)
- Jeahong Kim
- Department of Psychology, Korea University, Seoul, Republic of Korea
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Kichun Nam
- Department of Psychology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Otsuka S, Saiki J. Neural Mechanisms of Memory Enhancement and Impairment Induced by Visual Statistical Learning. J Cogn Neurosci 2020; 32:1749-1763. [PMID: 32530382 DOI: 10.1162/jocn_a_01589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Prior research has reported that the medial temporal, parietal, and frontal brain regions are associated with visual statistical learning (VSL). However, the neural mechanisms involved in both memory enhancement and impairment induced by VSL remain unknown. In this study, we examined this issue using event-related fMRI. fMRI data from the familiarization scan showed a difference in the activation level of the superior frontal gyrus (SFG) between structured triplets, where three objects appeared in the same order, and pseudorandom triplets. More importantly, the precentral gyrus and paracentral lobule responded more strongly to Old Turkic letters inserted into the structured triplets than to those inserted into the random triplets, at the end of the familiarization scan. Furthermore, fMRI data from the recognition memory test scan, where participants were asked to decide whether the objects or letters shown were old (presented during familiarization scan) or new, indicated that the middle frontal gyrus and SFG responded more strongly to objects from the structured triplets than to those from the random triplets, which overlapped with the brain regions associated with VSL. In contrast, the response of the lingual gyrus, superior temporal gyrus, and cuneus was weaker to letters inserted into the structured triplets than to those inserted into the random triplets, which did not overlap with the brain regions associated with observing the letters during the familiarization scan. These findings suggest that different brain regions are involved in memory enhancement and impairment induced by VSL.
Collapse
|
4
|
Kühn S, Gallinat J. Segregating cognitive functions within hippocampal formation: a quantitative meta-analysis on spatial navigation and episodic memory. Hum Brain Mapp 2013; 35:1129-42. [PMID: 23362184 DOI: 10.1002/hbm.22239] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 10/03/2012] [Accepted: 11/07/2012] [Indexed: 11/11/2022] Open
Abstract
The most important cognitive domains where hippocampal formation is crucially involved are navigation and memory. Some evidence suggests that different hippocampal subregions mediate these domains. However, a quantitative meta-analysis on neuroimaging studies of spatial navigation versus memory is lacking. By means of activation likelihood estimation (ALE), we investigate concurrence of brain regions activated during spatial navigation encoding and retrieval as well as during episodic memory encoding and retrieval tasks in humans. During encoding in spatial navigation, activity was located in more posterior regions of the hippocampal formation, whereas episodic memory encoding was located in more anterior regions. Retrieval in spatial navigation was more strongly lateralized to the right compared to episodic memory retrieval. Within studies on spatial navigation retrieval, immediate recall was located more posterior and delayed recall more anterior. Overlap between concurrence of activation in spatial navigation and episodic memory was rather limited in comparison to uniquely involved regions. This argues in favor of two distinct networks, one for spatial navigation the other for episodic memory within the hippocampal formation.
Collapse
Affiliation(s)
- Simone Kühn
- Faculty of Psychology and Educational Sciences, Department of Experimental Psychology and Ghent Institute for Functional and Metabolic Imaging, Ghent University Henri Dunantlaan 2, Gent, Belgium; Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin, Germany
| | | |
Collapse
|
5
|
Hollenstein M, Koenig T, Kubat M, Blaser D, Perrig WJ. Non-conscious word processing in a mirror-masking paradigm causing attentional distraction: An ERP-study. Conscious Cogn 2012; 21:353-65. [DOI: 10.1016/j.concog.2012.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 01/04/2012] [Accepted: 01/08/2012] [Indexed: 11/29/2022]
|
6
|
Alvarez CJ, Urrutia M, Domínguez A, Sánchez-Casas R. Processing inflectional and derivational morphology: electrophysiological evidence from Spanish. Neurosci Lett 2010; 490:6-10. [PMID: 21167910 DOI: 10.1016/j.neulet.2010.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/25/2010] [Accepted: 12/08/2010] [Indexed: 11/30/2022]
Abstract
The goal of this paper is to study possible differences between the processing of inflectional vs. derivational morphology in Spanish word recognition using electrophysiological measures. A lexical decision task to target words preceded by morphological-related (or unrelated) primes was used. The orthographic and phonological overlap and the grammatical class for the two experimental conditions were exactly the same. Examples of the related conditions were, for inflection, NIÑO-NIÑA ("girl"-"boy"), and for derivation, RAMO-RAMA ("bunch"-"branch"). These conditions were compared with unrelated pairs without orthographic, phonological or semantic relationships. An attenuation of the N-400 component was found for both related conditions from 300 ms until 450 ms (until 500 ms for inflections only). In addition, different locations were suggested by the source analysis. These findings are consistent with accounts that argue for differences between the processing of inflections and derivations.
