1
|
Goh HT, Pearce M, Vas A. Task matters: an investigation on the effect of different secondary tasks on dual-task gait in older adults. BMC Geriatr 2021; 21:510. [PMID: 34563129 PMCID: PMC8465774 DOI: 10.1186/s12877-021-02464-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/29/2021] [Indexed: 11/12/2022] Open
Abstract
Background Dual-task gait performance declines as humans age, leading to increased fall risk among older adults. It is unclear whether different secondary cognitive tasks mediate age-related decline in dual-task gait. This study aimed to examine how type and difficulty level of the secondary cognitive tasks differentially affect dual-task gait in older adults. Methods Twenty young and twenty older adults participated in this single-session study. We employed four different types of secondary tasks and each consisted of two difficulty levels, yielding eight different dual-task conditions. The dual-task conditions included walking and 1) counting backward by 3 s or by 7 s; 2) remembering a 5-item or 7-item lists; 3) responding to a simple or choice reaction time tasks; 4) generating words from single or alternated categories. Gait speed and cognitive task performance under single- and dual-task conditions were used to compute dual-task cost (DTC, %) with a greater DTC indicating a worse performance. Results A significant three-way interaction was found for the gait speed DTC (p = .04). Increased difficulty in the reaction time task significantly increased gait speed DTC for older adults (p = .01) but not for young adults (p = .90). In contrast, increased difficulty level in the counting backward task significantly increased gait speed DTC for young adults (p = .03) but not for older adults (p = .85). Both groups responded similarly to the increased task difficulty in the other two tasks. Conclusions Older adults demonstrated a different response to dual-task challenges than young adults. Aging might have different impacts on various cognitive domains and result in distinctive dual-task gait interference patterns.
Collapse
Affiliation(s)
- Hui-Ting Goh
- School of Physical Therapy-Dallas, Texas Woman's University, Dallas, TX, USA.
| | - Miranda Pearce
- School of Physical Therapy-Dallas, Texas Woman's University, Dallas, TX, USA
| | - Asha Vas
- School of Occupational Therapy-Dallas, Texas Woman's University, Dallas, TX, USA
| |
Collapse
|
2
|
Ikarashi K, Sato D, Fujimoto T, Edama M, Baba Y, Yamashiro K. Response Inhibitory Control Varies with Different Sensory Modalities. Cereb Cortex 2021; 32:275-285. [PMID: 34223874 DOI: 10.1093/cercor/bhab207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/12/2022] Open
Abstract
Response inhibition plays an essential role in preventing anticipated and unpredictable events in our daily lives. It is divided into proactive inhibition, where subjects postpone responses to an upcoming signal, and reactive inhibition, where subjects stop an impending movement based on the presentation of a signal. Different types of sensory input are involved in both inhibitions; however, differences in proactive and reactive inhibition with differences in sensory modalities remain unclear. This study compared proactive and reactive inhibitions induced by visual, auditory, and somatosensory signals using the choice reaction task (CRT) and stop-signal task (SST). The experiments showed that proactive inhibitions were significantly higher in the auditory and somatosensory modalities than in the visual modality, whereas reactive inhibitions were not. Examining the proactive inhibition-associated neural processing, the auditory and somatosensory modalities showed significant decreases in P3 amplitudes in Go signal-locked event-related potentials (ERPs) in SST relative to those in CRT; this might reflect a decreasing attentional resource on response execution in SST in both modalities. In contrast, we did not find significant differences in the reactive inhibition-associated ERPs. These results suggest that proactive inhibition varies with different sensory modalities, whereas reactive inhibition does not.
Collapse
Affiliation(s)
- Koyuki Ikarashi
- Major in Health and Welfare, Graduate School of Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Tomomi Fujimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Yasuhiro Baba
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
3
|
The Myelin Content of the Human Precentral Hand Knob Reflects Interindividual Differences in Manual Motor Control at the Physiological and Behavioral Level. J Neurosci 2021; 41:3163-3179. [PMID: 33653698 PMCID: PMC8026359 DOI: 10.1523/jneurosci.0390-20.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
The primary motor cortex hand area (M1HAND) and adjacent dorsal premotor cortex (PMd) form the so-called motor hand knob in the precentral gyrus. M1HAND and PMd are critical for dexterous hand use and are densely interconnected via corticocortical axons, lacking a sharp demarcating border. In 24 young right-handed volunteers, we performed multimodal mapping to delineate the relationship between structure and function in the right motor hand knob. Quantitative structural magnetic resonance imaging (MRI) at 3 tesla yielded regional R1 maps as a proxy of cortical myelin content. Participants also underwent functional MRI (fMRI). We mapped task-related activation and temporal precision, while they performed a visuomotor synchronization task requiring visually cued abduction movements with the left index or little finger. We also performed sulcus-aligned transcranial magnetic stimulation of the motor hand knob to localize the optimal site (hotspot) for evoking a motor evoked potential (MEP) in two intrinsic hand muscles. Individual motor hotspot locations varied along the rostrocaudal axis. The more rostral the motor hotspot location in the precentral crown, the longer were corticomotor MEP latencies. “Hotspot rostrality” was associated with the regional myelin content in the precentral hand knob. Cortical myelin content also correlated positively with task-related activation of the precentral crown and temporal precision during the visuomotor synchronization task. Together, our results suggest a link among cortical myelination, the spatial cortical representation, and temporal precision of finger movements. We hypothesize that the myelination of cortical axons facilitates neuronal integration in PMd and M1HAND and, hereby, promotes the precise timing of movements. SIGNIFICANCE STATEMENT Here we used magnetic resonance imaging and transcranial magnetic stimulation of the precentral motor hand knob to test for a link among cortical myelin content, functional corticomotor representations, and manual motor control. A higher myelin content of the precentral motor hand knob was associated with more rostral corticomotor presentations, with stronger task-related activation and a higher precision of movement timing during a visuomotor synchronization task. We propose that a high precentral myelin content enables fast and precise neuronal integration in M1 (primary motor cortex) and dorsal premotor cortex, resulting in higher temporal precision during dexterous hand use. Our results identify the degree of myelination as an important structural feature of the neocortex that is tightly linked to the function and behavior supported by the cortical area.