Collapse
|
7
|
Neural activities underlying environmental and personal risk identification tasks. Neurosci Lett 2009; 455:110-5. [DOI: 10.1016/j.neulet.2009.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/16/2009] [Accepted: 03/03/2009] [Indexed: 11/21/2022]
|
8
|
Nielsen FA, Balslev D, Hansen LK. Mining the posterior cingulate: Segregation between memory and pain components. Neuroimage 2005; 27:520-32. [PMID: 15946864 DOI: 10.1016/j.neuroimage.2005.04.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 12/02/2004] [Accepted: 04/21/2005] [Indexed: 10/25/2022] Open
Abstract
We present a general method for automatic meta-analyses in neuroscience and apply it on text data from published functional imaging studies to extract main functions associated with a brain area-the posterior cingulate cortex (PCC). Abstracts from PubMed are downloaded, words extracted and converted to a bag-of-words matrix representation. The combined data are analyzed with hierarchical non-negative matrix factorization. We find that the prominent themes in the PCC corpus are episodic memory retrieval and pain. We further characterize the distribution in PCC of the Talairach coordinates available in some of the articles. This shows a tendency to functional segregation between memory and pain components where memory activations are predominantly in the caudal part and pain in the rostral part of PCC.
Collapse
Affiliation(s)
- Finn Arup Nielsen
- Department of Neurology, The Neuroscience Centre, Rigshospitalet, Building 9201, Neurobiology Research Unit, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
9
|
Bolger DJ, Perfetti CA, Schneider W. Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Hum Brain Mapp 2005; 25:92-104. [PMID: 15846818 PMCID: PMC6871743 DOI: 10.1002/hbm.20124] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recognizing printed words requires the mapping of graphic forms, which vary with writing systems, to linguistic forms, which vary with languages. Using a newly developed meta-analytic approach, aggregated Gaussian-estimated sources (AGES; Chein et al. [2002]: Psychol Behav 77:635-639), we examined the neuroimaging results for word reading within and across writing systems and languages. To find commonalities, we compiled 25 studies in English and other Western European languages that use an alphabetic writing system, 9 studies of native Chinese reading, 5 studies of Japanese Kana (syllabic) reading, and 4 studies of Kanji (morpho-syllabic) reading. Using the AGES approach, we created meta-images within each writing system, isolated reliable foci of activation, and compared findings across writing systems and languages. The results suggest that these writing systems utilize a common network of regions in word processing. Writing systems engage largely the same systems in terms of gross cortical regions, but localization within those regions suggests differences across writing systems. In particular, the region known as the visual word form area (VWFA) shows strikingly consistent localization across tasks and across writing systems. This region in the left mid-fusiform gyrus is critical to word recognition across writing systems and languages.
Collapse
Affiliation(s)
- Donald J Bolger
- Learning Research and Development Center, Department of Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15221, USA.
| | | | | |
Collapse
|
10
|
Abstract
Word reading is considered a highly over-learned task. If true, then practice should have no effect on its performance or associated functional brain anatomy. We tested this hypothesis in two experiments of skilled readers repeatedly reading the same list of nouns (1 session, 10 runs). In Experiment 1 we used fMRI to monitor the changes in brain activity. In Experiment 2 we recorded voice onset latency reaction times. Neither experiment showed changes as an effect of practice. In a third experiment, Experiment 3, we examined the behavioral effect of prolonged practice on the word association task of verb generation for which reading nouns aloud has served as a control. Both short (1 session, 10 runs) and long term (15 days, 150 runs) effects were noted providing a new perspective on functional anatomical differences between word reading and verb generation previously noted after short periods of practice.
Collapse
Affiliation(s)
- Deborah L Kerr
- Department of Radiology, Campus Box 8225, 4525 Scott Street, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
11
|
Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DEJ. Attentional systems in target and distractor processing: a combined ERP and fMRI study. Neuroimage 2004; 22:530-40. [PMID: 15193581 DOI: 10.1016/j.neuroimage.2003.12.034] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 12/16/2003] [Accepted: 12/18/2003] [Indexed: 11/16/2022] Open
Abstract
The interplay of "top-down" and "bottom-up" regulated mechanisms is of particular relevance for the rapid (re-)focusing of attention to environmental changes. The purpose of the study was to explore the differential contributions of frontoparietal attentional networks involved in top-down and stimulus-driven processing to the detection of "target" and "distractor" events in a visual three-stimulus oddball paradigm. Thirteen healthy subjects underwent separate event-related potential (ERP) and whole-brain functional magnetic resonance imaging (fMRI) measurements during the oddball task. The targets, which were difficult to detect, elicited a classical posterior P3b whereas the distractor stimuli were followed by a centro-frontal P3a ERP. The fMRI data showed activation of the temporoparietal junction (TPJ) bilaterally and right prefrontal cortex associated with both the target and distractor conditions. This network has previously been described as an attentional system that is predominantly stimulus driven and that responds to rare events. Furthermore, target processing produced bilateral perisylvian activity, which has been related to the "retrieval mode". Processing of the distractors activated the frontal eye fields (FEFs) and bilateral superior parietal cortex, areas engaged in attention switching and voluntary allocation of attention. Additional left prefrontal activation suggested an involvement of the cortical system for working memory encoding. Our results thus demonstrate that distractor and target processing engage a common neuronal system for the detection of rare events, but also task-specific subsystems related to attention and memory processes.
Collapse
Affiliation(s)
- Christoph Bledowski
- Department of Psychiatry, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
12
|
Jobard G, Crivello F, Tzourio-Mazoyer N. Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage 2003; 20:693-712. [PMID: 14568445 DOI: 10.1016/s1053-8119(03)00343-4] [Citation(s) in RCA: 599] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 05/15/2003] [Accepted: 05/29/2003] [Indexed: 10/27/2022] Open
Abstract
Numerous studies concerned with cerebral structures underlying word reading have been published during the last decade. A few controversies, however, together with methodological or theoretical discrepancies between laboratories, still contribute to blurring the overall view of advances effected in neuroimaging. Carried out within the dual route of reading framework, the aim of this metanalysis was to provide an objective picture of these advances. To achieve this, we used an automated analysis method based on the inventory of activation peaks issued from word or pseudoword reading contrasts of 35 published neuroimaging studies. A first result of this metanalysis was that no cluster of activations has been found more recruited by word than pseudoword reading, implying that the first steps of word access may be common to word and word-like stimuli and would take place within a left occipitotemporal region (previously referred to as the Visual Word Form Area-VWFA) situated in the ventral route, at the junction between inferior temporal and fusiform gyri. The results also indicated the existence of brain regions predominantly involved in one of the two routes to access word. The graphophonological conversion seems indeed to rely on left lateralized brain structures such as superior temporal areas, supramarginal gyrus, and the opercular part of the inferior frontal gyrus, these last two regions reflecting a greater load in working memory during such an access. The lexicosemantic route is thought to arise from the coactivation of the VWFA and semantic areas. These semantic areas would encompass a basal inferior temporal area, the posterior part of the middle temporal gyrus, and the triangular part of inferior frontal gyrus. These results confirm the suitability of the dual route framework to account for activations observed in nonpathological subjects while they read.
Collapse
Affiliation(s)
- G Jobard
- Groupe d'Imagerie Neurofonctionnelle, CNRS, UMR 6095, CEA LRC36V, Université de Caen, Université de Paris 5, 14074, Caen Cedex, France
| | | | | |
Collapse
|
13
|
Kinder A, Shanks DR. Neuropsychological dissociations between priming and recognition: a single-system connectionist account. Psychol Rev 2003; 110:728-44. [PMID: 14599240 DOI: 10.1037/0033-295x.110.4.728] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A key claim of current theoretical analyses of the memory impairments associated with amnesia is that certain distinct forms of learning and memory are spared. A compelling example is that amnesic patients and controls are indistinguishable in repetition priming but amnesic patients are impaired at recognizing the study items. The authors show that this pattern of results is predicted by a single-system connectionist model of learning in which amnesia is simulated by a reduced learning rate. They also demonstrate that the model can reproduce the converse pattern in which priming but not recognition is impaired if the input is assumed to be additionally degraded in a priming test. The authors conclude that dissociations between priming and recognition do not require functionally or neurally distinct memory systems.