Collapse
|
4
|
Sheets JR, Briggs RG, Bai MY, Poologaindran A, Young IM, Conner AK, Baker CM, Glenn CA, Sughrue ME. Parcellation-based modeling of the dorsal premotor area. J Neurol Sci 2020; 415:116907. [DOI: 10.1016/j.jns.2020.116907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
5
|
Shinagawa H, Ono T, Honda EI, Masaki S, Shimada Y, Fujimoto I, Sasaki T, Iriki A, Ohyama K. Dynamic Analysis of Articulatory Movement Using Magnetic Resonance Imaging Movies: Methods and Implications in Cleft Lip and Palate. Cleft Palate Craniofac J 2017; 42:225-30. [PMID: 15865454 DOI: 10.1597/03-007.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objectives To visualize articulatory movement using a magnetic resonance imaging (MRI) movie of a subject with cleft lip and palate (CLP) and to demonstrate the usefulness of this method for studying oropharyngeal function. Material and Methods Dynamic changes in oropharyngeal structures were assessed with an MRI movie of a man with cleft lip and palate and in a normal adult male volunteer during the articulation of /pa/, /ta/, and /ka/. Results and Conclusions Different movement patterns were observed during articulation in the subject with CLP compared with the normal volunteer. Posterosuperior movement of the tongue and the anterior movement of the posterior pharyngeal wall were clearly visualized in the subject with CLP. Thus, MRI movies appear to be a promising tool for evaluating speech function in patients with CLP because of their noninvasive and nonradiation nature.
Collapse
Affiliation(s)
- Hideo Shinagawa
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Misra G, Ofori E, Chung JW, Coombes SA. Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement. Cereb Cortex 2017; 27:2592-2606. [PMID: 26965905 DOI: 10.1093/cercor/bhw061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement.
Collapse
Affiliation(s)
- Gaurav Misra
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Edward Ofori
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Jae Woo Chung
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Abstract
Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor areafor cortex in Brodmann area 4 and premotor areafor cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.
Collapse
Affiliation(s)
- Philippe A Chouinard
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
8
|
Smith AL, Staines WR. Externally cued inphase bimanual training enhances preparatory premotor activity. Clin Neurophysiol 2012; 123:1846-57. [PMID: 22401934 DOI: 10.1016/j.clinph.2012.02.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Previous studies have demonstrated that cortical potentials representing motor preparation for visually-cued movements are enhanced following a single session of visually-cued bimanual movement training (BMT). The neuroanatomical sources that contribute to these rapid training-induced adaptations were unclear. To address this, we compared cortical potentials associated with motor preparation for visually-cued (movement-related potential, MRP) and self-paced (Bereitschaftspotential, BP) movements and investigated adaptations of these following BMT. METHODS EEG recorded the cued MRP and self-paced BP during two experiments. In experiment one, pre and post self-paced unimanual trials were interspersed with cued inphase BMT. In experiment two, self-paced and visually-cued movement trials were performed to assess the differences between and the contributing neural sources to the cued MRP and self-paced BP. RESULTS Inphase BMT does not affect the early BP. Source localization analysis revealed that the preparatory portion of the cued MRP and self-paced BP are generated by the lateral premotor cortex and the supplementary motor area, respectively. CONCLUSIONS The early cued MRP and self-paced BP have unique cortical generators and are independently modulated by specific training types. SIGNIFICANCE These novel findings have implications for interpreting rapid, single-session, training adaptations previously observed. These cortical potentials may also be useful measurement tools to gauge within-session cortical modulations in response to specific modes of rehabilitative training in the stroke population.