Collapse
Affiliation(s)
- Annette Kinder
- Philipps-Universität Marburg, Department of Psychology, Marburg, Germany.
| | | |
Collapse
|
14
|
Badgaiyan RD, Schacter DL, Alpert NM. Retrieval of relational information: a role for the left inferior prefrontal cortex. Neuroimage 2002; 17:393-400. [PMID: 12482092 DOI: 10.1006/nimg.2002.1219] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies have implicated different areas of prefrontal cortex and medial temporal lobe structures (MTL) in episodic retrieval tasks. However, the role of specific regions in particular aspects of episodic memory is still unclear. In this experiment we studied changes in regional cerebral blood flow (rCBF) associated with relational and nonrelational retrieval of studied pairs of words. For relational retrieval, a list of either studied or rearranged pairs was presented and subjects (n = 8) were asked to indicate whether pairs had appeared on the study list. Under the nonrelational retrieval condition they indicated whether one or both words of the pair had appeared on the study list. As compared to the baseline condition (looking at a cross-mark), increased rCBF was observed in the left inferior prefrontal cortex (LIPFC) for both studied pairs and rearranged pairs under the relational retrieval condition. Under the nonrelational condition, an increase was observed in right inferior frontal gyrus. The MTL showed a trend for increased rCBF in the rearranged-pair condition. This increase was probably associated with the encoding that accompanies retrieval of novel stimuli. Results suggest that the lateralized activation of prefrontal cortex observed in episodic memory tasks may be related to the degree of relational processing involved. The LIPFC appears to be associated with relational retrieval and the right prefrontal cortex with nonrelational retrieval.
Collapse
|
15
|
Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 2002; 16:765-80. [PMID: 12169260 DOI: 10.1006/nimg.2002.1131] [Citation(s) in RCA: 1152] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intersubject variability and subtle differences in experimental design can lead to variable results in studies of cognitive processes such as reading. To accurately identify the neural processes associated with cognition and sensorimotor processing, meta-analytic methods capable of identifying areas of consistent activation among studies are useful. This paper describes a novel approach for combining published neuroimaging results from multiple studies, designed to maximize the quantification of interstudy concordance while minimizing the subjective aspects of meta-analysis. In this method, a localization probability distribution was modeled for each activation focus obtained from 11 PET studies of reading single words aloud, and the union of these distributions was taken to yield an activation likelihood estimate map for the brain. Significance was assessed via permutation analysis of randomly generated sets of foci. Regions of significant concordance were identified in bilateral motor and superior temporal cortices, pre-SMA, left fusiform gyrus, and the cerebellum. These meta-analytic results were validated by comparison with new fMRI data on aloud word reading in normal adult subjects. Excellent correspondence between the two statistical maps was observed, with fMRI maxima lying close to all meta-analysis peaks and statistical values at the peaks identified by the two techniques correlating strongly. This close correspondence between PET meta-analysis and fMRI results also demonstrates the validity of using fMRI for the study of language tasks involving overt speech responses. Advantages of this automated meta-analysis technique include quantification of the level of concordance at all brain locations and the provision for use of a threshold for statistical significance of concordance.
Collapse
Affiliation(s)
- Peter E Turkeltaub
- Center for the Study of Learning, Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
16
|
Whatmough C, Chertkow H, Murtha S, Hanratty K. Dissociable brain regions process object meaning and object structure during picture naming. Neuropsychologia 2002; 40:174-86. [PMID: 11640940 DOI: 10.1016/s0028-3932(01)00083-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although imaging studies have indicated that the fusiform gyrus is important in tasks of picture naming, whether this region encodes an object's structure or its meaning is not clear. We used positron emission tomography to examine cerebral blood flow (CBF) changes in response to a picture naming task that varied on two dimensions: familiarity (or difficulty: hard vs easy) and category (tools vs animals). Results show that although familiarity effects are present in the frontal and left lateral posterior temporal cortex, they are absent from the fusiform gyrus. This provides strong evidence that the processing carried out in the fusiform gyrus relates to an object's structure, not to its meaning, and that the left posterior middle temporal gyrus instantiates in part the semantic network that represents the object's meaning.