Collapse
Affiliation(s)
- Alison L Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Canada
| | | |
Collapse
|
9
|
Smith AL, Staines WR. Cortical and behavioral adaptations in response to short-term inphase versus antiphase bimanual movement training. Exp Brain Res 2010; 205:465-77. [PMID: 20711566 DOI: 10.1007/s00221-010-2381-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Bimanual movement training (BMT) may be an effective rehabilitative protocol for movement-related deficits following a stroke; however, it is unclear how varying types of BMT induce cortical adaptations in the healthy population. Moreover, we lack a methodology to measure cortical adaptations in response to modes of movement training. Therefore, the present study measured the cued movement-related potential (MRP) to investigate cortical adaptations during cued inphase versus antiphase BMT that transferred to a unimanual task and how cortical modulations related to behavior. Three specific hypotheses were investigated: (1) cued inphase BMT would induce cortical adaptations within regions subserving motor preparation and movement execution, (2) repetitive cued unimanual training would induce cortical activity modulations associated with motor execution, and (3) increased cortical activity would be associated with enhanced performance. On three separate days, EEG was recorded from 22 electrodes during three types of cued movement training: inphase BMT, antiphase BMT and repetitive unimanual movement, in addition to pre- and post-training unimanual movement trials involving cued right wrist flexion. The MRP was measured for each repetition during each trial. Results showed a significant training-related increase in preparatory activation correlated with a behavioral enhancement following cued inphase BMT. This effect was not attributable to a change in arousal. No significant training-related modulation occurred in response to cued antiphase BMT or repetitive unimanual movement training. These results suggest that cortical adaptations in relation to the preparation of a cued movement enhance in response to cued inphase BMT, and the MRP is an effective measurement tool to assess training-related adaptations in response to inphase BMT specifically.
Collapse
Affiliation(s)
- Alison L Smith
- Department of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
10
|
Chen JL, Zatorre RJ, Penhune VB. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage 2006; 32:1771-81. [PMID: 16777432 DOI: 10.1016/j.neuroimage.2006.04.207] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 04/18/2006] [Accepted: 04/21/2006] [Indexed: 11/16/2022] Open
Abstract
When listening to music, we often spontaneously synchronize our body movements to a rhythm's beat (e.g. tapping our feet). The goals of this study were to determine how features of a rhythm such as metric structure, can facilitate motor responses, and to elucidate the neural correlates of these auditory-motor interactions using fMRI. Five variants of an isochronous rhythm were created by increasing the contrast in sound amplitude between accented and unaccented tones, progressively highlighting the rhythm's metric structure. Subjects tapped in synchrony to these rhythms, and as metric saliency increased across the five levels, louder tones evoked longer tap durations with concomitant increases in the BOLD response at auditory and dorsal premotor cortices. The functional connectivity between these regions was also modulated by the stimulus manipulation. These results show that metric organization, as manipulated via intensity accentuation, modulates motor behavior and neural responses in auditory and dorsal premotor cortex. Auditory-motor interactions may take place at these regions with the dorsal premotor cortex interfacing sensory cues with temporally organized movement.
Collapse
Affiliation(s)
- Joyce L Chen
- Montreal Neurological Institute, McGill University, Rm. 276, 3801 University St., Montreal, QC, Canada H3A 2B4.
| | | | | |
Collapse
|
11
|
Gallinat J, Winterer G, Herrmann CS, Senkowski D. Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 2004; 115:1863-74. [PMID: 15261865 DOI: 10.1016/j.clinph.2004.03.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2004] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Integration of sensory information by cortical network binding appears to be crucially involved in target detection. Studies in schizophrenia using functional and diffusion tensor neuroimaging, event-related potentials and EEG coherence indicate an impairment of cortical network coupling in this disorder. Previous electrophysiological investigations in animals and humans suggested that gamma activity (oscillations at around 40 Hz) is essential for cortical network binding. Studies in medicated schizophrenia provide evidence for a reduced gamma activity in the context of auditory stimulus processing. This is the first investigation of oscillatory activations in the gamma-band in an auditory oddball paradigm in unmedicated schizophrenic patients. METHODS EEG gamma-band responses (GBRs) of 15 drug-free schizophrenic patients and 15 age- and gender-matched healthy controls were compared. A wavelet transform based on Morlet wavelets was employed for the calculation of oscillatory GBRs. RESULTS In response to standard stimuli, early evoked GBRs (20-100 ms), which are supposed to reflect auditory cortex activation, did not show significant group differences. However, schizophrenic patients showed reduced evoked GBRs in a late latency range (220-350 ms), particularly after target stimuli. This deficit occurred over right frontal scalp regions. Furthermore, significant correlations were observed between oscillatory GBRs and clinical parameters in schizophrenic patients. CONCLUSIONS The results are consistent with a relative preserved stimulus processing in the auditory cortex as reflected by the early GBR. The reduced late GBR is compatible with an abnormal interaction within a frontal lobe network, as was postulated by previous neuroimaging studies. SIGNIFICANCE The present study provides evidence for disturbed processing within frontal cortical regions in unmedicated schizophrenic patients as indicated by reduced evoked EEG GBRs.
Collapse
Affiliation(s)
- Jürgen Gallinat
- Clinic for Psychiatry and Psychotherapy, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Chapter 15 Reaction time as an index of motor preparation/programming and speed of response initiation. HANDBOOK OF CLINICAL NEUROPHYSIOLOGY 2003. [DOI: 10.1016/s1567-4231(09)70163-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|