Collapse
Affiliation(s)
- C Whatmough
- Lady Davis Institute and Bloomfield Centre for Aging, McGill University, 3755 Chemin Cote St. Catherine, Montreal, Quebec, H3T 1E2, Canada
| | | | | | | |
Collapse
|
17
|
Lekeu F, Marczewski P, Van der Linden M, Collette F, Degueldre C, Del Fiore G, Luxen A, Franck G, Moonen G, Salmon E. Effects of incidental and intentional feature binding on recognition: a behavioural and PET activation study. Neuropsychologia 2002; 40:131-44. [PMID: 11640936 DOI: 10.1016/s0028-3932(01)00088-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using Positron Emission Tomography (PET), we investigated cerebral regions associated with the episodic recognition of words alone and words bound to contextual colours. Two modes of colour encoding were tested: incidental and intentional word-to-colour binding. Word-only recognition was associated with brain activation in a lexico-semantic left middle temporal region and in the cerebellum following an incidental colour encoding, and with brain activation in the left posterior middle frontal gyrus, right anterior cingulate and right inferior frontal gyrus following an intentional encoding. Recognition of bound features was associated with activation in left prefrontal and superior parietal regions following an incidental colour encoding, and with preferential right prefrontal cortex activation following an intentional colour encoding. Our results are in line with the hypothesis of a parietal involvement in context processing, and prefrontal areas in monitoring retrieval processes. Our results also support the hypothesis of a 'cortical asymmetry for reflective activity' (CARA).
Collapse
Affiliation(s)
- F Lekeu
- Centre de Recherches du Cyclotron, 8 Allée du 6 Août-B 30, University of Liège, Sart-Tilman, B-4000, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Martin-Soelch C, Leenders KL, Chevalley AF, Missimer J, Künig G, Magyar S, Mino A, Schultz W. Reward mechanisms in the brain and their role in dependence: evidence from neurophysiological and neuroimaging studies. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:139-49. [PMID: 11690610 DOI: 10.1016/s0165-0173(01)00089-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article reviews neuronal activity related to reward processing in primate and human brains. In the primate brain, neurophysiological methods provide a differentiated view of reward processing in a limited number of brain structures. Dopamine neurons respond to unpredictable rewards and produce a global reinforcement signal. Some neurons in the striatum also react to the expectation and detection of reward. Other striatal neurons show reward-related activities related to the preparation, initiation and execution of movement. Orbitofrontal neurons discriminate among different rewards and code reward preferences. In the human brain, regions belonging to a meso-striatal and meso-corticolimbic loop respond to reinforcement stimuli in control subjects. These observations corroborate results obtained in primates. Additionally, reward induces activation in regions specific to task performance. Our results also show a similar pattern of reward-related activation in nicotine and opiate addicts. Thus, in contrast to healthy subjects, typical reward-related regions respond in addicts to monetary reward but not to nonmonetary reinforcement. Reduced activation in performance-related regions is also observed in both groups of dependent subjects. The results of animal and human studies suggest that dopamine and dopamine-related regions are associated with the integration of motivational information and movement execution. Dopamine-related pathological disorders can be associated with movement disorders, such as Parkinson's disease or with false motivational attributions such as drug dependence.
Collapse
Affiliation(s)
- C Martin-Soelch
- PET Program, Paul Scherrer Institute, CH-5232, Villigen, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Martin-Soelch C, Chevalley AF, Künig G, Missimer J, Magyar S, Mino A, Schultz W, Leenders KL. Changes in reward-induced brain activation in opiate addicts. Eur J Neurosci 2001; 14:1360-8. [PMID: 11703464 DOI: 10.1046/j.0953-816x.2001.01753.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with H(2)(15)O positron emission tomography (PET) during a visuo-spatial recognition task with delayed response in control subjects and in opiate addicts participating in a methadone program. Three conditions were defined by the types of feedback: nonsense feedback; nonmonetary reinforcement; or monetary reward, received by the subjects for a correct response. We found in the control subjects rCBF increases in regions associated with the meso-striatal and meso-corticolimbic circuits in response to both monetary reward and nonmonetary reinforcement. In opiate addicts, these regions were activated only in response to monetary reward. Furthermore, nonmonetary reinforcement elicited rCBF increases in limbic regions of the opiate addicts that were not activated in the control subjects. Because psychoactive drugs serve as rewards and directly affect regions of the dopaminergic system like the striatum, we conclude that the differences in rCBF increases between controls and addicts can be attributed to an adaptive consequence of the addiction process.
Collapse
Affiliation(s)
- C Martin-Soelch
- Paul Scherrer Institute, PET Program, CH-5232 Villigen, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mechelli A, Friston KJ, Price CJ. The effects of presentation rate during word and pseudoword reading: a comparison of PET and fMRI. J Cogn Neurosci 2001; 12 Suppl 2:145-56. [PMID: 11506654 DOI: 10.1162/089892900564000] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The effect of stimulus rate and its interaction with stimulus type on brain activity during reading was investigated using functional magnetic resonance imaging (fMRI). This (i) enabled the segregation of brain regions showing differential responses, (ii) identified the optimum experimental design parameters for maximizing sensitivity, and (iii) allowed us to evaluate further the sources of discrepancy between positron emission tomography (PET) and fMRI signals. The effect of visual word rate has already been investigated in a previous PET study. However, rate effects can be very different in PET and fMRI, as seen in previous studies of auditory word processing. In this work, we attempt to replicate rate-sensitive activations observed with PET using fMRI. Our objective was to characterize the discrepancies in regionally specific rate-sensitive effects between the two imaging modalities. Subjects were presented with words and pseudowords at varying rates while performing a silent reading task. The analysis specifically identified regions showing (i) an effect of stimulus rate on brain activity during reading; (ii) modulation of this effect by word type; and (iii) increased activity during reading relative to rest, but with no dependence on stimulus rate. The results identified similar effects of rate for words and pseudowords (no interactions between rate and word type reached significance). Irrespective of word type, strong positive linear effects of rate (i.e., activity increasing with rate) were detected in visual areas, right superior temporal gyrus, and bilateral precentral gyrus. These findings replicate the results of the previous PET study, confirming that activation in regions associated with visual processing and response generation increases with the number of stimuli. Likewise, we detected rate-independent effects reported in the previous PET study in bilateral anterior middle temporal, inferior frontal, and superior parietal regions. These results differentiate the functionally specific responses in rate-dependent and rate-independent areas. However, for negative effects of rate, fMRI did not replicate the effects seen in PET, suggesting some form of hemodynamic "rectification." The discussion focuses on differences between evoked rCBF and BOLD signals.
Collapse
|
21
|
Lepage M, McIntosh AR, Tulving E. Transperceptual encoding and retrieval processes in memory: a PET study of visual and haptic objects. Neuroimage 2001; 14:572-84. [PMID: 11506531 DOI: 10.1006/nimg.2001.0866] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An important objective of functional neuroimaging research is to identify neuroanatomical correlates of memory processes such as encoding and retrieval. In typical studies directed at this goal, however, the to-be-remembered information has been presented in a single perceptual modality. Under these conditions it is not known whether the observed brain activity reflects the studied memory process as such or only the memory process in the given modality. The positron emission tomography (PET) study reported here was designed to identify brain regions involved in encoding and retrieval processes specific to visual and haptic modalities, as well as those common to the two modalities. These latter, common regions, were assumed to be associated with "transperceptual" encoding and retrieval processes. Abstract three-dimensional objects, difficult to describe verbally, served as to-be-remembered materials. A multivariate partial least squares analysis of the PET data revealed that transperceptual encoding processes activated right medial temporal lobe, superior prefrontal cortex bilaterally, and posterior inferior temporal gyrus bilaterally. Transperceptual recognition activations were observed in two right orbitofrontal regions and in anterior cingulate. These results provide initial evidence that some processes involved in memory encoding and retrieval operate beyond perceptual processes and in that sense are transperceptual.
Collapse
Affiliation(s)
- M Lepage
- Rotman Research Institute of Baycrest Centre, University of Toronto, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada
| | | | | |
Collapse
|
22
|
Mechelli A, Humphreys GW, Mayall K, Olson A, Price CJ. Differential effects of word length and visual contrast in the fusiform and lingual gyri during reading. Proc Biol Sci 2000; 267:1909-13. [PMID: 11052544 PMCID: PMC1690747 DOI: 10.1098/rspb.2000.1229] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown differential responses in the fusiform and lingual gyri during reading and suggested that the former is engaged in processing local features of visual stimuli and the latter is engaged in global shape processing. We used positron emission tomography in order to investigate how these regions are modulated by two common variables in reading: word length (three, six and nine letters) and perceptive similarity to the background (high and low contrast). Increasing both word length and visual contrast had a positive monotonic effect on activation in the bilateral fusiform. However, in the lingual gyrus, activation increased with increasing word length but decreased with increasing contrast. On the basis of previous studies, we suggest that (i) increasing word length increases the demands on both local feature and global shape processing, but (ii) increasing visual contrast increases the demands on local feature processing while decreasing the demands on global shape processing.
Collapse
Affiliation(s)
- A Mechelli
- Wellcome Department of Cognitive Neurology, London, UK.
| | | | | | | | | |
Collapse
|
23
|
Ragland JD, Gur RC, Lazarev MG, Smith RJ, Schroeder L, Raz J, Turetsky BI, Alavi A, Gur RE. Hemispheric activation of anterior and inferior prefrontal cortex during verbal encoding and recognition: a PET study of healthy volunteers. Neuroimage 2000; 11:624-33. [PMID: 10860791 DOI: 10.1006/nimg.2000.0577] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence of bilateral prefrontal activation during memory encoding and retrieval has increased attention given to anatomical subdivisions within the prefrontal cortex. The current study examined anterior and inferior aspects of the prefrontal cortex to determine their degree of functional and hemispheric overlap during encoding and recognition. Cerebral blood flow of 25 healthy volunteers was measured using PET (15)O-water methods during four conditions: resting baseline, sequential finger movement, word encoding, and word recognition. Resting and motor images were averaged to provide a single reference that was subtracted from encoding and recognition using statistical parametric mapping (SPM96). Memory conditions were also subtracted from each other to identify differences in regional activity. Subjects performed well (86% correct) and had a slightly conservative response bias. Baseline subtraction from encoding revealed focal activation of left inferior prefrontal cortex (area 45) without significant contralateral activation. Recognition minus baseline subtraction produced a focal right anterior prefrontal activation (areas 9 and 10) that was not present in the left hemisphere. Bilateral effects were seen in area 45 during recognition. Subtraction of memory tasks from each other did not reveal any areas of greater activity during encoding. However, the recognition task produced greater activation in right area 9 extending into the anterior cingulate. Greater activity during recognition was also observed in left insula and bilateral visual integration areas. These results are discussed in relation to the prevailing model of prefrontal hemispheric asymmetry during episodic memory.
Collapse
Affiliation(s)
- J D Ragland
- Department of Psychiatry, University of Pennsylvania Health Systems, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lepage M, Ghaffar O, Nyberg L, Tulving E. Prefrontal cortex and episodic memory retrieval mode. Proc Natl Acad Sci U S A 2000; 97:506-11. [PMID: 10618448 PMCID: PMC26693 DOI: 10.1073/pnas.97.1.506] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/1999] [Indexed: 01/02/2023] Open
Abstract
A multistudy analysis of positron emission tomography data identified three right prefrontal and two left prefrontal cortical sites, as well as a region in the anterior cingulate gyrus, where neuronal activity is correlated with the maintenance of episodic memory retrieval mode (REMO), a basic and necessary condition of remembering past experiences. The right prefrontal sites were near the frontal pole [Brodmann's area (BA) 10], frontal operculum (BA 47/45), and lateral dorsal area (BA 8/9). The two left prefrontal sites were homotopical with the right frontal pole and opercular sites. The same kinds of REMO sites were not observed in any other cerebral region. Many previous functional neuroimaging studies of episodic memory retrieval have reported activations near the frontal REMO sites identified here, although their function has not been clear. Many of these, too, probably have signaled their involvement in REMO. We propose that REMO activations largely if not entirely account for the frontal hemispheric asymmetry of retrieval as described by the original hemispheric encoding retrieval asymmetry model.
Collapse
Affiliation(s)
- M Lepage
- Rotman Research Institute of Baycrest Centre, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada.
| | | | | | | |
Collapse
|